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Abstract—Stochastic computing (SC) is a digital design
paradigm that foregoes the conventional binary encoding in favor
of pseudo-random bitstreams. Stochastic circuits operate on the
probability values of bitstreams, and often achieve low power, low
area, and fault-tolerant computation. Most SC designs rely on the
input bitstreams being independent or uncorrelated to obtain the
best results. However, circuits have also been proposed that
exploit deliberately correlated bitstreams to improve area or
accuracy. In such cases, different sub-circuits may have different
correlation requirements. A major barrier to multi-layer or
hierarchical stochastic circuit design has been understanding how
correlation propagates from a circuit’s inputs to its outputs while
meeting the correlation requirements for all its sub-circuits. In
this paper, we introduce correlation matrices and extensions to
probability transfer matrix (PTM) algebra to analyze complex
correlation behavior, thereby alleviating the need for
computationally intensive bit-wise simulation. We apply our new
correlation analysis to two multi-layer SC image processing and
neural network circuits and show that it helps designers to
systematically reduce correlation error.

Keywords - Stochastic computing; signal correlation; correlation
matrix; error analysis; stochastic circuit design

[. INTRODUCTION

Stochastic computing (SC) is a digital logic design paradigm
that performs computation using pseudo-random sequences of
bits [1]. SC was originally proposed in the 1960s, but has seen
a recent resurgence of interest due to its ability to implement
computationally expensive functions such as digital filters [2]
and low-density parity-check (LDPC) decoders [3] with lower
area and higher soft-error tolerance than conventional binary
approaches [1]. In SC, a stochastic number (SN) X =
(x4, X5, ..., Xy) is a sequence, or bitstream, of N successive 0s
or 1s sampled from a binary random variable. In the basic
(unipolar) case, X takes on a value Py in the interval [0,1]
defined by the probability that any arbitrary bit x is 1, i.e., Py =
P(x = 1). Figure la shows a classic example of how SC
achieves multiplication using a single AND gate, saving
considerable area relative to a conventional adder-based binary
multiplier. Figure 2a-b show the circuits used to convert binary
values to and from SNs, respectively. One inherent practical
limitation of SC is that all operations are approximate and are
susceptible to quantization errors and random fluctuation errors
(RFEs) [4]. In general, these errors decrease as the bitstream
length N is increased, creating a smooth tradeoff between
accuracy and latency.

Stochastic circuits are also susceptible to correlation error,
which occurs when the correlation(s) between one or more
pairs of inputs are different from the optimal amount of input
correlation.
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Fig. 1: Example of stochastic behavior of an AND gate: (a) With uncorrelated
inputs of Py and Py, computing the product Py X Py. (b) With correlated inputs,
computing min(Py, Py). Here, the bitstream length is N = 10.
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Fig. 2: Other fundamental SC components: (a) Stochastic number generator
(SNG), consisting of a random number source (RNS) and a comparator; (b)
Stochastic-to-binary converter using a binary counter; (¢) Multiplexer (MUX)
computing scaled addition Py = (1 — Pg)Py + PsPy.

For example, the AND gate circuit in Fig. 1 requires
independent (uncorrelated) inputs to perform accurate
multiplication, and Fig. 1b shows that the circuit’s behavior
changes from P, = PyPy, to P, = min(Px,Py) when the
bitstream X is suitably correlated with Y.

Observe that the primary difference between the two cases in
Fig. la-b is the fact that the input bitstreams for the bottom
case have the maximum possible overlap between the 1s. In
prior SC research, correlation between pairs of bitstreams is
most frequently measured using the stochastic cross correlation
(SCC) metric, which assigns SCC(X,Y) = 1 to this maximum
overlap (maximally correlated) case, SCC(X,Y) = —1 to the
case with minimum overlap (sometimes called anti-correlated),
and SCC(X,Y) = 0 to the uncorrelated case [5]. SCC, which is
discussed further in Sec. 11, is a piecewise-linear function that
connects these three extrema, allowing bitstreams with partial
correlation to be represented as well.

