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Abstract
Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health 
impairment of animals and humans. We used archived Landsat images to examine ABs 
in lakes (>1 km2) around the globe over a 37-year time span (1982–2018). Out of the 
176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had 
sufficiently long records to define a trend, and 66% exhibited increasing trends in fre-
quency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake 
to the number of available Landsat images for that lake) or area ratio (AR, ratio of an-
nual maximum area covered by ABs observed in a lake to the surface area of that lake), 
while 34% showed a decreasing trend. Across North America, an intensification of ABs 
severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a 
decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest inten-
sification of ABs was observed in Asia, followed by South America, Africa, and Europe. 
No clear trend was detected for the Oceania. Across climatic zones, the contributions 
of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross do-
mestic product, and 18.7% for population) were slightly stronger than climatic drivers 
(10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for 
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1  |  INTRODUC TION

Globally, there are ~27  million lakes and reservoirs with an area 
≥0.01 km2, covering a total area of ~4.7 million km2, which as a whole 
represent major ecological and economic resources (Pekel et al., 
2016; Verpoorter et al., 2014). However, under the impact of climate 
change and anthropogenic perturbations, lake water quality has de-
clined globally, as witnessed by the increased proliferation of algal 
blooms (ABs) in recent decades (Huang et al., 2020; Huisman et al., 
2018; Paerl & Huisman, 2008; Song et al., 2021; Wurtsbaugh et al., 
2019). ABs are characterized by the rapid accumulation of phyto-
plankton biomass, forming dense blooms (Rousso et al., 2020). Some 
algal taxa are capable of producing toxic compounds that lead to 
deteriorated quality of drinking water and recreational waters, pos-
ing a serious health threat to human and animal consumers as well 
as to resident aquatic organisms (Huisman et al., 2018; Paerl, 2008; 
Michalak et al., 2013). In September 2020, for example, more than 
300 elephants in the southern African country Botswana died as a 
result of ingesting algal toxins (Wang et al., 2021). In addition, when 
ABs “crash,” the decomposition of algal biomass can lead to hypoxia, 
a major cause of fish kills, as well as death of benthic invertebrates 
and loss of submerged aquatic vegetation (Chapra et al., 2017; 
Michalak et al., 2013; Paerl & Huisman, 2008; Paerl & Paul, 2012).

Recent studies have indicated a rise in the frequency, intensity, 
and duration of ABs (Burford et al., 2020; Fang et al., 2018a; Friedland 
et al., 2018; Kosten et al., 2012; Paerl & Huisman, 2008; Song et al., 
2021). Although these have provided valuable insights into broad-
scale spatiotemporal patterns of ABs in lakes, there is still an unre-
solved gap in our understanding of their distributional pattern at the 
global scale (Feng et al., 2021). This gap exists because most studies 
have been focused on large lakes (≥100 km2) (Beaulieu et al., 2013; 
Huisman et al., 2018; Ndlela et al., 2016; Paerl & Paul, 2012), leading 
to limited information on smaller water bodies. Yet, these systems 
are more sensitive to anthropogenic and climatic pressures (Verbeek 
et al., 2018). Furthermore, most past studies have been confined to 
lakes within relatively limited geographic regions (Beaulieu et al., 
2013; Duan et al., 2009; Fang et al., 2018a; Taranu et al., 2015). As a 
result, we lack a comprehensive understanding of the spatiotempo-
ral patterns of lakes experiencing ABs across the globe.

Satellite imagery and ever-advancing remote sensing processing 
technologies facilitated time-series analysis aiming at spatiotemporal 
trends of ABs at various scales (Kutser, 2004, 2009; Shi et al., 2019). 
Data from the Landsat series are particularly well suited for ABs 
long-time trend analysis due to their availability over a reasonably 

long time period and with a higher spatial resolution (30 m) (Palmer 
et al., 2015).

