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ABSTRACT

We study the problem of house-hunting in ant colonies, where ants reach consensus on a new
nest and relocate their colony to that nest, from a distributed computing perspective. We
propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each
ant is modeled as a probabilistic agent with limited power, and there is no central control
governing the ants. We show an O( log n) lower bound on the running time of our proposed
house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching
upper bound of expected O( log n) rounds for environments with only one candidate nest for
the ants to move to. Our work provides insights into the house-hunting process, giving a
perspective on how environmental factors such as nest quality or a quorum rule can affect
the emigration process.

Keywords: ant colony, collective behavior, convergence time, decision-making.

1. INTRODUCTION

Recently, there has been an interest in the distributed computing community ontudying biologi-

cally inspired algorithms. Tissues found within the human body and insect colonies of ants and bees are

good examples of naturally occurring systems where there are many agents with limited power, a global goal,

and no central control. Interestingly, an ant colony as a whole exhibits a high level of collective intelligence

and is able to achieve global goals, such as foraging for food (Feinerman and Korman, 2012; Feinerman et al.,

2012; Emek et al., 2014; Lenzen et al., 2014) and relocating to new nests (Ghaffari et al., 2015; Zhao et al.,

2021). It is puzzling how the distributed system is able to quickly reach consensus through local commu-

nications, especially given the high noise levels observed in nature.

The house-hunting process in Temnothorax ant colonies is a naturally occurring algorithmic task that is

closely related to consensus, a fundamental problem in distributed computing theory. The goal of the ants
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is to relocate the colony of ants to a new nest with superior quality. During the house-hunting process, a

colony is able to reach consensus on a new nest and execute the move of the entire colony, even though

each individual actively scouting ant has information about only a small subset of the new candidate nests.

In 2015, Ghaffari et al. (2015) modeled the ant colony house-hunting process as a distributed algorithm

on independent random agents. They also showed theoretical guarantees on the number of rounds required

for various house-hunting algorithms under their model to converge. Recently, Zhao et al. (2021) devel-

oped a simulator that closely mimics the ants’ behaviors on both individual and colony levels. The simu-

lator is based on the agent-based model of ant colony house-hunting process that Pratt et al. (2005) created

by studying the videotaped behavior of ants.

Zhao et al. showed that their simulator is biologically plausible in that it accurately reflects many

behaviors observed in real ant colonies, and their simulator is also useful for predicting some of the

behaviors of ants that are harder for biologists to directly study in experiments. However, there are no the-

oretical bounds on the convergence speed of the algorithm presented by Zhao et al.

We present a mathematical agent-based model algorithm for the house-hunting emigration process that

takes into account the different ways that ants behave and interact with each other depending on the phases

and states that they are in. The network of states in our model captures the important dynamics of the

models used by biologists, Pratt et al. (2005) and Zhao et al. (2021). As a result, our algorithm is biolog-

ically plausible while still tractable to rigorous analysis. We show that the theoretical guarantees on the

running time of our algorithm are similar to those of the algorithms considered by Ghaffari et al.

Our work has many implications for both the biology community and the computer science community.

Natural algorithms have evolved over time to have many advantageous properties. For example, algo-

rithmic tasks carried out by collections of living beings are usually highly adaptive to different types of

environments, robust to noise, and also optimized in terms of their speed and accuracy. Thus, insights from

these biological algorithms can inspire more robust efficient algorithms for distributed computer systems,

such as robot swarms (Krieger et al., 2000).

Our work develops a biologically inspired algorithm for house-hunting that can be easily implemented

and is also tractable to rigorous analysis. In addition, using mathematical tools to analyze the house-hunting

algorithm can allow for a better understanding of the properties of ant colonies that are harder for biologists

to directly observe. Our work provides insight into how efficient consensus in ant colony house-hunting is

affected by nest qualities, the quorum threshold, and other environmental parameters.

1.1. The house-hunting process

Temnothorax ants often search for and move to new nests, as living in favorable nests is important to the

survival of their colony. Their moving process is highly distributed: each individual ant has limited infor-

mation and communication, and there is no central control governing the emigration process.

Ant colonies are typically composed of active and passive ants (Pratt et al., 2005). Active ants execute

the emigration, while passive ants, such as brood items or inactive adult ants, are transported to new nests

by active ants.

Biologists have observed that the house-hunting process involves several stages. Active ants search for

nests, assess nests, recruit other ants, and transport other ants. Once an active ant has found a new nest of

satisfactory quality, it moves on to the recruitment phase, where it recruits other active ants to the new nest

via tandem runs (Möglich, 1978; Richardson et al., 2007). Should the population of active ants in a new

nest surpass a quorum threshold, then active ants in that nest can commit to that nest and begin transporting

(i.e., picking up and carrying) other ants from the old nest to the new nest (Pratt et al., 2002). These trans-

ports speed up emigration to the new nest.

Scientists believe that ants are able to assess the population density at a nest using their encounter rates with

other ants at the site (Pratt, 2005). We assume that ants consider nests of roughly equal sizes so that by measuring

the encounter rate, the ants can make decisions based on the population at a nest. We assume that ants are

similarly able to determine active and passive ant populations at a nest using the method of encounter rates.