In SC, bitstreams may become correlated for several reasons,
such as circuit fan-in/fan-out or random number source (RNS)
sharing among inputs. Unlike quantization error and RFEs,
correlation error does not generally decrease with bitstream
length N, rather it is an inherent property of the circuit’s
structure and its input sources.
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Fig. 3: Roberts Cross edge detection (RCED) circuit, exploiting input
correlation SCC= +1 to compute a scaled sum of absolute differences.

To design accurate SC circuits despite undesired correlation,
prior research has relied on adding extra hardware in the form
of sequential correlators and decorrelators for (re-)generating
input bitstreams [6][7][12]. Circuits that deliberately exploit
correlation have shown promising results for some important
SC applications, since they often lead to compact designs
without expensive correlation manipulation hardware [5].

For instance, in [8], Alaghi et al. propose the small edge
detection circuit shown in Fig. 3, which computes the function
P; =1/2|Py, — Py,| + 1/2|Px, — Py,| when the data inputs all
have maximum correlation of SCC = 1 with respect to each
other. The first-layer XOR gates perform absolute-valued
subtraction; the second layer consists of a MUX scaled-adder.
This RCED design saves considerable area over conventional
SC implementations because the first layer is simple and
employs maximally correlated input bitstreams that can share a
single RNS. However, like the AND gate in Fig. 1, it exhibits
correlation error if its inputs do not meet its input correlation
specification. The AND gate multiplier requires SCC = 0,
while the RCED circuit requires SCC = 1. Fig. 3 also shows
how the intermediate signals from the first layer of XOR
gates are partially correlated at some in-between value
SCC = 0.3. With the notable exception of the MUX scaled-
adder, which is insensitive to correlation, nearly all known
useful stochastic circuits require that the correlation between
pairs of inputs be maintained at SCC(X,Y) =0, 1, or —1 for
the best accuracy, so using the pair of XOR-gate absolute-
subtractors as an input to any other design would likely result
in correlation error. In general, such correlation degradation
across circuit layers poses a major and poorly understood
problem for modular, hierarchical stochastic circuit design.

One notable example of prior work done in designing multi-
layer circuits that exploit correlation is [12]. Here, Abdellatef
et al. design a multi-layer SC image processing pipeline
consisting of median filtering, smoothing, edge detection, and
thresholding. However, their design strategy is restricted to
finding sub-circuits that either leave correlation completely
unmodified or are entirely insensitive to correlation, otherwise
re-correlators are added to correct partial correlation. Such an
all-or-nothing strategy is often unnecessarily complicated and
pessimistic, as designs receiving input correlations that are
close to the ideal requirements (e.g., SCC = 0.9 instead of 1)
may still achieve sufficiently low error. To guide SC design, a
mathematical model for quantifying correlation propagation
and its error is highly desirable.

Early attempts to perform mathematical SC correlation
analysis utilized probabilistic transfer matrix (PTM) theory,
first proposed in [9], partly because of its ability to model
some aspects of correlation [5]. PTMs, intuitively, are an
extension of Boolean truth tables that permit probabilistic

inputs/outputs, and thus naturally bridge the gap between
conventional Boolean analysis and SC. Existing PTM theory,
however, has no general answer for how to specify the input
correlation requirements of SCs, or how to extract the output
correlation structure after applying PTMs. Therefore, in the
literature the accuracy of stochastic circuits is determined
almost exclusively by means of bit-level simulation, which is
computationally expensive and provides little insight into the
factors underlying correlation [4]. In this paper, we address this
issue by introducing correlation matrices,which are matrices
specifying all of the pair-wise correlations between a set of
bitstreams. Our method is unique in its ability to handle circuits
with any number of inputs and outputs, and with any
input/output correlation structure.
The main contributions of this work are:

+ The adoption of correlation matrices as explicit and
concise representations of the correlations between
stochastic bitstreams in multi-layer circuits.

« An extension of PTM algebra that employs correlation
matrices as a tool for correlated circuit analysis and
synthesis, which reduces reliance on bit-level simulation.

» An application of our correlation analysis to the design of
multi-layer image processing and neural network circuits
in order to reduce correlation error.

