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Abstract—This paper investigates the joint problems of dy-
namic state estimation of algebraic variables (voltage and phase
angle) and generator states (rotor angle and frequency) of
nonlinear differential algebraic equation (NDAE) power network
models, under uncertainty. Traditionally, these two problems
have been decoupled due to complexity of handling NDAE
models. In particular, this paper offers the first attempt to
solve the aforementioned problem in a coupled approach where
the algebraic and generator states estimates are simultaneously
computed. The proposed estimation algorithm herein is endowed
with the following properties: (i) it is fairly simple to implement
and based on well-understood Lyapunov theory; (ii) considers
various sources of uncertainty from generator control inputs,
loads, renewables, process and measurement noise; (iii) models
phasor measurement unit installations at arbitrary buses; and (iv)
is computationally less intensive than the decoupled approach in
the literature.

Keywords—Robust algebraic and dynamic state estimation,
Lyapunov stability criteria, H∞ stability, power system nonlinear
differential algebraic model, Lipschitz continuity.

I. INTRODUCTION

AS human-made climate change is necessitating increased
penetration of fuel-free energy resources, monitoring and

realtime control of the power grid transients have become more
complex. This is due to the fact that controlling and predicting
mostly non-dispatchable intermittent and uncertain renewable
energy (e.g., solar and wind) results in a more challenging
control problem of dispatchable generators (e.g., synchronous
machines) in the short, second-to-second time-scale.

An essential component of feedback control in power net-
works is dynamic state estimation (DSE) which accurately esti-
mates the grid’s physical states in realtime. Typically, DSE uses
two essential components. The first component is a physics-
based model of the electromechanical transients depicted via a
set of nonlinear differential algebraic equations [1]

machine dynamics: ẋ(t) = f(x,a,u,w) (1a)
algebric constraints: 0 = h(x,a,w). (1b)

In (1), vectors x(t),a(t),u(t), andw(t) depict the states of all
generators (e.g., angle and frequency), algebraic variables of
all nodes (e.g., voltages and power flows), controllable inputs
(e.g., exciter field voltage and mechanical input power), and
the uncontrollable inputs from loads, renewables, and network’s
parameters respectively. The differential equations (1a) model
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the transients of the generators while the algebraic equa-
tions (1b) depict the network power flow constraints. Vintage
power system textbooks [1], [2] delineate this NDAE model in
great detail while showcasing the vector-valued nonlinearities
abstracted through f(·) and h(·).

The second component needed in DSE is a stream of data rep-
resenting high sampling rate, synchronized measurements y(t)
from phasor measurement units (PMUs). These measurements
can be modeled as

y(t) = g(x,a,v) (2)

where g(·) is a nonlinear vector-valued function that maps both
the dynamic and algebraic variables to what PMUs typically
measure and v(t) encapsulates measurement noise.

To that end, it is natural to ask about how to perform dynamic
state estimation for the complete model of a power system
depicted in (1) using PMUs measurement model (2) without
jeopardizing system accuracy. In this paper we propose a unique
way by developing a simple method to estimate both algebraic
and dynamics state of power systems simultaneously via well-
understood Lyapunov and control theory.

Extensive research has been carried out in the past two
decades to perform DSE by focusing mainly on generator
dynamic models and ignoring algebraic constraints and states.
That is, the bulk of the literature investigates DSE based on
ODE models, rather than a complete NDAE one. Most of
the developed algorithms are either stochastic estimators (e.g.,
Kalman filters and its derivatives) or deterministic observers.
The recent survey papers [3], [4] produce a thorough summary
of the state-of-the-art in power system DSE.

In stochastic estimators category, extended Kalman filter
(EKF) [5], unscented Kalman filter (UKF) [6], particle filter
(PF) [7], extended particle filter (EPF) [8] and ensemble Kalman
filter (EnKF) [9] have been developed. A thorough comparative
study has also been carried out between EnKF, UKF, PF, and
EKF in [10], [11] and the different strengths and weaknesses of
each estimator have been highlighted.

To deal with process and measurement noise, model uncer-
tainties and unknown inputs, robust versions of these stochastic
estimators have also been developed such as, EKF with un-
known inputs (EKF-UI) [12], generalized maximum likelihood
EKF (GM-IEKF) [13], H∞ based EKF [14], robust UKF [15]
and robust CKF [16] have been proposed.

As for deterministic observers, the core idea is to drive
the error between original and estimated states to asymptoti-
cally zero (or bounded region around the origin) via convex
optimization formulations, which are derived using Lyapunov
stability criteria. For example, the authors in [17] design an
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observer for the ODE model of power system while considering
the nonlinearities as Lipschitz bounded. In [18], a multiplier
based observer design has been proposed and tested on a multi-
machine power system with Lipschitz nonlinearities. In [19],
an unknown input observer has been designed for a linearized
model of a power system.

Although the NDAE and PMUs measurement models (1)–
(2) abstract grid transients adequately, the literature of DSE
in power systems DSE either ignore the algebraic constraints
(or reduce them), or linearize the nonlinearities around a certain
operating point while ignoring algebraic power flow constraints.
In recent studies, different methodologies have been proposed
to perform linearization free DSE by dealing with nonlinearities
through unscented transformation [15] and by considering them
to be Lipschitz bounded [17]. However, algebraic power flow
constraints have been completely neglected mainly due to the
complexity in performing DSE for the complete NDAE model.

In most of the DSE literature the NDAE model is oversim-
plified usually through Kron reduction to obtain a nonlinear
ODE model of a power system which can then be tackled
using a plethora of DSE algorithms as discussed in the previous
section. However, ODE models forego algebraic constraints and
thus cannot capture system’s dynamics pertaining to topological
changes (e.g., sudden tripping of transmission lines) [20]. Also,
it is not clear how to incorporate loads and renewables in
the nonlinear ODE models and subsequent DSE routines [21].
Another disadvantage is that, if ODE models are solely used for
DSE, then PMU locations are limited to generator buses only.

Thus, and as an alternative to performing DSE for the NDAE
model, a common approach is to first estimate the algebraic
variables of a power system and then use these values to
estimate generator internal states using KF or its derivatives—
a decoupled two-step approach. Such as in [22] a least ab-
solute value (LAV)-based estimator is first used to estimate
algebraic variables and then UKF is used in the second stage
to estimate dynamic states of the power system. In [23], bus
voltage and phase angle of the power system are first estimated
using raw PMU measurements through adaptive KF and then
these estimated algebraic variables along with EKF is used
to estimate the generator dynamic states. However, a simple
linearized second-order generator model has been used and
the algebraic constraints (1b) related to the NDAE model have
been completely neglected. Similarly in [24] a combination of
Newton-Raphson based and higher mode sliding observer is
used to estimate both algebraic and dynamic variables.

We also want to point out here that observability of a
power system is generally a prerequisite while performing
DSE. For linear time-invariant (LTI) model of power systems
the observability can easily be assessed by checking the rank
of the observability matrix [4]. However for nonlinear mod-
els the observability depends on the operating point, thus a
system may move between strongly and weakly observable
for given measurements with changing operating/equilibrium
points. Extensive research has also been carried out to assess
the observability of a nonlinear model of a power system. For
example in [25] lie derivative based method has been proposed
to check the observability of fourth order synchronous generator
model. It has been shown that measuring different states of

Table I
EXPLANATION OF KEY NOTATIONS USED IN THE PAPER.