Lakes and reservoirs are exposed to a wide range of physiochem-
ical and biotic stressors, such as climatic change (Adrian et al., 2009; 
Schindler, 2009; Shi et al., 2019) and anthropogenic activities (Duan 
et al., 2009; Michalak et al., 2013). Nitrogen and phosphorus inputs 
have long been recognized as triggers for ABs in surface waters 
(Glibert & Burford, 2017; Huisman et al., 2018; Schindler, 1974). Some 
studies reported that phosphorus stimulates algal proliferation and 
thus is the primary nutrient of concern (Schindler and Hecky, 2008; 
Schindler et al., 2008; Schindler, 2012), while others have shown 
that nitrogen also plays an important role in controlling phytoplank-
ton biomass along the freshwater to marine continuum (Howarth & 
Paerl, 2008; Lewis & Wurtsbaugh, 2008; Paerl et al., 2016, 2018; 
Wurtsbaugh et al., 2019). Clearly, the nutrient impacts on ABs oc-
currence are complex and regulated by interactions among various 
factors, including lake morphology, climatic conditions, hydrody-
namics, and algal taxa (e.g., nitrogen-fixing vs. non-fixing) (Frenken 
et al., 2016; Huisman et al., 2018; Thomas et al., 2017; Rousso et al., 
2020). Growing nutrient loading from urban, agricultural and indus-
trial point and non-point sources remains the main threat to water 
quality and sustainable use of surface water resources (Huisman 
et al., 2018; Michalak et al., 2013; Winder, 2012). Factors such as 
fertilizer use (FRT), gross domestic product (GDP), and population 
growth (POP) have, respectively, been used as composite indicators 
of agricultural intensity, industrial output, and urban development, 
and identified in previous studies as the driving forces for ABs occur-
rence (Duan et al., 2009; Elliott, 2010; Shi et al., 2019).

Here, we exploited the imagery data from Landsat series of sen-
sors TM/ETM+/OLI to detect and map ABs from 1982 to 2018 in 
lakes with an area greater than 1 km2 across the globe (Figure S1). 
The study aims to (i) document the geographic distribution and tem-
poral variations of ABs in lakes and reservoirs across the globe and 
(ii) quantify the contribution of anthropogenic activities and climatic 
factors to ABs prevalence in different climatic regions.

2  |  MATERIAL S AND METHODS

2.1  |  Satellite images acquisition and processing

The initial satellite dataset (all lakes and reservoirs) covered 7303 
path and rows (P-Rs) in the Landsat Worldwide Reference System 
(WRS-2), and included 863 lakes (covering 740 P-Rs) in which ABs 

rainfall). Collectively, these divergent trends indicate that consideration of anthropo-
genic factors as well as climate change should be at the forefront of management poli-
cies aimed at reducing the severity and frequency of ABs in inland waters.

K E Y W O R D S
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were detected. The total number of available Landsat images cover-
ing each AB-impacted lake (from 1982 to 2018) is reported in Figure 
S2 (more information about satellite images preprocessing is avail-
able in Supplementary information 1.1–1.2).

We applied three steps before retrieving ABs. First, a bulk of 
Landsat Level-1 GeoTIFF Data Product for the period of 1982–2018 
was downloaded from the USGS Global visualization viewer website 
(http://glovis.usgs.gov/). Second, these images were radiometrically 
calibrated (based on Eq. 2 in Supplementary information 1.2). All the 
radiometrically calibrated images were visually inspected to check 
whether potential ABs appeared, true colored Red-Green-Blue 
images could eliminate the interference of other floating materials 
and organisms, such as brine shrimp (Qi et al., 2020). Furthermore, 
Normalized Difference Vegetation Index (NDVI) and Floating Algae 
Index (FAI) were calculated to identify lakes with potential ABs oc-
currence (Hu, 2009; Rouse et al., 1974). Third, each of the lakes with 
ABs were clipped using lake boundary shape files, with only one AB-
impacted lake or reservoir in each outcome file.

Then, each clipped image was processed using the following 
steps to retrieve ABs in different lakes: (1) Batch using MNDWI to 
obtain the MNDWI image and selecting the best threshold for ex-
traction of lakes/reservoirs boundary (note that the boundaries of 
some lakes shifted over the years or sometimes even months). This 
step eliminated the interference from land vegetation and float-
ing aquatic plants. Meanwhile, Cloud was masked by setting green 
band threshold (Fang et al., 2018b). (2) Batch using turbid water 
index (TWI) to identify and eliminate the signal of turbid water 
(Liang et al., 2017), building a water mask to determine the portion 
of the image to use in the next phase of image processing. (3) Batch 
computing adjusted floating algae index (AFAI) images (Fang et al., 
2018a, 2018b), and selection of the optimum threshold to extract 
AB-impacted area, and generate the corresponding files of ABs 
distribution (image has a corresponding optimum threshold). The 
AFAI method relies on the bump of NIR band in Landsat images. The 
above steps were executed using IDL 8.5 (Fang et al., 2018a). The 
expression of AFAI is as follows:

where Rrc,RED, Rrc,NIR, and Rrc,SWIR are the top of atmosphere reflec-
tance of red band, near-infrared (NIR) band, and short-wave infrared 
(SWIR) band, respectively.