II. BACKGROUND

First, we briefly discuss methods of measuring correlation
within stochastic circuits, as well as the relevant theory behind
probability transfer matrices (PTMs).

A. Correlation Measurement in SC

Early attempts to understand the impact of correlation on SC
primarily used conventional Pearson correlation from statistics
[10]. However, in [5] Pearson correlation was shown to be
suboptimal for SC due to its value dependence. By far the most
widely used correlation measure in the SC context is the
stochastic cross correlation (SCC) [5] defined by Eq. 1:
ml':(XPA):,.P;X-P;XPY U Fxnr = Prby ()

Px,y—PxPy h .
T
PxPy—max(Px+Py—1,0) otherwise

SCCX,Y) =

where Py,, measures the likelihood of finding a pair of
overlapping 1s, as in P(xy = 11). For example, if the SNs are
X =101001 (Py = 3/6) and Y = 111001 (P, = 4/6), then
Pyny = 3/6. Consequently, SCC(X,Y) =1, because these
bitstreams have maximum overlap of 1s. To gain some intuition
about SCC, note that the numerators of both piecewise cases
are the same. We can rewrite Eq. 1 as:
Px,y—PxPy
SCC(X,Y) = NormPx Py) 2)
Here, Norm(Py, Py) is a piecewise function that scales the SCC
value to keep it in the interval [—1,1].

B. Probabilistic Transfer Matrices

Next, we explain how PTMs may be used to model the
behavior of stochastic circuits [9][5]. Suppose we have an n-
input combinational stochastic circuit that receives a vector of
SNs, X, and computes a set of k Boolean functions: f:{0,1}"* —
{0,1}*. The resulting output Z is a new k-element vector of SN.
We treat Py and P, (boldface) as vectors of the circuit’s input
and SN probabilities, respectively, i.e. Py = [Px,, Px,, ..., Px,]".



This circuit’s PTM is a 2" x 2¥ matrix M; whose rows
represent all possible circuit input patterns: 00...0 through
111...1, and whose columns represent all possible output
patterns. The (i, j)th entry of the PTM is the probability that the
input pattern given by row i will produce the output pattern
given by column j. A PTM is therefore summarizes the
circuit’s stochastic behavior. As an example, consider the MUX
adder shown in Fig. 2¢, which has a select input probability of
P;. If Ps is constant and input S is independent of both MUX
data inputs X and Y (such as in RCED), then the circuit’s usual
8-row Boolean truth table may be replaced by a 4-row PTM:

P(z=0) P(z=1)
xy =00 1 0
ay=01| 1-Ps Py
Muux = 2y =10 Ps 1-Ps 3)
zy =11 0 !

PTMs generalize the concept of truth tables to circuits with
probabilistic input-output values, including those that are
correlated. If the MUX circuit were fed correlated inputs, then
the input pattern xy = 11 will occur more frequently than the
pattern xy = 01, so these rows of the PTM would have a
higher impact on the output probability distribution.

On their own, PTMs, like truth tables, make no assumption
about the circuit’s input signal distribution. To model this
distribution, we must assign a probability value to each of the
PTM’s 2™ rows. In the existing PTM literature, a separate
2™ x 1 PTM containing all the joint input probabilities is used
[9][5]. For example, a circuit with 2 inputs has the following
length-4 input vector:

P(xy = 00)
_ | Pxy=01)

Yin = P(xy =10) “)
P(xy =11)

As noted in [5], v;, implicitly holds information about
correlation between circuit inputs. For instance, the vectors
v,, =[0.5,0,0,0.5]" and w_; =[0,0.5,0.5,0]7, transposed
here for brevity, both refer to a pair random variables with
marginal probabilities of 0.5, but they differ significantly in
terms of SCC: The first has SCC(X,Y) = 1, while the second
has SCC(X,Y) = —1. Since v;, is a vector carrying external
information about the input SNs, we distinguish it from
ordinary circuit PTMs by designating it as a probability
transfer vector (PTV).

