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Abstract—For emerging edge and near-sensor systems to
perform hard classification tasks locally, they must avoid costly
communication with the cloud. This requires the use of compact
classifiers such as recurrent neural networks of the long short
term memory (LSTM) type, as well as a low-area hardware
technology such as stochastic computing (SC). We study the
benefits and costs of applying SC to LSTM design. We consider
a design space spanned by fully binary (non-stochastic), fully
stochastic, and several hybrid (mixed) LSTM architectures, and
design and simulate examples of each. Using standard
classification benchmarks, we show that area and power can be
reduced up to 47% and 86% respectively with little or no impact
on classification accuracy. We demonstrate that fully stochastic
LSTMs can deliver acceptable accuracy despite accumulated
errors. OQur results also suggest that ReL U is preferable to tanh
as an activation function in stochastic LSTMs
recurrent  neural stochastic
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L INTRODUCTION

Emerging technologies will likely play a decisive role in
making Al techniques, compact neural networks (NNs) such
as LSTMs, practical for resource-constrained hardware
systems. Among the many ways to implement NNs is
stochastic computing (SC) [1]. SC computes with randomized
bit-streams and can drastically reduce an NN’s area and power
needs while maintaining acceptable performance levels and
offering other benefits such as error tolerance. Today, most
NNs are implemented in the cloud, but lightweight hardware
NNs, including SC-based ones, can enable near-sensor
computing where key computations take place locally. This is
attractive since communication links to the cloud and their
associated drawbacks are greatly reduced. The suitability of
SC for NNs has long been noted [2], but recent advances in
SC have led to a plethora of new SC-based NN designs [3].
While most work focuses on SC implementation of
convolutional NNs [4], recurrent NNs (RNNs) such as long
short term memory NNs (LSTMs) [5] have attracted less
attention, despite their advantages in area and power [6], [7].
One concern when using SC is their low accuracy [8].
Therefore, when considering SC for LSTMs, one must
carefully balance gains in area and power consumption against
potential losses in classification accuracy.

We propose several SC-based architectures for individual
LSTM cells and NNs (Fig. 1). We consider both fully
stochastic SC realizations and hybrid architectures where
some submodules are stochastic, and some are binary. The SC-
based LSTM is explored in-depth, using the full binary-based
architectures of two representative networks TIMIT and JV
from [6] and further, more complex networks MNIST, IMDB,
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TSC (Sec. IV.) as benchmarks for evaluation. We show that
significant area reductions of 30-47% and power reductions
up to 86 % can be achieved while keeping the classification
accuracy at acceptable levels. Thus, SC offers attractive
newpoints in the design space that trade cost for accuracy. We
also study the impact of the LSTM’s activation functions on
the architectures considered. We find that ReLU is
advantageous for SC-based modules, whereas in binary
modules tanh performs better.

II.  BACKGROUND

A. Stochastic Computing

Stochastic computing (SC) [1] is an attractive technology
for compact, error-tolerant, and low-power implementations
of complex arithmetic functions. It has been used successfully
in a variety of applications, such as low-density parity-check
(LDPC) decoding [9], image processing [10], digital filter
design [11], as well as NNs [4][6][7].

In SC, the basic number representation is a sequence of
bits called a stochastic number (SN) whose value is
determined by the frequency of 1s present. A unipolar SN has
the value n;/n in the interval [0,1], where n; is the number of
Is in the SN. In bipolar SN, the number range is extended to
the interval [-1,1] by assigning the value (n; - ng)/n to the SN,
where ny is the number of Os it contains. For example, the SN
X;=10101101 has a value 5/8 in the unipolar representation,
while in bipolar it has the value 2/8. Besides value range,
another important difference between the two formats is
precision, i.e., the smallest representable non-zero value. The
precision of a unipolar SN is //n and in the bipolar format it is
2/n. The precision reflects the contribution of each individual
bit to the overall SN value. The order of 1s and Os in an SN
does not matter; so many SNs have the same numerical value.
For example, X> = 11001110 is equivalent to X; = 10101101
above. These properties lead to the high error tolerance of SC;
a few erroneous bits have a small impact on an SN’s numerical
value.

The basic SC operations, multiplication, and addition are
shown in Fig. 2. The unipolar multiplication of two input SNs
a and b is performed by logical AND gates. XNOR gates are
used to multiply bipolar SNs. As the allowed range of unipolar
SN is [0, 1], the normal add operation a + b is unsuitable
because the sum falls into [0, 2]. To ensure that the sum lies in
[0, 1] the scaled addition (a + b)/2 is used in SC. A MUX
performs scaled addition for both SN formats.

