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Abstract—For emerging edge and near-sensor systems to 

perform hard classification tasks locally, they must avoid costly 

communication with the cloud.  This requires the use of compact 

classifiers such as recurrent neural networks of the long short 

term memory (LSTM) type, as well as a low-area hardware 

technology such as stochastic computing (SC). We study the 

benefits and costs of applying SC to LSTM design. We consider 

a design space spanned by fully binary (non-stochastic), fully 

stochastic, and several hybrid (mixed) LSTM architectures, and 

design and simulate examples of each. Using standard 

classification benchmarks, we show that area and power can be 

reduced up to 47% and 86% respectively with little or no impact 

on classification accuracy. We demonstrate that fully stochastic 

LSTMs can deliver acceptable accuracy despite accumulated 

errors. Our results also suggest that ReLU is preferable to tanh 

as an activation function in stochastic LSTMs 

Keywords—LSTM, recurrent neural nets, stochastic 

computing 

I. INTRODUCTION

Emerging technologies will likely play a decisive role in 
making AI techniques, compact neural networks (NNs) such 
as LSTMs, practical for resource-constrained hardware 
systems. Among the many ways to implement NNs is 
stochastic computing (SC) [1]. SC computes with randomized 
bit-streams and can drastically reduce an NN’s area and power 
needs while maintaining acceptable performance levels and 
offering other benefits such as error tolerance. Today, most 
NNs are implemented in the cloud, but lightweight hardware 
NNs, including SC-based ones, can enable near-sensor 
computing where key computations take place locally. This is 
attractive since communication links to the cloud and their 
associated drawbacks are greatly reduced. The suitability of 
SC for NNs has long been noted [2], but recent advances in 
SC have led to a plethora of new SC-based NN designs [3]. 
While most work focuses on SC implementation of 
convolutional NNs [4], recurrent NNs (RNNs) such as long 
short term memory NNs (LSTMs) [5] have attracted less 
attention, despite their advantages in area and power [6], [7]. 
One concern when using SC is their low accuracy [8]. 
Therefore, when considering SC for LSTMs, one must 
carefully balance gains in area and power consumption against 
potential losses in classification accuracy. 

We propose several SC-based architectures for individual 
LSTM cells and NNs (Fig. 1). We consider both fully 
stochastic SC realizations and hybrid architectures where 
some submodules are stochastic, and some are binary. The SC-
based LSTM is explored in-depth, using the full binary-based 
architectures of two representative networks TIMIT and JV 
from [6] and further, more complex networks MNIST, IMDB, 

TSC (Sec. IV.) as benchmarks for evaluation. We show that 
significant area reductions of 30-47% and power reductions 
up to 86 % can be achieved while keeping the classification 
accuracy at acceptable levels. Thus, SC offers attractive 
newpoints in the design space that trade cost for accuracy. We 
also study the impact of the LSTM’s activation functions on 
the architectures considered. We find that ReLU is 
advantageous for SC-based modules, whereas in binary 
modules tanh performs better.   

II. BACKGROUND

A. Stochastic Computing 

Stochastic computing (SC) [1] is an attractive technology
for compact, error-tolerant, and low-power implementations 
of complex arithmetic functions. It has been used successfully 
in a variety of applications, such as low-density parity-check 
(LDPC) decoding [9], image processing [10], digital filter 
design [11], as well as NNs [4][6][7].  

In SC, the basic number representation is a sequence of n 
bits called a stochastic number (SN) whose value is 
determined by the frequency of 1s present. A unipolar SN has 
the value n1/n in the interval [0,1], where n1 is the number of 
1s in the SN. In bipolar SNs, the number range is extended to 
the interval [-1,1] by assigning the value (n1 - n0)/n to the SN, 
where n0 is the number of 0s it contains. For example, the SN 
X1 = 10101101 has a value 5/8 in the unipolar representation, 
while in bipolar it has the value 2/8. Besides value range, 
another important difference between the two formats is 
precision, i.e., the smallest representable non-zero value. The 
precision of a unipolar SN is 1/n and in the bipolar format it is 
2/n. The precision reflects the contribution of each individual 
bit to the overall SN value. The order of 1s and 0s in an SN 
does not matter; so many SNs have the same numerical value. 
For example, X2 = 11001110 is equivalent to X1 = 10101101 
above. These properties lead to the high error tolerance of SC; 
a few erroneous bits have a small impact on an SN’s numerical 
value. 