Notation Description

E and N set of transmission lines and buses

G, L, and R set of generator, load and renewable buses

δi and ωi generator rotor angle and frequency

ω0 synchronous speed (2π60 rad/sec)

Bij and Gij susceptance and conductance of line

Di generator damping coefficient (pu× sec)

E′di and E′qi generator transient voltage along dq-axis (pu)

Efdi generator field voltage (pu)

I identity matrix of appropriate dimension

Mi generator rotor inertia constant (pu× sec2)

O zero matrix of appropriate dimension

PRi, QRi active and reactive power from renewables (pu)

PGi, QGi active and reactive power from generators (pu)

PLi, QLi active and reactive load demand (pu)

T ′d0i and T ′q0i open-circuit time constant along dq-axis (sec)

TMi generator mechanical input torque (pu)

u system’s inputs vector

vi and θi bus voltage and angle (pu)

xdi and xqi synchronous reactance along dq-axis (pu)

x′di and x′qi transient reactance along dq-axis (pu)

xd and xa dynamic and algebraic variables

x and x̂ actual and estimated state vector

Xd and Xa set containing upper and lower bounds of xd and xa

y and ŷ actual and estimated output vector

Rn row vector of n real numbers

Rp×q real matrix of size p-by-q

Blkdiag(·) generate a block diagonal matrix

Diag(·) generate a diagonal matrix

� and � Hadamard division and Hadamard product

∗ denotes symmetric entries in a symmetric matrix

the generator provides different levels (strong or weak) of
observability. In [26] a derivative free polynomial-chaos based
method has been proposed to check the degree of observability
of a NDAE model of power systems. Similarly in [27] a method
base on empirical observability Gramian has been proposed
to assess the observability of synchronous generators using
PMUs. To that end in this work however, we do not study the
observability of NDAE power system models and we simply
follow the literature. We assume that optimal number of PMUs
are already placed in the network and all the states of the power
system are completely observable.

Based on the above discussion and aforementioned limita-
tions in the surveyed studies, the objective of this paper is to
produce a simple DSE algorithm that utilizes (1)–(2) to perform
DSE for the complete NDAE representation of a power system
under various sources of uncertainties. This contribution is the
first in the literature of power systems DSE. The technical paper
contributions are as follows:

• This work is first to propose DSE with NDAE representation
of a power system having (1) a higher order generator model
with power balance equations of network and generator stator
algebraic equations, (2) linearization free DSE approach, (3)
more practical PMUs based measurement model, and (4)
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simultaneous estimation of both algebraic and dynamic states
of the power system.

• To deal with the process and measurement noise and dis-
turbances from load and renewables, we propose H∞ based
NDAE observer which provides robust state estimation in the
presence of Gaussian, non-Gaussian process and measure-
ment noise, as well as uncertainty from loads and renewables.
The main advantage of the H∞ NDAE observer over the
stochastic estimators is it does not require any statistical
properties of the disturbances. Albeit these types of observer
designs are widely used in control theoretic literature [28]–
[32], however, to the best of authors’ knowledge no such work
has been carried out to assess their applicability in power
systems DSE. The proposed observer design is different
from those provided in [30]–[32] as we have used H∞ and
proportional integral (discussed below) notion and shaped the
overall observer design as semidefinite optimization problem
to synthesize a robust observer to perform DSE for power
systems. In particular, the formulated observer design is
unique on its own as it includes constraints and objectives
that allow for the observer to be practically implemented for
power system nonlinear DAE model state estimation.

• To deal with the unknown control inputs we have extended
the H∞ NDAE observer based on proportional integral (PI)
framework. The main advantage of PI-based observer to
handle unknown inputs over methods present in the literature
is that there is no requirement for the generator buses to be
equipped with PMUs [33]. The real-time implementation of
the estimator is as simple as a one-step state predictor.
The rest of the paper is organized as follows. Section II

describes the nonlinear differential algebraic model of the
power system. Section III focuses on modeling uncertainty and
the design of the robust observer under different sources of
uncertainty. Case studies are presented in Section IV and the
paper is concluded in Section V.

II. NONLINEAR DAE MODEL OF POWER SYSTEMS

We consider a graphical representation of a power system
(N , E), where E ⊆ N ×N are the total number of transmission
lines, N = G ∪ L are the total number of buses in the network
while G and L are the set of generator and load buses respec-
tively. The set of equations we used to describe our model are
ordinary differential equations (ODEs), describing the generator
dynamic model, and algebraic equations describing the power
flow/balance equations. Combining both these equations we
get the NDAE representation of the power system. A detailed
description of these equations is given in the following section.

A. Generator Dynamics and Algebraic Equations

We consider the standard two axes 4th-order transient model
of synchronous generator i ∈ G which can be represented by
the following differential equations [1]

δ̇i = ωi − ω0 (3a)
Miω̇i = TMi − PGi −Di(ωi − ω0) (3b)

T ′d0iĖ
′
qi = −xdi

x′
di
E′qi +

xdi−x′
di

x′
di

vi cos(δi − θi) + Efdi (3c)

T ′q0iĖ
′
di = −E′di +

xqi−x′
qi

xqi
vi sin(δi − θi) (3d)

where
[
δi ωi E′di E′qi

]
are the four states of synchronous

machine. The detailed explanation of each of these parameter
is given in Table I.

The algebraic constraints in the model are the power (active
and reactive) flow equations and the model describing real and
reactive power generated by the synchronous generators. These
equations must be satisfied for all time instances and can be
represented as [1]

PGi = 1
x′
di
E′qivi sin(δi − θi)− xqi−x′

di

2x′
dixqi

v2i sin(2(δi − θi)) (4a)

QGi = 1
x′
di
E′qivi cos(δi − θi)− x′

di+xqi

2x′
dixqi

v2i

− xqi−x′
di

2x′
dixqi

v2i cos(2(δi − θi))
(4b)

where i ∈ G. The power balance equation among generators,
renewables and loads can be written as

PGi + PRi − PLi=

N∑
j=1

vivj(Gij cos θij+Bij sin θij) (5a)

QGi +QRi −QLi=

N∑
j=1

vivj(Gij sin θij−Bij cos θij) (5b)

where θij = θi− θj is the bus angle. Similarly, for load buses i
∈ L the power flow equations can be written in a same fashion
as (5) with the exception that PGi = QGi = PRi = QRi = 0.
Note that in this paper we are modeling renewables as a negative
load meaning they are injecting power into the network.