When combined with PTMs, PTVs are a powerful tool for
analyzing the behavior of stochastic circuits. Consider an n-
input circuit with output function f and a 2™ x 2¥ PTM M e
The circuit’s 2% X 1 output PTV v,,, can be expressed as a
matrix-vector product between a PTM and PTV, thus:

— T
Vour = Mf Vin

(%)

Intuitively, this product computes a weighted sum of the
rows of the PTM, analogous to indexing into a Boolean truth
table. An important consequence of Eq. 5 is that the PTMs of
subsequent layers within a multi-layer circuit may be
combined using matrix multiplication, as shown in [9].
Consider a two-layer circuit where My, and M, are the PTMs
for the first and second layers, respectively. Then the overall
circuit behavior is given by Vo, = M{M{ v;,. This
composition can be thought of as two iterations of Eq.5,
where we first compute Viep,, = M};vin followed by v,,; =

M}rz V¢emp- Lherefore, if the input PTV vy, is known, the output

PTV of any m-layer combinational circuit may be found viam
successive matrix multiplications.

III. EXTENSIONS TO PTM ALGEBRA
A. Finding the Output Probabilities

In Sec. II, we showed how to find an output PTV for a given
input PTV. Now, we present a new method for transforming
any PTV back into a vector of probabilities. This allows us
to evaluate any circuit’s stochastic function using exact PTM
algebra instead of approximating it with bit-level simulation.
Suppose we define a 2" X n matrix B(n) such that the ith row
contains the n-bit binary representation of the integer value i —
1. We call such a matrix a binary integer matrix (BIM). For
example, the BIM for 2-bit binary integers is:

0 0

0 1

10 ©)

11
BIMs are useful for PTM analysis because each row i of a
PTV corresponds to the probability of seeing a specific binary
bit pattern such as P(xy = 10), and this pattern is given by the
matching ith row of a BIM. Formally, we write: v; =
P(x1x; ...x, = B(n);). Given this relationship, we can use
BIMs to reduce (marginalize) PTVs back into probability
vectors via matrix-vector multiplication.

B(2) =

Theorem 1: Given an n-input, k-output stochastic circuit
represented by the PTM M, and a PTV vy, defining the circuit
input, the input and output probability vectors are, respectively:
(7
(®

As an example, by applying Eq. 7 to the two-input PTV in Eq.
4, we see that the result is exactly equal to the vector of marginal
probability distributions (by the law of total probability):

0o o\" /P(xy=00)
0 1 P(xy =01) | _ (P(xy =10) + P(xy = 11)\ _ (Px
10 P(xy =10) | — (P(xy =01) + P(xy = 11)) - (Py)
11 P(xy =11)

Px =B v,
Pz = B(k)Tvaut = B(k)TM}-vin

If the input PTV is known, Theorem 1 is an exact alternative
to circuit simulation for finding the output probabilities, even for
circuits with many more than 2 inputs/outputs. However, in
practical circuit analysis, often only Py is known, not v,.
Unfortunately, we cannot generally compute the inverse of Eq.
7 or Eq. 8. Input PTVs cannot be found with only knowledge of
Py, since Py on its own does not include correlation infor-
mation. In Sec. III-B we explain how to find this information,
then in Sec. IV we combine it with Py to form the input PTV.

B. Correlation Matrices & Mutual Correlation

For a SC with n inputs, we must consider each of the (})
possible input signal pairs individually for correlation analysis.
We employ correlation matrices as a concise method of
representing all such pairs. Thus, we define a correlation matrix
C such that the (i, )th entry is C;; = SCC(XL-,X}-). Correlation
matrices are always symmetric, and their diagonal entries are
always 1 because bitstreams are always fully correlated with
themselves. For SC circuits requiring independent inputs, C is
just the n X n identity matrix I. A more complex example is the
RCED edge detector in Fig. 3. It requires that all data inputs X;,



Y;, X,, and Y, be fully correlated (SCC = 1) with each other,
however the select input S must remain uncorrelated (SCC = 0)
with all data inputs. We can express this input correlation
requirement with the following correlation matrix:
X, v, X2 ¥ S

Xif1

Y| 1
Xz| 1

Yol 1
S\o

b

1
1
1
1

Cge
Re 0 9)

0 0 1

Typical stochastic circuit designs including RCED require
all pairs of input bitstreams, or a subset of pairs, to maintain the
same correlation value with respect to each other. We call this
desirable property mutual correlation. For example, the set of
data inputs to the RCED {X,,Y;, X;,Y,} is mutually correlated
with SCC = 1, since the respective entries in the correlation
matrix Cpe (Eq. 9) are 1 for all pairs of bitstreams in this
group.

