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2 1 INTRODUCTION

design. In this study, we investigated the house-hunting algorithm

used by emigrating colonies of Temnothorax ants to reach consensus

on a new nest. We developed a tractable model that encodes accu-

rate individual behavior rules, and estimated our parameter values

by matching simulated behaviors with observed ones on both the

individual and group levels. We then used our model to explore a

potential, but yet untested, component of the ants’ decision algo-

rithm. Specifically, we examined the hypothesis that incorporating

site population (the number of adult ants at each potential nest site)

into individual perceptions of nest quality can improve emigration

performance. Our results showed that attending to site population

accelerates emigration and reduces the incidence of split decisions.

This result suggests the value of testing empirically whether nest

site scouts use site population in this way, in addition to the well-

demonstrated quorum rule. We also used our model to make other

predictions with varying degrees of empirical support, including the

high cognitive capacity of colonies and their rational time invest-

ment during decision-making. Additionally, we provide a versatile

and easy-to-use Python simulator that can be used to explore other

hypotheses or make testable predictions. It is our hope that the in-

sights and the modeling tools can inspire further research from both

the biology and computer science community.

1 Introduction

Animal groups are capable of remarkable displays of highly coordinated behav-

ior. Fish schools collectively choose foraging sites (Ward et al. 2012), locusts

self-organize into orderly swarms (Yates et al. 2009), oceanic fish assemble in
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vast migratory shoals (Makris et al. 2009), and social insects perform a host of

collective actions including group foraging, construction of complex nests, and

adaptive allocation of tasks across the labor force (Charbonneau et al. 2015;

Detrain et al. 2008; Detrain et al. 2019; Oldroyd et al. 2015; Perna et al. 2017;

Seeley 1995). How these group actions result from individual behavior remains

a major research challenge. Although well-informed leaders may play a role,

group organization is typically very decentralized (Detrain et al. 2008; Feiner-

man et al. 2017; Seeley 1995). Coordination emerges from interactions among

large numbers of animals acting on limited local information with appropriate

decision rules. Connecting individual behavior to group outcomes is too much

for unaided intuition, hence mathematical models and agent-based simulations

have become useful tools for understanding. In this paper, we present a model

for a notable example of decentralized decision-making: nest site selection by

ants of the genus Temnothorax.

Models, in combination with experimental studies, have already revealed

much about these ants, making them a leading study system for collective

decision-making (Pratt 2019). Colonies live in pre-formed cavities such as rock

crevices or hollow nuts; if their home is damaged, they are adept at finding can-

didate new homes, evaluating each site’s quality, and moving the entire colony

to the best one. Their decision emerges from the separate efforts of many scouts,

each independently recruiting nestmates to the site she has found. Because re-

cruitment is quality-dependent, better sites accumulate ants more rapidly (Mal-

lon et al. 2001). These differences are amplified by a quorum rule under which

scouts accelerate recruitment to a site once its population crosses a threshold;

the winner of the race to attain a quorum becomes the colony’s choice (Pratt

et al. 2002). An agent-based model has shown that this algorithm helps the

colony reach consensus on the best site (Pratt et al. 2005). Other models have
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shown how a colony can make a good choice even when no individual directly

compares sites (Masuda et al. 2015a; Robinson et al. 2011), and how individ-

ual behavioral strategies optimize speed/accuracy tradeoffs at the colony level

(Franks et al. 2013a; Marshall et al. 2006; Marshall et al. 2009; Planqué et al.

2007; Pratt et al. 2006; Sumpter et al. 2009).

Although successful, models that are based on biological measurements can

easily become intractable and hard to use for new predictions. Consequently,

most model predictions have been limited to the simple challenge of choosing be-

tween two distinct and equidistant nests in a controlled laboratory environment.

Real colonies face more complex scenarios, such as selecting among several sites

of varying quality, avoiding splits when candidate nest sites are identical, and

resolving colony splits when they occur (Doering et al. 2019; Sasaki et al. 2012).

It also remains unclear how the colony maintains high performance with noisy

and heterogeneous individuals, and how individuals modify their behavior to

account for changes in context or colony state. In addition, a large body of ex-

perimental work has uncovered new colony behavior that has yet to be explored

in terms of how well our current understanding of the ants’ collective algorithm

can explain them. These include the more complex scenarios mentioned above,

as well as effects on decision-making of colony size and emigration distance,

colony reconnaissance of potential new homes, and the emergence of group-level

rationality despite individual-level irrationality (Franks et al. 2008; Sasaki et al.

2011; Stroeymeyt et al. 2010).

To better capture the complexities of nest-site selection, we develop a tractable

model for the analysis and exploration of the underlying behavioral algorithms.

We show that the model can reproduce individual and collective behavior in

published studies of simple one- and two-nest experiments. For these data, our

model performed similarly to an earlier agent-based model that inspired our
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work (Pratt et al. 2005).

We then used the model to explore beyond known features of the ants’

behavior. In particular, we tested the hypothesis that scout ants attend to a

site’s population when deciding whether to recruit to it, such that the probability

of recruitment increases with population. This hypothesis is different from the

well-established quorum rule, under which a recruiter switches from one kind

of recruitment (tandem run) to another (social transport) on the basis of site

population. Rather than determining the type of recruitment, the proposed

population effect is about the ant’s decision whether to recruit at all. The

reason to suspect this population effect is its potential role in preventing splits

or stalemates when a colony is faced with a choice between very similar nest

sites. Without some rule to break the tie, the colony might be unable to reach

consensus. A population effect on site evaluation could provide such a tie-

breaker, because random differences in discovery and recruitment could easily

produce a population difference between competing, identical sites. If scouts

then show enhanced recruitment to the site that had the larger population,

this would amplify the difference, creating positive feedback that could direct

the emigration entirely to whichever site happened to take an early lead in

population.

To explore this idea, we ran our model with different strengths of population

effect to determine how it affected a colony’s ability to decide between two iden-

tical nests, a context that poses a particular challenge to consensus formation.

As described below, our results confirmed the hypothesized population effect on

both emigration speed and consensus. Finally, we extended the model to ac-

count for more recent empirical observations on robust decision-making among

larger numbers of options (Sasaki et al. 2012) and rational colony decisions

about decision speed (Sasaki et al. 2019).
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The rest of the paper is organized as follows: Section 2 introduces our agent-

based model for the house-hunting process and the main hypothesis we test:

the population effect. Section 3 describes our model parameters and the per-

formance metrics that our predictions about the population effect are based on.

Then Section 4 showcases simulation results that confirm the population effect

hypothesis. This suggests the value of empirical measurements of population ef-

fects, despite the experimental difficulties. Next, in Section 5, we use the model

to test or extend other hypotheses that have varying degrees of support from

newer empirical studies. Finally, in Section 6, we summarize our results and

discuss future work directions.

2 House Hunting Model

2.1 Informal Description

A Temnothorax colony is composed of adult workers and brood items (immature

ants), each group making up 40% to 60% of colony members. Adults are roughly

equally divided between active workers, who organize and execute emigrations,

and passive workers, who, like brood items, are typically transported to the

new nest by active workers and do not themselves recruit nestmates (Pratt et

al. 2005; Dornhaus et al. 2008; Valentini et al. 2020a).

There are four distinct phases for an active worker in the house-hunting

process. In the first, the Exploration phase, the ant randomly starts to ex-

plore her surroundings for a suitable new nest. If she finds a candidate site,

she enters the Assessment phase, where she individually assesses the site’s

quality according to various metrics (Healey et al. 2008; Franks et al. 2003;

Pratt 2005b). If she judges the site to be satisfactory, the ant accepts it and

enters the Canvassing phase, in which she returns to the old nest to recruit
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other ants to the site by leading forward tandem runs (FTR). In a FTR, the

recruiter slowly leads a single follower (another active worker) from the old nest

to the new (Moglich 1978; Richardson et al. 2007; Valentini et al. 2020b). Upon

arriving at the nest, the follower ant goes directly into the Assessment phase

and evaluates the nest’s quality independently of the leader ant. If she finds the

nest satisfactory, she will transition to the Canvassing phase and start leading

FTRs to the nest. A canvasser continues leading FTRs until she perceives that

the new nest’s population has exceeded a threshold, or quorum (Pratt 2005c).

At this point, she enters the Transport phase, in which she fully commits to

the new nest as the colony’s home. She ceases FTRs and instead switches to

picking up and carrying nestmates from the old to the new nest. These trans-

ports are faster than FTRs, and they are largely directed at the passive workers

and brood items, hence they serve to quickly move the entire colony to the new

nest (Pratt et al. 2002; Pratt et al. 2005). Previous models and experiments

indicate that the quorum rule helps the colony to reach consensus rather than

splitting among multiple sites (Pratt et al. 2002; Franks et al. 2006; Franks et al.

2013b). Splitting becomes a danger if ants at different sites, each ignorant of

their nestmate’s discoveries, launch FTRs to their respective sites. The quorum

rule makes it likely that whichever site first hits the threshold will quickly end

up with all or most of the colony, due to the speediness of transport.