1.2. Main results and organization

In Section 2, we present a biologically plausible house-hunting algorithm that is tractable to analysis. We

incorporated biological insights from Pratt et al. (2005) and Zhao et al. (2021) into our house-hunting

algorithm.
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Ghaffari et al. (2015) showed a lower bound of O( log n) on the number of rounds required for any house-

hunting algorithm under their model of house-hunting to converge with high probability. While there is a

subtle difference between our model and the model considered by Ghaffari et al. that affects the lower

bound proof, we show in Section 3 that the lower bound of O( log n) holds for our model as well.

In Section 4, we consider the special case where there are two nests in the environment. We show that our

house-hunting algorithm takes expected O( log n) rounds to converge, assuming that the quorum threshold

falls within a certain range. By our lower bound result, this upper bound is tied up to a constant factor. It would

be interesting to extend this expected upper bound result to environments with more nests in future work.

Finally, in Section 5, we discuss possible modifications to our house-hunting algorithm and directions for

future research.

2. MODEL

We present a model of Temnothorax ants’ house-hunting process that is both tractable to analysis and

biologically plausible. This algorithm is primarily inspired by the agent-based model for house-hunting in

ant colonies introduced in Zhao et al. (2021), which produces simulated behaviors of ants that are con-

sistent with empirical observations, but has no proven theoretical guarantees. Like the model in Zhao et al.

(2021), our algorithm has many parameters that can be tuned to reflect changing environmental conditions

and varied behaviors of ants observed in nature.

Our model differs in that we reduce the number of internal variables stored for each ant and the number

of possible states that the ants can be in, thus simplifying the rules for how ants change locations and

interact with each other. These simplifications make the model tractable for proofs of theoretical guarantees

without significantly changing the overall behavior of the system.

In our algorithm, active and passive ants in the colony play different roles in the emigration process. Active

ants transition through many states, including searching for a new nest, evaluating a nest, and recruiting other

ants to the nest by tandem or transport runs. Passive ants, on the contrary, change location only when

transported by an active ant. The biological insights for these design decisions come from Pratt et al. (2005).

2.1. Framework

The environment consists of at least two nests, one of which is the original home nest (OHN) of the

colony, or Nest 0. Each nest has an associated quality, which is a non-negative real number. The ants are

modeled as identical finite state machines that execute computations synchronously in discrete rounds.

In each round, an active ant performs at most one call to each of the functions select action, select ant, and

transition, which are defined in Section 2.2.

Throughout the article, we let n denote the total number of ants, and we let na and np denote the number

of active ants and passive ants, respectively, with na =Y(n), np =Y(n), and na + np = n. The location of an

ant a is denoted a:location, which is one of the nests in the environment. Every active ant a has an asso-

ciated state, denoted a:state, which is one of nine possible states: At Nesti, Searchi, Quorum Sensing, Lead

Forward, and Transport, for i 2 E‚C‚ Tf g. The subscripts E‚C‚ and T stand for Exploration, Canvassing,

and Transport, three different phases of active ants described in Zhao et al. (2021). For every ant a, the

value of a:state begins as At NestE and the value of a:location begins as Nest 0. These values are updated

by calls to the helper function transition.

On every round, active ants can probabilistically select one of two possible actions to take: advance or

hold (Fig. 1). The action that an ant takes determines how its state and location change that round. There are

two instances where an action involves two ants. We say that an ant is committed to the nest that it is in if it

is in the At NestT, SearchT, or Transport state. An ant that is committed to the nest that it is in can transport

another ant to that nest by advancing from the Transport state. Similarly, an active ant can recruit another

active ant to the nest that it is in via a tandem run by advancing from the Lead Forward state. Transports

and tandem runs fail to move a second ant if that second ant has already transitioned on that round.

Like the model from Zhao et al. (2021), our model is parameterized by many adjustable constants. The

parameters lq and lp are the quality coefficient and population coefficient, respectively. They represent the

relative weight that ants give to the quality and population of a nest when evaluating that nest. We denote

by lowercase h the quorum threshold, or the fraction of all active ants that must be in a nest before an active
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ant can commit to that nest and begin transporting ants to that nest. If the fraction of active ants in Nest 0

ever drops below the quorum threshold, we say that that nest drops out of competition, and no active ant can

commit to that nest after that point.

The constants cs, cf, c‘, and ct denote the search constant, the follow constant, the lead forward constant,

and the transport constant. These constants parameterize the probability that the corresponding type of action

succeeds. Finally, k controls for how noisy individual ants’ decision-making is, with higher k values cor-

responding to lower individual noise levels. For example, when an ant is searching for nests, a higher k means

that she has a higher probability of moving to a more desirable nest and a lower probability of moving to a

less desirable nest, where the desirability of a nest depends on both the quality and population of that nest.

All constants other than k range between 0 and 1; k ranges from 1 to 16 (Zhao et al., 2021). See Table 1

for an example of values used for these parameters in experiments performed in Zhao et al. (2021).