Just as we were able to reduce a PTV to probabilities
(Theorem 1), we can also extract the correlation information
from a PTV, yielding a correlation matrix without having to
perform bit-wise simulation:

Theorem 2: Given a PTV v;,, of size 2" specifying a vector
of n stochastic bitstreams X, and their corresponding
probability values Py, the correlation matrix is:

2521 B(n)qu(n)qjvinq—PX.PX .

= i Xj
Cij Norm(PXi,PXj)

(10)

Observe that Py, and ij can be found from v;, using

Theorem 1, thus Eq. 10 in Theorem 2 depends only on vy,.
Eq. 10 extends the definition of SCC given in Eq. 2. The
summation term computes PXi,\Xj. It first identifies all possible

ways bitstream i can overlap with bitstream j using the relevant
columns of a BIM. If bitstreams i and j overlap on the gth
pattern, the probability of this pattern occurring, v;,, is added
to the total for Py, X Theorem 2 can be used to find the exact

output correlation matrix of a circuit with an arbitrary PTM
M using the output PTV v, = M{v;,. This knowledge can
guide multi-level circuit design by allowing one to check if the
output correlation matrix of a given layer matches (or is close
to) the correlation requirements for the next layer.

IV. GENERATING INPUT PTVS

So far, we have shown how to extract the probability vector
and correlation matrix information from a PTV using Theorems
1 and 2. However, we also noted that these theorems have
limited applicability unless the circuit’s input PTV is known
ahead of time. To solve this problem, we now explain how to
construct PTVs for several common types of correlation
matrices. In each case, the PTV for correlation matrix C is
treated as a function of the input probabilities, v¢(Py).

A. PTVs for Mutually Independent Inputs

In SC design, the most common correlation matrix is the
identity matrix I, which occurs when all bitstreams are
mutually correlated at SCC = 0, i.e., are independent. For this
case, we write the PTV as v;(Py). Now consider such a PTV
for a pair of inputs X and Y. When sampling from bitstream
X, there are two possible outcomes: x = 0 and x = 1, with
probabilities (1 — Py) and Py, respectively (Bernoulli trials).

Likewise, the same is true for Y. Then, with @ denoting the
tensor product operator used in PTM theory for modelling
parallel circuit elements (see [9]), we can write:
A -P(A—-Py)
Py(1—Py)
A -PAIPy
PxPy
Here, we utilize the well-known identity from probability
theory that P(xy =11) =P(x =1)P(y =1) if X and Y are
independent. The tensor product in Eq. 11 has the effect of
applying this rule to all four possible joint x,y samples. For
instance, the probability of sampling x =0 and y =1 is
(1 — Py)Py. This observation generalizes to the following
equation for the PTV of any number of independent inputs:

i = (5 8 (1 5)=

(1)

n 1— PX
Px)= ;
im0 =@ (")

B. PTVs for Mutually +1/-1 Correlated Inputs

Next, we show how to derive a PTV for a set of inputs
that are pairwise mutually correlated with SCC = +1, which
we write as v,.1(Pyx) and v_;(Pyx), respectively. After
independent inputs, these are the most frequently used
correlation matrices. To illustrate, Fig. 4 shows a group of three
bitstreams of length N = 10 correlated at SCC = +1, as well
as their corresponding PTVs:
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Fig. 4: Example of three correlated bitstreams and their PTVs. (a) SCC = 1. (b)
SCC = —1. Here, Py, = 3/10, Py, = 5/10, Py, = 2/10.