Randomness plays a central role in SC. SNs are produced
by a stochastic number generator (SNG) which is commonly
built around a pseudo-random number source like an LFSR.
Given a binary number B € [0,1], the SNG outputs an n-bit
unipolar SN with an expected value B. To generate a bipolar
SN with value B, the binary input is set to B = (B, + 1)/2. To
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Figure 1: Generic LSTM network. The symbols illustrated for LSTM cell 1 in the LSTM layers match Fig. 3.

convert an SN to the binary domain, a simple counter is used
which counts in binary the number of 1s in the SN.

B. Long Short Term Memory (LSTM) networks

LSTM [5] networks were developed for complex
sequential data processing. They belong to the class of
recurrent neural networks (RNNs) that, in contrast to
traditional feed-forward NNs, contain feedback loops to
capture time-dependent relationships between input/output
sequences. Despite their successful use in speech recognition
[12] and language translation [13], basic RNNs suffer from
vanishing or exploding gradients problems [14]. The former
occurs when changes in the early layers of the network fail to
cause perceptible changes in the output. The latter problem
refers to the scenario where insignificant changes in the early
layers are amplified too much when propagated to the output
layer.

An LSTM network is organized into at least one layer of
LSTM cells, in addition to an input and an output layer (see
Fig. 1). Each such cell has the structure shown in Fig. 3. An
LSTM cell maintains a cell state ¢ and a hidden state h, and its
behavior is sequential. In step ¢, the cell updates its cell state
¢, and its hidden state 4, based on its input x; weights and
biases learned, and states c,; and 4, ;; the states of all LSTM
cells together serve as the network’s memory. Conceptually,
LSTM overcomes the vanishing gradient problem by
explicitly specifying information, such as very small gradient
values, that will be added to or removed from its state by each
cell. To implement these features, an LSTM cell includes a
forget gate that determines what past information is worth
keeping, an input gate that decides what new information is
relevant to add, and an output gate that calculates the current
hidden state, as depicted in Fig. 3.

III.  STOCHASTIC LSTM ARCHITECTURES

The proposed SC architectures are based on comparing
stochastic and conventional binary realizations of an LSTM
cell’s components (Fig. 3). Next, we discuss these components
and their integration into a complete network (Fig. 1).

A. Stochastic vs. Binary LSTM Cell Components

As can be seen in Fig. 3, an LSTM consists of three
components called forget, input and output gates, several
multipliers, an adder, and an activation function (4F). All
these components can be implemented either using SC or
binary primitives. In hybrid architectures, stochastic-to-binary
(S2B) and binary-to-stochastic conversion is needed. In the

following, we discuss the function and realization of the
various components.

The forget gate determines what information will get
removed from the cell state. The previous hidden state 4.; and
the current input x, are multiplied with the corresponding
weights and the bias is added before passing through a sigmoid
function. When the result is 0, or close to it, that information
is discarded; ifitis 1 or close to 1 then it is kept. This operation
is shown in Eq. 1:

Ji=o Wy her, xi] + br) (1)

The binary implementation of the forget gate consists of
an 8-bit adder, an 8-bit multiplier, and a look-up table
implementation of the sigmoid function. The SC version uses
an XNOR gate for multiplication and a MUX for scaled
addition as in Fig. 2. A small finite-state machine (FSM) [2]
is used for the sigmoid function; note that this function
processes scaled outcomes of the addition.

Next, the input gate determines what new information is
added to the cell state. The previous hidden state /., and the
current input x; are passed through a sigmoid function. This
transforms the values between 0 (“not important”) and 1
(“important”) and determines how much impact the new
information has on the cell output. The values /4.; and x; are
also passed through an AF, which helps to regulate the
network. AF is usually the tanh function, but in the next
section, we will also evaluate the ReLU function for our
stochastic implementation. Note that 4F (tanh or ReL.U) is not
the same function as the sigmoid 6. Two intermediate values
irand C’; are produced (Egs. 2 and 3):

ir =6 (Wi.[hepx] + bi) ()
Ci=AF (We.[her,x] +be) 3)

Finally, the output gate determines the output value o..
The current input and the previous hidden state are passed
through the sigmoid function (Eq. 4):

ot =0 (Wo . [ht—] , )Ct] + b, ) @)