The basic SC operations, multiplication, and addition are 
shown in Fig. 2. The unipolar multiplication of two input SNs 
a and b is performed by logical AND gates.  XNOR gates are 
used to multiply bipolar SNs. As the allowed range of unipolar 
SN is [0, 1], the normal add operation a + b is unsuitable 
because the sum falls into [0, 2]. To ensure that the sum lies in 
[0, 1] the scaled addition (a + b)/2 is used in SC. A MUX 
performs scaled addition for both SN formats. 

Randomness plays a central role in SC. SNs are produced 
by a stochastic number generator (SNG) which is commonly 
built around a pseudo-random number source like an LFSR. 
Given a binary number B ∈ [0,1], the SNG outputs an n-bit 
unipolar SN with an expected value . To generate a bipolar 
SN with value Bb the binary input is set to B = (Bb + 1)/2. To 
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convert an SN to the binary domain, a simple counter is used 
which counts in binary the number of 1s in the SN. 

B. Long Short Term Memory (LSTM) networks 

LSTM [5] networks were developed for complex 
sequential data processing. They belong to the class of 
recurrent neural networks (RNNs) that, in contrast to 
traditional feed-forward NNs, contain feedback loops to 
capture time-dependent relationships between input/output 
sequences. Despite their successful use in speech recognition 
[12] and language translation [13], basic RNNs suffer from 
vanishing or exploding gradients problems [14]. The former 
occurs when changes in the early layers of the network fail to 
cause perceptible changes in the output. The latter problem 
refers to the scenario where insignificant changes in the early 
layers are amplified too much when propagated to the output 
layer. 

An LSTM network is organized into at least one layer of 
LSTM cells, in addition to an input and an output layer (see 
Fig. 1). Each such cell has the structure shown in Fig. 3. An 
LSTM cell maintains a cell state c and a hidden state h, and its 
behavior is sequential. In step t, the cell updates its cell state 
ct, and its hidden state ht based on its input xt, weights and 
biases learned, and states ct-1 and ht-1; the states of all LSTM 
cells together serve as the network’s memory. Conceptually, 
LSTM overcomes the vanishing gradient problem by 
explicitly specifying information, such as very small gradient 
values, that will be added to or removed from its state by each 
cell. To implement these features, an LSTM cell includes a 
forget gate that determines what past information is worth 
keeping, an input gate that decides what new information is 
relevant to add, and an output gate that calculates the current 
hidden state, as depicted in Fig. 3. 

III. STOCHASTIC LSTM ARCHITECTURES 

The proposed SC architectures are based on comparing 
stochastic and conventional binary realizations of an LSTM 
cell’s components (Fig. 3). Next, we discuss these components 
and their integration into a complete network (Fig. 1). 

A. Stochastic vs. Binary LSTM Cell Components  

As can be seen in Fig. 3, an LSTM consists of three 
components called forget, input and output gates, several 
multipliers, an adder, and an activation function (AF). All 
these components can be implemented either using SC or 
binary primitives. In hybrid architectures, stochastic-to-binary 
(S2B) and binary-to-stochastic conversion is needed. In the 

following, we discuss the function and realization of the 
various components. 