From Fig. 4, we observe that both correlated PTVs are sparse
vectors, and the locations of the nonzero entries depend on the
relative magnitudes of Py ,Py,, and Py.. To construct such
PTVs, first recall that the ith row of a PTV corresponds to
the probability of seeing the bit pattern represented by the ith
row of a BIM, i.e., v; = P(x;X; ... X, = B(n);). For the ith
pattern, suppose we collected the probability values of the
inputs that are required be 0 and those that are required be 1
into two sets, ry; = {Px;|B(n);; = 1}and ry; = {Px,|B(n);; = 0},
respectively. For example, the index i = 7 in the PTV of a 3-
input circuit has v,;(Py), = P(x1x;x3 = B(3)7) = P(x1xx3 =
110). Therefore, ry; = {Px,,Px,} and ro; = {Px,}. We utilize
these two sets to state the following theorem:

Theorem 3: Given an input vector Py, of length n, the PTVs
for SCC = 41 mutual correlation are:

v41(Px); = max(0,min(L U ry;) —max(0 Ury;)) (13)
max(0,1— Y Px) ifi=1

v_1(Px); = {11 —max(0, X Px—1) if|ryl=1 (14)
max(0,Y Py — 1) otherwise

In the case of +1 mutual correlation, we can see from Fig. 4a
that a 1 on the smaller of X; and X, will imply a 1 on the larger.



Thus, P(x,x, = 11) = min(ry;) = 3/10 in this case. Similarly,
a 0 on the larger bitstream implies a 0 on the smaller one, so
we subtract max(ry;), yielding: P(x;x,x3 = 110) = 3/10 —
1/10 = 2/10. Eq. 13 from Theorem 3 generalizes this min-
minus-max procedure, and accounts for the edge cases
P(x1%5...x, = 00...0) =1 —max(ry;) and  P(x;xp...x%, =
11...1) = min(ry;) by unioning the r,; and ry; sets with 1 and
0, respectively, preventing the sets from being empty.

For SCC = —1 mutual correlation, note that the bitstreams in
Fig. 4b contain no overlapping 1s, which is true if , Py < 1. We
find that, with very few exceptions, inputs mutually correlated
at —1 can only have Y Py > 1if n = 2. Under such input
restrictions, the only nonzero rows of the PTV are those with
|ry;| = 1, representing the patterns 001, 010, 100, etc. These
rows contain all of the respective input’s probability mass. For
example, P(x;x;x3 = 010) = Py, =5/10. Eq. 14 implements
this, with special cases for P(xyx;...x, = 00...0) and n = 2.

C. PTVs for more Complex Correlation Matrices

Next, we introduce two identities that allow us to express a
broader class of correlation matrices as PTVs. In practical
correlation analysis, the circuit inputs are not necessarily all
mutually correlated at SCC = 0, 1, or —1. For instance, the
matrix Cg from our RCED example (Eq. 9) specifies that the
data inputs are mutually correlated with SCC = 1, while the
select input has SCC = 0 with all other inputs. Cgc is an
example of a broad class of block diagonal correlation matrices,
a structure that appears commonly in SC design. A general
block diagonal correlation matrix has the form

c, 0 ... 0
0 Cy ... 0

c=1. . - (15)
0 0 < Oy

where C4, ..., C, are square correlation matrices (which may
have different sizes) and s is the number of sub-matrices. We
can construct PTVs for such matrices by again employing the
tensor product of standard PTM theory. If v¢ ,v¢,, ..., V¢, are
the PTVs of the component correlation matrices, then the PTV
of the full block matrix is: s

ve=Qve,
i=1

In addition to block matrices, fractional SCC values often
appear in practical circuit analysis. They occur naturally as
signals propagate through multi-layer circuits. To handle such
cases, we can use the fact that the SCC equation is (piecewise)
linear. Thus, if C; and C, are correlation matrices containing
values that all have the same sign, and o € [0,1] is a scalar, then
the following equation holds:

Vac, +(1-a)c, = We, + (1 — v, a7

Equation 17 generalizes a result in [5] that circuits whose
inputs have fractional SCC values compute functions that are
linear combinations of the functions at SCC = 0 and SCC =
+1. We now illustrate the utility of Egs. 16 and 17 with an
example: Suppose we wish to model the behavior of the RCED
circuit when the data inputs are mutually correlated at SCC =
0.7 instead of 1. This could occur if the RCED circuit is fed
from a prior layer. The desired correlation matrix is:

X} i X» ¥» S

Xif1 07 07 07 0

Yi| 0.7 1 0.7 0.7 0

c= X:|07 07 1 07 0

Y207 07 07 1 0
S\ 0 1] 0 0 1

(16)

— 0.7 (11;4 ?) F08Lss (18)

In Eq. 18, the fractional correlation matrix is broken into a
linear combination of a block correlation matrix and an identity
matrix. We then use Eqs. 16 and 17 to find the PTV:

ve = 0.7 (041 (Pey. Py, Py Pr,) @ 041(Ps) ) + 030, (Py) (19)
V. APPLICATION TO CIRCUIT DESIGN

In this section, we use our PTM and correlation matrix results
to show that apparently equivalent [11] designs can have very
different correlation properties, and that this fact is useful for
reducing correlation error in multi-layer circuits. Consider the
MAJ gate shown in Fig. 5b, which outputs a 1 if a majority of
its inputs are 1. It is known that the stochastic functions
computed by MUX and MAJ are the same when the select input
S (an arbitrary choice for MAJ) is set to 0.5 [11}—both gates
compute the weighted sum: Z = 0.5(X; + X;). Despite this, the
PTMs of these two circuits differ, as shown in Fig. Sc-d:

(a) MUX Gate (b) MAJ Gate
X1 Xy
S§=05
X;
2 X,
§=05
(¢) MUX PTM (d) MAJ PTM
P(z=10) P(z=1) Pz=0)P(z=1)
zy = 00 1 0 1 0
zy=01] 1— Pg Pg 1-Ps Ps
zy =10 EPS 1-—Pg 1-Pg Ps,
sp=Tl\ T0 ST R 1 R iig

Fig. 5: MUX and MAJ circuits, and their respective PTMs.

Observe that when the select bit S = 1, a MAJ gate outputs
1 if either data input is also 1, whereas the output of a MUX
under the same input conditions is sensitive to only one of the
two data inputs. This hints that the two gates might affect
correlation differently. To analyze this, we evaluated the
impact of substituting MUX gates for MAJ gates within two
different three-layer digital filtering circuits, shown in Fig. 6.
The first circuit, Fig. 6a-b, is a set of four RCEDs followed by
an OR-gate max-pooling tree [13]. The second circuit, Fig. 6c,
is a new design of a multiply-accumulate (MAC) circuit,
followed by a rectified linear activation unit (ReLU) layer,
which is a ubiquitous operation in modern neural networks
[14]. Under ideal correlation conditions, this MAC-ReLU
neural network circuit will compute max(0,whX — whX) =
ReLU(Zpo5 — Zyeg)- The subtraction comes from the SCC = 1
behavior of an OR gate with one inverted input [5], which we
exploit to add the positive and negative weight terms together.

For these experiments, we derived a set of three PTMs (one
for each layer) for each circuit in Fig. 6, then a second set for
the same two circuits but with the layer-2 MUX gates replaced
with MAJ. We then sampled 100,000 random input vectors
(Py) for each circuit. In the case of RCED, these samples were
randomly selected 3 X 3 pixel patches from the popular image
processing datasets MNIST (handwritten digits), and gray-
scaled CIFAR-10 (thousands of images in ten classes). For
MAC-ReLU, we simply used data and weights selected from
the uniform random distribution. Note that any simulation-
based approach would still require doing this sampling,
followed by simulating N bits on every sample.