2.2. Helper functions

This subsection defines the helper functions that are called in the house-hunting algorithm, which is

given in Section 2.3.

select action(a): The input is an ant a. Let n0 be a nest chosen uniformly at random from all of the nests

other than a:location. Let q be the quality of a:location, and let p and pa be the number of ants and active

ants in that nest, respectively. Finally, let q0 and p0 denote the quality and population of nest n0. The ant

probabilistically chooses an action u, sampled from a Bernoulli random variable u 2 advance‚ holdf g with

parameters that depend on a:state as shown in Eq. (1). The function select action(a) returns (u‚ n0).

FIG. 1. The state transition diagram. The solid arrows show the state transition that happens when the ant chooses to

advance; the dashed arrows show the state transition that happens when the ant chooses to hold. The transition

probabilities are given in (1).

Table 1. An Example of a Set of Parameter Values That Are Biologically Plausible

Parameter Value Source

Quality coefficient lq 0.25 Trial-and-error from Zhao et al. (2021)

Population coefficient lp 0.35 Trial-and-error from Zhao et al. (2021)

Quorum threshold h 0.15 Pratt et al. (2002), Franks et al. (2015)

Search constant cs 0.025 Trial-and-error from Zhao et al. (2021)

Follow constant cf 0.4 Pratt (2008), Glaser and Grüter (2018)

Lead forward constant c‘ 0.6 Trial-and-error from Zhao et al. (2021)

Transport constant ct 0.7 Pratt et al. (2005)

k 8 Trial-and-error from Zhao et al. (2021)
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Pr [u= advanceja:state =At Nesti] = 1 + e - k lq�q + lp�pnð Þ
� � - 1

for i 2 E‚ C‚ Tf g (1)

Pr [u= advancej a:state = Searchi] = cs � 1 + e - k lq�(q0 - q) +lp�p
0 - p
n

� �� � - 1

for i 2 E‚ C‚ Tf g

Pr [u = advancej a:state = Quorum Sensing] =
1 if quorum has been met --- that is‚ pa>h � na

and a:location has not dropped out of competition

0 otherwise

8><
>:

Pr [u= advancej a:state =Transport] = ct

Pr [u= advancej a:state =Lead Forward] =
c‘ if q>q0

0 otherwise

�

select ant(a‚ n0‚ action): This function takes as input an ant a, a nest n0, and an action action. If action is

hold, then this function immediately returns null. First, we set a0 to null. If a:state is Lead Forward and

there is at least one active ant in nest n0, then let a0 be an active ant chosen uniformly at random from n0.
If a:state is Transport and there is at least one passive ant in nest n0, then let a0 be a passive ant chosen

uniformly at random from n0. We return a0 with probability cf and return null otherwise. Note that the

returned ant cannot be a because a is not in nest n0.
transition(a‚ a0‚ n0‚ action): This function takes as input ants a and a0, a nest n0, and an action action.

If a:state is Searchi for any i 2 E‚C‚ Tf g and action is advance, then we set a:location to n0. If a:state is

Lead Forward or Transport and action is advance, then we set a0:location to a:location. We set a:state to

the state obtained by starting from a:state and following the arrow corresponding to action in the state

transition diagram (Fig. 1). If a0 is not null, we set a0:state to At NestE.

2.3. Algorithm

With the helper functions defined, we are ready to present the house-hunting algorithm. Let P be a

permutation of the integers 1 to na chosen uniformly at random for every round, and the active ants are

denoted ai for i 2 1‚ . . . ‚ naf g.

Algorithm 1: One Round of the House-Hunting Algorithm

M: a set of ants, initially �
for i = 1 to na do

if aP(i) 62 M then

action‚ n0 : = select action(aP(i))

a0 : = select ant(aP(i)‚ n0‚ action)

if a0 2 M then

a0) null

end

transition(aP(i)‚ a0‚ n0‚ action)

M : =M [ aP(i)f g [ a0f g
end

end

Algorithm 1 shows one round of the house-hunting algorithm. We study how many times the procedure

given in Algorithm 1 repeats until all of the passive ants have moved from Nest 0 to a winning nest, a nest

that has better quality than Nest 0. When this happens, we say that the algorithm converges. We note that

not all of the active ants are required to be in the winning nest (WN) when the algorithm converges since

the active ant population is more mobile.

In Algorithm 1, the set M serves to make sure that each ant transitions at most once: either actively by

initiating an action or passively by getting recruited. If there are conflicts between actions involving two

ants (i.e., tandem runs or transports), then P serves as a tie breaker between the conflicting actions.

In short, for every i 2 1‚ . . . ‚ naf g, if ant ai has not been recruited (by a tandem run or transport) by the

time all active ants preceding ai in the permutation have transitioned in a given round, the ant ai will
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probabilistically select an action to take using the select action function and select an accompanying ant a0

using the select ant function. If ai is not successfully transporting or leading forward, then a0 will be set to

null. Finally, the transition helper function updates the states and locations of ants ai and a0 to reflect the

changes caused by the action that ant ai executed.