The spectral characteristics of algal blooms were significantly 
different from those of aquatic macrophytes in the short-wave in-
frared (SWIR) region, showing that the SWIR bands are crucial spec-
tral domain for distinguishing algal blooms and aquatic macrophytes 
(Liang et al., 2017; Oyama et al., 2015). In this study, we applied the 
combination of normalized difference water index (NDWI4,5) and 
the AFAI to differentiate algal blooms from aquatic macrophytes. 
We first used the extracted lake water surface using the method 
mentioned in Supplementary information 1.1, and then we used the 
NDWI4,5 to classify algal blooms or aquatic macrophytes once there 
was an indication of potential confusion between these two types 

of aquatic subjects. The work of Oyama et al. (2015) has shown 
that the threshold of NDWI4,5 was more robust due to its low sen-
sitivity to remote sensing reflectance corrected by different atmo-
spheric method. All the boundaries of ABs in each lake were visually 
checked to verify the accuracy. Sometimes, visual interpretation 
was necessary to supplement the ABs extent masked by MNDWI. 
Representative Landsat images observed ABs and corresponding 
ABs boundaries are shown in Figure S3. Finally, the final boundary, 
date, and area of ABs in each lake or reservoir were collected and 
summarized. These data were further processed or analyzed to ad-
dress the study objectives.

2.2  |  The definition of AR, FRQR, ABsY, 
AAR, and AFRQR

To investigate the spatiotemporal variation in ABs, frequency ratio 
(FRQR) and area ratio (AR) were computed. FRQR is the ratio of the 
number of ABs events observed in a year in a given lake to the num-
ber of available Landsat images for that lake. This computational ap-
proach allows to avoid ABs detection inconsistency and bias that can 
be introduced due to advances in remote sensing technologies over 
the past 40 years (Fang et al., 2018a). AR is the ratio of the maximum 
area covered by ABs in a year divided by the specific surface area of 
a lake. It is important to note that, depending on the research scale 
(continental, national, or climatic zone), annual FRQR was computed 
as the annual sum of FRQR for all AB-impacted lakes on the con-
tinent, country, or climatic zone during a given year. A similar ap-
proach was used to derive annual AR in AB-impacted lakes at these 
different scales. To investigate interannual trends in ABs occurrence 
across climatic zones, we introduced the aggregated variable ABsY, 
which is defined as FRQR multiplied by AR in each AB-impacted 
lake for every climatic region (Köppen climate classification system) 
(Figure S4-S7). The annual mean values of FRQR and AR were de-
fined as AFRQR and AAR, respectively. Given the variation in lake 
density (hence, total lake water surface area) in different continents, 
countries, or regions across the world, AAR was normalized to the 
total amount of lake surface area in a continent, country, or region, 
and the ratio was reported as AAR/Area. Likewise, AFRQR was nor-
malized to the number of AB-impacted lakes in a continent, country, 
or region, and the ratio reported as AFRQR/Number.

2.3  |  Generation of driving forces

Multilevel analyses of the 863 ABs-impacted lakes were carried out 
to quantify the relative contribution of anthropogenic and climate 
factors. Each individual water body was regarded as an independ-
ent unit, and quantitative relationships were established between an-
thropogenic and climatic factors within the drainage basin associated 
with a specific lake. Likewise, at the climatic zone level, lakes located 
in the same climatic zone were aggregated and relationships with 
driving factors were examined across all basins within an eco-region.

AFAI = Rre,NIR − Rre,RED −

(

Rrc,SWIR − Rrc,RED

)

× 0.5(1)

http://glovis.usgs.gov/
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The socio-economic data, including Gross Domestic 
Product (GDP), population (POP), fertilizer (FRT) and Night-
time Light Brightness (NTL), were computed for the catchment 
associated with each ABs-impacted lake (more details are 
available in Supplementary information 1.3). However, some 
of the watersheds’ boundaries provided by Global Drainage 
Basin Database (GDBD) were too large; therefore, we gener-
ated more accurate basin boundary using GDBD, DEM, and 
land-use data. POP and NTL were derived directly from zonal 
statistics for each basin. GDP and FRT data were assembled 
for each administrative region. To extrapolate GDP data at the 
watershed level, we used population distribution as the proxy. 
To achieve that, we considered two scenarios: (i) catchment 
that covers only one country and (ii) catchment that covers 
two or more countries.

In the first scenario, the computation involved two steps: (1) use 
the zonal statistics tool in ArcGIS to obtain the population size in 
the watershed and (2) multiply the per-capita GDP by the number of 
people to derive GDP for the entire watershed. In the second sce-
nario, the computation involved four steps: (1) use the intersect tool 
in ArcGIS to match each watershed boundary and the boundaries 
of all included countries; (2) use the zonal statistics tool in ArcGIS 
to obtain population number in each sub-region; (3) multiply the 
per-capita GDP by the number of people to derive GDP in each 
sub-region of the watershed; and (4) calculate GDP for the entire 
watershed by summing GDP of all the sub-regions.