The forget gate determines what information will get 
removed from the cell state. The previous hidden state ht-1 and 
the current input xt are multiplied with the corresponding 
weights and the bias is added before passing through a sigmoid 
function. When the result is 0, or close to it, that information 
is discarded; if it is 1 or close to 1 then it is kept. This operation 
is shown in Eq. 1: 

  ft = σ (Wf . [ht-1 , xt] + bf )           (1) 

The binary implementation of the forget gate consists of 
an 8-bit adder, an 8-bit multiplier, and a look-up table 
implementation of the sigmoid function. The SC version uses 
an XNOR gate for multiplication and a MUX for scaled 
addition as in Fig. 2.  A small finite-state machine (FSM) [2] 
is used for the sigmoid function; note that this function 
processes scaled outcomes of the addition. 

Next, the input gate determines what new information is 
added to the cell state. The previous hidden state ht-1 and the 
current input xt are passed through a sigmoid function. This 
transforms the values between 0 (“not important”) and 1 
(“important”) and determines how much impact the new 
information has on the cell output. The values ht-1 and xt are 
also passed through an AF, which helps to regulate the 
network. AF is usually the tanh function, but in the next 
section, we will also evaluate the ReLU function for our 
stochastic implementation. Note that AF (tanh or ReLU) is not 
the same function as the sigmoid σ. Two intermediate values 
it and C´t are produced (Eqs. 2 and 3): 

 it  = σ ( Wi . [ht-1,xt] + bi )          (2) 

 C´t = AF ( Wc . [ht-1 , xt] + bc )                (3) 

Finally, the output gate determines the output value ot. 
The current input and the previous hidden state are passed 
through the sigmoid function (Eq. 4): 

 ot  = σ (Wo . [ht-1 , xt] + bo ) (4) 

The new cell state ct and hidden state ht are then calculated 
using the values produced by the three gates. ct  is obtained by 
multiplying the previous cell state ct-1 with the forget gate 
output ft. If the forget gate value is 0, then the previous cell 
state value is dropped, otherwise, this value is added to the 

 

Figure 1: Generic LSTM network. The symbols illustrated for LSTM cell 1 in the LSTM layers match Fig. 3. 



output of the input gate and the cell state value is updated to ct 
(Eq. 5). This value is passed through AF and then multiplied 
with  to get the new hidden state (Eq. 6). ht and ct are passed 
to the next time step. 

 ct  = ft . ct-1 + it * C´t (5) 

 ht  = σ . AF( ct ) (6) 

Like the forget gate, the input and output gates and the 
arithmetic operations in Eqs. 5 and 6 can be implemented 
using binary or stochastic primitives. One goal of our 
investigations in this paper is to find the best realization of the 
activation function AF, which we discuss next. 

B. Stochastic Realizations of the Activation Function 

 Activation functions (AF in Fig. 3 and Eqs. 3 and 6) are 
key operations in LSTMs. They have a significant impact on 
the performance of the NNs [15] [16] and therefore, they have 
to be carefully selected. We now consider the two main 
alternative activation functions tanh and ReLU. 

 The most widely used activation function for LSTMs is 
tanh. The stochastic tanh function is often implemented by a 
special saturating-counter FSM with N states [2]. It outputs 0 
(1) when the current state is in the first (last) N/2 states (Fig 
4b). But the tanh function has drawbacks. It saturates to 1 (−1) 
for larger (smaller) values and is only strongly sensitive to its 
inputs when it is near 0. Thus, the gradient of tanh can be very 
small. In an LSTM, such gradients can get multiplied over 
many time steps, resulting in an overall gradient that 
diminishes exponentially. This leads to the vanishing-gradient 
problem discussed above. Therefore, we also investigate 
ReLU as an alternative activation function. 

 The rectified linear unit or ReLU is defined in Eq. 7: 

 RELU(x)  = max {0 , x} (7) 

 In our architectures, we used an SC implementation of 
ReLU that is based on the exact stochastic max function from 
[17] (Fig. 4a). It helps to solve the issue of vanishing gradient 
faced by tanh, because its gradient tends to be well controlled 
and remains proportional to the node activations (1 for positive 
values and 0 for negative values). So even when the gradients 
are multiplied over time, they do not vanish and therefore do 

not reduce the learning capability of the network. ReLU 
computations are also easier as they do not involve 
exponential functions. Furthermore, ReLU can lead to 
desirable sparse representations, because ReLU is 0 for all 
negative values and is rarely active [18]. This means that not 
all neurons have to be active for the network to operate. This 
results in better predictions and less overfitting. 