3. A LOWER BOUND

In this section, we asymptotically lower bound the number of rounds required for a colony of ants to

complete the house-hunting process with high probability. We use ideas from the lower bounds on

spreading a rumor in a graph from Karp et al. (2000) and proof methods from Ghaffari et al. (2015). We

also use terminology from Ghaffari et al. (2015): an informed ant knows the location of the WN, and an

ignorant ant does not know.

Ghaffari et al. (2015) proved an asymptotic lower bound on the convergence rate of their algorithm that

grew logarithmically in the number of ants. There is a subtle difference between our model and that of

Ghaffari et al.’s that affects the proof of the lower bound. In the model used by Ghaffari et al., the prob-

ability that any ignorant ant becomes informed on any given round can be upper bounded by a constant less

than 1 (Lemma 3.1 of (Ghaffari et al., 2015).

In contrast, in our algorithm, the probability that a given passive ant in the OHN gets transported to the

WN on any given round cannot be upper bounded by a constant less than 1: when there are many active

ants in the WN trying to transport ants from the OHN to WN and a few passive ants in the OHN, each

passive ant in the OHN gets transported with high probability.

Even though we are not able to lower bound the probability that any ignorant ant remains ignorant in

any given round of our algorithm, we are able to lower bound this quantity for a fraction of the passive ants,

as shown in the following lemma.

Lemma 1. Let m = na
np
. If np � 4, then for any given round r where there are at least

np
2
ignorant passive

ants in Nest 0 at the beginning of round r, a passive ant in Nest 0 that is ignorant at the beginning of round

r remains ignorant at the end of round r with probability at least 1
16

� �m
:

Proof. Let B � np
2
� 2 be the number of ignorant passive ants in Nest 0 at the beginning of round r. The

only way for an ignorant passive ant to become informed is for that ant to be transported by an active ant.

There are at most na active ants transporting passive ants out of Nest 0 on any given round. While there are

passive ants in Nest 0, an active ant transporting from that nest chooses one of those passive ants to

transport uniformly at random. Thus, the probability that any given passive ant does not get transported

during round r is at least

B - 1

B

� �na

:

Using the fact that x - 1
x

� �x � 1
4

when x � 2, we have

B - 1

B

� �na

� 1

4

� �na
B

� 1

4

� �2na
np

‚

finishing the proof of the lemma. ,
Ghaffari et al. (2015) proved a lower bound of O( log n) on the running time of their house-hunting

algorithm. Their proof depended on a lemma that stated that all ignorant ants stay ignorant with constant

probability during each round; we showed in Lemma 1 that this result is true for
np
2

of the passive ants. This

discrepancy by a constant factor does not affect the asymptotic behavior of the algorithm. More formally,

we use Lemma 1 and proof methods from Ghaffari et al. (2015) to show the following theorem:

Theorem 1. If np � 4, then for any constant c > 0, our proposed house-hunting algorithm requires

O( log n) rounds for all of the passive ants to move from Nest 0 to the WN with probability at least 1
nc

.
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Proof. Let m = na
np

, and let q= 1
16

� �m
. Because na =Y(n) and np =Y(n), we have q =Y(1). Let S be the set

of the first
np
2

passive ants to become informed. We investigate the number of rounds required for all of the

ants in S to become informed with high probability. By Lemma 1, with probability at least q, an ant in S that

is ignorant at the beginning of round r remains ignorant at the end of round r.

For every ant a 2 S and every round r, let Ya
r be a Bernoulli random variable with Pr [Yr

a = 1] = qr. Let

Yr =
P

a2S Y
a
r . We define random variable Sr to be the number of ants in S ignorant after r rounds. Note that

for every a 2 S and every round r, Pr [Yr
a = 1] =qr lower bounds the probability that ant a is ignorant after r

rounds. Thus, we have

Pr Sr < x½ � � Pr Yr < x½ � for any round r and any x: (2)

For r = 1
2

logq - 1

n2
p

4n

� �
- logq - 1 (8c), we have E[Yr] = jSjqr = 8c

ffiffiffi
n

p
, and

Pr Sr <
E[Yr]

2


 �
� Pr Yr <

E[Yr]

2


 �
(Using (2))

� e - E[Yr ]
8 (Chernoff bound)

= e- c
ffiffi
n

p

<
1

nc
: e-

ffiffi
x

p
<

1

x
for x > 0

� �

Therefore, with probability at least 1 - 1
nc

, at least 4c
ffiffiffi
n

p
passive ants are ignorant after 1

2
logq- 1

n2
p

4n

� �
-

logq - 1 (8c) =Y( log n) rounds. Thus, the number of rounds required for all of the passive ants to move to the

WN with probability at least 1
nc

is O( log n). ,

4. AN EXPECTED UPPER BOUND FOR SINGLE-NEST EMIGRATIONS

In this section, we consider an environment with only two nests: Nest 0 (with quality q0) and Nest 1 (with

quality q1 > q0). All of the ants are in Nest 0 in the At NestE state at the beginning of Round 1, and we

investigate how long it takes for the house-hunting algorithm to converge as the number of ants n varies.1

Since an active ant will change location if it advances from a Search state, the frequency at which ants

are in Search states is of interest to us.