For each sample, we generated the input PTV according to
the input correlation matrices for layer 1. These were block
diagonal for both circuits, so we utilized Eq. 16. Specifically,
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Fig. 6: (a) Three-layer image processing circuit: Layers 1 and 2 together are 4
parallel instances of RCED; Layer 3 is a 2x2 max pooling layer. (b) Image
pixels contributing to (a)’s output. (c) Three-layer neural network circuit:
Layers 1 and 2 together compute inner products: Zp,s = ng and Zp., =

whX; Layer 3 computes max(0, Zpos — Zneg )-

RCED requires a larger equivalent of Cr. (Eq. 9), where the
data inputs X are mutually correlated with SCC = 1 and the
select input S is independent. On the other hand, the MAC

circuit requires the following correlation matrix:
X w S

X 1229 0 0
w 0 l4xqa O
S5\ 0 0 1

The block structure of C,,c enables AND-gate multi-
plication between independent data and weight signals, yet
keeps the data as correlated as possible for the subsequent
ReLU unit. Given each input PTV, we computed the overall
output PTV (Eq. 5) as well as the PTVs for all intermediate
layers. This allowed us to examine both the output probability
values with Theorem 1, and the intermediate correlation
matrices via Theorem 2. We computed the output correlation
error using the usual mean squared error formula:

Cumac = (20)

2D

where Pz, . is the circuit output supposing that the input to
every layer is ideally (re)correlated according to the design’s
requirements. For the intermediate correlation matrices, we
measured the average of all off-diagonal entries across all
samples as an estimation for how well SCC = 1 correlation is
preserved. The results are summarized in Table 1.

1
Avg Corr Error = ;Z{ZJPZMQM - PZ|

- Avg. Corr | Avg. Corr. [Avg Corr.Error)
Circuit Dataset at Lgayer 2 | at fayer 3 nf = 100,000
RCED-MUX MNIST 0.8607 0.8572 0.03077
RCED-MAJ MNIST 0.8607 0.8779 0.02670
RCED-MUX | CIFAR-10 0.2986 0.3257 0.05492
RCED-MAJ | CIFAR-10 0.2986 0.4792 0.04342
MAC-MUX Uniform 0.8474 0.8458 0.05161
MAC-MAJ Uniform 0.8474 0.9371 0.00875

Table 1: Experimental results for Fig. 6 comparing the average SCC
values of all bitstream pairs entering Layers 2 and 3, and the resulting absolute
error relative to the design with ideal correlation, for the RCED/MAC-ReLU
circuits using either MUX or MAJ gates for scaled addition.

Table 1 shows that switching from MUX to MAJ gates
increases the average SCC entering layer 3 for all cases. For
the RCED circuit, the improvement is more dramatic for the
CIFAR-10 dataset, likely because the distribution of MNIST

pixel values is highly skewed toward 1 and 0, relative to
CIFAR-10 (see [4] for a detailed comparison). We see that the
value distribution influences correlation after the first RCED
layer; layer 2 sees higher incoming SCC for MNIST than for
CIFAR-10. Switching to MAJ therefore yields a higher relative
performance improvement for CIFAR-10 than for MNIST
(1.26x reduction vs 1.15x). Our MAC-ReLU circuit shows that
switching to MAJ achieves almost 6x lower correlation error,
down to less than 0.9%, suggesting that our new MAC-ReLU
design with MAJ gates does not require re-correlation
hardware. Overall, these experiments show that stochastic
equivalent circuits can yield different correlation behaviors.

VI. CONCLUSION

Correlation propagation through multi-layered stochastic
circuits has been poorly understood in the past, especially for
circuits with more than 2 inputs. In this paper, we introduced
the use of correlation matrices to model the correlation
requirements of relatively complex stochastic circuits with an
arbitrary number of inputs and outputs. We then described how
to translate these input correlation requirements into PTM
form, and how use them to compute the output correlation
matrix and output probabilities given known input
probabilities. Finally, we applied our correlation analysis
technique to two digital filtering circuits, including a novel
neural network layer design. We showed that replacing the
MUZX-adder sub-circuit in these designs with an equivalent
MAJ-adder reduced the overall circuit’s correlation error. This
is an example of how matrix-based correlation propagation
analysis can be used to guide design decisions for practical
circuits with multiple layers and many inputs/outputs.
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