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Abstract
We describe how certain properties of the extrema of the digits of Luroth expan-
sions lead to a probabilistic proof of a limiting relation involving the Riemann zeta
function and the Bernoulli triangles. We also discuss trimmed sums of Luroth dig-
its. Our goal is to show how direct computations in this case lead to formulas and
some interesting discussions of special functions.

1. Introduction

Let X3, Xs,...Xk,... be a sequence of independent, identically distributed (IID)
random variables taking values in the positive integers N = {1,2,3,...} with
1

):m,n>l

P(Xl =N

We call this distribution the Luroth distribution. The Luroth map L : (0,1] — (0, 1]
is the piecewise-linear map given by

L(z) = N(z)((N(z) + 1)z = 1),

where

It is a nice exercise to check that L preserves Lebesgue measure m, and that if U
is a uniform (0, 1] random variable, the sequence X; = N(L*¥~1(U)) is a sequence
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of IID random variables with the above distribution, since

1 1 1
Pet=m = (o) =m (] =

This map and its associated digit expansion was introduced by Luroth in [9)].
Subsequently, Luroth random variables have been extensively studied, since they
provide an attractive motivating example at the intersection of many questions on
number theory, probability theory, and dynamical systems and ergodic theory. The
Luroth map is in some sense a kind of linearized version of the Gauss map (see
Section 4), where, as we remark above, the resulting digit expansion of numbers
have the appealing property that the digits are independent random variables.

This makes it often possible to do very explicit computations with Luroth random
variables. See [8] for an introduction to the ergodic properties of the map L, [6]
for a discussion of different types of digit expansions, and, for example [7] and [12]
and the references within for more recent work on Luroth and related expansions
from the probabilistic and dynamical perspectives respectively.

Our results center on understanding the limiting behavior of mazima of sequences
of IID Luroth random variables, and the convergence behavior of appropriately cen-
tered and scaled sums. These are classical topics in the theory of sequences of ran-
dom variables, and focusing on this setting leads to some interesting computations.

Using the fact that the Luroth random variables are heavy-tailed, we will show
that the probability pj that the maximum M}, of the first k elements { X1, ..., Xy}
of a a sequence of Luroth variables is unique tends to 1 as kK — co. Our main new
result, Theorem 1, shows how to explicitly compute this probability pi, giving an
interesting relationship between this probability, the Riemann zeta function, and
partial sums of binomial coefficients which are entries in what is known as Bernoulli’s
triangle. Using the fact that py — 1, we obtain a new limiting relation, Corollary 1,
between these coefficients and the Riemann zeta function.

Our other main result considers the behavior of the sample sums

Since E(X1) = oo, the law of large numbers shows that Si/k tends to infinity with
probability one. Inspired by work of Diamond-Vaaler, who studied the correspond-
ing trimmed sum for continued fraction expansions, and using a result of Mori [10]
we show in Theorem 2 that by removing the maximum, and normalizing by k log k,
we have, with probability 1, as k — oo,

Sy — My,
klogk
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Note that the asymptotic uniqueness result says that asymptotically, we are remov-
ing the unique largest summand in Sy by subtracting M. Let

Mk = Inax(Xl, v ,Xk)
be the sample maximum, and let
pr = P( there exists |1 <4 < k such that X; = My,)

be the probability that this maximum is achieved exactly once. Our first main
observation is the following explicit formula for py.

Theorem 1. For k > 1,

k
pr =k | 2" Y T (k= 1,k — )G (1)

Jj=2

where ((j) = Y ooy n9,j > 1 is the Riemann zeta function and for 1 > j positive

mntegers,
Ny
70 =3 ;)

i=0
By [1, 5], we have
lim pg = 1.
k—o0
Thus, as a corollary, we obtain the following limiting relation involving the coeffi-
cients T'(I, j) and values of the Riemann zeta function.

Corollary 1. We have

k
lim k{2870 4> Tk — 1,k — )C()(-1)+ | = 1. (2)
k—o0 =
The coefficients T'(1, j), partial sums of binomial coefficients, are entries in what
is known as Bernoulli’s triangle; see [11]. Note that T(1,0) = 1, T(I,1) = 2!, and
T(,1—1)=2"—1. Let

However, if we subtract the sample maximum, we have the following almost sure
result.
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Theorem 2. With probability 1,
Sy — My,

oo klogk
This is a consequence of a result of Mori [10]. The proof features a nice appearance
of the Lambert W-function. There is a (more difficult) analogous result [4] for
continued fraction digits, where the limiting value is log2. There are substantial
additional difficulties in that setting since continued fraction digits of a randomly
chosen z € (0,1) do not form an IID sequence.

2. Uniqueness of Maxima

Suppose Y1,..., Y%, ... is a sequence of IID N-valued random variables with
P(Y1=n) =p,.

Let
Ty = Z pm = P(Y1 > n).

m>n

Let pg,m denote the probability that the sample maximum My, = max(Y1,...,Ys) =

m and is achieved exactly once. Then
Pk,m = kpm(l - TWZ)k_l'

Note that pg, the probability that the sample maximum M} is achieved exactly
once by Yi,...,Yy, is then given by

S
Pk = Z Pk,m-
m=1

Also note that (although it is not a probability) we have

oo oo p
D Pk =pm Y k(1= 7m)" ! = 25
k=1 k=1

2
Tm,

Specializing to Luroth sequences, we have p,, = m(an_l) and 7, = % Thus
B k 1 1\"! _k(m—l)’“_1
Pleym = m(m + 1) m - Tmk(m+1)°
Let ( )k )
1 m— 1)~
Oulm) = Zoem = kG + 1)

Th next lemma shows how to expand Qi as a partial fraction.
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Lemma 1. We have
k

Qr(m) =281 (1 — 1) +ZT(/¢—17k—j)(—1)j+1i. (3)

mJ
Proof. Note that
T(k—-1,00=1,T(k-1,k—1) =21 Tk -1,k -2)=2"1-1
and )
Q) = (1= 1) Qulm).