A similar approach was adopted to calculate FRT in a water-
shed. In the first scenario, the computation involved three steps: (1) 
using the zonal statistics tool in ArcGIS, compute the cropland area 
in each country, and derive the average FRT per unit area of crop-
land; (2) using the zonal statistics tool to compute the cropland area 
in the watershed; (3) multiply cropland area from step 2 and FRT 
per cropland area (step 1) to derive FRT for the entire catchment. 
In the second scenario, the computation included five steps: (1) the 
zonal statistics tool was used to compute the cropland area in each 
country, and compute the average FRT per unit area of cropland; 
(2) the intersect tool in ArcGIS was used to match each watershed 
boundary and the boundaries of all included countries; (3) the zonal 
statistics tool was applied to obtain cropland area for each sub-
region; (4) FRT for each sub-region was derived by multiplying FRT 
per cropland area (step 1) and cropland area in each sub-region; and 
(5) FRT for the entire watershed was derived by summing FRT for 
all the sub-regions in the watershed.

2.4  |  Data analysis methods

For each of the 21  climatic zones (as well as for different sea-
sons), mean values for both the socio-economic variables (GDP, 
POP, FRT, and NTL) and meteorological factors (temperature, 
wind speed, atmospheric pressure, and precipitation) were 
computed. Spearman correlation analysis was conducted using 
Matlab 2016a to explore relationships between anthropogenic 

activities and climatic elements with ABs severity in different cli-
matic zones. When examining interannual trends in ABs at the 
continental and country scales, the breakpoint was determined 
through Mann–Kendall test (Gocic & Trajkovic, 2013; Kendall, 
1948; Mann, 1945). In order to explore possible synergistic ef-
fects of anthropogenic activities and climatic elements on ABs 
incidence, and compare the relative importance of each forcing 
factor, we calculated the total adjusted R2 and partial R2 of all 
driving factors with redundancy analysis (RDA) and variation par-
titioning analysis (VPA). First, we used RDA to filter the most 
influential group of driving factors, then recomputed their sepa-
rate and total contribution for each climatic zone. Second, we 
aggregated the identified factors into climatic and anthropogenic 
sub-groups, and then calculated the individual and interaction 
contribution of each anthropogenic and climatic factor using 
VPA. The interaction contribution represents the synergy be-
tween anthropogenic and climatic factors as it was accounted in 
both anthropogenic and climatic factors.

3  |  RESULTS

3.1  |  Spatiotemporal variation of lakes found ABs

ABs events were detected in 863  lakes across the globe, corre-
sponding to a cumulative area of ~465,000  km2, and stretching 
across 70 countries and regions (Figure 1). From 1982 to 2018, a 
total of 21,530 ABs events were documented in these lakes based 
on Landsat imagery analysis. Although the frequency of ABs varied 
among different lakes, there was a general increasing trend in annual 
detection of ABs globally (Figure S8), and a decreasing trend in their 
frequency ratio (FRQR) since 2014.

Using linear fitting, annual FRQR and AR of ABs in each lake 
were computed, and then we mapped the interannual change slope 
for these parameters (Figure 2). Out of the 863  lakes where ABs 
were detected, 708 had a record long enough for determining the 
slope of regression of FRQR and AR against time. Regardless of the 
confidence levels, 197 out of 708  lakes experienced synchronous 
increases in FRQR and AR, whereas 242 showed concomitant de-
creases in these parameters. Using AR or FRQR as indicators of ABs 
intensification, these results indicated that, over the study period, 
ABs occurrence was intensified in 66% of lakes (466 out 708) but 
decreased in 34% (242 out 708) of lakes. These results provide 
confirmation to speculation of global intensification of ABs in lakes 
(Huisman et al., 2018; Wells et al., 2015). Nevertheless, we did not 
find evidence of a global expansion of the geographical domain of 
AB-impacted lakes in neither the latitudinal nor the longitudinal di-
rection (Table S1). Interestingly, the number of AB-impacted lakes 
showed a sharp decline toward the end of the record (starting in 
2014) (Supplementary Dynamic Gif File, Figure S8).

Most of the lakes with ABs were distributed in high-latitude 
zones (latitude≥40°N) (Figure 3), and a second area with concen-
trated AB-impacted lakes occurred in the region between 10 and 
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23.43° latitude (23.43° being the tropic line). The lakes with ABs 
exhibited significant increasing trends across all 10  latitude zones 
over the past 37 years (p < .05) (Figure 3b). The slope coefficients 
of linear regression increased with latitude in the northern hemi-
sphere except the latitudinal zone of 10–23.43°. A similar pattern 
was also observed in the southern hemisphere (Figure 3).