Definition 1. For every integer k > 0, we define R(k)
0 and R(k)

1 using the states and locations of the

active ants at the beginning of round k. Random variable R(k)
0 is 1 if there are no active ants in Nest 0;

otherwise, R(k)
0 is the fraction of active ants in Nest 0 that are in one of the Search states (SearchE, SearchC,

or SearchT). Similarly, random variable R(k)
1 is 0 if there are no active ants in Nest 1; otherwise, R(k)

1 is

the fraction of active ants in Nest 1 that are in one of the Search states. We define f0 : = mink>1 E R(k)
0

� 

and

f1 : = maxk E R(k)
1

� 

:

We do not explicitly compute f0 and f1 since this would require intensive computations. Instead, we make

the following useful observation:

Observation 1. We have f0‚ f1 > e for some constant e > 0 that is independent of n.

Proof. Since all ants start out in the At NestE state in Nest 0, we have R(1)
0 = 0: For k > 1,

Pr R(k)
0 > 0

� 

> 0 since there is the possibility that an active ant in Nest 0 stays in the At NestE state until it

moves to the SearchE state during the (k - 1)th round. Thus, E R(k)
0

� 

> 0 for k > 1, so f0 > 0.

If f1 = 0, then that means that either no active ants ever enter Nest 1 or the expected fraction of active

ants in Nest 1 that are in a Search state is 0 for every round. Both of these statements are clearly not true,

and so, we have f1 > 0 by contradiction.

1Our algorithm relaxes some assumptions made in the algorithms by Ghaffari et al. (2015). In their optimal
algorithm, nests with a decreasing population drop out of competition, and in their simple algorithm, ants only search
for nests at the beginning of the algorithm. Because our algorithm does not use these assumptions, the proof methods
that they use to show their upper bound results do not work for our algorithm.
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Because the state transition diagram has a recurrent class that is finite, aperiodic, and irreducible, the

states in that class are associated with unique steady-state probabilities. The states SearchC and SearchT are

recurrent states, and so, their steady-state probabilities are positive. The values E R(k)
i

� 

for i 2 0‚ 1f g only

depend on the transition probabilities of the model and k, and they converge to the corresponding steady-

state probabilities, which also only depend on the transition probabilities. All of the transition probabilities

of the model can be upper and lower bounded by positive constants independent of n. Thus, f0 and f1 can

also be lower bounded by a constant independent of n. ,
Recall from Section 2 that we say that the algorithm converges when all of the passive ants are in the

WN. In this section, we prove the main theorem (Theorem 2), which says that the algorithm converges in

expected O( log n) rounds in an environment with two nests as long as some restrictions on the parameters

are satisfied. We begin with a definition.

Definition 2. The function a : R ! R is defined as follows:

a(x) = na
f0
f1
- x

f0
f1
+ ea

 !
‚

where a = - k(lq(q1 - q0) -lp).

Theorem 2. For any small constant e 2 0‚ f0
f1

� �
, let random variable Re denote the number of rounds

required for at least a(e) of the active ants and all of the passive ants to move from Nest 0 to Nest 1. If

the quorum threshold satisfies 1 - a(e)
na

< h < a(e)
na
, then E[Re] =O( log n).

We note that a condition of Theorem 2 is that the quorum threshold h must fall within the range

1 - a(e)
na

‚ a(e)
na

� �
. In particular, we see in Proposition 2 that the lower bound on the quorum threshold

guarantees that backward transports from Nest 1 to Nest 0 cease to happen after O( log n) rounds. The upper

bound on the quorum threshold simply guarantees that the quorum will be met at Nest 1, allowing for

transports to that nest. When we plug in the biologically plausible values k = 8, lq = :25, lp = :35, q1 = 2, q0 = 0,

let e = :00001, and use the estimate f0
f1
� 1, we find that the condition becomes h 2 :2315‚ :7685ð Þ. If we instead

plug in q1 = 3, then the condition becomes h 2 :0392‚ :9608ð Þ. By comparing with Section 2.1, we see that the

bounds on the quorum threshold required by the theorem are reasonable and not overly restrictive.

We further note that the condition 1 - a(e)
na

< h < a(e)
na

is sufficient but not proven to be necessary for the

algorithm to converge in O( log n) rounds. In addition, it is possible to choose e, parameter values, and nest

qualities such that 1- a(e)
na

> a(e)
na

. In this case, it is impossible for the condition to be satisfied. Intuitively,

this means that for such a set of parameter values, the positive difference q1 - q0 is not large enough; in

other words, Nest 1 is not better than Nest 0 by enough for efficient convergence to be guaranteed by the

theorem. More formally, using the estimate f0
f1
- 2e � 1, the condition 1- a(e)

na
< a(e)

na
becomes q1 - q0 >

lp
lq

,

a lower bound on the difference in quality between the two nests in order for efficient convergence to be

guaranteed by Theorem 2. It would be interesting for this prediction about the effect of nest qualities on ant

colony house-hunting to be tested in an experiment with real ants.

We prove Theorem 2 by separately examining the emigration of active and passive ants. We examine

active ant emigration in Section 4.1, and we examine passive ant emigration in Section 4.2.