Although experimental evidence is equivocal, we assume that the quorum

size is correlated with the number of adult workers in the colony (Dornhaus et al.

2006; Franks et al. 2006). We also assume that passive workers can contribute

to quorum attainment. Once the quorum is met, the switch to Transport phase

is irreversible: an ant continues transporting nestmates to her new home nest

even if the nest population later drops below the quorum size (Pratt 2005c).

However, transporters do sometimes interrupt transport to search for and assess
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alternative nest sites. If the search yields a new site that is better than the ant’s

current nest, then she exits the Transport phase and enters the Assessment phase

with the new site as her candidate nest.

An ant in the Canvassing or Transport phase does not recruit indefinitely.

Once the site from which she is recruiting is empty, she returns to her home nest

and transitions back to the Exploration phase. However, this happens only

upon meeting a “termination” condition consisting of ten occurrences of either

of the following events: 1) the worker tries to lead a FTR where the solicited

follower is also trying to lead her own FTR, and 2) the worker tries to carry

another worker who is also in the Transport phase. This condition is based on

frequent observation of these events at recently emptied nests. We hypothesize

that an ant’s requirement of several such events is a means of ensuring thorough

exploration of the old nest so that no nestmates are left behind. We do not have

a precise measure of how many such events are required, but chose the number

ten as an upper-bound estimate.

Unlike active worker scouts, passive ants and brood items remain in the old

nest until they are carried to the new nest. The only difference between passive

ants and brood items is that the former contribute to quorum attainment (Pratt

et al. 2002; Dornhaus et al. 2008). Therefore, in our model, the only states for

any passive ant or brood item is her location and her role of being passive or

brood.

The emigration is completed when all ants in the colony are relocated to the

new nest, except possibly for a few active scouts (Pratt et al. 2002).

2.2 Modeling Techniques

In this section, we summarize the modeling techniques in this paper. However,

we are including only a high-level overview in this section, and more details can
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be found in the Appendix A and B.

We develop an agent-based model, where each ant is an agent and is modeled

by its own state machine. We use a discrete and synchronous timing model,

where time is divided into discrete rounds, and all agents enter a round together.

In a round, each agent gets a chance to perform at most one state transition.

Apart from agents, another model component is the environment, containing

one home nest and at least one candidate nest. Each nest has its own physical

quality.

Agents can transition from one state to another, by initiating an action or

receiving an action. Variables representing an agent’s state are divided into

two parts: external state variables that are visible to other ants, and internal

state variables that are only visible to the agent itself. All state variables can

change due to a transition. Fig. 1 show the changes of two important external

state variables, state name (in black boxes) and phase (blue filled boxes on the

left), due to each action (arrows). The changes of other variables due to these

transitions can be found in Appendix B.

2.3 The Population Effect Hypothesis

Under this hypothesis, for individual decisions that depend on assessing a nest’s

quality, the assessment includes both its physical qualities (Burns et al. 2016;

Sasaki et al. 2015) and the nest population (Pratt 2005d; Dornhaus et al. 2006).

Therefore, with inspirations from (Ghaffari et al. 2015), in Fig. 1b we model

the final nest quality x as a simple linear combination of these two factors, with

a new parameter called pop coeff as the coefficient of the population. In other

words, the final nest quality of a nest with physical quality q and population

pop is

q

4
+ pop coeff× pop

num ants
, (1)
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(a) Action-types an active ant can receive from another ant and the corresponding
state name and phase transitions.

Figure 1: States and actions modeling the behavior of active ants responsible
for organizing colony emigrations. As described in Section 2.1, the four dis-
tinct phases are in different boxes: Exploration, Assessment, Canvassing, and
Transport.

where 4 is the maximum value of nest qualities, and num ants is the total colony

size. We further define the following sigmoidal function (Fig. 2)

p(x) =
1

1 + e−λ×x
, (2)

where λ is a parameter that controls how “steep” the sigmoidal function is,

and x is the above defined nest quality. Higher λ values correspond to lower

individual noise level. A lower individual noise level (higher λ) means that
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(b) Action-type’s an active ant can initiate and the corresponding state name and
phase transitions.

Figure 1: (Cont.) States and actions modeling the behavior of active ants
responsible for organizing colony emigrations. As described in Section 2.1, the
four distinct phases are in different boxes - Exploration, Assessment, Canvassing,
and Transport.

there is a higher chance that an ant can tell that a good nest is good and a bad

nest is bad, and makes the “correct” individual decision to move the emigration

forward through the four phases.

Similarly, for decisions that depend on the comparison of two nests’ qualities,

an ant is required to compare the quality of a candidate nest (with physical

quality q1 and population pop1) and her home nest (with physical quality q0

and population pop0). We still use the sigmoidal function in Equation 2, with
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Figure 2: Sigmoidal function with λ = 4, 8, 16.

the change that the input x to the function now is

q1 − q0
4

+ pop coeff× pop1 − pop0
num ants

(3)

where 4 is the maximum value of nest qualities, and num ants is the total colony

size.

Positive feedback through peer opinion is known to be important in collective

intelligence generally, but has not been thoroughly explored in this system,

beyond the quorum rule. The population effect we model here is thus a new

way to consider the influence peer opinion in individual decision making during

house hunting. It is different from quorum sensing since there is no threshold

involved but instead a linear combination of population and physical attributes

of the nest. The population effect hypothesis then states that the incorporation

of population into nest quality assessments can offset the individual noise level

represented by λ, and help with both the speed and consensus of emigration.

3 Model Parameters and Performance Metrics

In this section we describe all the parameters of our model. We also quantita-

tively define the speed and consensus measures for our predictions. A detailed

description of the Python simulator implementation is in Appendix C, and the

simulator code can be found online at
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https://github.com/snowbabyjia/Collective-Decision-Making-HH.

3.1 Model Parameters

There are three kinds of parameters: environment, algorithm, and settings. In

our Python simulator, these parameters are listed together in a configuration

file. An example file is in Appendix C.

Environment parameters are controlled by the environment and not consid-

ered changeable or tunable. These include the number of ants in the colony, and

the number and physical qualities of the nests as potential new nest options.

Algorithm parameters are parameters controlling probabilistic individual

state transitions. These include λ for the sigmoid function in Equation 2, the

pop coeff value, parameters related to quorum sizes, the probability of finding

a new nest in the environment, the probabilities of following and leading a FTR

without getting lost, and the probability of continuing to transport instead of

stopping transportation. More details are in B.1.2.

Settings parameters control plotting features and also convergence criteria.

These include the option to generate a plot, the total number of runs for every

environment/algorithm setting, the maximum number of rounds per simulation

run, the percentage of ants needed in a nest to declare convergence, and

the number of rounds the convergence needs to persist to declare persistent

convergence which marks the end of the simulation run.

We note that our number of algorithm parameters, eight, is a significant

decrease from those in the previous model (Table 1 in (Pratt et al. 2005)), thus

making our model much more tractable and generalizable, as well as easier for

collecting various statistics and adding extra features.



14 3 MODEL PARAMETERS AND PERFORMANCE METRICS

3.2 Default Parameter Values

The parameters values below are used as a default from Section 4 and 5, unless

otherwise specified.

Algorithm Parameters Compared to the agent-based model in (Pratt et al.

2005), our model places less emphasis on assigning specific observed values to

a large number of parameters, striving instead to be more agile in represent-

ing a wide range of possible behaviors. Some parameters have experimental

“meanings” and can be estimated from empirical data, as shown in the next

paragraph. Some parameters cannot be directly drawn from existing empirical

data. We estimate these parameter values in a trial-and-error fashion. In gen-

eral, the default values of these parameters are picked so that our simulation

results match well with the empirical results in (Pratt et al. 2005) for one- and

two-nest emigrations, as detailed in D.