To proceed, we define xd =
[
δ> ω> E′>q E′

>
d

]>
as the

dynamic states, xa=
[
P>G Q>G v> θ>

]>
as the algebraic

variables, q=
[
P>R Q>R P>L Q>L

]>
, and u=[T>M E>fd]>,

where PG = {PGi}i∈G, QG = {QGi}i∈G, PL = {PLi}i∈L,
QL = {QLi}i∈L, v = {vi}i∈N, θ = {θi}i∈N, δ = {δi}i∈G,
ω = {ωi}i∈G, E′q = {E′qi}i∈G, and E′d = {E′di}i∈G. Based on
the above vectors descriptions, the NDAE model (3)–(5) of a
power system can be represented as

ẋd = Adxd + Fdfd (xd,xa) +Bdu+ hω0 (6a)
0 = Aaxa + Fafa (xd,xa) +Baq (6b)

where xa ∈ Rna , xd ∈ Rnd , u ∈ Rnu , and q ∈ Rnq . The
functions fa : Rnd × Rna → Rnfa , and fd : Rnd × Rna →
Rnfd describes the nonlinearities in the algebraic and dynamic
states respectively, while the rest of the constant matrices
Aa ∈ Rna×na , Fa ∈ Rna×nfa ,Ba ∈ Rna×nq ,Ad ∈ Rnd×nd ,
Fd ∈ Rnd×nfd , Bd ∈ Rnd×nu , and h ∈ Rnd are all
detailed in Appendix B. Considering an overall state vector
x =

[
x>d x>a

]> ∈ Rn then the model detailed in (6) can
be rewritten in a compact form as

Zẋ = Ax+ Ff (x) +Buu+Bqq +Hω0 (7)

where

Z=

[
I O
O O

]
,A=

[
Ad O
O Aa

]
,F=

[
Fd O
O Fa

]
,H=

[
h
O

]
f (x) =

[
fd (x)
fa (x)

]
, Bu =

[
Bd O

]>
,Bq =

[
O Ba

]>
In the following section we bound the nonlinearities using

Lipschitz continuity condition and present the PMU based
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measurement model.

B. Bounding Nonlinearities and PMU Measurement Model

The vector f(.) encapsulates the nonlinearities in dynamic
fd(.) and algebraic equations fa(.). In this work we assume that
the function f(.) is Lipschitz continuous, which means f(.) is
continuously differentiable and the magnitude of the derivative
is bounded above by a constant real number. We note that this
assumption holds herein as there are indeed upper and lower
bounds on the states (e.g., frequency, voltages) of the system
[17]. To that end, let us consider two sets Xd and Xa as follows

Xd = [δ, δ]× [ω, ω]× [E′q, E
′
q]× [E′d, E

′
d] (8a)

Xa = [v, v]× [θ, θ] (8b)

where xd ∈ Xd and xa ∈ Xa. Eqs. (8a) and (8b) define upper
and lower bounds or operating regions of the state variables of
NDAE model (7). These operating regions can be determined
based on the operator’s knowledge or by performing extensive
simulations studies while applying different contingencies and
then finding the operating regions of the generators [34]. The
Lipschitz continuity condition can be written as

‖f(x)− f(x̂)‖2 ≤ ‖G(x− x̂)‖2 (9)

where G ∈ Rn×n is a constant diagonal matrix and it contain
Lipschitz constants for each of the corresponding nonlinearity
in algebraic and dynamic equation of NDAE model (7). These
Lipschitz constants can be determined numerically given that
Xd and Xa are known. Readers are referred to [35] for the
complete method explaining the computation of these Lipschitz
constants.

As for the PMU measurement model, let us consider a vector
y =

[
V> I>

]> ∈ Rp denoting the measurements received
from PMUs, where V =

[
{vRj}j∈N + {vIj}j∈N

]
represents

voltage phasors and I =
[
{IRji}i∈Nj

+ {IIji}i∈Nj

]
denotes

current phasors of bus j and nearby buses (Nj ∈ N ) connected
with bus j. Then the NDAE model of a multi-machine system
with PMUs measurement model can be expressed as

Zẋ = Ax+ Ff (x) +Buu+Bqq +Hω0 +wp (10a)
y = Cx+wm (10b)

where wm ∈ Rp denotes measurements noise, wp ∈ Rp
represent random process noise, and C ∈ Rp×n is a constant
output matrix that maps state vector x to what typically PMUs
measure (i.e., voltage and current phasors). The overall structure
of C is detailed in Appendix A.

III. JOINT ESTIMATOR FOR NDAE STATES

The NDAE model presented in (10) assumes ideal power
system conditions. However, there are always different types
of disturbances and unknown inputs that ought to be modeled
when designing a state estimation method. With that in mind,
to model disturbances from load and renewables we consider
that minutes- or hour-ahead predictions of these quantities are
available but the disturbances are unknown. Accordingly, one
can write q(t) = q̄ + ∆q(t) where q̄ is the known part and
∆q(t) is the unknown uncertainty. Similarly for generator’s
control inputs we can write u(t) = ū + ∆u(t) where ū is

the known steady state value of the inputs and ∆u(t) model
the disturbances. With that in mind the NDAE model (10) can
be rewritten as

Zẋ = Ax+ Ff (x) +Buu+Bqq̄ +Hω0 +Bww (11a)
y = Cx+Dww. (11b)

The matrices Bw and Dw are constant known matri-
ces and they maps w into the system’s dynamics and
PMUs measurements. These matrices are constructed as
Bw = Blkdiag (I, O, BwR

, BwL
) ∈ Rn×q and Dw =

Blkdiag (O, I, O, O)∈Rp×q , where BwR
∈ RN×N is a bi-

nary matrix and has 1′s at those locations where renewables are
connected to buses and zero otherwise, similarlyBwL

∈ RN×N
has 1′s only at those locations where buses are connected to
loads.

A. H∞ Stability and Observer Design
To begin with the observer design, let x̂ be the estimated

states and ŷ be the estimated outputs, then the proposed
estimator/observer dynamics for the NDAE model (11) can be
written as

Z ˙̂x=Ax̂+Ff (x̂)+L (y − ŷ)+Buu+Bqq̄+Hω0 (12a)

ŷ = Cx̂ (12b)

where L ∈ Rn×p is the Luenberger type gain matrix. Let
e = x − x̂ be the error between estimated and actual states.
Multiplying Z on both sides and taking the derivative, then the
error dynamics can be written as

Zė = Zẋ−Z ˙̂x. (13)

Now putting values of Zẋ and Z ˙̂x from (11a)–(12a) and
simplifying, the estimation error dynamics (13) can be rewritten
as

Zė = (A−LC)e+ F∆f + (Bw −LDw)w (14)

where ∆f = f (x) − f (x̂). Our main objective throughout
this paper is to design observer gain L such that the estimation
error dynamics (14) converges asymptotically to zero and robust
performance from the observer can be achieved under various
sources of unknown disturbances

With that in mind, we introduce the H∞ stability notion to
minimize the impact of disturbance vector w on the estimation
error dynamics. In state estimation theory the H∞ notion was
first introduced in [36] to design an optimal state estimator for
a linear system subject to disturbances. The main advantage
of H∞ norm minimization over Kalman filters is that it does
not require any prior knowledge about the statistic of the
noise. In H∞ based state estimation, the noise/disturbances
are considered as arbitrary bounded signals and the observer
is designed to ensure a specified H∞ performance for the error
dynamics for all disturbances.

To that end, the H∞ stability definition can be applied to
estimation error dynamics (14) in the following fashion.

Definition 1. Let β = Γe be the performance of error
dynamics with Γ ∈ Rn×n as the user defined performance
matrix. Then the nonlinear estimation error dynamics (14) is
H∞ stable with performance level γ if, (a) (14) is stable when
w = 0 for all t > 0, (b) ‖β‖2L2

< γ‖w‖2L2
for zero initial

error (e = 0) and for any bounded disturbances w.
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Definition 1 with performance level γ can be interpreted as
follows. When the initial value of the error is zero i.e., e = 0,
then for t > 0 the magnitude of the performance vector β is
guaranteed to evolve in a way such that its value is always less
than the constant time the magnitude of disturbance w. Note
that if the value of γ is large then it means that the performance
of error dynamics β can highly be affected by the disturbance
vector w. Thus in the H∞ based observer design we want to
minimize γ as small as possible to get robust performance of
the observer under various sources of disturbances.