C. LSTM Cell Architectures 

To fully understand the potential of SC for lightweight 
hardware realizations of LSTM networks, we compare four 
architectures of individual LSTM cells. Table I provides an 
overview of the architectures, whereas Fig. 5 depicts their 
schematics. For the reader’s convenience, we include the 
symbols , ,,  used in Fig. 6 to distinguish the four 
architectures. 

• FB (fully-binary,) has all components of an LSTM 
cell implemented in binary. It does not need any SNG 
or S2B blocks and serves as a baseline for the other 
architectures. 

• HBS (hybrid binary-stochastic,) has the AF 
module and the three gates implemented in SC, 
whereas adders and multipliers “add” and “mul” are 
in binary. As can be seen in Fig. 5b, SNG and S2B 

 
Figure 2: Unipolar multiplication (a), bipolar multiplication 

(b), and scaled addition using a multiplexer (MUX) (c). 

Figure 3: LSTM cell with input xt, cell state ct-1/ct , hidden state ht-1/ht, internal 
signals ft, it, C´t, ot weights Wf, Wi, Wc, Wo, biases bf , bi, bc, bo, activation 

function AF. 

Figure 4: Activation functions: ReLU following [17](a), and 
stochastic tanh following [2] (b). 



blocks are needed at the interface between the 
stochastic and binary parts. 

• HSB (hybrid stochastic-binary, ) has all modules 
that were stochastic in HBS and, in addition, “mul” 
implemented in SC, while binary full adders are used 
for “add”. 

• FS (fully-stochastic,)  as all the modules designed 
in SC, including “add” based on a multiplexer. It 
requires SNGs at the cell’s inputs but not within the 
cell. 

We denote a complete LSTM network based on an LSTM 

cell of architecture A ∈ {FB, HBS, HSB, FS} by ANl1, Nl2

Ni,No , where 

Ni and No stand for the number of neurons in the network’s 
input and output layers and Nl1 and Nl2 for the number of 
LSTM cells in one or, optionally, two hidden layers. 

For example, FB100,200
28,10

 stands for a network with 28 input 

neurons, two hidden layers with 100 and 200 LSTM cells, and 
10 output neurons, where each LSTM cell has architecture FB. 

HSB128
10,2

 describes a smaller network with 10 input neurons, 
one hidden layer of 128 LSTM cells of architecture HSB, and 
2 output neurons. Note that Ni and No are determined by the 
problem being solved: Ni is the dimensionality of the inputs 
being classified and No is the number of classes. In contrast,  

TABLE I.  OVERVIEW OF STOCHASTIC VS. BINARY CELL 

COMPONENT IMPLEMENTATION IN LSTM CELL ARCHITECTURE  

LSTM cell  
architecture  

Symbol 
(Fig. 6) 

Forget, input, 
output gate 

 
AF 

 
Mul 

 
Add 

FB  binary binary binary binary 

HBS  SC SC binary binary 

HSB  SC SC SC binary 

FS  SC SC SC SC 

Nl1 and Nl2 can be chosen by the designer: it is possible to use 
a larger or a smaller network for the same classification 
problem. Here, a network with more hidden layers and more 
LSTM cells per layer will usually provide better classification 
accuracy, but it will be more expensive to train and use.  

The SC designs considered here are meant for resource 
constrained edge and near-sensor systems, and therefore their 
focus is on relatively small, i.e., lightweight, networks not 
incorporating advanced techniques such as attention-based 
learning [19]. For this reason, we restrict ourselves to 
networks with up to two hidden layers. 