The sources for determining the algorithm parameter values are listed in

Table 1. In particular, the values of lambda sigmoid (range: 1 to 16) and

pop coeff (range: 0 to 1) are picked by trial-and-error to model individual sen-

sitivity to nest qualities, and the significance of colony information versus indi-

vidual judgements. The quorum size (quorum thre× (num active+num passive)

+ quorum offset) is observed to have a median value between 4 and 18 ants

for worker populations from 24 to 150, with the quorum size having a significant

positive correlation with the number of adult ants (Pratt et al. 2002; Franks et

al. 2015). Therefore, with a colony of 200 members (including 100 adult work-

ers), we use a quorum thre of 15% and set quorum offset to 0, estimating

a quorum size of 15. The value of search find (range: 0 to 1) is determined

experimentally by trial-and-error. This parameter can be influenced by many

other factors such as the spatial geometry of the nests and the experience level

of the individual. Although these nuances are not captured in our model in the
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Parameter Value Source
lambda sigmoid 8 trial-and-error, Sec. 4.1

pop coeff 0.35 trial-and-error, Sec. 4.1
quorum thre 0.15 (Pratt et al. 2002; Franks et al. 2015)
quorum offset 0 (Pratt et al. 2002)

search find 0.005 trial-and-error
follow find 0.9 (Glaser et al. 2018; Pratt 2008)

lead forward 0.6 trial-and-error
transport 0.7 (Pratt et al. 2005)

Table 1: Default parameter values and the sources that helped determine these
values.

interest of simplicity, follow-up research (Cai et al. 2021) has already started

extending our model to include these geospatial aspects. The parameter fol-

low find denotes the success rate of a tandem run without the follower getting

lost and starting a new search. A successful tandem run requires that both ants

reach the target nest. Empirical observations suggest large variation in tan-

dem success, with observed success ranging from 30% to over 90% (Pratt 2008;

Glaser et al. 2018). However, even lost followers enjoy a significantly increased

chance of finding the target nest on their own (Pratt 2008). We thus chose a

high FTR success rate of 0.9 to capture both these direct and indirect effects

of tandem following on nest discovery. The parameter lead forward (range: 0

to 1) is the probability that an ant performs an FTR when in the lead forward

state. The alternative option, get lost, captures the fact that tandem leaders

sometimes wander far from their target destination and thus have the oppor-

tunity to encounter other nest sites (i.e., they get lost and become searchers),

and is determined experimentally in a trial-and-error fashion. The parameter

transport is the probability that an ant keeps transporting instead of stopping

to resume search for additional sites. The stopping probability is observed to

be between 0.06 and 0.44, meaning our transport should take values between

0.56 and 0.94. We chose 0.7 as our baseline value.
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Environment and Settings Parameters An average colony size of 200 with

50 active workers, 50 passive workers, and 100 brood items is within the range

of real colony compositions (Franks et al. 2015). One round approximately

translates to 0.5-1 minutes, though this is a very rough estimate. A simulation

with 2000 rounds thus translates to 16-32 hours, and one with 4000 rounds

translates to 32-64 hours. We set the default to 4000 to include some very slow

emigrations observed in published reports (Pratt et al. 2006). The values for

variables percent conv and persist rounds are determined by trial-and-error

and rough estimates from past empirical observations.

3.3 Speed and Consensus Measures

Using the set of parameters that replicated the empirical data shown in (Pratt et

al. 2005), we demonstrate the power of our model by testing new hypotheses and

making new predictions as shown in Section 4. In order to do so, we define the

speed and consensus performance metrics below for the whole emigration process

until either convergence or the end of simulation, including cases resulting in

splitting.

Convergence Score as Speed The final goal of the house hunting algorithm

is to achieve fast convergence in any given environment and stabilize at that

convergence. To assess how well this was achieved, we calculate a convergence

score as the inverse of the round number when a persistent convergence started.

If no persistent convergence was reached before the end of the simulation, the

convergence score is 0. Each simulation run has a convergence score.

Consensus Another important metric is consensus, defined as the largest pro-

portion of ants in any nest at the end of emigration. The end of an emigration is

either when it reaches a persisted convergence, or when the simulation reaches
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maximum number of rounds.

4 The Power of Population Effect

In this section, we explore the influence of the population effect on emigration

speed and cohesion. We test the population effect hypothesis in an environment

with two equal quality candidate nests, making it particularly challenging for

colonies to reach consensus, or at least making it take much longer to do so. Sec-

tion 4.1 explores correlations between pop coeff and the degree of randomness

in individual decision-making; and Section 4.2 reveals how pop coeff decreases

splitting by colonies facing two equal options.

4.1 Population Effect Helps with Emigration Speed

To investigate the influence of the population effect, we ran simulations for differ-

ent combinations of pop coeff (ranging from 0.002 to 0.8) and lambda sigmoid

(ranging from 2 to 16). We ran simulations for an environment containing two

identical new nests [0,1,1]. For each combination of pop coeff and lambda sigmoid,

we ran 500 simulations with a colony of size 200, consisting of 50 active workers,

50 passive workers, and 100 brood items.

Results The results show evidence for an inverse relation between pop coeff

and lambda sigmoid (Fig. 3). For each value of lambda sigmoid in the

range [2,16], there is a value of pop coeff that maximizes the convergence

score, and this value increases as lambda sigmoid decreases. Thus, when

an individual ant makes noisy local decisions (modeled with lower values of

lambda sigmoid), she can counteract this deficiency by relying more on the

input of her peers through a higher value of pop coeff. We notice that as

lambda sigmoid increases, the optimal pop coeff decreases, meaning that
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individuals do not have to rely as much on peer opinions.

To gain further understanding of the optimal pop coeff value for a colony,

below we interpret the advantages and disadvantages of increasing the value of

pop coeff :

Advantages

• Higher momentum in the system. This can promote the colony to accu-

mulate population at a certain nest more quickly, and thus achieve faster

convergence.

• Better prevention of splits. Multiple candidate nests may reach the quo-

rum, especially when the nests have similar physical qualities. This can

lead to the colony splitting between more than one site. Population Ef-

fect via pop coeff might help to break ties, by amplifying small random

differences in the populations of competing sites.

Disadvantages

• Slower error correction. Since we are dealing with a randomized algo-

rithm, there is always a chance that the colony will collectively make a

“bad” temporary decision, even if individuals have low noise levels. The

higher momentum will then make the wrong decision more “sticky” by

accumulating more ants at a mediocre nest even if a better one is avail-

able. The colony would then have to move later to the better nest, adding

costs in time and risk. In this way, high pop coeff can cause slower

convergence, and lead to “madness of the crowd”.

These trade-offs suggest that there is an optimal value of pop coeff for a

given lambda sigmoid as seen in Fig. 3. This predicts that colonies may
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Figure 3: Average convergence score (across 500 simulations) as a function
of pop coeff. Different colored curves represent different lambda sigmoid
values as described in the individual decision model (Fig. 2). This shows that
the optimal value of pop coeff increases as lambda sigmoid decreases.

tune pop coeff according to the uncertainty of individual behavior in order to

achieve the highest convergence score for a given environment.

4.2 Population Effect Helps with Consensus

In this section we further explore how a population effect can help colonies to

reach consensus when faced with two identical nests. We explore this question

by simulating emigrations in which a colony is presented with two identical nest

sites. We assess how well they reach consensus on a single one. We also vary

the degree of scout sensitivity to site population by considering different values

of pop coeff.

We ran 200 simulations each for pop coeff = [0, 0.2, 0.4], in an environment

with nest qualities = [0,1,1]. We set lambda sigmoid to 16 in order to be

more sensitive to temporal differences in nest populations. We set the max

number of simulation rounds to be 1000, equivalent to 8-16 hours empirically.

After round 1000, emigrations may or may not reach consensus eventually, but

in order to do controlled experiments to see the effects of different values of

pop coeff we enforce that all simulations have the same value of num rounds,
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Figure 4: Simulation results for colonies choosing between two identical nests.
The histograms show the distribution of the percentage of the colony occupying
the left nest, for three different values of pop coeff.

1000. The rest of the parameters take the default values.

Results The simulation results show strong symmetry breaking (Fig. 4).

That is, a large majority of simulations ended with 80% to 100% of the colony

in one of the two nests. When consensus was reached, it was roughly equally

likely to be in nest 1 or nest 2, producing the distinctive U-shaped distribution

seen in Fig. 4. This pattern was true regardless of the value of pop coeff,

suggesting that the quorum rule already generates strong symmetry breaking

in this case. However, as the value of pop coeff increases, the histograms also

aggregate more towards the two end bins, meaning there are fewer split cases.

Thus we confirm the positive effect of pop coeff in reducing splits, either by

prevention or by facilitating later re-unification. These mechanisms can have

significant effects in more challenging environments with more candidate nests.

5 Other Predictions with Experimental Support

In this section we test other hypotheses concerning more complex scenarios

where the link between colony patterns and individual behavior has not pre-
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viously been modeled. For scenarios that have been explored empirically, we

determine how well our model can account for observed results, and whether

the empirical observations are comprehensive. Section 5.1 examines a colony’s

ability to choose well when faced with larger option arrays; and Section 5.2

focuses on how colonies make rational decision time investments depending on

nest quality differences.

5.1 Colonies Have High Cognitive Capacity

How well do colonies perform when selecting from many nests? A previous

study (Sasaki et al. 2012) showed that colonies are quite good at selecting a

single good nest from a set of eight nests, four of which are good and four of

which are mediocre. This is in contrast to individual ants, who are as likely

to choose a mediocre as a good nest when faced with the same scenario. The

colony advantage has been hypothesized to result from sharing the burden of

nest assessment: very few of the scouts ever visit more than one or two nests,

whereas a lone ant visits several, potentially overwhelming her ability to process

information about them successfully (cognitive overload). We simulate this

experiment to determine whether we can reproduce both the colony’s ability

and the observed distribution of nest visits across scouts.

We designed a simulated experiment with multiple nests in the environment,

half of which are mediocre (physical quality 1.0) and the rest of which are good

(physical quality 2.0). We considered three environments with 2, 8, and 14

nests, respectively. For each environment, We ran 600 simulations with a fixed

colony size 200, containing 50 active and passive ants each, and 100 brood items.

