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of House-Hunting in Temnothorax Ant Colonies
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ABSTRACT

We study the problem of house-hunting in ant colonies, where ants reach consensus on a new
nest and relocate their colony to that nest, from a distributed computing perspective. We
propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each
ant is modeled as a probabilistic agent with limited power, and there is no central control
governing the ants. We show an Q(logn) lower bound on the running time of our proposed
house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching
upper bound of expected O(logn) rounds for environments with only one candidate nest for
the ants to move to. Our work provides insights into the house-hunting process, giving a
perspective on how environmental factors such as nest quality or a quorum rule can affect
the emigration process.

Keywords: ant colony, collective behavior, convergence time, decision-making.

1. INTRODUCTION

RECENTLY, THERE HAS BEEN AN INTEREST in the distributed computing community ontudying biologi-
cally inspired algorithms. Tissues found within the human body and insect colonies of ants and bees are
good examples of naturally occurring systems where there are many agents with limited power, a global goal,
and no central control. Interestingly, an ant colony as a whole exhibits a high level of collective intelligence
and is able to achieve global goals, such as foraging for food (Feinerman and Korman, 2012; Feinerman et al.,
2012; Emek et al., 2014; Lenzen et al., 2014) and relocating to new nests (Ghaffari et al., 2015; Zhao et al.,
2021). It is puzzling how the distributed system is able to quickly reach consensus through local commu-
nications, especially given the high noise levels observed in nature.

The house-hunting process in Temnothorax ant colonies is a naturally occurring algorithmic task that is
closely related to consensus, a fundamental problem in distributed computing theory. The goal of the ants
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is to relocate the colony of ants to a new nest with superior quality. During the house-hunting process, a
colony is able to reach consensus on a new nest and execute the move of the entire colony, even though
each individual actively scouting ant has information about only a small subset of the new candidate nests.

In 2015, Ghaffari et al. (2015) modeled the ant colony house-hunting process as a distributed algorithm
on independent random agents. They also showed theoretical guarantees on the number of rounds required
for various house-hunting algorithms under their model to converge. Recently, Zhao et al. (2021) devel-
oped a simulator that closely mimics the ants’ behaviors on both individual and colony levels. The simu-
lator is based on the agent-based model of ant colony house-hunting process that Pratt et al. (2005) created
by studying the videotaped behavior of ants.

Zhao et al. showed that their simulator is biologically plausible in that it accurately reflects many
behaviors observed in real ant colonies, and their simulator is also useful for predicting some of the
behaviors of ants that are harder for biologists to directly study in experiments. However, there are no the-
oretical bounds on the convergence speed of the algorithm presented by Zhao et al.

We present a mathematical agent-based model algorithm for the house-hunting emigration process that
takes into account the different ways that ants behave and interact with each other depending on the phases
and states that they are in. The network of states in our model captures the important dynamics of the
models used by biologists, Pratt et al. (2005) and Zhao et al. (2021). As a result, our algorithm is biolog-
ically plausible while still tractable to rigorous analysis. We show that the theoretical guarantees on the
running time of our algorithm are similar to those of the algorithms considered by Ghaffari et al.

Our work has many implications for both the biology community and the computer science community.
Natural algorithms have evolved over time to have many advantageous properties. For example, algo-
rithmic tasks carried out by collections of living beings are usually highly adaptive to different types of
environments, robust to noise, and also optimized in terms of their speed and accuracy. Thus, insights from
these biological algorithms can inspire more robust efficient algorithms for distributed computer systems,
such as robot swarms (Krieger et al., 2000).

Our work develops a biologically inspired algorithm for house-hunting that can be easily implemented
and is also tractable to rigorous analysis. In addition, using mathematical tools to analyze the house-hunting
algorithm can allow for a better understanding of the properties of ant colonies that are harder for biologists
to directly observe. Our work provides insight into how efficient consensus in ant colony house-hunting is
affected by nest qualities, the quorum threshold, and other environmental parameters.

1.1. The house-hunting process

Temnothorax ants often search for and move to new nests, as living in favorable nests is important to the
survival of their colony. Their moving process is highly distributed: each individual ant has limited infor-
mation and communication, and there is no central control governing the emigration process.

Ant colonies are typically composed of active and passive ants (Pratt et al., 2005). Active ants execute
the emigration, while passive ants, such as brood items or inactive adult ants, are transported to new nests
by active ants.

Biologists have observed that the house-hunting process involves several stages. Active ants search for
nests, assess nests, recruit other ants, and transport other ants. Once an active ant has found a new nest of
satisfactory quality, it moves on to the recruitment phase, where it recruits other active ants to the new nest
via tandem runs (Moglich, 1978; Richardson et al., 2007). Should the population of active ants in a new
nest surpass a quorum threshold, then active ants in that nest can commit to that nest and begin transporting
(i.e., picking up and carrying) other ants from the old nest to the new nest (Pratt et al., 2002). These trans-
ports speed up emigration to the new nest.