To that end, we now propose a systematic way based on
Lyapunov stability criteria to synthesize H∞ based observer
for the NDAE described in (11).

Theorem 1. Consider the NDAE model (11) and observer
dynamics (12). Then the estimation error dynamics (14) con-
verges asymptotically to zero and is robust in H∞ sense
against disturbances, if there exists positive definite matrix
X ∈ Rn×n, two matrices R ∈ Rp×n and Y ∈ Rna×n and a
scalar ε ∈ R++ and γ > 0 such that the following semidefinite
optimization problem is solved.

(P1) minimize
ε,γ,X,R,Y

c1γ

subject to LMI (15), X � 0, ε > 0, γ > 0

where LMI (15) is given as Ω ∗ ∗
(XZ +Z⊥>Y )>F −εI ∗

B>w(XZ +Z⊥>Y )−D>wR O −γI

 ≺ 0 (15)

and Ω is as follows
Ω = A>(XZ +Z⊥>Y ) + (XZ +Z⊥>Y )>A−

C>R−R>C + εG>G+ Γ>Γ

where Z⊥> ∈ Rna×n is the orthogonal complement of Z,
meaning Z⊥>Z = 0. Upon solving P1 the observer gain can
be recovered as L = P−>R>

Proof. According to [30, Theorem 2.1] there exists an observer
for a nonlinear differential algebraic model with nonlinearities
as Lipschitz bounded (same as the one shown in Eq. (10)) if
there exists two matrices P ∈ Rn×n and Q ∈ Rp×n such that
the following matrix inequalities are solved[

Ω P>B
B>P −I

]
≺ 0 (16a)

Z>P = P>Z � 0 (16b)

where Ω = A>P+P>A+C>Q+Q>C+F>F and observer
gain L can be recovered as L = P−>Q>. In a similar fashion
we can design our observer for the NDAE model presented in
(11). The overall proof is divided into two main steps as follows:
(a) Determining matrix inequalities based observer design.
(b) Converting the matrix inequalities to linear matrix in-

equalities (LMIs) so that they can be easily solved using
commercially available SDP optimization solvers such as
MOSEK [37].

(a): Let us consider a candidate Lyapunov function as V (e) =
e>Z>Pe, where P ∈ Rn×n, V : Rn → R+, Z>P =
P>Z � 0, then its derivative can be written as

V̇ (e) = (Zė)>Pe+ (Ze)>(P ė).

Since Z>P = P>Z, then we can write

V̇ (e) = (Zė)>Pe+ (Pe)>(Zė).

Putting value of Zė from equation (14) yields

V̇ (e) = (Ace+ F∆f(x, x̂) + (Bw −LDw)w)
>
Pe+

(Pe)
>

(Ace+ F∆f(x, x̂) + (Bw −LDw)w)

whereAc = (A−LC). Now for any bounded disturbancesw
the H∞ stability condition is; V̇ (e) +β>β− γw>w < 0 thus

(Ace+F∆f(x, x̂) + (Bw −LDw)w)>Pe+

(Pe)
>

(Ace+ F∆f(x, x̂) + (Bw −LDw)w) +

β>β − γw>w < 0.

These equation can be rearranged and written as Ψ>ΘΨ < 0.
where

Ψ =

 e∆f
w

 ,Θ =

 Θ11 ∗ ∗
F>P O ∗

(Bw −LDw)>P O −γI


and Θ11 is given as

Θ11 = (A−LC)>P + P>(A−LC) + Γ>Γ .

Note that Ψ>ΘΨ < 0 holds only if Θ ≺ 0. Now from Eq. (9)
we know that the function f(.) is Lipschitz bounded, meaning

‖∆f(x, x̂)‖2 ≤ ‖G(x− x̂)‖2
⇔ (∆f(x, x̂)

>
∆f(x, x̂))− e>G>Ge ≤ 0

which can be written as Ψ>ΞΨ ≤ 0, where

Ξ = diag
([
−G>G I O

])
since Ψ>ΞΨ ≤ 0 for all admissible Ψ then it means Ξ ≺ 0.
From S-Lemma [38], Θ ≺ 0 if there exists ε ≥ 0 such that
Θ− (ε)Ξ ≺ 0. Thus the total matrix inequalities that we need
to solve for observer design can be written as Υ ∗ ∗

F>P −εI ∗
(Bw −LDw)>P O −γI

 ≺ 0 (17a)

Z>P = P>Z � 0 (17b)

where Υ is given as

Υ = (A−LC)>P + P>(A−LC) + εG>G+ Γ>Γ .

(b): Now to make (17) strict linear matrix inequality, we need
to: (1) eliminate the product of L and P from (17a) (because
both L and P are variables and there product make the matrix
inequality nonlinear), and (2) eliminate (17b) (because it has
equality terms). To tackle (1), lets assumeR = L>P ∈ Rp×n,
then the product of L and P in (17a) can be replaced by R.
To deal with (2), let us assume there exists two matrices M ∈
Rn×n and N ∈ Rn×n such that

MZN =

[
I O
O O

]
, M−>PN =

[
P1 P2

P3 P4

]
(18)

where P1 ∈ Rnd×nd , P2 ∈ Rnd×na , P3 ∈ Rna×nd and P4 ∈
Rna×na . Now from (18) we can get

Z = M−1
[
I O
O O

]
N−1 (19a)

P = M>
[
P1 P2

P3 P4

]
N−1. (19b)
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From (19a) and (19b), Z>P and P>Z is equal to

Z>P = N−>
[
P1 O
O O

]
N−1 (20a)

P>Z = N−>
[
P>1 O
P2 O

]
N−1. (20b)

Now (20a) and (20b) can be made equal if P1 = P>1 and
P2 = 0. Hence, (19b) can be written as

P = M>
[
P1 O
P3 P4

]
N−1

= M>
([
P1 O
O O

]
+

[
O O
P3 P4

])
N−1

=M>
([
P1 O
O I

] [
I O
O O

])
N−1+M>

[
O O
P3 P4

]
N−1.

By defining X as

X = M>
[
P1 O
O I

]
M

we can write the above equation for P as

P = XZ +M>
[
O
I

]
︸ ︷︷ ︸

Z⊥>

[
P3 P4

]
N−1︸ ︷︷ ︸

Y

(21a)

P = XZ +Z⊥>Y (21b)

where Z⊥> ∈ Rn×n is the orthogonal complement of Z and
Y ∈ Rna×n. Hence, by plugging the value of P from (21b)
into (17a) we can eliminate Eq. (17b) which yields the strict
LMI as shown in (15). This end the proof. �

In Theorem 1 we posed the calculation of observer gain as
a linear semidefinite optimization problem and thus P1 can be
solved using various off-the-shelf optimization solvers such as
MOSEK [39]. The calculated observer gain L ensures that the
performance of error dynamics ‖β‖2L2

or ‖e‖2L2
is robust in

H∞ sense as according to Definition 1, or in other words it
makes sure that ‖β‖2L2

always lies within a circle of radius
γ‖w‖2L2

and origin at zero. Theorem 1 also guarantees that
the estimation error dynamics (14) converges asymptotically to
zero as t→∞.