Results First, we found that simulated colonies reached consensus on a good

nest with high probability, matching that seen in empirical data (Fig. 5). This

was true even when the number of nests was increased to 14.
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(a) (b)

Figure 5: The proportions of colonies that eventually moved into poor or good
nests. (a): Empirical results in 2-nest and 8-nest settings (Sasaki et al. 2012).
(b): Simulation results from our model in 2-nest, 8-nest, and 14 nest settings.

Next, we verified that the high cognitive capacity of colonies is associated

with a low number of nests visited by each scout. The proportion of ants visiting

only one or two nest was similar in the simulations and experiments (Sasaki et

al. 2012): over 80% of individual ants visited only one or two nests in the

course of the emigration. Fig. 6 shows similar pattern is seen for the number

of transports: that is, if we focus only on the ants who contributed to the

emigration by transporting nestmates, over 80% visited only one or two nests.

Ants that access many nests are few and have a minor role in the transportation

process. Thus, colonies are less vulnerable to cognitive overloading compared to

single ants when choosing among multiple sites, providing a possible explanation

to the higher cognitive capacity of colonies.
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Figure 6: Proportions of transport efforts as a function of the number of candi-
date sites visited by each ant. The blue bars show the percentage of transports
done by ants that visited a given number of nests (Sasaki et al. 2012), and the
dark orange bars show the same for simulated ants. Colonies choose among
eight nests (four good and four mediocre) in both simulations and experiments
(Sasaki et al. 2012).

5.2 Colonies Make Rational Choices about Decision Speed

For choices between two nests, how does the difference between the nests affect

the speed of decision-making? Counter-intuitively, a previous study (Sasaki et

al. 2019) found that colonies move more quickly when site qualities are more

similar. But this behavior accords with decision theory predictions that decision-

makers should take less time if the consequences of their choice are small; that

is, since the nests are similar in quality, the opportunity cost of making a wrong

decision is small, so it’s rational to save time costs by taking on a higher risk of

choosing the wrong nest.

We simulate this scenario to determine if we can reproduce the same pattern,

but we also explore a broader range of quality differences to better describe the

relation between quality difference and decision time. We designed an environ-

ment with two candidate nests, one good and the other mediocre. The good

nest has physical quality 2 in all simulations, but the physical quality of the

mediocre nest varies across simulations from 0.2 to 1.7. We asked whether the
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quality of the mediocre nest is correlated with the convergence score (a mea-

sure of decision speed). We ran 300 simulations for each environment with a

colony of size 200, consisting of 50 active workers, 50 passive workers, and 100

brood items. We repeated this set of simulations for five different values of

lambda sigmoid values: [8,10,12,14,16].

Results If our model reproduces the rational time investment choices of colonies

(Sasaki et al. 2019), then we expect the convergence score to increase as the

mediocre nest quality increases, thus becoming more similar to the good nest.

Our results partially match this prediction, with convergence score increasing as

the mediocre nest quality goes from 0.2 to about 1 (Fig. 7). However, at higher

mediocre nest qualities, the pattern reverses and convergence score declines.

This basic pattern is seen for all tested values of lambda sigmoid.

We propose that the nest qualities studied in (Sasaki et al. 2019) came from

the region below the peak score that saw an increase of speed with decreasing

quality difference. But from our more granular simulations, we predict that as

the quality difference gets still smaller, the convergence score will start decreas-

ing, meaning colonies will start investing more time.

Why might this happen? Recent studies have explained the behavioral dif-

ference between individuals and colonies via two different decision models: the

tug-of-war model describes individual behavior, while colony behavior is better

accounted for by the horse race model (Kacelnik et al. 2011). The tug-of-

war correctly predicts the irrational behavior of individual ants, in that their

decision-making slows down for options that are more similar. The horse race,

in contrast, correctly predicts colonies’ rational acceleration of decision making

for similar options. We hypothesize that the applicability of these models to the

colony’s behavior changes as the quality difference changes. More specifically in

Fig. 7, before the peak score is reached, the colony may effectively distribute its
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decision-making across many ants with limited information, the situation envi-

sioned in the horse-race model. After the peak score is reached, the colony may

come to depend more on individual comparisons between nest sites made by

a few well-informed ants, and thus to show the irrational slow-down predicted

by the tug-of-war model. It could also be the case that more transports are

performed between the two candidate nests as the likelihood of the mediocre

nest achieving quorum attainment increases.

Figure 7: Average convergence score as a function of the physical quality of the
mediocre nest. The physical quality of the good nest is 2, and that of the home
nest is 0.

6 Discussion

In this paper, we developed a tractable agent-based model to examine the col-

lective nest site selection process in colonies of Temnothorax ants. To test

against existing experimental data and to make predictions, we built a conve-

nient Python simulator that can easily be extended to add extra features. The

model successfully replicated published individual and colony-level outcomes,

and performed as well as an earlier model (Pratt et al. 2005) in accounting for

underlying individual and colony behavior in one- and two-nest emigrations, but

did so with a more concise set of individual decision rules. Using the set of pa-
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rameter values that achieved the above, our model confirms a novel population

effect hypothesis, which states that the integration of peer opinion, represented

by a nest’s population, is helpful for both the speed (Fig. 3) and consensus (Fig.

4) of emigrations.

On top of matching previous studies of simple one- and two- choice environ-

ments, our model also generated simulated results that confirmed emigration

behavior in more realistic and challenging multi-nest environments that had

not been modeled previously. Specifically, in Fig. 5 and 6 we show evidence

that colonies, compared to single ants, make more accurate decisions among

multiple nests because the former are minimally exposed to cognitive overload-

ing, as shown experimentally in Sasaki et al. 2012. In addition, with partial

empirical support, our model makes predictions on the quantitative relation-

ships between emigration speed and the mediocre nest quality in a two-nest

environment with one good and one inferior nest (Fig. 7). From these exam-

ples, we showed that the model and the accompanying software are versatile

and easy to extend to additional investigations on unexplored scenarios such as

emigrations in a changing environment. Moreover, the generalizable modeling

framework that we introduced can be used to formally represent a variety of

distributed algorithms used by animal groups to understand the emergence of

collective intelligence in biological systems.

Although the presence of the population effect has not yet been shown in

Temnothorax colonies, there is reason to expect that they would benefit from a

behavioral rule to enhance consensus. They differ from other social insect species

that achieve consensus through highly nonlinear recruitment mechanisms. For

example, ant species that recruit via trail pheromones will choose one of two

identical food sources rather than forming trails to both. This is because the

attractiveness of a trail is a sigmoidal function of the amount of pheromone it



27

contains, which leads to rapid amplification of small random differences in the

strengths of competing trails (Beckers et al. 1990; Perna et al. 2012). How-

ever, similar experiments on Temnothorax ants found that they do not always

break symmetry, instead exploiting both feeders equally, a result that has been

attributed to the linear relationship between tandem running effort and recruit-

ment success (Shaffer et al. 2013). An open question is whether this lack of

symmetry breaking also holds for nest site selection. When presented with

identical nests, do colonies choose only one or split between them? If they can

reach consensus, then how do they do so? One possibility is that the quorum

rule provides sufficient non-linearity to amplify small random differences in site

population, thus ensuring that the colony does not split. Another possibility is

that colonies have some other mechanism of avoiding splits. A good candidate

for such a mechanism is population effect explored in this paper. This would

allow amplification of early random differences in population, by increasing the

likelihood of recruitment to the nest with more ants. Further study is warranted

to test whether this effect is found in real colonies.

In the rest of this section, we discuss several specific directions for future

research. While our model captures many aspects of individual behavior, it

leaves out some important features, including many that affect timing. These

include 1) effects of the spatial distribution of nests, which is the focus of a

recent modeling and data analysis study that extended our house-hunting model

(Cai et al. 2021) has also demonstrated the value of this framework and the

ease of use of our simulator, 2) effects of individual experience on recruitment

probability and speed, and 3) actions that may last a variable duration such as

the evaluation of a new nest. Adding these to the model would allow it to explore

a broader range of colony abilities and to reveal as yet unknown components of

individual behavior and how they interact with known aspects. For example,
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more realistic models of timing would undoubtedly affect the discovery behavior

currently captured by the single variable search find.

On the simulation data analysis side, there are many directions for fur-

ther research. First, we note the link between the effects of different quorum

sizes and the horse-race and tug-of-war models that have been successfully used

to describe group and individual decision-making, respectively, in these ants

(Kacelnik et al. 2011). Our model finds that group decision-making may be

better captured by the tug-of-war model when a colony is choosing between two

very similar options. If so, this suggests that colonies can change their relative

reliance on individual decision-making according to the decision context. This

indicates the value of developing a more quantitative model that combines the

tug-of-war and the horse-race models, based on the same factors that affect how

a colony chooses the most beneficial quorum size.