The new cell state c;and hidden state 4, are then calculated
using the values produced by the three gates. ¢, is obtained by
multiplying the previous cell state c.; with the forget gate
output f,. If the forget gate value is 0, then the previous cell
state value is dropped, otherwise, this value is added to the
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Figure 2: Unipolar multiplication (a), bipolar multiplication
(b), and scaled addition using a multiplexer (MUX) (c).

output of the input gate and the cell state value is updated to ¢;
(Eq. 5). This value is passed through AF and then multiplied
with o, to get the new hidden state (Eq. 6). /4 and ¢, are passed
to the next time step.

Ct =fr-Ct-1+l't*C’t 4)

hi =6 .AF(c¢) 6)

Like the forget gate, the input and output gates and the
arithmetic operations in Egs. 5 and 6 can be implemented
using binary or stochastic primitives. One goal of our
investigations in this paper is to find the best realization of the
activation function AF, which we discuss next.

B. Stochastic Realizations of the Activation Function

Activation functions (4F in Fig. 3 and Egs. 3 and 6) are
key operations in LSTMs. They have a significant impact on
the performance of the NNs [15] [16] and therefore, they have
to be carefully selected. We now consider the two main
alternative activation functions tanh and ReLU.

The most widely used activation function for LSTMs is
tanh. The stochastic tanh function is often implemented by a
special saturating-counter FSM with N states [2]. It outputs 0
(1) when the current state is in the first (last) N/2 states (Fig
4Db). But the tanh function has drawbacks. It saturates to 1 (—1)
for larger (smaller) values and is only strongly sensitive to its
inputs when it is near 0. Thus, the gradient of tanh can be very
small. In an LSTM, such gradients can get multiplied over
many time steps, resulting in an overall gradient that
diminishes exponentially. This leads to the vanishing-gradient
problem discussed above. Therefore, we also investigate
ReLU as an alternative activation function.

The rectified linear unit or ReLU is defined in Eq. 7:

RELU(x) =max {0, x} 7

In our architectures, we used an SC implementation of
ReLU that is based on the exact stochastic max function from
[17] (Fig. 4a). It helps to solve the issue of vanishing gradient
faced by tanh, because its gradient tends to be well controlled
and remains proportional to the node activations (1 for positive
values and 0 for negative values). So even when the gradients
are multiplied over time, they do not vanish and therefore do

Xt

Figure 3: LSTM cell with input x, cell state ¢-#/c:, hidden state A/, internal
signals fi, ir, C"t, o weights Wy, Wi, W., W,, biases by , bi, b, b,, activation
function AF.

not reduce the learning capability of the network. ReLU
computations are also easier as they do not involve
exponential functions. Furthermore, ReLU can lead to
desirable sparse representations, because ReLU is 0 for all
negative values and is rarely active [18]. This means that not
all neurons have to be active for the network to operate. This
results in better predictions and less overfitting.

C. LSTM Cell Architectures

To fully understand the potential of SC for lightweight
hardware realizations of LSTM networks, we compare four
architectures of individual LSTM cells. Table I provides an
overview of the architectures, whereas Fig. 5 depicts their
schematics. For the reader’s convenience, we include the
symbols B, V_A, @ used in Fig. 6 to distinguish the four
architectures.

e  FB (fully-binary,m) has all components of an LSTM
cell implemented in binary. It does not need any SNG
or S2B blocks and serves as a baseline for the other
architectures.

e HBS (hybrid binary-stochastic,¥) has the AF
module and the three gates implemented in SC,
whereas adders and multipliers “add” and “mul” are
in binary. As can be seen in Fig. 5b, SNG and S2B
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Figure 4: Activation functions: ReLU following [17](a), and
stochastic tanh following [2] (b).
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Figure 5: LSTM cell architectures FB (a), HBS (b), HSB (c) and FS (d). Binary components are shown in dark grey, stochastic modules are shown

in light blue (see Table I). SNGs and S2Bs are colored in light green.

blocks are needed at the interface between the
stochastic and binary parts.

e HSB (hybrid stochastic-binary, A) has all modules
that were stochastic in HBS and, in addition, “mul”
implemented in SC, while binary full adders are used
for “add”.

e  FS (fully-stochastic, ) as all the modules designed
in SC, including “add” based on a multiplexer. It
requires SNGs at the cell’s inputs but not within the
cell.