However, note that in optimization problem P1 there is no
constraint on the magnitude of the observer gain L and for
practical reasoning, high gain observers are generally undesir-
able because they can increase the sensitivity of a system to
disturbances. Moreover, albeit solving P1 ensures the stability
of error dynamics, the convergence rate at which x̂ approachesx
can be relatively poor. To that end, the optimization problem P1

can be improved with the following objectives: (1) minimizing
the maximum eigenvalues of Z>XZ. This is because in the
proof of Theorem 1 we have assumed the Lyapunov candidate
function to be V = e>Z>Pe> and thus to increase the
convergence rate one can minimize the maximum eigenvalues
of Z>P , and as P = XZ + Z⊥>Y , thus, Z>P =
Z>(XZ + Z⊥>Y ) = Z>XZ, and (2) minimizing the
norm of matrix R to get observer gain matrix L of reasonable
magnitude. Thus, the overall optimization problem we seek to
solve can be written as

(P2) minimize
ε,κ,γ,X,R,Y

c1κ+ c2γ + c3‖R‖2

subject to LMI (15), X � 0, ε > 0, γ > 0, κ > 0,

κI −Z>XZ � 0

where c1, c2 and c3 are predefined weighting constants and their
values can be adjusted based on the specific requirements. For
example, if high convergence is desired as compared to other
variables then the value of c1 can be increased, vice versa.

It is worth mentioning that the observer proposed in this
study is different from those proposed in [30] and [32]. As
compared to [30] we are minimizing κ, γ, andRwhich ensures,
quick convergence, robust performance and observer gain of
reasonable magnitude. Similarly, in [32] although H∞ stability
notion is used to handle disturbances, the presented observer
is not able to handle unknown control inputs, while in this
study proportional integral notion (as discussed in the following
section) is used which provide robust estimation in the presence
of unknown control inputs.

B. Tackling Unknown Control Inputs
The observer designed in Section III-A deals with uncertainty

from process and measurement noise as well as renewables
and loads. Herein, we deal with the deviations associated with
generator’s control inputs. To that end, the NDAE dynamics can
be rewritten as

Zẋ=Ax+Ff (x)+Bu∆u+Buū+Bqq̄ +Bww+Hω0

y = Cx+Dww. (22)
Motivated by [40]–[42], we propose a proportional integral

(PI) based framework to minimize the error arising due to the
unknown inputs ∆u(t). The idea is basically that, instead of
just estimating the system states through the observer we define
∆u(t) also as a state and then in observer design we determine
two observer gains, (1) Proportional gain which minimizes the
error between original and estimated states, and (2) Integral
gain which compensate the estimation error dynamics for any
inaccuracy caused by ∆u(t). Further details and working of
PI-type Luenberger observers can be seen in [40]–[42]. With
that in mind the augmented NDAE, which is reformulation of
(22) can be written as[
Z O
O I

]
︸ ︷︷ ︸

Z%

[
ẋ

∆u̇

]
︸ ︷︷ ︸

%̇

=

[
A Bu

O O

]
︸ ︷︷ ︸

A%

[
x

∆u

]
︸ ︷︷ ︸

%

+

[
F
O

]
︸︷︷︸
F%

f(x) +

[
Bu

O

]
︸ ︷︷ ︸
Bu%

ū

+

[
Bq

O

]
︸ ︷︷ ︸
Bq%

q̄ +

[
Bw

O

]
︸ ︷︷ ︸
Bw,%

w +

[
H
O

]
︸ ︷︷ ︸
H%

ω0

y =
[
C O

]︸ ︷︷ ︸
C%

[
x

∆u

]
︸ ︷︷ ︸

%

+Dww.

The augmented system can be written in a compact form as
follows
Z%%̇=A%%+F%f (x)+Bw,%w+Bq%q̄ +Bu%ū+H%ω0

y=C%%+Dww.

In the augmented system defined above the dynamics of un-
known inputs are defined as ∆u̇ = ψ∆u, where ψ is a
constant matrix and can be constructed based on the knowledge
of unknown inputs. However, if the dynamics are completely
unknown then ψ = O can provide sufficient compensation to
the estimation error dynamics [42]. Notice that by choosing
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ψ = O we assume that the rate of change in the unknown
inputs is negligible. This allows the augmented system to be
written as[

Z O
O I

]
︸ ︷︷ ︸

Z%

[
˙̂x

∆ ˙̂u

]
︸ ︷︷ ︸

%̇

=

[
A Bu

O O

]
︸ ︷︷ ︸

A%

[
x̂

∆û

]
︸ ︷︷ ︸

%

+

[
F
O

]
︸︷︷︸
F%

f(x̂) +

[
Bu

O

]
︸ ︷︷ ︸
Bu%

ū

+

[
L%,P
L%,I

]
︸ ︷︷ ︸

L%

(y − ŷ) +

[
Bq

O

]
︸ ︷︷ ︸
Bq%

q̄ +

[
H
O

]
︸ ︷︷ ︸
H%

ω0

ŷ =
[
C O

]︸ ︷︷ ︸
C%

[
x̂

∆û

]
︸ ︷︷ ︸

%

which can be simplified to
Z% ˙̂%=A%%̂+F%f (x̂)+Bu%ū+L%∆y+Bq%q̄+H%ω0

ŷ = C%%̂
(24)

with e% = %− %̂ the estimation error dynamics can be derived
in the same fashion as done in (13) and can be written as

Z%ė% = Ac,%e% + F%∆f(x) + (Bw,% −L%Dw,%)w (25)

whereAc,% = (A%−L%C%). As the augmented error dynamics
(25) retains the same structure as (14), optimization problem
P2 can be easily solved for the observer dynamics presented in
(24). Note that the overall observer gainL is now a combination
of two gains Le,P and Le,I and it provides the following
three main benefits: (1) Le,P ensures that the performance of
error dynamics is robust against disturbances in H∞ sense as
discussed in Section III, (2) Le,P also ensures that the error
dynamics (25) converges asymptotically near to zero as t→∞,
and (3) Le,I compensates error dynamics (25) in the case when
the observer does not know the exact values of control inputs.
Or in other words Le,I try to remove any steady state error
caused by the unknown inputs.

IV. CASE STUDIES

The proposed approach is tested on western electricity coordi-
nating council (WECC) system. The data for this test system has
been taken from MATPOWER [43] with a file name case9. To
assess the performance and applicability of the proposed NDAE
observer in tracking both dynamic and algebraic variables, DSE
has been performed under different dynamic conditions and
with changing loads and renewables. The simulations have been
performed using MATLAB R2021b running on 64-bit windows
10 using Intel core i9-11980HK CPU with 64GB RAM. Both
the power system and observer NDAE models are solved using
MATLAB index one DAEs solverode15i, while all the convex
SDPs optimizations are carried out in YALMIP [39] using
MOSEK [37] as a solver. To compute the Lipschitz matrix
G, numerical method described in [35, Section IV] is used to
calculate Lipschitz constants for each nonlinearity in each state
equation separately and then all of them are lumped in one
diagonal matrix G, which is used throughout the case studies.