Additionally, our model shows the potential utility of individual ants taking

account of site population when assessing a site’s quality. Whether real ants use

peer opinions in this way has not yet been experimentally tested. Our results

suggest that it may be important for preventing and repairing split decisions.

However, the amount of peer opinions that individuals should rely on is an in-

tricate balance, as we described in Section 4.1. It would be highly valuable

to quantify the relationship between the frequency and degree of splitting to

the quorum size and to pop coeff. A related research direction is to find out

other factors that allow colonies to robustly reunify in split cases. However,

the runtime of our program over hundreds of simulations can be significant,

making it difficult to investigate the system dynamics and performance in all

possible parameter settings. Overcoming this challenge requires software op-

timization techniques such as code parallelization and possibly further model

simplifications.
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On the theoretical analysis side, our model serves as a stepping stone for

more rigorous mathematical formulations and proofs of guaranteed bounds on

any metrics of interest. Starting with simpler environments, our model can be

reduced to analytically derive the goals different mechanisms can and cannot

achieve. These results can then potentially provide insights on why certain

collective behaviors have emerged through evolution, as well as on engineering

artificial distributed systems subject to similar limitations to reach consensus. In

fact, a recent theoretical work on the effect of quorums in single-nest emigrations

(Zhang et al. 2021) demonstrates the value of our house-hunting model.

Finally, we emphasize that our modeling framework can be flexibly adapted

to other distributed algorithms inspired by animal groups. One compelling

example is that honeybee colonies use a very similar algorithm in their nest-

selection process (Laomettachit et al. 2016), and can be easily modeled by our

framework. Comparing it to our ant colony model can reveal commonalities and

differences in how different animal groups achieve various goals and organize

potentially conflicting priorities.
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Appendix

A Modeling Framework

In this section, we introduce a general modeling “language” that has the po-

tential to be useful for a wide range of applications. In B, we instantiate this

language in the context of the house hunting process in ant colonies.

A.1 Agent-based Model

Formally, the components below define the entities in the system and their static

capabilities. More explanatory text follows after the list.

• agent-ids, a set of ids for agents. Each agent-id uniquely identifies an

agent. We also define agent-ids′ to be agent-ids ∪{⊥} where ⊥ is a

placeholder for “no agent”. In general, we add ′ to a set name to denote

the original set with the addition of a default element {⊥}.

• external-states, a set of external states an agent might be in. Each

element in the set is an external-state. In addition, all-externals is the

set of all mappings from agent-ids to external-states. Each element of

the set is an all-external.

• internal-states, a set of internal states an agent might be in. Each

element in the set is an internal-state.

• env-states, a set of states that the agents’ environment might take on.

Each element in the set is a env-state.

• action-types, a set of the types of actions agents might perform. Each

element in the set is an action-type.
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• env-choices, a set of values an agent can access in the environment. Each

element in the set is an env-choice.

• actions, a set of quadruples of the form (action-type, agent-id, agent-id ′,

env-choice) ∈ action-types × agent-ids × agent-ids′× env-choices.

Each element in the set is an action.

• select-action(agent-id, state, env-state, all-external): A state is a pair

of (external-state, internal-state) ∈ external-states × internal-states.

Each (agent-id, state, env-state, all-external) quadruple is mapped to a

probability distribution over the sample space of actions, for which the

second component is equal to the input argument agent-id and the third

component is not equal to it. The function then outputs this probability

distribution.

• transition(agent-id, state, all-external, action): A state is a pair of

(external-state, internal-state) ∈ external-states× internal-states. Each

(agent-id, state, all-external, action) quadruple determines a state as the

resulting state of the agent identified by the input argument agent-id. The

function outputs the resulting state.

Each agent has a unique agent-id ∈ agent-ids, and is modeled by a state

machine. Agents can transition from one state to another. A state is a pair:

an external-state ∈ external-states that is visible to other agents, and an

internal-state ∈ internal-states that is invisible to other agents.

We define all-externals to be the set of all mappings from agent-ids to

external-states. Each element of the set is an all-external and represents a

particular mapping from agent-ids to external-states where each agent-id is

mapped to an external-state.

The set env-states represents the set of states that the agents’ environment
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might take on. In this paper, we will assume that the environment is fixed. That

is, the env-state does not change during the execution of the system. The reason

we use a set here is to enable us to model the same set of agents operating in

different environments.

Agents can also access values in the environment, and each value is called an

env-choice. The set env-choices is the set of all possible values for env-choice.

An agent can transition from one state to another by taking an action ∈

actions. Each action consists of an action-type ∈ action-types, the id of the

initiating agent agent-id ∈ agent-ids, the id of the (optional) received agent

agent-id ′ ∈ agent-ids′, and env-choice ∈ env-choices.

The function select-action(agent-id, state, env-state, all-external) is in-

tended to select an action for the agent with the given agent-id, who is the

initiating agent in the action. The function outputs a probability distribution

over the sample space actions. However the sample space limits its elements

to have the second component equal to the input argument agent-id, and the

third component not equal to it. Thus, any sampled action will have agent-id

being the initiating agent’s id, and the (optional) receiving agent necessarily has

a different id.

The function transition(agent-id, state, all-external, action) represents a

transition to be performed by the agent identified by the input argument agent-

id. Given the input arguments, the function deterministically outputs the re-

sulting state of the transition.

A.2 Timing and Execution Model

In this section, we introduce the dynamic aspects of our model, including the

discrete and synchronous timing model, and how different components in the

system interact with each other at different points during the execution of the
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algorithm.

Our system configuration contains 1) an environment state, called env-state,

and 2) each agent’s state, which is a pair (external-state, internal-state), inde-

pendent of env-state. Agents receive inputs from and react to the environment

during the execution of the system. In this paper, we will assume that the en-

vironment is fixed. That is, the env-state does not change during the execution

of the system.

Incorporating some theoretical ideas from (Ghaffari et al. 2015; Radeva

2017), we divide the total time into rounds. Each round is a discrete time-step,

and times are the points between rounds. At any time t, there is a correspond-

ing system configuration t. The initial time is time 0, and the first round is

round 1, taking the system from configuration 0 at time 0 to configuration 1

at time 1. In general, round t starts with system configuration (t− 1). During

round t, agents can perform various transition’s, which take the system from

configuration (t− 1) at time (t− 1) to configuration t at time t.

We now describe the execution of an arbitrary round t. At any point in

the execution of round t, each agent x is mapped to a state, state x, which

is visible to agent x itself. However, to other agents, only agent x’s external-

state, external x is visible. We denote all-external ∈ all-externals to be the

mapping from every agent-id ∈ agent-ids to the corresponding external-state

∈ external-states in round t. These mappings can be updated during the

execution.

Accounting for the randomness of the order of execution for all the agents,

a randomly chosen permutation of agent-ids is generated at the beginning of

round t, serving as the order of execution for the agents in the round. We also

instantiate a set Trans = ∅ at the beginning of the round. An agent is prevented

from changing its state further in the round once it adds its agent-id to Trans,
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which can happen during its turn (even if there is no resulting state change) or

when it performs a transition during another agent’s turn. As a result, each

agent can change its state at most once in the round. After all agents are in the

set Trans, round t is over, and all agents enter round t+ 1 synchronously.

The rest of this section describes all possible operations during one agent x’s

turn in round t. When an agent with agent-id x (a.k.a. agent x) gets its turn

to execute, it first checks whether x ∈ Trans. If so, agent x does nothing and

ends its turn here.

Otherwise, agent x has not yet transitioned in round t. Let state x denote

the state of agent x. Agent x calls the function select-action(x, state x, env-

state, all-external). The function outputs a probability distribution over the

sample space of a subspace of actions, for which the second component is x,

and the third component is not x. Agent x randomly selects an action, act =

(a, x, x′, e), according to this probability distribution.

Agent x then calls transition(x, state x, all-external, act), to determine

the resulting state, new state x, for agent x. As the initiating agent, x also

gets added to Trans. Next, in the case where x′ 6= ⊥, agent x′ also calls

transition(x′, state x′, all-external, act) where state x′ is the current state of

agent x′, maps itself to the function output, and updates its entry in all-external.

Note that x′ is added to Trans if the function output is different than state x′

in any way. This is the end of agent x’s transition call. Agent x then maps

itself to the resulting state new state x, and updates its entry in all-external.

Agent x finally ends its turn here.

A.3 Discussion

Although our model keeps track of the external-state of all the agents in all-

external, when performing a transition, an agent can only access local informa-



42 B HOUSE HUNTING MODEL DETAILS

tion in it. Locality here is flexible to the context, i.e. local to the location of

the agent initiating an action.

Agent-based models are especially powerful for simulating and analyzing

collective behaviors given their natural compatibility with object-oriented pro-

gramming methodologies and their flexibility for allowing individual differences

in realized state transition probabilities among the agents (De Vries et al. 1998;

Sumpter et al. 2001; Masuda et al. 2015b; Pratt et al. 2005).

B House Hunting Model Details

B.1 Formal Model

B.1.1 Model components

In this section, we show how each component in our modeling framework (A.1)

is defined in the house hunting algorithm context.