Our proof proceeds by induction. For & = 1, we have

1
m(m + 1)’
The right hand side of Equation (3) for k =1 is

91-1 11 _ 1
m  m+1 m(m+1)’
since the index of the sum starts at 7 = 2, making the sum empty. Thus the base

case (k = 1) is verified. We now assume that Equation (3) is true for k, and we
need to prove it for k4 1. Let

c(j, k) = (=) T(k -1,k — ).

Ql(m) = P1,m =

Note that

Q) = (1= Y Qum) = (1= ) (27 (- oy ) + k)

J

- k ‘ ,
TS S LN A S 'y g, k) ci—Lk)
m(m+ 1) m \m m+1 —\ m mitl

B 1 (2571 —e(2,k)) | = (el k) = e(j — 1K)
B km(m—!—l) a m2 +j§::3 mi

Now note that for j > 2,
c(Gk) = c(Gik 1) —c(j — Lk — 1)
and
c(k4+1,k) =0,¢(2,k) =121 ¢(k, k) = (=1)F ¢(1,k) = 281,

Plugging these into Equation (4), we have our result. O
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2.1. Proof of Theorem 1

To prove Theorem 1, we note that

= 1 =1
_— =1 — =((y > 2.
mzzlm(m—i—l) ’mZ:l mJ <G), 5=

Using Lemma 1, and summing over m, we obtain Equation (1). To obtain Corol-
lary 1, it was shown in [1, 5] that

pr — 1 if and only if p,, /7 — 0.

In our setting, pp,/7m = ﬁ“, so the condition is satisfied, and we obtain Corol-
lary 1. In Figure 1, we show numerical values of p; for 2 < k < 40 (note that

pP1 = ].)

1.00
I T
0.90 -
0.85 -

080 °

0.75 1

Figure 1: py for k = 2 to k = 40.

3. Trimmed Sums

In this section, we prove Theorem 2. We first note that using standard limit theo-
rems in probability theory, we can show that
Sk — My a
klogk
The random variables X,, are in the domain of attraction of a stable law of order
1. Using [2, Theorem 11.2.3], we have

-kl
Sk lljogki>07
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where C' is a Cauchy random variable. Thus,

Sk 1 (Sk — klogk) d
= 1 1.
Flog k (logk 2 Tz

Next, note that for ¢ > 0,

k
lim P %<c = lim 1—i =e Ve,
k—o0 k k—o0 ck

Therefore
M 4,
klogk '
Putting these together, we obtain
Sk — My a
L
klogk ’

and therefore we also have this convergence in probability.
To replace convergence in probability with almost sure convergence, we use a
result of Mori [10, Theorem 1], with, in his notation,

r=1A(z) = zlog .

Mori studies the behavior of the sample sums with the first r largest terms removed,
normalized by A(n), where A is an absolutely continuous increasing function such
that there is an 0 < a < 2, with

A(2x)
A(z)

1. .
A(z)x~ = increasing and sup

Keeping our notation consistent with [10, Section 1], we write A(z) = xlogz,
and note that this is a non-decreasing absolutely continuous function, with inverse
function B(z) = %, where W (z) is the Lambert W function, that is, the inverse
of the function we®. Putting

.7:(1‘) :P(Xl >$):

lz] +1

and

) N 2 2
1 n (n—1)
Jy = 2(2)dB*(z) =) — -
o= [ P 2 (Wep Wi 17):
Mori’s result shows that if J, < oo, that almost surely

Sk — My,

W*Ckg)o,
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where

o = ﬁ (X1|X1 < A(K)).

In our setting,

Ck log(klogk) — 1 as k — oo.

~ klogk
So if we can show Jy < 0o, we have completed our proof of Theorem 2. From [13],
we see that for z >> 1,

W(z) = logz —loglogz + o(1).

Note that

dB*(z) = 2B(z)B'(z)dz = dz.

Thus we have

Jé<[mj*““3””m”2[wxwmxé@»+n:2(w%n>

In particular, Jy < co. In Figure 2, we show the partial sums for Js.

1542

1.01
>

0.51

200 400 600 800 1000

1
)

Figure 2: Partial sums of ZQ{:Q

n? n—1)2
(W(n)Q - w(,(n_i)z), N =3,...,1000.

4. Continued Fractions

Similar questions can be asked for the Gauss map G : (0,1) — (0,1),

Gu>={i},
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and the associated continued fraction expansion of a number = € [0,1). Recall that
for z € (0,1), we can set, for n > 1,

and we can write

1
x = T
a1+ a2+7i
FrE—
The probability measure ug given by
1 dx
d -
Ha (@) log21+x

is an absolutely continuous ergodic invariant measure for G, and as noted after
Theorem 2, Diamond and Vaaler [4] proved a similar result for the digits a,, for an
x chosen at random according to pg. This is more difficult than our setting since
although the digits form a stationary sequence, they are no longer IID. Regarding
the uniqueness of sample maxima, if we define

Pk = UG (x € (0,1) : there exists 11 <4 <k such that a;(z) = max a; (x)) ,
<<

we conjecture that
lim pp = 1.
k—o0

We believe this conjecture since although the sequence {a;} is not IID, it is rapidly
mixing, and the distribution of a; is heavy-tailed. The Gauss map is associated in a
natural way to geodesic flow on the modular surface, and we believe similar results
should also hold for other continued fraction type expansions associated to geodesic
flow on other hyperbolic surfaces, for example, the Rosen continued fractions.
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