For all the case studies the observer dynamics given in (24)
are simulated and the observer gain is calculated by solving
optimization problem P2 with c1 = 1, c2 = 1 and c3 = 1/3. All
the states of the observer are initialized with random initial con-
ditions having 10% maximum deviation from the steady state

Algorithm 1: Implementation of the NDAE observer

1 Extract network description and generator parameters
from MATPOWER and PST

2 Generate matrices A, F , Bu, Bq , Bw and H
3 Select buses for the PMUs placements and compute C

matrix accordingly
4 Create augmented state space model for both power

system and observer dynamics
5 Solve P2 and compute observer gain matrix L%
6 Simulate power system under transient conditions,

initialize observer and use L% to perform DSE

values of the power system except for generators speed which is
kept the same as generator synchronous speed w0. Three PMUs
are installed at Buses 4, 6 and 8, which are sufficient for the
overall observability of WECC system. The initial conditions
and steady state values for the NDAE model are computed
using power flow solution obtained from MATPOWER while
the generators parameters are extracted from PST case file name
datane.m [1]. Here we set ω0 = 2π60 rad/sec and the power
base is considered as 100 MVA. Dynamic response of the power
system has been achieved by introducing a fault at t = 25sec
on line 4 − 9 which is then cleared at 50 msec and 200 msec
from near and remote end.

The settings for ode15i is chosen to be: (1) relative toler-
ance = 1 × 10−4 (2) absolute tolerance = 1 × 10−5 and (3)
maximum step size = 1 × 10−3. Similarly for MOSEK we
select: (1) SDP positive semidefinite constant = 1 × 10−3, (2)
maximum relative dual bound 1×10−9, (3) maximum absolute
dual bound = 1 × 10−4, and (4) maximum absolute primal
bound = 1 × 10−5. The rest of the settings are kept to their
default values.

A. Case 1: DSE Under Gaussian and Non-Gaussian Noise

We first analyze the performance of the observer under Gaus-
sian process and measurement noise. We impose a Gaussian
measurement noise having a diagonal covariance matrix and
with error variance of 0.0012 and Gaussian process noise having
also diagonal covariance matrix with each entry equal to 5% of
largest state change. Note that, there are no unknown inputs or
load uncertainties and the observer knows the exact values of
inputs and load demands in realtime. The results are presented
in Fig. 1. For brevity, only Generator 1 state estimation results
are shown. We can see that although the observer started from
different initial conditions and is not aware of the Gaussian
noise it is able to track all the states and thus making estimation
error norm (25) asymptotically zero as shown in Fig. 2.

It is also important to analyze the performance of the ob-
servers under non-Gaussian noise, because in [44] it has been
shown that measurement noise cannot be always considered as
Gaussian. Thus Cauchy noise has been generated by setting
the noise vector wmi = a + b(π(R − 0.5)), where a = 0,
b = 1×10−7 andR is a random variable inside (0, 1). Instead of
Gaussian noise,wmi has been added to the PMU measurements
while the rest of all the setting for the observer has been kept
the same. Similar results have been achieved as presented in
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Figure 1. State estimation results for Generator 1 under Gaussian process
and measurement noise.

Fig. 1. This can be validated from the estimation error norm
given in Fig. 2. We can see that thanks to the H∞ based design
the observer is still able to track all the original states and thus
driving the error norm asymptotically to zero.

B. Case 2: DSE Under Unknown Control Inputs
For brushless synchronous generator’s it is difficult to mea-

sure TM and Efd. To that end in this section we consider the
case when the observer is supplied only steady state values of
the control inputs and the actual inputs are kept unknown to the
observer. Also, Gaussian noise has been added to the system
and PMUs measurement. Rest of all the settings for the observer
and power network model are kept the same as in Section IV-A.
From Fig. 3 we can see that the observer is still able to provide
accurate estimate of both both algebraic and dynamic states.
These observations can also be validated from the estimation
error norm given Fig. 2.

C. Case 3: DSE Under Uncertainty from Loads/Renewables
In this section we discuss the performance of our observer

with load and renewable disturbances. The simulations for this
section have been performed as follows

Initially the power network operates with total load de-
mand of

(
P 0
L +Q0

L

)
and total renewables power generation as

P 0
R = 0.2P 0

L . Then right after t > 0 the power generated from
renewables and total real system load demand experiences a step
disturbances. There updated values are as P dR = (P 0

R + ∆P 0
R)

and P dL = (P 0
L − ∆P 0

L), where we have set ∆P 0
R = 0.03P 0

R

and ∆P 0
L = 0.01P 0

L . Moreover, to account for random load
and renewables variations, we also assume that these step
disturbances contain noise, such that P dR = (P 0

R+∆P 0
R)+qr(t)

and P dL = (P 0
L − ∆P 0

L) + ql(t), where qr(t) and ql(t) are
Gaussian noise with zero mean and variance of 0.002∆P 0

R and
0.002∆P 0

L respectively. All these disturbances are lumped in
vector w.

To perform DSE the initial conditions for the observer, num-
ber of PMUs, and level of process and measurement noise are
kept the same as in Section IV-A. The observer is only supplied
with the steady state values of loads, thus the observer is kept
completely unaware of the disturbances in loads and renewables
and also process and measurement noise. Optimization problem
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Figure 2. Comparison of estimation error norm for all the case studies. Case1-
G and Case1-NG represent Case 1 with Gaussian and non-Gaussian noise
respectively.
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Figure 3. Estimates of dynamic states of Generator 1 and algebraic variables
of Bus 6, with unknown control inputs.

P2 for observer dynamics (24) has been solved. The estimation
results are shown in Fig. 4 while the estimation error norm is
presented in Fig. 2 and from which we can see that the observer
is driving the error norm asymptotically near zero in less then
20s.

To further analyze the performance of the proposed observer
against disturbances from load and renewables, we gradually
increase (from 3%−15%) the amount of uncertainty from load
and renewables and root mean square error (RMSE) (Eq. (26))
between actual and estimated states has been recorded for each
of the scenarios. We notice that for 3% step disturbance from
load and renewables the value of RMSE is 0.403, similarly for
6%, 8%, 10%, and 15% the RMSE values are 0.424, 0.519,
0.508, and 0.619 respectively. We can clearly see that by
increasing the amount of uncertainty the value of RMSE still
remains less than zero and thus the observer is providing
good estimation results. This is because in H∞ based observer
design the observer always tries to drive the nonlinear NDAE
model of error dynamics (14) near zero without having any
statistical knowledge about the uncertainty. This is one of the
key advantage of the proposed methodology over Kalman filter
based state estimation techniques.

D. Comparison With the Decoupled Two Step Approach
In this section, we present the comparison of the NDAE

observer proposed in this study with the two-stage techniques
—see [22]–[24] present in the literature. The two-step technique
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Figure 4. Estimates of dynamic states of Generator 2 and algebraic variables
of Bus 7 under loads and renewables uncertainties.

has been applied in this study as follows. In the first step least
absolute value (LAV) method [45] based linear phasor estimator
is used to approximate system algebraic variablesxa and then in
the second stage the estimated xa along with EKF/UKF/HEKF
is used to estimate generator dynamic states xd. Due to the
decoupled two-step nature, this method can only be applied
in a discrete time. Thus the NDAE model (10) is converted to
discrete time model using first order Taylor approximation [46].

In this decoupled two-step approach (also referred to as
LAV+EKF/UKF/HEKF) at each time step noisy PMUs mea-
surements y[k] are sampled and then the following optimization
problem is carried out [45]

(P3) minimize
xa,wm

p∑
j=1

‖wm‖

subject to y[k] = C̃xa +wm

where xa denote the algebraic variables and wm is the mea-
surement noise. After solving P3 a simple EKF [47], HEKF
[14] and UKF [6] has been implemented to estimate generator
dynamic states. Mechanical torque TM and field voltage Efd

are considered as inputs while the estimated algebraic variables
from the first stage are also used to aid EKF, HEKF and UKF
in estimating generator dynamics.