Figure 8: Native data structures that define different entities in the distributed
system.
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Fig. 8 shows our native data structures as used by various components in the

system: Nest objects, an array which constitutes an env-state; Ant objects, each

corresponding to an agent; State = (ExternalState, InternalState) objects, each

corresponding to a state = (external-state, internal-state), and Action objects,

each corresponding to an action. Each of the data structures contains a set

of variables, as seen in Fig. 8. Note that we consider all variables belonging

to either the class ExternalState or the class InternalState to belong to the

class State as well. Throughout the rest of the paper, we use the notation

object.variable to denote the value of a variable belonging to a class object.

Using these data structures as building blocks, we now show all possible values

for the components in the framework presented in A.1. Note that for consistency

with our implementation in C, we use −1 or an empty string “” to represent

any invalid default integer or string values represented by ⊥ in A.

• agent-ids, the set containing all integers in the range [0, num ants), where

num ants is the total number of ants in the colony. In addition, agent-

ids′ = agent-ids ∪ -1. Each Ant is initialized with its corresponding

ant id, which corresponds to a agent-id.

• external-states, the set containing all possible values for an External-

State class object, each corresponding to an external-state. We designed

these variables to be in the external-state because these contain infor-

mation that influences other ants’ activities. Therefore, it is biologically

plausible that individuals have access to this information about one an-

other.

In any ExternalState class object, phase has one of four possibilities -

Exploration (searching for new nests), Assessment (assessing new nests),

Canvassing (leading other active workers on FTRs to her accepted candi-

date nest), and Transport (committing to the new nest and rapidly car-
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rying other ants to it). Note we abbreviate the four phases to names “E”,

“A”, “C” and “T”, respectively. The initialization of an Ant ’s phase

and state name can be found in B.1.3. For each phase, the variable

state name take values from a different set, as follows:

Figure 9: state name’s available for each phase.

The variable role can be one of (0,1,2) representing (active ant, passive

ant, brood), and each Ant is initialized with the appropriate value. The

variable location can be any integer in the range [0, num nests) where

num nests is the total number of nests in the environment, with 0 rep-

resenting the original home nest. In addition, recall that all-externals

is the set of all possible mappings from agent-ids to external-states.

Each element of the set is an all-external.

• internal-states, the set containing all possible values for an InternalState

class object, each corresponding to an internal-state. The set of fields

we designed for the InternalState class represent information that should

only be accessed and modified by an ant’s internal memory. Each of

home nest (initial value = 0), candidate nest (initial value = -1), and

old candidate nest (initial value = -1) can take any integer in the range

[0, num nests), where num nests is the total number of nests. Lastly,

terminate count (initial value = 0) takes any value in the range [0, 10].

• env-states, a set of arrays, each being an array of the Nest class objects.

Each array corresponds to an env-state. For an env-state, the Nest at

index 0 represents the original home nest and has physical quality 0. All

other Nest ’s have physical quality in range [0, 4]. The maximum quality
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4 here is arbitrary. Recall that the array does not change throughout the

execution of the system, and the array is read from a configuration file

introduced in 3.1.

• action-types, the set of the types of actions includes: “search”, “no action”,

“find”, “follow find”, “get lost”, “reject”, “no reject”, “accept”, “recruit”,

“quorum met”, “quorum not met”, “stop trans”, “delay”, “terminate”,

“lead”, “carry”. Action-type is initialized to “no action”. Each item in

the set above is an action-type.

• env-choices, the set of integers in [0, num nests) ∪ -1 where num nests

is the number of nests in the environment. Each element in the set is

an env-choice and is an integer representing an index into env-state. An

env-choice has initial value -1.

• actions, the same set as defined in A.1. Note that not all actions require

a receiving agent, and not all actions require an env-choice. In case that

they are not needed, they take the invalid default value -1.

• select-action(agent-id, state, env-state, all-external): the same function

as defined in A.1. Refer to B.1.2 for details.

• transition(agent-id, state, all-external, action): the same function as

defined in A.1. Refer to B.1.3 for details.

B.1.2 The select-action function

The function select-action(x, state x, env-state, all-external) outputs a prob-

ability distribution over the sample space of actions, for which the second

component is equal to the input argument agent-id and the third component is

not equal to it. Let any action in the sample space be denoted by (a, x, x′, ec),
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where the second component is fixed. We now list out the probability distribu-

tion on other components for each possible value of the state name variable in

state x, as it is the only variable in state x that affects the output probability

distribution. The boldface words are parameters that we can tune and whose

values are read from a configuration file, introduced in 3.1.

• For search, the probabilities of choosing a to be “find” and “no action” are

search find and 1-search find respectively, and all other action-type’s

have 0 probability. Both variables x′ and ec take the invalid default value

-1 with probability 1.

• For follow, the probabilities of choosing a to be “follow find” and “get lost”

are follow find and 1-follow find respectively, and all other action-type’s

have 0 probability. Both variables x′ and ec take the invalid default value

-1 with probability 1.

• For reverse lead, the probabilities of choosing a to be“delay” and “no action”

are transport and 1-transport respectively, and all other action-type’s

have 0 probability. Both variables x′ and ec take the invalid default value

-1 with probability 1.

• For quorum sensing, let the set X̃ be the set containing id’s of all agents

with external-state having role ∈ {0, 1} and location = state x.location.

If the set size |X̃| ≥ quorum threshold, the probabilities of choosing a

to be “quorum met” and “quorum not met” are 1 and 0 respectively, and

are 0 and 1 otherwise, and all other action-type’s have 0 probability. Both

variables x′ and ec take the invalid default value -1 with probability 1.

• For lead forward, let X̃ be the set containing id’s of the agents that are

not x, and whose external-state has role = 0 and location = state x.location.
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The function selects an action ãct = (ã, x, x′, ec) according to the follow-

ing probability distribution. In case terminate count < 10, ã is cho-

sen among “lead” and “get lost” with probabilities lead forward and

1-lead forward respectively, and all other action-type’s have probability

0. In case terminate count ≥ 10, ã is “terminate” with probability 1. The

variable ec is equal to {state x.candidate nest} with probability 1. The

distribution of x′ depends on ã, as follows:

– For “lead”, if X̃ 6= ∅, the variable x′ is uniformly selected from X̃, and

all other values in agent-id ′ have 0 probability; otherwise, x′ = −1

with probability 1.

– For “get lost”, x′ = −1 with probability 1.

– For “terminate”, x′ = −1 with probability 1.

• For transport, let X̃ be the set containing id’s of all agents that are not

x, and whose external-state has location = state x.location. In addi-

tion, let X̃ ′ be the subset of X̃ containing agents that have role ∈ {1, 2}.

The function first selects an action ãct = (ã, x, x′, ec) according to the

following probability distribution. In case terminate count < 10, ã is

chosen among “carry” and “stop trans” with probabilities transport and

1-transport respectively, and all other action-types have probability 0.

In case terminate count ≥ 10, ã is “terminate” with probability 1. The

variable ec is equal to {state x.home nest} with probability 1. The dis-

tribution of x′ depends on ã, as follows:

– For “carry”, if X̃ ′ 6= ∅, x′ is uniformly sampled from X̃ ′, and all other

values in agent-id ′ have 0 probability. Otherwise if X̃ ′ = ∅ ∩ X̃ 6= ∅,

x′ is uniformly sampled from X̃, and all other values in agent-id ′

have 0 probability. Otherwise, x′ = −1 with probability 1.
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– For “stop trans”, x′ = −1 with probability 1.

– For “terminate”, x′ = −1 with probability 1.

• For at nest, the probability of choosing a to be “search” is 1−p(x), where

x is the quality of the nest option under assessment (Figure. 1) and p(x)

defined in Equation 2. There are always two possible actions for a state

with state name = at nest, and the one that is not “search” naturally has

probability p(x) (Eq. 2). All other action-type’s have 0 probability. Both

variables x′ and ec take the invalid default value -1 with probability 1.

• For arrive, the probabilities of choosing a to be “reject” and “no reject”

are 1 − p(x) and p(x) respectively, where x is the difference in quality of

the candidate nest compared to the home nest (Eq. 3) and p(x) defined

in Equation 2. All other action-type’s have 0 probability. The variable x′

take the invalid default value -1 with probability 1. The variable ec take

the invalid default value -1 with probability 1.

B.1.3 The transition function

Passive Workers and Brood Items Active worker scouts are defined as

those who engage in the emigration process by independently discovering the

new nests (entering without carrying or being carried) or by carrying brood

items or other adult ants to the new nest or both. Passive workers remain in

the old nest until they are carried to the new nest. Brood items are similar to

passive workers but do not contribute to quorum attainment (Pratt et al. 2002;

Dornhaus et al. 2008).

We use snp to denote a state with a certain state name = sn and phase = p.