3.2  |  Continental trend in algal blooms

The distribution of ABs-impacted lakes is uneven across the globe 
(Figure 1). Because lake density varies greatly among the different 
continents (Figure S9, and Supplementary information 1.4), the pa-
rameters AFRQR and AR were normalized to total number of lakes 
and to total lake area, respectively (resulting parameters are AFRQR/
Number and AAR/Area) to facilitate continental-scale analysis (Table 
S2). Based on AFRQR and AAR (Figure 4), lakes in North America 
and Asia experienced the highest frequency of ABs events, while 
Oceania exhibited the lowest. The parameters AFRQR/Number 
and AAR/Area were multiplied, and the product of the two indica-
tors was used to further assess ABs severity in different continents 
(Table S2). Based on these criteria, the sequence of ABs severity 
was (from most to least) Africa, followed by South America, North 
America, Europe, Asia, and then Oceania.

The long-term trend of ABs in lakes of North America can be 
divided into two stages with 1999 being the break year (Figure 4a). 

From 1982 to 1999, ABs occurrence showed a significant and sus-
tained increasing trend in both FRQR and AR (p <  .01), while both 
indices decreased significantly (p < .01) from 2000 to 2018. These 
results attest to the effectiveness of phosphorus loading reduction 
strategies (e.g., agricultural runoff, urban wastewater discharge, 
P-free detergents) implemented in the United States and Canada 
during the last two decades (Michalak et al., 2013; Schindler, 1974). 
Nonetheless, there are still lakes in North America exhibiting in-
creasing trends in FRQR (140 lakes, including 15 at a confidence level 
of p < .05; when there were only two variables in the regression, the 
p-value was regarded as 0) and in AR (148  lakes, including 11 at a 
confidence level of p < .05). The above-mentioned lakes are distrib-
uted throughout the North American continent (geographic location 
shown in Figure 2). Our observed decline in ABs occurrence since 
2000 in lakes of North American was a surprising finding. Given 
the intensity of news coverage regarding ABs events, it is easy to 
think that such events are increasing in lakes across North America. 
Our results, however, demonstrated just the opposite trend. During 
the study period, lakes in Asia, Africa, and South America also 
showed a significant (p < .01) increase in both AFRQR and AAR. For 
lakes in Europe, the trend in ABs severity was variable and multi-
directional—a peak in AFRQR and AAR in 1987 followed by a decline 
in 1997, and finally variable trend in AFRQR and slight intensification 
in AAR between 1998 and 2003. For lakes located in Oceania, ABs 
occurrence was detected only from 1988 to 2009, and no clear trend 
in AB severity was detected in the last decade.

F I G U R E  1  Global distribution of lakes where algal blooms (ABs) were detected. A total of 863 ABs-impacted lakes were inventoried. 
Based on their surface area (indicated by size of circle), lakes were distributed as follows: 1–50 km2: 557; 50–100 km2: 86, 100–500 km2: 
132, 500–1000 km2: 28, 1000–10,000 km2: 52, >10,000 km2: 8 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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3.3  |  Country-scale patterns in algal blooms

The country-level trends in ABs occurrence also exhibited large 
spatial variation globally (Figure 5a-b). The fitted linear slope of in-
terannual trends (1982–2018) in FRQR and AR for 70 countries and 
regions were analyzed (Table S5-S6). To be concise, we made brief 
comparisons among the top 10 countries with highest frequency of 

ABs occurrence (Supplementary information 1.4, 1.5). Lakes in South 
Africa were identified as some of the most severely impacted by ABs 
around the world. The temporal trend of ABs in lakes of Canada can 
be divided into two periods—sustained and significant increase in 
FRQR (p < .01) and insignificant increase in AR (p < .14) from 1982 to 
1999, and then decrease (although insignificant) in both parameters 
(FRQR, p < .1; AR, p < .24) since 2000. A similar trend was observed 

F I G U R E  2  Interannual change in algal 
blooms (ABs) as expressed by the slope 
of FRQR against time (a) and AR against 
time (b). Slope of the temporal trend is 
reported for different confidence levels. 
FRQR is the ratio of the number of ABs 
events observed in a year in a given 
lake to the number of available Landsat 
images for that lake. AR is the ratio of 
annual maximum area covered by ABs 
observed in a lake to the surface area of 
that lake [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  3  Interannual (1982–2018) 
changes in the number of lakes impacted 
by algal blooms (ABs) in different latitudes 
across the globe. The number of ABs-
impacted lakes is shown in graph panel 
a, with scale to the right. The linear 
regression slope coefficients (p < .05) of 
the temporal trend in the Abs-impacted 
lakes at different latitudes are shown in 
panel b (blue bars), gray line represented 
the standard error [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/


    |  2333FANG et al.

in lakes of the United States—sustained significant (p < .01) intensi-
fication of ABs severity (as expressed by FRQR and AR) from 1982 
to 1998, followed by a significant (p <  .01) decrease in these vari-
ables between 1999 and 2018. Lakes in Brazil, Mexico, China, South 
Africa, and Russia showed significant (p < .01) increase in both FRQR 
and AR during the period of record (1982–2018). Overall, among the 
70 countries where ABs-impacted lakes were identified, intensifica-
tion of ABs was indicated in 23–26 countries based on either FRQR 
or AR. A decreasing trend was observed in 6 (based on AR) to 11 
countries (based on FRQR).