We denote a complete LSTM network based on an LSTM
cell of architecture 4 € {FB, HBS, HSB, F'S} by A%;I ],V;’Vlz, where
N; and N, stand for the number of neurons in the network’s
input and output layers and N; and Nj; for the number of
LSTM cells in one or, optionally, two hidden layers.

For example, FB%gbl’goo stands for a network with 28 input
neurons, two hidden layers with 100 and 200 LSTM cells, and
10 output neurons, where each LSTM cell has architecture FB.
HSB%S;;2 describes a smaller network with 10 input neurons,
one hidden layer of 128 LSTM cells of architecture HSB, and
2 output neurons. Note that N; and N, are determined by the
problem being solved: A; is the dimensionality of the inputs
being classified and N, is the number of classes. In contrast,

TABLE L OVERVIEW OF STOCHASTIC VS. BINARY CELL
COMPONENT IMPLEMENTATION IN LSTM CELL ARCHITECTURE

LSTM cell Symbol Forget, input,

architecture (Fig. 6) output gate AF Mul Add
FB u binary binary | binary | binary
HBS v SC SC binary | binary
HSB A SC SC SC | binary
FS ¢ SC SC SC SC

N and N;> can be chosen by the designer: it is possible to use
a larger or a smaller network for the same classification
problem. Here, a network with more hidden layers and more
LSTM cells per layer will usually provide better classification
accuracy, but it will be more expensive to train and use.

The SC designs considered here are meant for resource
constrained edge and near-sensor systems, and therefore their
focus is on relatively small, i.e., lightweight, networks not
incorporating advanced techniques such as attention-based
learning [19]. For this reason, we restrict ourselves to
networks with up to two hidden layers.

IV. EXPERIMENTAL RESULTS

We created LSTM network circuits for five different
datasets that are representative of relatively simple tasks
expected in edge and near-sensor computing: MNIST, TIMIT,
Japanese vowel (JV), IMDB and time series classification
(TSC). For each of them, we designed four versions for the
four architectures FB, HBS, HSB, FS. We picked parameters
N; and N, based on the classification problem and N;; and N;»
based on the typical values used in literature. For example, the
architectures used to classify the MNIST dataset were of shape
Aig‘& 200- i-€., 28 input neurons, two hidden layers with 100 and
200 LSTM cells, 10 output neurons. We stress that our goal is
not to provide better networks for known classification
problems but to benchmark SC and hybrid realizations of
existing networks against the traditional fully binary version.

We trained all architectures using the Keras software
assuming binary representation and evaluated them by
applying the circuits to perform inference. For architecture
FB, we used the trained weights and biases directly, for
stochastic and hybrid architectures, weights and biases were
converted to SNs. For our hardware realizations, we estimated
area by summing the area of the basic components (LSTM
cells, neurons, SNGs etc.) computed by Synopsys Design



TABLE II. COMPARISON BETWEEN DIFFERENT SN LENGTH

SN length Area [mm’] Latency [us] Accuracy [%]
256 bits 0.30 0.47 87

512 bits 0.32 0.94 89.9

1024 bits 0.36 1.88 90.6

Compiler with TSMC’s 28-nm library. We performed an
architecture-level analysis of signals that are mutually
uncorrelated and shared SNGs among such signals. The power
consumption was estimated using the Synopsys tool.

To determine a suitable SN length, we generated results
for SN lengths 256, 512 and 1024. A comparison between
them for dataset TSC using the fully stochastic architecture

FS§88’2 is presented in Table II. We found similar results for
FS with other datasets/networks. The latency increases by a
factor of 2 as we move from 256 to 512 to 1024 bits. There is
a 3% accuracy improvement when 512-bit SNs are used in
place of 256-bit SNs, but only 0.5% when going to 1024 bits.
Therefore, we chose an SN length of 512 for our
investigations. Note that relatively long SNs are acceptable in
many applications such as those that are not time-critical. In
other applications, the stochastic circuitry is so simple that the
resulting system can satisfy the real-time constraints even for
long SNs. (For instance, real-time operation was reported in
[4] for the same SN length of 512).