Passive workers and brood items together form the passive majority population

in the colony. Their behavior pattern is thus very simple — they only have one

state namephase, at nestE , available to them. They can only allow one action
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with action-type “carry” and themselves as the receiving agent. The action

results in the location variable in their state set to the last component of the

action, env-choice, and no other variables in their state’s can change throughout

the execution. Therefore, the rest of the section focus on the state transitions

of active workers only, including any initiating and receiving ants involved.

Initiation and Termination of Emigration All ants start in at nestE .

Their role variable values are assigned the corresponding numbers, and home nest,

location are both initiated with 0, the original home nest. The variables candidate nest

and old candidate nest are set to -1 as the default invalid value. And terminate count

starts with 0.

We do not designate a separate “termination state” that disables an ant

from exploring further, but at the termination of the emigration process, we

expect most active workers to be in at nestE . This is enforced softly through

the population effect introduced in B.1.2 - if an agent in at nestE is in a nest

with both a high physical quality and a high nest population it is highly likely

that she is happy staying put in this nest and stabilizes in the state at nestE . As

a result, the more agents stabilizes in the same nest, the more likely that they

will stay stable and that new agents will stabilize as well. In the house hunting

algorithm, the conditions that trigger this “termination” behavior contains two

cases, as mentioned in Section 2.1. The details of this special “termination”

case handling is discussed in the next paragraph.

Special and General Cases In the house-hunting algorithm, there are some

special cases that the transition function handles before outputting the re-

sulting state. To facilitate, we define a set allowed-in(external-state) to be

a mapping from external-states to subsets of action-types. Consider an

external-state s, and the allowed subset is then allowed-in(s), representing the
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set of actions the agent in the external-state s is allowed to receive. The four

variables s contains (as shown in the ExternalState class) each affects allowed-

in(s) in the following way. location has no influence. If role is 1 (passive) or 2

(brood), allowed-in(s) = “carry”. Otherwise, role = 0. Let state namephase

denote the state name and phase variables in s. For at nestE , at nestA, and

at nestT , allowed-in(s) = “lead”, “carry”. For searchE , searchA, searchC ,

searchT , and at nestC , allowed-in(s) = “carry”. For all other cases, allowed-

in(s) = ∅.

We now list out how the function transition(agent-id, state, all-external,

action) handles each of the special cases, and also the general case. Let the

input argument action be expanded to the quadruple (act = a, x, x′, ec). Also

recall that the set Trans is a set containing the id’s of all the agents that have

completed a state change in the round (Section A.2).

• The first special case is if the input argument agent-id = x′. This case only

happens when agent x′ 6= −1 invokes (in agent x’s turn) a transition(x′,

state, all-external, act), where state = (external′, internal′) is the cur-

rent state of agent x′. If x′ ∈ Trans or if a 6∈ allowed-in(external′), the

function simply ends by returning the input argument state. Otherwise,

the function adds x′ to Trans. It then finds the black text box corre-

sponding to state.phase and state.state name in Fig. 1a, and the black

text box that a leads to contains the phase and state name of the result-

ing state. The rest of the variables in state are modified as well, and the

details are listed for each possible value of the (phase, state name) pair

at the end of the section. The function then outputs the resulting state.

• The second special case is if act satisfies the termination condition men-

tioned earlier in this Section. Specifically, the cases are when agent-id

= x, and act is either 1) (lead forward, x, x′, state x.candidate nest) and
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x′ 6= −1 has an external-state with state name = lead forward, or 2)

(transport, x, x′, state x.home nest) and x′ 6= −1 has an external-state

with state name = transport. We call these the “termination condi-

tions”. When act satisfied either clauses, after adding x to Trans, the

function ends its execution by outputting a resulting state that only dif-

fers from the input argument state by adding 1 to the terminate count

variable.

• The third special case is if agent-id = x and act does not satisfy the

termination conditions, but x′ 6= −1 and either of the following is true:

1) x′ ∈ Trans, or 2) a 6∈ allowed-in(external′). Note the second case

here excludes cases that satisfy our termination conditions stated in the

last bullet point. In other words, the second special case has priority over

this third special case. In this third special case, the function adds x to

Trans, and ends its execution by outputting the original input argument,

state.

• Lastly, in the general case where none of the above special cases applies,

the function first adds x to Trans. Then it finds the black text box cor-

responding to state.phase and state.state name in Fig. 1b, and the black

text box that a leads to contains the phase and state name of the resulting

state. The rest of the variables in state are modified as well. The rest of

this sections lists details for each possible value of the (phase, state name),

as described in Fig. 1. The function then outputs the resulting state.

In Fig. 1a and Fig. 1b, action-type’s are color-coded as shown in Table 2.

We walk through all possible transitions of an ant and the associated changes

in the internal and external states, in a phase-by-phase fashion.

Exploration
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Arrow Color Init/Recv Phase Change
blue Initiating No
red Initiating Yes

purple Receiving No
green Receiving Yes

Table 2: Color coding of arrows representing action-type’s in Fig. 1a and Fig.
1b.

• An ant in at nestE has four possible actions. First, she can perform

“no action” and remain in the current nest. Second, she can perform

“search” and go into the state searchE . Third, she can receive a “lead”

by another ant to follow a FTR to a destination nest, ec ∈ env-choices,

in which case she sets old candidate nest to the value of candidate nest,

and sets candidate nest to ec. Then she transitions to the state followE .

Finally, she can receive a “carry” by another active worker ant to a destina-

tion nest ec ∈ env-choices, in which case her location and candidate nest

are changed to ec, and she stays in at nestE .

• An ant is in the state followE if she is in the middle of following an

FTR, and has two possible actions. First, she can successfully follow the

FTR to the destination nest (“follow find”) and change her location to her

candidate nest, which results in the state arriveE . Otherwise, she may

lose contact with her tandem leader (“get lost”), and then enters the state

searchE and assigns the value of old candidate nest to candidate nest.

• An ant in the state searchE has three possible actions. First, she can

have “no action” and transition to at nestE by staying at her last known

location. Second, she can “find” a new nest, ec ∈ env-choices, in this

round, assign the value of candidate nest to old candidate nest and assign

ec to both location and candidate nest, and transition into arriveE state

to evaluate it further. Third, she can receive an action, “carry”, and the



B.1 Formal Model 53

results are the same as receiving the “carry” action in at nestE .

• An ant in the state arriveE has two action options. First, she can “reject”

the nest she just arrived at. She then assigns the value of candidate nest

to location and then that of old candidate nest to candidate nest go into

the searchE state. Otherwise, if she performs “no reject”, she transitions

into the state at nestA and assigns the value of candidate nest to location.

Assessment

• An ant in the state at nestA is assessing a new nest and is currently

located at that nest. From here, three actions are available. First, she

can “accept” the nest if she deems it high quality, which results in her

transitioning to at nestC . Second, she may perform “search” to get into

the searchA state. Third, she can receive a “lead” by another ant to

follow a FTR to a destination nest, in which case she assigns the value

of candidate nest to old candidate nest and assigns the destination nest

ec ∈ env-choices to candidate nest, and then she transitions to the state

followA. Finally, she can receive a “carry” by another active worker ant

to a destination nest ec ∈ env-choices, in which case her location and

candidate nest are changed to ec and transitions back to at nestE .

• An ant in the states followA or searchA has the same options and variable

changes as in followE or searchE respectively, but the resulting state sub-

scripted with A except the “carry” action.

• An ant in arriveA state has the same options and variable changes as in

arriveE , but with “reject” action leading to searchC .

Canvassing
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• An ant in at nestC state has three available actions. First, she can decide

to “recruit” and go into quorum sensingC state. Second, she can decide

to “search” more and result in searchC state. Third, she may receive a

“carry” by another active worker ant to a destination nest, in which case

her location and candidate nest are changed to that nest and results back

to at nestE .

• An ant in quorum sensingC state is at a nest different than her home nest,

and has two options. If she estimates the current nest population to be

higher than the quorum threshold, she performs “quorum met”, swap the

values of home nest and candidate nest, and enters the state transportT .

Otherwise, she performs “quorum not met” and enters lead forwardC

state.

• An ant in lead forwardC state has three actions available to her. First,

she can “lead” another active worker and lead her on an FTR from the

original home nest to the candidate new nest. She changes her location

to the value of candidate nest, and enters at nestC state. Second, she

can “get lost” in the process if she loses contact with the follower, and

enters searchC state. Lastly, she can “terminate” her emigration if the

termination conditions are met, namely if she has repeated attempts to

call other active workers who are also in lead forwardC state. In this

case, she changes her location to her home nest, resets terminate count

to 0, and enters state at nestE .

• An ant in searchC state has the same options and variable changes as in

searchE with the resulting state sub-scripted with C.

• An ant in arriveC state has the same options and variable changes as in

arriveE , but with “reject” action leading to searchC .
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Transport

• An ant in at nestT state has the same options and variable changes as

in at nestC with the resulting state sub-scripted with T , except that a

“recruit” action results in transportT , and that it can receive one addi-

tional action “lead”, in which case she assigns the value of candidate nest

to old candidate nest, assigns the destination nest ec ∈ env-choices to

candidate nest, and transitions to followT .