IV. EXPERIMENTAL RESULTS 

We created LSTM network circuits for five different 
datasets that are representative of relatively simple tasks 
expected in edge and near-sensor computing: MNIST, TIMIT, 
Japanese vowel (JV), IMDB and time series classification 
(TSC). For each of them, we designed four versions for the 
four architectures FB, HBS, HSB, FS. We picked parameters 
Ni and No based on the classification problem and Nl1 and Nl2 
based on the typical values used in literature. For example, the 
architectures used to classify the MNIST dataset were of shape 

,

,
, i.e., 28 input neurons, two hidden layers with 100 and 

200 LSTM cells, 10 output neurons. We stress that our goal is 
not to provide better networks for known classification 
problems but to benchmark SC and hybrid realizations of 
existing networks against the traditional fully binary version. 

We trained all architectures using the Keras software 
assuming binary representation and evaluated them by 
applying the circuits to perform inference. For architecture 
FB, we used the trained weights and biases directly, for 
stochastic and hybrid architectures, weights and biases were 
converted to SNs. For our hardware realizations, we estimated 
area by summing the area of the basic components (LSTM 
cells, neurons, SNGs etc.) computed by Synopsys Design  

 

Figure 5: LSTM cell architectures FB (a), HBS (b), HSB (c) and FS (d). Binary components are shown in dark grey, stochastic modules are shown 
in light blue (see Table I). SNGs and S2Bs are colored in light green. 



TABLE II.  COMPARISON BETWEEN DIFFERENT SN LENGTH 

Compiler with TSMC’s 28-nm library. We performed an 
architecture-level analysis of signals that are mutually 
uncorrelated and shared SNGs among such signals. The power 
consumption was estimated using the Synopsys tool. 

To determine a suitable SN length, we generated results 
for SN lengths 256, 512 and 1024. A comparison between 
them for dataset TSC using the fully stochastic architecture 

FS200
100,2

 is presented in Table II. We found similar results for 
FS with other datasets/networks. The latency increases by a 
factor of 2 as we move from 256 to 512 to 1024 bits. There is 
a 3% accuracy improvement when 512-bit SNs are used in 
place of 256-bit SNs, but only 0.5% when going to 1024 bits. 
Therefore, we chose an SN length of 512 for our 
investigations. Note that relatively long SNs are acceptable in 
many applications such as those that are not time-critical. In 
other applications, the stochastic circuitry is so simple that the 
resulting system can satisfy the real-time constraints even for 
long SNs. (For instance, real-time operation was reported in 
[4] for the same SN length of 512). 

The results on area reduction, power consumption and 
accuracy are summarized in Table III. It can be seen that 
significant area and power savings of up to 47% and 86% 
respectively are possible by switching to all-SC. 30-40% 
reduction in area and 50-70% reduction in power are achieved 
by hybrid architectures in most cases. We observe a drop in 
accuracy of 7.4% on average for the fully stochastic 
architecture and 3% and 5% on average for both hybrid 
versions. These outcomes span a design space where area and 
power savings can be traded for classification accuracy. Fig. 6 
visualizes this design space: a designer can pick a point based 
on his or her priorities. The SN length (Table II) defines a third 
dimension of the design space. As expected, longer SNs mean 
longer run times and slightly higher area, but also higher 
accuracy. 

There are only two prior stochastic RNN implementations 
that are directly comparable with our work. SCRNN [6] 
reports results for two of our five datasets: Japanese Vowels 
(achieving 29% area reduction, 55% power reduction and 
93.8% accuracy) and TIMIT (15% area reduction, 83% power 
reduction and 71.9% accuracy). These numbers are 
outperformed by our hybrid designs with respect to one of the 
two parameters; however, the authors of [6] used shorter SNs. 
The RNN implementation based on a different “sign-
magnitude” SN encoding [7] was reported to achieve 99% 
accuracy on the MNIST dataset, but the SNG requirements of 
this case led to an area overhead of  more than 100% (instead 
of saving area, 11.2% more area is required). Fig. 6 includes 
approximate data points for “SCRNN” [6] and “SM-SCRNN” 
[7] (marked as “Earlier designs” and the symbol ). We do 
not include a detailed comparison with [20], which was 
designed for FPGAs and used FPGA-specific features. Our 
rough estimates indicate that our direct hardware 
implementation requires approximately a third less area than 
that design. 