3.4  |  Variation in algal blooms along climatic zone

To examine interannual trends of ABs occurrence in different climatic 
zones, we introduced an aggregated variable called ABsY and defined 
as FRQR multiplied by AR for each lake within each of the 21 climatic 
regions in the Köppen climate classification system (Figure S4; Table 
S8). Temporal variations in FRQR, AR, and ABsY for the 21 climatic 
zones are presented in Figure S5-S7 (Supplementary information 1.6).

The intensifications of ABs events were noted for some climatic 
zones (Figure S5-S7), in coincide with global atmospheric circulation 

F I G U R E  4  Interannual trend in algal blooms (ABs) severity across different continents from 1982 to 2018. Severity was expressed using 
the parameters FRQR (a) and AR (b). AFRQR is the annual mean FRQR of ABs events observed in lakes across a continent from Landsat 
images. Likewise, AAR is the annual mean AR of ABs observed in lakes on a continent from Landsat images. For each continent, trend line is 
plotted along with statistical significance of the interannual trend [Colour figure can be viewed at wileyonlinelibrary.com]
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systems such as El Niño and La Nina (Figure 6). The response of 
lakes to these climate indices greatly varied among climatic zones 
(Figure 6a, Figure S5-S7). For instance, for lakes located in the Af 

(tropical rainforest) region, total seven times of interannual rapid 
intensification were identified for ABs occurrence. For lakes in the 
Am (tropical monsoon), BWh (tropical and subtropical desert), and 

F I G U R E  5  Interannual trend (1982–
2018) in algal blooms (ABs) severity 
in selected countries. Severity was 
expressed using the parameters FRQR 
(a) and AR (b). AFRQR is the annual mean 
FRQR of ABs events observed in lakes 
across a country or region from Landsat 
images. Likewise, AAR is the annual mean 
AR of ABs observed in lakes across a 
country or region from Landsat images. 
For each country or region, trend line is 
plotted along with statistical significance 
of the interannual trend [Colour figure can 
be viewed at wileyonlinelibrary.com]

F I G U R E  6  The spatiotemporal 
distribution of periods of rapid 
intensification of algal blooms (ABs) across 
21 climatic zones (a), and in relation to the 
strength of the atmospheric circulation 
systems, El Niño (red) and La Niña (blue) 
(b). The Köppen climatic zones are 
described in Figure S4 and Table S8. Rapid 
intensification of ABs in the different 
climatic zones (panel a) is reported 
using the color code shown on the right 
(1 = green, 2 = yellow and 3 = red to 
indicate intensification based only on 
FRQR, only on AR, and on both FRQR and 
AR, respectively) [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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BWk (temperate desert) regions, 6 observation-years were labeled 
as rapid intensification, corresponding to the moderate/strong El 
Niño and La Niña events (Figure 6). In the other climatic zones, the 
influence of El Niño and La Niña events on ABs intensification was 
much weaker.

3.5  |  Contribution of all potential factors

Analysis of the contribution of all potential climatic and anthropo-
genic factors to ABs severity showed that the average total adjusted 
R2 of all anthropogenic (except NTL) and climatic factors was 34.98% 
(Figure 7). When disaggregated among the 21 climatic zones, the av-
erage contribution of climatic and anthropogenic factors was 21.44% 
and 24.87%, respectively. The interaction contribution of climatic 
and anthropogenic factors was 11.35%. Across the 21 climatic zones, 
the total contribution of factors varied seasonally averaging 35.42%, 
38.14%, 33.37%, and 33.01% in the spring, summer, autumn, and 
winter, respectively (Figure 7). The contribution rates of different cli-
mate factors also showed obvious seasonal distribution differences. 
The effect of wind speed was more evenly distributed across the four 
seasons. The influence of precipitation was particularly pronounced 
in summer, and the effect was equal in spring and autumn. The influ-
ence of pressure was particularly prominent in spring and summer, 
followed by winter. The effect of temperature was most prominent 
in winter, with roughly similar effect during the other three seasons.