To generate the dynamic response of the system a fault has
been introduced at t = 11s on Line 5 − 6. Two case studies
are considered for the comparison. The first scenario is based
on Case 1 (see Section IV-A) in which Gaussian process and
measurements noise are considered and it has been assumed
that the accurate values of the control inputs (TM and Efd) are
available to the observer in realtime. The second case study is
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Figure 5. Comparison of estimates of Generator 3 frequency and Bus angle
using LAV+EKF/UKF/HEKF and NDAE observer for Case 2.

based on Case 2 (see Section IV-B) where the observers have
only been supplied the steady state values of the control inputs
and the realtime transient values of the control inputs are kept
unknown to the observers. The process and measurement noise
covariance matrices and the rest of all the settings are kept the
same as discussed in Case 1 and Case 2.

The simulation results are presented in Figs. 5, and 8. We
can see from Fig. 8 that in the first scenario of the comparative
study albeit all the observers can give relatively good estimation
results, the performance of the NDAE observer is better as
compared to the LAV+EKF/HEKF/UKF. We can also see that
the performance of both LAV+EKF/UKF is almost similar.
These observations are also supported from Fig. 6 where the
estimation error norm for all the observers has been plotted, we
can see that the NDAE observer has the least steady state error
norm as compared to the 2−stage observers. For the second
case study, we can see from Fig. 5 that both LAV+EKF and
LAV+UKF perform poorly during dynamic response of the
system. The reason for that is because after the fault has been
introduced in the system, both EKF and UKF do not know the
transient parts of the control inputs and are only aware of the
steady state values of TM and Efd and are thus giving poor
estimates. On the other hand for the NDAE observer although
the observer does not have the accurate knowledge of the control
inputs it is still able to give accurate estimation results. These
results can also be corroborated by the estimation error norm
given in Fig. 7 from which we can see that the NDAE observer
is driving the error norm near zero and has the smallest steady-
state value as compared to the 2−stage observers.

To further obtain a quantitative comparison between the
LAV+EKF/UKF/HEKF and the proposed NDAE observer, root
means square error (RMSE) and the overall computational time
for all the observers has also been calculated and are presented
in Tab. II. The formula for RMSE is as follows

RMSE =

n∑
i=1

√√√√ 1

tf

tf∑
t=1

(xi(t)− x̂i(t))2 (26)

From Tab. II we can see that the NDAE observer
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Table II
COMPARISON OF RMSE AND COMPUTATIONAL TIME ∆t(s) FOR THE NDAE OBSERVER AND LAV+EKF/HEKF/UKF

DSE technique
Case 1, Gaussian noise Case 1, non-Gaussian noise Case 2 Case 3

∆t (s) RMSE ∆t (s) RMSE ∆t (s) RMSE ∆t (s) RMSE

NDAE observer† 10.02319 0.03101 10.22451 0.06224 11.22403 0.1773 10.0701 0.3328

LAV+UKF 251.9431 0.06324 237.3417 1.19413 249.7481 0.35261 249.4154 1.36917

LAV+EKF 435.4125 0.06391 465.3120 1.14389 439.8374 0.3605 440.1892 1.45101

LAV+HEKF 438.4012 0.06411 480.2081 0.81089 465.9084 0.2691 410.9012 1.02310
† The computational time for the NDAE observer includes the time needed to calculate the observer gain matrix L. It took 5.408s

for the optimization problem P2 to be solved in YALMIP with MOSEK as a solver.
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Figure 6. Comparison of the error norm for LAV+EKF/UKF/HEKF and
NDAE observer for Case 1.
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Figure 7. Comparison of the error norm for LAV+EKF/UKF/HEKF and
NDAE observer for Case 2.

is way more computationally efficient as compared to
LAV+EKF/UKF/HEKF because it has the least computation
time in performing the DSE followed by LAV+UKF while
LAV+EKF/HEKF are the least efficient. This is because the
NDAE observer is not recursive as compared to the stochastic
estimators and the observer gain matrix is fixed. While on the
other hand in the decoupled two-step approaches state estima-
tion for both algebraic and dynamic states has to be performed
separately and thus increases the computational complexity.
Also in the second stage EKF/HEKF evaluates Jacobian in
each iteration and thus it further increases computational time
while UKF utilizes unscented transformation and is thus a bit
computationally more efficient than EKF/HEKF.

E. Extension to bigger system and 9th-order generator model

In the previous sections we showcase the performance of
the proposed observer on a WECC 3-machines 9-bus system
with a fourth-order generator model. The considered test power
system in the earlier sections is relatively small and does include
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Figure 8. Estimation results of Generator 3 rotor angle using
LAV+EKF/UKF/HEKF and NDAE observer for Case 1.

the models of prime mover and generator’s excitation system
(exciter, stabilizer, and amplifier dynamics). For better accuracy
and to fully capture the dynamics of synchronous generators
after a fault, a higher-order (6th or 9th) generator model should
be used. With that in mind, and to further advocate the feasibility
of the proposed NDAE observer for practical applications,
here we use IEEE 10-machine 39-bus system with a standard
9th-order generator model to perform DSE [1]. The overall
dynamical model now consists of IEEE Type DC1 excitation
system and steam/hydro turbine dynamics as given in [1].

With that in mind, the overall states, control inputs, and output
vectors for this model can be written as

x=
[
δ> ω> E′>q E′>d P>v T>M E>fd r

>
f v

>
a V

>
R V >I I>R I>I

]
y=
[
V> I>

]>
,u =

[
V >ref P>vref

]
where Pv denotes steam/hydro valve position, TM represents

prime mover torque, VR,VI , IR, II are the real and imaginary
parts of voltage and current phasors of all the buses, and Efd,
va, and rf depicts field voltage, amplifier voltage, and stabilizer
output respectively. Similarly Vref and Pvref represent voltage
reference point and valve position set points for the synchronous
generator’s.

The simulation studies have been carried out before, during,
and after the disturbances for 30s. To ensure the observability
of IEEE 39-bus system we follow [48] and deploy 13 PMUs on
buses [2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29]. To calculate
the NDAE observer gain matrixL, again we solve optimization
problem P2 in YALMIP with MOSEK as solver. All the settings
for MOSEK and ode15i solver are kept the same as discussed
in the previous test case system. Two case studies are considered
for this simulation test:

• Case 4: For this case a disturbance has been applied after
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3s and we impose Gaussian measurement noise having
a diagonal covariance matrix and variance of 0.012 and
Gaussian process noise having also diagonal covariance
matrix with each entry equal to 5% of largest state change.

• Case 5: For this case study, right after t > 0 we apply
step disturbances (similar to as done in Case 3) to the re-
newables and overall load demand of the system while also
considering Gaussian process and measurement noise. The
observer is only supplied with the steady-state values of
loads/renewables and thus the observer is kept completely
unaware of the disturbances in loads and renewables.