4.1. Active ant emigration

In this subsection, we focus on the emigration of active ants. We use the quantities f0 and f1 from

Definition 1 to study the expected number of ants that move between the nests during each round.

Lemma 2. Suppose there are x active ants in Nest 0 at the beginning of a round r > 1. The expected

number of active ants that move from Nest 0 to Nest 1 during round r is at least

cs � f0 � x
1 + e - k(lq(q1 - q0)- lp)

:

Proof. We can see that active ants change location only when they advance from a Search state or get recruited

to a new nest by another active ant via a tandem run. In our model, a tandem run can only cause an active ant to

be recruited from an inferior nest to a nest with better quality. Thus, tandem runs will only speed up the rate at

which ants move from Nest 0 to Nest 1, and so, we can disregard the population changes caused by tandem runs

without loss of generality and focus on ants that change locations by advancing from the Search state.
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We denote by p0 and p1 the population in Nest 0 and Nest 1 at the beginning of round r, respectively. The

probability p that an active ant in a Search state at Nest 0 advances, thus moving to Nest 1, is

p =
cs

1 + e - k(lq(q1 - q0) + lp(p1 - p0)=n)

� min
(p0‚ p1)2f0‚ 1‚ ...‚ ng2

cs

1 + e- k(lq(q1 - q0) +lp(p1 - p0)=n)

= p0 : =
cs

1 + e - k(lq(q1 - q0)- lp)
‚

where the last line follows because p is minimized when p1 - p0 is minimized, which is achieved when

p0 = n and p1 = 0.

The expected number of active ants in a Search state at Nest 0 at the beginning of round r is at least f0 � x.

Thus, the expected number of active ants that move from Nest 0 to Nest 1 during round r is at least

f0 � x � p0. ,
We can obtain the following lemma using the same reasoning that we used in the proof of Lemma 2.

Lemma 3. Suppose there are x active ants in Nest 0 at the beginning of a round r. The expected number

of active ants that move from Nest 1 to Nest 0 during round r is at most

cs � f1 � na - xð Þ
1 + e - k(lq(q0 - q1) + lp)

:

Proof. As in the proof of Lemma 2, we only focus on ants that move nests by advancing from a Search state.

We denote by p0 and p1 the population in Nest 0 and Nest 1 at the beginning of round r, respectively. We

upper bound the probability q that an active ant in a Search state at Nest 1 advances, thus moving to Nest 0:

q =
cs

1 + e - k(lq(q0 - q1) + lp(p0 - p1)=n)

� max
p0‚ p12f0‚ 1‚ ...‚ ng2

cs

1 + e- k(lq(q0 - q1) +lp(p0 - p1)=n)

= q0 : =
cs

1 + e - k(lq(q0 - q1)+ lp)
‚

where the last line follows because q is maximized when p0 - p1 is maximized, which is achieved when

p0 = n and p1 = 0.

The expected number of active ants in a Search state at Nest 1 at the beginning of round r is at most

f1 � na - xð Þ. Thus, the expected number of active ants that move from Nest 1 to Nest 0 during round r is at

most f1 � na - xð Þ � q0. ,
Now, we put Lemma 2 and Lemma 3 together to show that the number of rounds required for a constant

fraction of the active ant population to move to Nest 1 is independent of the size of the ant colony. Recall

the definitions of function a( � ) and constant a from Definition 2.

Lemma 4. Let random variable Ar denote the number of active ants in Nest 1 after r rounds. For every

constant d 2 0‚ f0
f1

� �
, there exists a constant c, independent of n, such that E[Ac] � a(d).

Proof. Let random variable Yx denote the number of ants that Nest 1 gains during a round r > 1 that

begins with x active ants in Nest 0. Putting Lemma 2 and Lemma 3 together, we have

E[Yx] �
cs � f0 � x

1 + ea
-
cs � f1 � na - xð Þ

1 + e - a

=Y
f0

f1
x 1 + e - að Þ - (na - x) 1 + eað Þ

� �

=Y x
f0

f1
� e - a + 1

� �
1 + eað Þ - na 1 + eað Þ

� �

=Y x
f0

f1
� e - a + 1

� �
- na

� �
:
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If x � na - a(d) = na ea + d
f0
f1
+ ea

� �
, we have

E[Yx] =O na
ea + d
f0
f1
+ ea

 !
f0

f1
� e - a + 1

� �
- na

 !

=O na
d
ea

� �� �
=O(n):

Thus, while there are at least na - a(d) active ants in Nest 0, Nest 0 loses O(n) active ants and Nest 1

gains O(n) active ants in expectation during every round. As a result, the expected number of ants in Nest 0

drops down to at most na - a(d) in a constant number of rounds. ,
Now that we have shown that the number of rounds required for expected a(e) active ants to move to

Nest 1 is independent of the size of the ant colony, we use that result to show that the expected number of

rounds required for a(e) active ants to move to Nest 1 is also independent of colony size. In particular, now

our random variable is the number of rounds, rather than the number of active ants in Nest 1.