4  |  DISCUSSION

4.1  |  Necessity and limitation of using Landsat 
images

Long-term records of ABs events in lakes and reservoirs are crucial 
both for assessing changes in the ecological health of lacustrine 
ecosystems and identifying critical factors that drive these events. 
Yet, the availability of data for this type of analysis is often sparse, 
particularly in remote areas where field-based monitoring of large 
lakes can be exceedingly challenging (Tan et al., 2017). Fortunately, 
archived data from the Landsat program, the world's longest run-
ning Earth-observing satellite mission, provide a wealth of informa-
tion and opportunities for uncovering evidence of past blooms (Ho 
et al., 2017; Woodcock et al., 2008; Wulder et al., 2012; Wynne 
et al., 2018). Although hyperspectral data have been used to moni-
tor phytoplankton pigments in natural waters (Hunter et al., 2010; 
Matthews et al., 2010; Simis et al., 2005, 2007), to date only few 
studies have taken advantage of the Landsat archived data for a 
global-scale examination of the spatiotemporal variation of ABs 
in inland waters (Ho et al., 2017; Oyama et al., 2015; Song et al., 
2021). In the present investigation, the long-term Landsat dataset 
was used to explore the spatiotemporal variation of ABs in surface 
waters across the globe from 1982 to 2018. It is important to note 
that the Landsat satellites carried different sensors at different 

periods of time (MSS/TM/ETM+/OLI); therefore, we examined the 
available images for each year and for each lake in order to mini-
mize bias potentially arising from advances in earth observation 
technologies during the last four decades. Although the availability 
of Landsat images increased during the study period, their tempo-
ral trend was not consistent with that of FRQR and AR (Figure S8). 
Therefore, observed trends in FRQR and AR represent real indica-
tors of intensification of ABs occurrence but not an artefacts result-
ing from greater availability of Landsat images. However, because of 
the relatively long revisit time of Landsat (16 days for one satellite 
and 8 days for two satellites at most locations) coupled with the in-
terference of clouds, the temporal resolution of available imagery 
was low for some lakes. Further, because of the spatial resolution 
(30 m) of Landsat images, variations occurring within small blooms 
(e.g., buoyancy-regulating species that do not always form surface 
blooms; Kutser, 2004; Kutser et al., 2008) could not be detected. 
Thus, in light of these limitations, our results likely underestimate 
the true severity of ABs occurrence in some settings. With future 
deployments of satellites with higher temporal and spatial resolu-
tion, these limitations will likely be remedied.

4.2  |  Driving forces of algal blooms intensification 
within climatic zones

Lakes located in climatic zones characterized by high humidity, warm/
hot temperature, or extreme moisture deficit (e.g., Af, Am, BWh, 
BWk) seemed particularly sensitive to the effect of El Niño and La 
Niña (Figure 6). Therefore, consistent with previous findings for the 
Lake Erie region, USA (Huisman et al., 2018; Michalak et al., 2013; 
Paerl & Paul, 2012), global atmospheric circulation anomalies can vari-
ably impact ABs intensification depending on the climate zone.

Spearman correlations between ABsY and factors (anthropo-
genic, climatic) were examined (Table S9). Among the 21  climatic 
zones, there were 11 to 12  climatic zones in which significant 
(p < .05) correlations were found between ABsY and socio-economic 
factors such as GDP, POP, FRT, and NTL. Past studies have sug-
gested similar linkages (Beaulieu et al., 2013; Michalak et al., 2013). 
In seven climatic zones, significant correlations were found with 
temperature, wind speed, pressure, and precipitation (Table S9). The 
results are also in accord with several past studies. Decreased wind 
speed was found to promote surface bloom formation (Fang et al., 
2018a; Michalak et al., 2013; Rousso et al., 2020). In shallow water 
bodies, low to moderate disturbance caused by wind speed can lead 
to nutrient release due to sediment re-suspension, thereby creat-
ing conditions that fuel ABs formation (Duan et al., 2009; Michalak 
et al., 2013). Elevated temperature can intensify vertical stratifica-
tion of the water column (Huisman et al., 2018; Paerl & Paul, 2012), 
and promote the growth of many motile phytoplankton species, 
including buoyant ABs (Beaulieu et al., 2013; Elliott, 2010; Joehnk 
et al., 2008; Paerl & Paul, 2012; Wagner & Adrian, 2009). Extreme 
weather events such as severe droughts followed by intense pre-
cipitation can also trigger ABs events through increased delivery 
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of nutrients from surrounding landscapes into receiving waters 
(Michalak et al., 2013; Paerl & Paul, 2012; Richardson et al., 2019).