For both Case 4 and Case 5 the NDAE observer has been ini-
tialized from random initial conditions having 10% maximum
deviation from steady state values. After performing DSE we
obtain the value of RMSE for Case 4 as 5.278, similarly for
Case 5 we obtain 9.248. Furthermore, the estimation results are
shown in Fig. 9 and 10 while the estimation error norm for both
case studies is presented in Fig. 11. We can clearly see that
although the observer is completely unaware of disturbances in
load and renewables and process/measurement noise, it can still
drive the estimation error norm near zero and thus provide good
estimation results.
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0.996

0.998

1

1.002

1.004

0 10 20 30
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2.6

Figure 9. Estimation results for IEEE 39-bus system considering Case 4,
rotor speed and field voltage of Generator 4.
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Figure 10. Estimation results for IEEE 39-bus system considering Case 5,
amplifier voltage of Generator 5 and real voltage at Bus 19.
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1

2

3

4
Case 4

Case 5

Figure 11. Estimation error norm for Case 4 and Case 5.

V. CONCLUSION PAPER LIMITATIONS AND FUTURE WORK

In this paper, a novel estimator is proposed to simultaneously
measure both algebraic and dynamic states of the NDAE model
of power systems using PMU measurements. As compared to
the observers present in literature the proposed observer: (1)
does not require any statistical properties of the disturbances,
(2) has no assumptions on PMUs locations and only require that
the overall system should be observable, and (3) is non-recursive
and the observer gain remains fixed and thus more feasible
for practical implementations. A thorough simulations studies
showcase the performance of the observer under different
dynamic conditions and with varying load and renewables.
The simulations results show that the NDAE observer give
better estimates of both algebraic and dynamic states and is
computationally more efficient as compared to the 2-stage
observers.

Although the advantages of our NDAE observer are evident,
the proposed methodology still has several limitations. First,
in this work we have considered renewables such as solar PV
and wind farms as negative real power load and we assumed
that the variations in renewables are only affecting the real
power demand of the system. Further modeling of renewables
is hence needed. Second, this work is based on centralized state
estimations. Thus, to compute observer gain matrix L for a
very large power system the SDP solver can take more time to
solve P2. In particular, solving P2 for a large power system
can be tedious and the solver may take more time to determine
optimal gain matrix L. With that in mind, we point out here
that P2 is solved offline not online—the observer gain L is
time-invariant. Once appropriate gain matrix is calculated it can
be used offline and the observer can simultaneously estimate
all the states of the power system in a few seconds (this is
the time required by the ode15i solver to solve the observer
dynamics) using a few PMU measurements. The proposed
observer is far less computationally intensive because once
the gain is determined the observer essentially works as a
one-step predictor. Consequently, DSE can be performed with
a significantly smaller number of matrix multiplications and
hence lower computational time as demonstrated in the case
studies.

Third, the theory of the observer design is based on a
continuous-time model of synchronous machine and PMU
measurements, however, the measurements from PMUs are
usually transmitted via a digitalized transmission system. Thus
a discrete-time version of the proposed NDAE observer would
be more suitable as compared to this one. To that end as a
future research work, we plan to include the actual converter-
based models of the renewable energy resources along with
synchronous generator dynamics. Finally, the proposed NDAE
observer will be extended to a discretized and decentralized
framework to perform DSE for a very large power system.
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APPENDIX A
PMUS BASED MEASUREMENT MODEL

In this work we are considering a more realistic PMUs
placement model and thus there is no requirement for the PMUs
to be placed at a particular location. Instead, we are assuming
that the PMUs are already placed optimally in the network to
make sure the whole system is observable. With that in mind
let us define NP ∈ N as the set of buses connected with
PMUs, then PMU at bus j ∈ NP measures voltage phasors of
that bus, V =

[
{vRj}j∈N + {vIj}j∈N

]
and current phasors,

I =
[
{IRji}i∈Nj

+ {IIji}i∈Nj

]
of bus j and nearby buses

(Nj ∈ N ) connected with bus j. Note that we can write the
current phasor I in term of v by using the below formula [49][

IR
II

]
=

[
ReYft −ImYft
ImYft ReYft

]
v> (27)

whereYft is the branch admittance matrix and can be calculated

as Yft =

[
Yf
−Yt

]
. Yt and Yf are the to and from branch

admittance matrices. These matrices can be easily extracted
from load flow analysis in MATPOWER [50]. The total PMU
measurement model can be written as ỹ = C̃xa

∗ with C̃ as

C̃ =


O O sn O
O O O sn
O O SnRe (Yft) −SnIm (Yft)
O O SnIm (Yft) SnRe (Yft)

 (28)

where sn ∈ N × 1 is a binary selection vector which has
1 only at those locations where PMUs are placed and zeroes
otherwise. Similarly Sn ∈ |Nj | × |2E| is a binary selection
matrix which has 1 only at those lines which are originating
from buses connected with PMUs. Recall the structure of state
variable x, then the PMUs measurement model in term of x
can be written as

y =
[
O C̃

]︸ ︷︷ ︸
C

[
xd
xa

]
,y = Cx (29)

where the vector y ∈ Rp collects all the measurements from
PMUs and C ∈ Rp×n is the overall output matrix.

∗The bus voltages in the NDAE model (7) are in polar coordinates, which
have been converted to rectangular coordinates for using formula (27) and to
find PMU measurement outputs. MATLAB function pol2cart has been used
for this purpose in simulations.

APPENDIX B
DETAILS OF MATRICES USED IN NDAE MODEL (6)

The matrix Ad is created as
O I O O
O −Diag (D �M) O O
O O −Ad(3,3) O
O O O −Diag

(
1� T ′q0

)


where Ad(3,3) is given as

Ad(3,3) = Diag (xd � (x′d � T ′d0))

similarly Fd is specified as

Fd =


O O O

−Diag (1�M) O O
O Gd(3,2) O
O O Gd(4,3)


where Fd(3, 2) and Fd(4, 3) is given as

Fd(3,2) = Diag ((xd − x′d)� (x′d � T ′d0))

Fd(4,3) = Diag
(
(xq − x′q)�

(
x′q � T ′q0

))
The function fd(·) and fa(·) in (6a) and (6b) are given as

fd (x) =

 PG

{vi cos(δi − θi)}i∈G
{vi sin(δi − θi)}i∈G



fa(x)=



{E′qivi sin(δi − θi)}i∈G
{v2i sin(2(δi − θi))}i∈G
{E′qivi cos(δi − θi)}i∈G

{v2i }i∈G
{v2i cos(2(δi − θi))}i∈G{∑N

j=1vivj(Gij cos θij+Bij sin θij)
}
i∈G{∑N

j=1vivj(Gij sin θij−Bij cos θij)
}
i∈G{∑N

j=1vivj(Gij cos θij+Bij sin θij)
}
i∈N\G{∑N

j=1vivj(Gij sin θij−Bij cos θij)
}
i∈N\G


Next, the matrix Fa = Blkdiag

(
F̃a, I

)
where F̃a is given as

F̃a =


Diag (1� x′d) O

F̃a(1,2) O
O Diag (1� x′d)

O −F̃a(2,4)
O F̃a(2,5)


>

with F̃a(1,2) = Diag ((x′d − xq)� (2x′d � xq)), F̃a(2,4) =

Diag ((x′d + xq)� (2x′d � xq)) and F̃a(2,5) = F̃a(1,2).
The matrices Aa and Ba are given as

Aa =

[
−I O
Ap O

]
, Ba =

[
O
Bp

]
where Ap =

[
−I O

]>
and Bp is a binary selection matrix

having 1′s at those location where buses are connected to loads
and/or renewables.

Finally, the matrices Bd and h are constructed as follows

Bd =


O O
O Diag (1�M)

Diag (1� T ′d0) O
O O

 ,h =


−1

D �M
O
O
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