• An ant in transportT state has three available actions. First, she can

decide to carry another ant, active, passive, or brood, to her newly com-

mitted nest. This results in her entering reverse leadT mode, meaning

she can lead a reverse tandem run (RTR). These are tandem runs lead

from the newly committed nest to the old home nest or another nest.

Second, she can decide to “stop trans” and stops her transport to go into

the state searchT . Third, similar to the state lead forwardC , there is

a “terminate” action when the termination condition is met, namely if

she has repeated attempts to carry other active workers who are also in

transportT state. In this case, she changes her location to her home nest,

resets terminate count to 0, and enters state at nestE .

• An ant in reverse leadT only has two actions as her options. First, she

may perform no action and returns to at nestT state. Second, she may

experience “delay” in her tandem runs, and will stay in reverse leadT

state. There’s no conclusion on the purpose of RTRs at this point in

the research community, so we model it as a round-trip from an agent’s

candidate nest to the original home nest and back, eventually ending up

with no state changes.

• An ant in the states followT or searchT has the same options and variable
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changes as in followE or searchE respectively, but the resulting state are

sub-scripted with T except the “carry” action.

• An ant in arriveT state has the same options and variable changes as in

arriveA, but with “reject” action leading to transportT .

C Simulation Details

The Python code for the simulator can be found at:

https://github.com/snowbabyjia/Collective-Decision-Making-HH.

C.1 Sample Configuration File

[ENVIRONMENT]

num_ants = 200

nest_qualities = 0,1,2

[ALGO]

lambda_sigmoid = 8

pop_coeff = 0.35

quorum_thre = 0.15

quorum_offset = 0

search_find = 0.005

follow_find = 0.9

lead_forward = 0.6

transport = 0.7

[SETTINGS]

plot = 0

total_runs_per_setup = 500

num_rounds = 4000

percent_conv = 0.9

persist_rounds = 200

C.2 Data Structures and Global Variables

We define four native data structures, as shown in Fig. 8. The global variables

include 1) the transition tables defined in Fig. 1, 2) Nests, the array of all nests

including the home nest which by default has quality 0 and id 0, and 3) Ants,

the array of all ants in the colony.
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C.3 Simulation Overview

We describe our algorithm implementation in details below. Our executable

software and instructions are available upon request.

Consider a colony of size num ants where all the ants start the house-hunting

task synchronously. We divide the total time to completion into rounds, with

a maximum round number of total runs per setup.

At the beginning of round t, no ant has transitioned yet (instantiate Trans

= ∅). Then a random permutation of all ant ids is generated as the order of

execution. When an ant gets her turn during this round, she first checks if

her ant id is in Trans. If so, she does nothing. Otherwise, knowing its id and

current state, she chooses an action for this round according to the probability

distribution defined in the select-action function.

The action picked by an ant x has an action type, a receiving ant id, and a

nest id. Please note here that in real ant colonies, an action can involve either

just a single ant, or a pair of ants (tandem run and carry). In the single ant

action case, the receiving ant’s id is assigned value −1. In the pair ant action

case, the action includes the valid ant id of the receiving ant y. Similarly, not

all actions require a nest, in which case the nest id for the action is −1.

By looking up the Ants array, x can also get the current external state of

all ants including the receiving ant y, if any, of the picked action. These values

are enough for x to call the transition function, and adds its own id to Trans.

The special case handling is detailed in Section 2.2.3 in the main manuscript,

including the case where y might also call a transition function and adds itself

to Trans.

When one round finishes, each ant has had one chance to initiate or receive

an action, and potentially has a new state. Repeat rounds like the above until

the criteria is met for convergence with persistence, or until the program reaches
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the maximum number of rounds specified in the configuration file.

D Parameter Estimation

We estimate the various parameters in our model using the same empirical

dataset that were successfully accounted for by an earlier model (Pratt et al.

2005) for emigrations in simple one- and two-new-nest environments.

Just like the parameter estimation technique used in (Pratt et al. 2005), we

first examine a simple scenario where colonies have only one candidate nest in

the environment. Then we consider a decision between two nests that clearly

differ in quality. For all scenarios, we compare our simulation results to the

same empirical data collected by (Pratt et al. 2005), at both individual and

colony level. All simulations for the rest of the paper default to the default

values described in Section 3.1, unless specified otherwise.

D.1 Single-Nest Emigrations

The first question we ask is: does our model accurately reproduce statistics on

individual discovery and recruitment acts in single-nest emigrations? Previous

empirical work showed the distributions across ants of key behaviors contribut-

ing to the collective outcome (Pratt et al. 2005). These include the number of

recruitment acts per ant, the number of ants performing each recruitment type,

and the number of ants arriving at the new site by different routes. We asked

whether our model could replicate the empirical distributions. To answer the

question, we simulated the single-nest experiments conducted in (Pratt et al.

2005), on the twelve colonies with compositions detailed in Fig. 10. We used

default parameter values, except we increased search find to 0.05. This increase

accounts for the presence of only one new nest, hence all “find” actions after the

first one are re-discoveries of this nest, which we assume has a higher probability
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than finding a previously unknown site (Pratt et al. 2005). In future work, this

variable should be expanded to depend on other factors, such as the number of

nests in the environment or the spatial geometry. We ran 500 simulations for

each colony.

Figure 10: Table 2 of (Pratt et al. 2005), showing populations of colonies used
in single-nest emigrations to estimate parameters. We ignore the distinction
of thick vs. thin nests, and use one set of parameter values to replicate the
statistics of individual discovery and recruitment acts.

Results We compared the statistics of the model output to the same statistics

reported in (Pratt et al. 2005) (Fig. 11). Fig. 11(a) shows the histograms of

individual workers grouped by the number of recruitment acts. More than half

of the simulated workers never recruited, consistent with the empirical finding

of about 60% non-recruiting active workers. The other bins show similar mean

and variance to the empirical data. Fig. 11(b) classifies ants by their recruit-

ment behavior, and the breakdowns are again consistent with the experimental

observations. Fig. 11(c) categorizes workers by their routes to discovery of

the candidate nest, and is again consistent with the findings in (Pratt et al.

2005), at least when the experimental data are pooled over six emigrations by

three colonies. However, the distributions across the three different routes vary

strongly across emigrations. Indeed, the results in (Pratt et al. 2005) notably

differ from those in (Pratt 2005a). While our model does not account for this
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(a)

(b)

(c)

Figure 11: Histograms of (a): workers grouped by the number of recruitment
acts performed. (b): workers who performed different types of recruitment acts.
(c): workers grouped by the route by which workers arrived at the new nest.
Blue bars are empirical results from (Pratt et al. 2005). Orange bars show our
simulation results. Bar values are averaged over 500 simulations. Error bars
show standard deviations.
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Colony Active Passive Brood Total
A4 70 28 228 326
A6 59 74 111 244
A8 62 95 106 263
A14 67 42 192 301
A16 53 88 61 202
A17 73 101 173 347

Table 3: Compositions of colonies used in two-nest emigrations for model vali-
dation as shown in Table 3 of (Pratt et al. 2005).

variation, we conclude that it does adequately reproduce key distributions in

recruitment behavior in single-nest emigrations.

D.2 Two Unequal Nest: Splits

The second question we ask is: does our model account for the degree of splitting

in two-nest emigrations with unequal qualities? In these circumstances, colonies

do not always make a unanimous choice, but may temporarily split between the

sites before eventually coalescing on a single one. We focus on splitting because

it is a primary hindrance to consensus. The measurement of splitting as defined

in (Pratt et al. 2005) is the percentage of brood items in the better candidate

nest at the time when the last ant has been moved from the home nest.

We replicated the two-nest emigrations in (Pratt et al. 2005), with six

colonies whose member compositions are listed in Table 3. We set nest qualities

= [0,1,2], representing a destroyed old nest and two candidate nests of mediocre

and good quality, respectively. The rest of the configuration parameters were

left at the default values.

We ran 500 simulations for each colony, and for each colony we recorded the

average percentage of brood items in the better nest at the time the home nest

became empty. To compare the simulations with empirical data, we measured

for each colony the proportion of simulations departing as far or farther from
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Colony % Pred %Observed P
A4 59 ± 17 61 0.86
A6 61 ± 28 80 0.56
A8 63 ± 30 99 0.36
A14 59 ± 20 98 0.1
A16 61 ± 34 100 0.5
A17 60 ± 25 2 0.02

Table 4: Percentage of brood in the better nest for each of the six colonies,
predicted vs observed. The last column is the p-value, with P < 0.05 indicating
a significant difference between predicted and observed percentages.

the colony average as did the experimental value. Twice this proportion gave

the p-value for a test of the null hypothesis that the observed value was drawn

from the same probability distribution as the simulated values.

Results The results show no significant difference between experiment and

simulation for five of six colonies (Table 4). This outcome confirms our model’s

ability to reproduce observed patterns of splitting in two-nest emigrations for a

variety of colony compositions, using the default parameter values.