The results on area reduction, power consumption and
accuracy are summarized in Table III. It can be seen that
significant area and power savings of up to 47% and 86%
respectively are possible by switching to all-SC. 30-40%
reduction in area and 50-70% reduction in power are achieved
by hybrid architectures in most cases. We observe a drop in
accuracy of 7.4% on average for the fully stochastic
architecture and 3% and 5% on average for both hybrid
versions. These outcomes span a design space where area and
power savings can be traded for classification accuracy. Fig. 6
visualizes this design space: a designer can pick a point based
on his or her priorities. The SN length (Table II) defines a third
dimension of the design space. As expected, longer SNs mean
longer run times and slightly higher area, but also higher
accuracy.

There are only two prior stochastic RNN implementations
that are directly comparable with our work. SCRNN [6]
reports results for two of our five datasets: Japanese Vowels
(achieving 29% area reduction, 55% power reduction and
93.8% accuracy) and TIMIT (15% area reduction, 83% power
reduction and 71.9% accuracy). These numbers are
outperformed by our hybrid designs with respect to one of the
two parameters; however, the authors of [6] used shorter SNs.
The RNN implementation based on a different “sign-
magnitude” SN encoding [7] was reported to achieve 99%
accuracy on the MNIST dataset, but the SNG requirements of
this case led to an area overhead of more than 100% (instead
of saving area, 11.2% more area is required). Fig. 6 includes
approximate data points for “SCRNN” [6] and “SM-SCRNN”
[7] (marked as “Earlier designs” and the symbol ®). We do
not include a detailed comparison with [20], which was
designed for FPGAs and used FPGA-specific features. Our
rough estimates indicate that our direct hardware
implementation requires approximately a third less area than
that design.

Next, we studied the impact on accuracy achieved when
using two different activation functions: tanh and ReLU. Fig.
7 compares the accuracy differences (%) of the four LSTM
cell-architectures for each of the five datasets when we replace
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Figure 7: Differences in classification accuracy (%) of the four LSTM
cell-architectures for each of the five datasets, when tanh is replaced by
ReLU AF.

tanh with ReLU as AF. The accuracy difference (tanh — ReLU
%) shows that consistent with conventional wisdom, tanh
performs better than ReL U in full-binary architecture FB, with
one exception (IMDB). However, this trend reverses for
stochastic and hybrid architectures HSB and F'S, where ReLU
is consistently better than tanh. Both functions lead to very
similar results for hybrid architecture HBS. For example, in
case of TIMIT, using tanh instead of ReLU as AF results in an
increase of accuracy (~1.5% for FB and ~0.5% for HBS).
However, for HSB and FS, the accuracy of the architectures
with tanh AF is less than the architectures with ReLU AF by
~0.4% and 1.2% respectively. This is consistent with the
finding of [21][22] that FSM-based tanh can have a high
correlation between the outputs in the consecutive clock
cycles, leading to longer latencies and higher variance for
inputs close to 0. Both mechanisms lead to small errors that
tend to accumulate and amplify in LSTMs with their recurrent
structure. This problem does not occur in ReLU, where the
circuit of [17] produces exact maximum values and does not
introduce any variance even for large LSTM networks.

We also re-estimated the area reduction when ReLU is
used instead of tanh and found that it improves by a small
amount (1 to 2%). Overall, ReLU based on a good SC
implementation of the maximum function appears to be a
marginally better activation function for SC LSTMs.

V. CONCLUSION

We have demonstrated here for the first time that fully
stochastic LSTMs can deliver high accuracy despite



TABLE III. EXPERIMENTAL RESULTS FOR FB, HBS, HSB AND FS.

1 1 1 1 1 0,
LSTM network Area reductlonocompared to | Power consumoptlon reduction Classification accuracy [%]
Dataset . NN, FB [%] [%]
architecture Ay ¥

1 HBS HSB FS HBS HSB FS FB HBS HSB FS
TSC Ay 28 34 43 57 77 85 93.8 92.6 92 89.9
IMDB i 35 43 47 61 79 86 88.6 86.0 84.9 80.3
v 4120 17 27 2 50 71 76 96.6 942 | 935 92.7
TIMIT A3on300 15 29 31 48 75 84 80.3 75.1 74.1 71.4
MNIST Algo200 27 38 41 52 73 79 98.6 94.8 935 92.7

accumulated errors. A designer looking for a lightweight
LSTM can now choose among more area efficient (up to 47%),
more power efficient (up to 86%), and more accurate
realizations. These findings extend the range of SC LSTM by
including a novel fully stochastic and various hybrid versions.
We also observed that ReLU is a more suitable activation
function than the usual tanh in stochastic LSTMs.
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