Next, we studied the impact on accuracy achieved when 
using two different activation functions: tanh and ReLU. Fig. 
7 compares the accuracy differences (%) of the four LSTM 
cell-architectures for each of the five datasets when we replace 

tanh with ReLU as AF. The accuracy difference (tanh – ReLU 
%) shows that consistent with conventional wisdom, tanh 
performs better than ReLU in full-binary architecture FB, with 
one exception (IMDB). However, this trend reverses for 
stochastic and hybrid architectures HSB and FS, where ReLU 
is consistently better than tanh. Both functions lead to very 
similar results for hybrid architecture HBS. For example, in 
case of TIMIT, using tanh instead of ReLU as AF results in an 
increase of accuracy (~1.5% for FB and ~0.5% for HBS). 
However, for HSB and FS, the accuracy of the architectures 
with tanh AF is less than the architectures with ReLU AF by 
~0.4% and 1.2% respectively. This is consistent with the 
finding of [21][22] that FSM-based tanh can have a high 
correlation between the outputs in the consecutive clock 
cycles, leading to longer latencies and higher variance for 
inputs close to 0. Both mechanisms lead to small errors that 
tend to accumulate  and amplify in LSTMs with their recurrent 
structure. This problem does not occur in ReLU, where the 
circuit of [17] produces exact maximum values and does not 
introduce any variance even for large LSTM networks. 

We also re-estimated the area reduction when ReLU is 
used instead of tanh and found that it improves by a small 
amount (1 to 2%). Overall, ReLU based on a good SC 
implementation of the maximum function appears to be a 
marginally better activation function for SC LSTMs. 

V. CONCLUSION 

We have demonstrated here for the first time that fully 
stochastic LSTMs can deliver high accuracy despite 

SN length Area [mm2] Latency [μs] Accuracy [%] 

256 bits 0.30 0.47 87 

512 bits 0.32 0.94 89.9 

1024 bits 0.36 1.88 90.6 

Figure 6: LSTM design space exploration and comparison with 
SCRNN [6] and SM-SCRNN [7] (both are represented as “Earlier 
designs”). This shows FS has clear advantage over other LSTM 
architectures in terms of area. 

 

Figure 7: Differences in classification accuracy (%) of the four LSTM 
cell-architectures for each of the five datasets, when tanh is replaced by 
ReLU AF. 
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accumulated errors. A designer looking for a lightweight 
LSTM can now choose among more area efficient (up to 47%), 
more power efficient (up to 86%), and more accurate 
realizations. These findings extend the range of SC LSTM by 
including a novel fully stochastic and various hybrid versions. 
We also observed that ReLU is a more suitable activation 
function than the usual tanh in stochastic LSTMs. 
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TABLE III.  EXPERIMENTAL RESULTS FOR FB, HBS, HSB AND FS. 

Dataset 
LSTM network 

architecture ANl1,Nl2

Ni,No  

Area reduction compared to 
FB [%] 

Power consumption reduction 
[%] 

Classification accuracy [%] 

HBS HSB FS HBS HSB FS FB HBS HSB FS 

TSC A200
100,2

 28 34 43 57 77 85 93.8 92.6 92 89.9 

IMDB A128
10,2

 35 43 47 61 79 86 88.6 86.0 84.9 80.3 

JV A150
12,9

 17 27 32 50 71 76 96.6 94.2 93.5 92.7 

TIMIT A300,300
12,10

 15 29 31 48 75 84 80.3 75.1 74.1 71.4 

MNIST A100,200
28,10

 27 38 41 52 73 79 98.6 94.8 93.5 92.7 

 