Proposition 1. For any constant e 2 0‚ f0
f1

� �
, let random variable Re denote the number of rounds

before Nest 1 first has at least a(e) active ants. We have that E[Re] =O(1).

Proof. We choose constant d such that 0 < d < e < f0
f1

. Let c be the number of rounds required for an

expected a(d) of the active ants to move to Nest 1. By Lemma 4, c is a constant independent of n.

We denote by the random variable A the number of active ants that Nest 1 gains in c rounds. By

definition, E[A] = a(d) > a(e). Using the fact that A � n, we upper bound Pr A � a(e)½ �:
E[A] � Pr A � a(e)½ �a(e) + 1 - Pr A � a(e)½ �ð Þn

0Pr A � a(e)½ � � n - a(d)

n - a(e)
:

For any integer r � 1, we have that Pr [Re = r] is upper bounded by

Pr [Re � r] � Pr A � a(e)½ �º
r
cß � n - a(d)

n - a(e)

� �ºrcß

because in order for Re � r, Nest 1 must have gained less than a(e) ants every consecutive c rounds since

the start of the algorithm.

We thus have

E[Re] =
X1
r = 1

Pr [Re = r] � r

�
X1
r = 1

n - a(d)

n - a(e)

� �ºrcß
� r

=Y(1):

The last equality follows because n - a(d)
n - a(e) is less than 1 and has no dependency on n since a(d)‚ a(e) =

Y(na) =Y(n), and so, the factors of n in the numerator and denominator cancel out. ,

4.2. Passive ant emigration

Passive ants only change location when they are transported by active ants. Thus, we first examine the

changes in the number of transports as the algorithm proceeds. We start by proving a lemma that will be

useful for converting bounds on expected number of ants to bounds on expected number of rounds.

Lemma 5. Consider an environment with n ants. On every discrete round, each ant may independently

and probabilistically decide to leave and never come back. Let random variable R denote the number of

rounds that it takes for all of the ants to leave. If the expected number of ants that leave on every round

is at least c · [the number of ants remaining at the beginning of that round] for some constant c 2 (0‚ 1]

independent of n, then E[R] =O( log n).
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Proof. Let r� = log1 - c
1

2n
, and let random variable A denote the number of ants remaining after r� rounds.

By Markov’s Inequality,

Pr [A � 1] � E[A] � n(1 - c)r
�
=

1

2
:

Let random variable R1 denote the number of rounds that it takes for all but at most one ant to leave.

For any integer t � 0, we have that

Pr t � r� < R1 � (t + 1) � r�½ � � Pr R1 > t � r�½ �
� Pr A � 1½ �t

� 1

2

� �t

:

We use this inequality to bound E[R1].

E[R1] =
X1
r = 1

Pr [R1 = r] � r

�
X1
t = 0

Pr t � r� < R1 � (t + 1)r�½ � � (t + 1)r�

� r�
X1
t = 0

1

2

� �t

� (t + 1)

=Y( log n):

Now, we investigate R -R1, that is, the number of additional rounds it takes for all of the ants to leave

after all but at most one ant already left.

E[R -R1] �
X1
r = 1

Pr [R -R1 � r] � r

�
X1
r = 1

(1 - c)r - 1 � r

=Y(1):

Thus, E[R] =E[R1] +E[R -R1] =O( log n) +O(1) =O( log n). ,

Proposition 2. Let random variable R denote the number of rounds that the algorithm runs for before

no more ants perform transports from Nest 1 to Nest 0 for the rest of the algorithm. If the quorum threshold

satisfies h > 1 - a(e)
na
, then E[R] =O( log n).

Proof. By Proposition 1, after an expected constant number of rounds, there will be at most na - a(e)
active ants in Nest 0, which is below the quorum threshold. After the fraction of active ants that are in Nest

0 drops below the quorum threshold h, Nest 0 drops out of competition, and no more active ants will

commit to Nest 0 (i.e., advance from the Quorum Sensing state while in Nest 0). After this point, the

number of ants committed to Nest 0 cannot increase.

By the reasoning from Lemma 2, a constant fraction of the ants committed to Nest 0 are expected to

move to Nest 1 (thus becoming no longer committed to Nest 0) on any given round. Hence, the expected

number of ants committed to Nest 0 decreases by a constant factor on each round after the number of active

ants in Nest 0 drops below quorum. After Nest 0 drops out of competition, we say that an ant that is not

committed to Nest 0 is an ant that has ‘‘left’’ in Lemma 5, and we can use Lemma 5 to conclude that there

will be no more ants committed to Nest 0 after expected O( log n) rounds. ,
By Proposition 2, we have that the effect of transports from Nest 1 to Nest 0 is negligible after expected

O( log n) rounds. We can now bound the expected number of rounds required for all of the passive ants to

be moved to Nest 1.

Proposition 3. Let random variable R denote the number of rounds required for all of the passive ants

to be transported to Nest 1. If the quorum threshold satisfies 1 - a(e)
na

< h < a(e)
na
, we have E[R] =O( log n).