For the various climatic zones, the total amount of variation in 
ABsY explained by anthropogenic and climatic factors was different 
(Figure 7). In the spring season, for example, variation in ABsY was 
largely explained by anthropogenic factors in 12 (out of 21) climatic 
zones, whereas in 9 other climatic zones variation was largely ex-
plained by climatic factors. Across all 21 climatic zones and seasons, 
the proportion of the total variance in ABsY explained by FRT, GDP, 
POP, temperature, wind speed, precipitation, atmospheric pressure, 
and synergy proportion by above factors averaged 16.50%, 19.43%, 
18.70%, 10.14%, 11.73%, 11.65%, 16.80%, and 11.35%, respectively. 
Therefore, across all climatic zones, the contribution of each anthro-
pogenic factor on ABs occurrence was on average greater than that 
of climatic factors (18% vs 12.5%). These results support several 
past studies (Glibert & Burford, 2017; Lewis & Wurtsbaugh, 2008; 
Paerl et al., 2020; Paerl & Paul, 2012; Raven & Geider, 1988; Thomas 
et al., 2017) that have documented the significance of anthropogenic 
factors on seasonal variation of ABs occurrence. This anthropogenic 

effect could be linked to increased nutrients delivery to lakes from 
human activities, including land-use change, alteration of landscape 
hydrology and increased discharge from cropland, industrial facili-
ties, wastewater treatment plants, and sewage discharges.

4.3  |  Implications for management and 
policymaking

Our analysis has shown that the long-term (since the 1980s) spati-
otemporal variation of ABs occurrence in lakes varied in different 
continents, countries, and regions. Although managements have 
been taken to curb and reduce ABs expansion, 66% of lakes ≥1 km2 
with detected ABs exhibited increasing trends of ABs occurrence. In 
some developed countries and regions (e.g., North America, Europe), 
results have shown encouraging trends toward reversing the detri-
mental effects of eutrophication since the early 2000s, while in some 
developing regions (e.g., Asia and South America), some modest im-
provements have been recorded beginning in the 2010s. These trends 

F I G U R E  7  The relative and total contribution of driving factors (seven anthropogenic and climatic factors) on ABs severity in lakes 
based on redundancy analysis (RDA) and variation partitioning analysis (VPA). Due to the interaction, contribution was included in both 
anthropogenic and climatic factors, the total contribution of all factors is lower than the sum of all climatic and anthropogenic factors. 
Data are presented for each season: a, Spring. b, Summer. c, Autumn. d, Winter. The x-axis represent Köppen climate classification types 
(Figure S4; Table S8). Significance levels are indicated as “***,” p < .001; “**,” p < .01; and “*,” p < .05 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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are strong indicators that the P and N-loading reduction strategies 
implemented in some regions have produced some positive effects. In 
contrast, in many developing countries and regions (Africa), lakes con-
tinue to experience severe ABs problems. As demonstrated by the re-
sults from North America, improvement in the lacustrine environment 
can be achieved through adoption of effective nutrient strategies to 
control eutrophication. Developing nations should aim for reduction 
strategies that are adapted to local socio-environmental conditions. 
Finally, it is important to note that, despite the success achieved dur-
ing the last two decades, ABs-impacted lakes are still present in North 
America, underscoring the need to sustain the deployment of proven 
nutrients-reduction strategies until the majority of lakes in the region 
recover their initial ecological status. Balancing economic develop-
ment and ecological sustainability is a challenging but essential goal 
in order to ensure long-term protection of freshwater resources for a 
globally expanding human population.
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Landsat images were downloaded from the Earthdata Search 
(https://search.earth​data.nasa.gov/search) and the USGS Global vis-
ualization viewer web site (http://glovis.usgs.gov/). The GDBD was 
provided by the Center for Global Environmental Research (http://
www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html). The land-​use 
data, from 1992 to 2015, were downloaded from the ESA GlobCover 
product (http://globa​lchan​ge.nsdc.cn). Data pertaining to GDP and 
FRT in different countries and regions were downloaded from the 
world economic database of CEIC (https://www.ceicd​ata.com/
zh-hans/produ​cts/globa​l-econo​mic-database), an extensive global 
database of time series data from more than 200 countries and re-
gions, including China, the United States, and the European Union. 
Population (POP, 1980, 1990, 2000–2017) data were downloaded 
from the Netherlands Environment Assessment Agency Historical 
Database of the Global Environment (HYDE) (http://www.mnp.nl/
hyde). The night-time light brightness (NTL) data were obtained from 

NOAA’s National Geographic Data Center (NGDC) (https://ngdc.
noaa.gov/eog/downl​oad.html). Meteorological data, including daily 
average temperature, precipitation, wind speed, and atmospheric 
pressure, were obtained from the NOAA National Meteorological 
Information Center (https://gis.ncdc.noaa.gov/maps/ncei). The El 
Niño Monitoring Indices was download from National Center for 
Atmospheric Research (https://clima​tedat​aguide.ucar.edu/clima​te-
data/nino-sst-indic​es-nino-12-3-34-4-oni-and-tni). Other related 
data supporting the results could be found in supplement informa-
tion and supporting data files.
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