354 ZHANG ET AL.

D
ow

nl
oa

de
d 

by
 1

92
.5

4.
22

2.
15

4 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
4/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Proof. We consider any given round of the algorithm; we let a1 denote the number of active ants

transporting from Nest 0 to Nest 1 at the beginning of that round, and we let p0 denote the number of

passive ants in Nest 0 at the beginning of that round. We break into two cases depending on how a1 and p0

compare with each other.

Case 1: a1 � 1
2
p0.

Each active ant in Nest 1 that is transporting (i.e., advancing from the Transport state) has at least a 50%

chance of successfully moving a passive ant to Nest 1 on this round. This is because less than half of the

passive ants in Nest 0 could have already been transported by a different active ant during that round. Thus,

in this case, the expected number of passive ants that get transported to Nest 1 in this round is at least
1
2
E[a1]. If quorum has been met in Nest 1, we expect a constant fraction of the active ants in Nest 1 to be

transporting and thus 1
2
E[a1] =Y(na) =Y(n) =O(p0).

Case 2: a1 > 1
2
p0.

The probability that a given passive ant does not get transported is at most

p0 - 1

p0

� �a1

<
p0 - 1

p0

� �1
2
p0

� e
- 1

p0

� �1
2
p0

= e - 1
2:

Since every passive ant in Nest 0 has at least a constant probability of getting transported to Nest 1 in this

case, the expected number of ants that get transported to Nest 1 in this round is O(p0).

By Proposition 1, at least a(e) > h � na active ants will be in Nest 1 after an expected constant number of

rounds, and by Proposition 2, there will be no more ants performing backward transports from Nest 1 to

Nest 0 after an expected O( log n) rounds. After that, the expected number of passive ants that are trans-

ported from Nest 0 to Nest 1 during each round will be O(p0) in both Case 1 and Case 2. After backward

transports cease to happen, we say that a passive ant in Nest 1 is an ant that has ‘‘left’’ in Lemma 1, and we

can use Lemma 5 to conclude that all passive ants will be in Nest 1 after expected O( log n) rounds. ,
Finally, putting Proposition 1 and Proposition 3 passive ants together proves Theorem 2.

5. DISCUSSION AND FUTURE WORK

In our work, we presented and analyzed the running time of a biologically plausible house-hunting

algorithm. We proved a high probability lower bound of O( log n) rounds in Theorem 1, which directly

implies an expected lower bound of O( log n) rounds. We also proved an expected upper bound of O( log n)

rounds in Theorem 2 for single-nest emigrations, given that the quorum threshold falls within a certain

range.

In particular, without the lower bound on the quorum threshold, we would not be able to show Pro-

position 2, and the emigration progress may be delayed due to backward transports from the superior nest to

the inferior nest. There is a lot of work in the biology community studying the role that the quorum

threshold plays in the house-hunting process; as we see with our result, mathematical analyses such as ours

can provide possible explanations for why ant colonies have evolved to use quorum sensing to coordinate

behaviors and how ants choose a quorum threshold.

The rest of this section discusses future work. It would be interesting to extend Theorem 2 to the general

multinest setting to understand how competing nests in the environment affect expected running time; it

would also be interesting to derive a corresponding high-probability upper bound on running time. The

condition required by Theorem 2 can be approximated as q1 - q0 >
lp
lq

, a lower bound on the difference in

quality between the two nests in order for efficient convergence to be guaranteed. It would be interesting for

this prediction about the effect of nest qualities on ant colony house-hunting to be tested in an experiment

with real ants. Furthermore, all of our results are asymptotic; computer simulations or biological experi-

ments can give us more information about the hidden constants in the asymptotic notations.

For the sake of simplicity and for our analysis, we made many simplifications to the model from Zhao

et al. (2021), on which our algorithm is based. Although our model consists of fewer states in the state

transition diagram than the model in Zhao et al. (2021), our analysis is robust to changes to the state
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transition diagram, as long as all of the transition probabilities can be bounded by constants independent of

the number of ants and the ways that ants change location are unaffected.

The other key difference is that in the model from Zhao et al. (2021), each ant has more internal variables

(in addition to the state and location of the ant, which our model uses). For example, the home nest,

candidate nest, and previous candidate nest are also stored for each ant. Because of this, the rules for

location changes in the model in Zhao et al. (2021) are also more fine-grained, making analysis more

complicated. It would be interesting to analyze a house-hunting algorithm that is more similar to the one

given in Zhao et al. (2021) as the algorithm in Zhao et al. (2021) has been shown to be biologically

plausible by comparison with biological data (Pratt et al., 2005).

In our model, recruitments via tandem runs can only happen from inferior nests to superior nests, and the

OHN drops out of competition once the fraction of active ants in that nest drops below the quorum

threshold. One potential direction for future research is to analyze our house-hunting algorithm with the

modifications that the direction of tandem runs is unrestricted and the OHN never drops out of competition.

These two modifications would make the algorithm more general.

See Ghaffari et al. (2015) for other possible extensions to the algorithm that may be included, potentially

at the expense of the runtime or simplicity of the algorithm. Some potential extensions include making the

algorithm more fault tolerant and relaxing the synchronous round assumption.
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