Scientists believe that ants are able to assess the population density at a nest using their encounter rates with
other ants at the site (Pratt, 2005). We assume that ants consider nests of roughly equal sizes so that by measuring
the encounter rate, the ants can make decisions based on the population at a nest. We assume that ants are
similarly able to determine active and passive ant populations at a nest using the method of encounter rates.

1.2. Main results and organization

In Section 2, we present a biologically plausible house-hunting algorithm that is tractable to analysis. We
incorporated biological insights from Pratt et al. (2005) and Zhao et al. (2021) into our house-hunting
algorithm.
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Ghaffari et al. (2015) showed a lower bound of Q(log n) on the number of rounds required for any house-
hunting algorithm under their model of house-hunting to converge with high probability. While there is a
subtle difference between our model and the model considered by Ghaffari et al. that affects the lower
bound proof, we show in Section 3 that the lower bound of Q(logn) holds for our model as well.

In Section 4, we consider the special case where there are two nests in the environment. We show that our
house-hunting algorithm takes expected O(logn) rounds to converge, assuming that the quorum threshold
falls within a certain range. By our lower bound result, this upper bound is tied up to a constant factor. It would
be interesting to extend this expected upper bound result to environments with more nests in future work.

Finally, in Section 5, we discuss possible modifications to our house-hunting algorithm and directions for
future research.

2. MODEL

We present a model of Temnothorax ants’ house-hunting process that is both tractable to analysis and
biologically plausible. This algorithm is primarily inspired by the agent-based model for house-hunting in
ant colonies introduced in Zhao et al. (2021), which produces simulated behaviors of ants that are con-
sistent with empirical observations, but has no proven theoretical guarantees. Like the model in Zhao et al.
(2021), our algorithm has many parameters that can be tuned to reflect changing environmental conditions
and varied behaviors of ants observed in nature.

Our model differs in that we reduce the number of internal variables stored for each ant and the number
of possible states that the ants can be in, thus simplifying the rules for how ants change locations and
interact with each other. These simplifications make the model tractable for proofs of theoretical guarantees
without significantly changing the overall behavior of the system.

In our algorithm, active and passive ants in the colony play different roles in the emigration process. Active
ants transition through many states, including searching for a new nest, evaluating a nest, and recruiting other
ants to the nest by tandem or transport runs. Passive ants, on the contrary, change location only when
transported by an active ant. The biological insights for these design decisions come from Pratt et al. (2005).

2.1. Framework

The environment consists of at least two nests, one of which is the original home nest (OHN) of the
colony, or Nest 0. Each nest has an associated quality, which is a non-negative real number. The ants are
modeled as identical finite state machines that execute computations synchronously in discrete rounds.
In each round, an active ant performs at most one call to each of the functions select_action, select_ant, and
transition, which are defined in Section 2.2.

Throughout the article, we let n denote the total number of ants, and we let n, and n, denote the number
of active ants and passive ants, respectively, with n,=®(n), n,=0(n), and n,+n,=n. The location of an
ant a is denoted a.location, which is one of the nests in the environment. Every active ant a has an asso-
ciated state, denoted a.state, which is one of nine possible states: At Nest;, Search;, Quorum Sensing, Lead
Forward, and Transport, for i € {E, C, T}. The subscripts E, C, and T stand for Exploration, Canvassing,
and Transport, three different phases of active ants described in Zhao et al. (2021). For every ant a, the
value of a.state begins as At Nestg and the value of a.location begins as Nest 0. These values are updated
by calls to the helper function transition.

On every round, active ants can probabilistically select one of two possible actions to take: advance or
hold (Fig. 1). The action that an ant takes determines how its state and location change that round. There are
two instances where an action involves two ants. We say that an ant is committed to the nest that it is in if it
is in the At Nestr, Searchr, or Transport state. An ant that is committed to the nest that it is in can transport
another ant to that nest by advancing from the Transport state. Similarly, an active ant can recruit another
active ant to the nest that it is in via a tandem run by advancing from the Lead Forward state. Transports
and tandem runs fail to move a second ant if that second ant has already transitioned on that round.

Like the model from Zhao et al. (2021), our model is parameterized by many adjustable constants. The
parameters , and u, are the quality coefficient and population coefficient, respectively. They represent the
relative weight that ants give to the quality and population of a nest when evaluating that nest. We denote
by lowercase 0 the quorum threshold, or the fraction of all active ants that must be in a nest before an active
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FIG. 1. The state transition diagram. The solid arrows show the state transition that happens when the ant chooses to
advance; the dashed arrows show the state transition that happens when the ant chooses to hold. The transition
probabilities are given in (1).

ant can commit to that nest and begin transporting ants to that nest. If the fraction of active ants in Nest O
ever drops below the quorum threshold, we say that that nest drops out of competition, and no active ant can
commit to that nest after that point.

The constants ¢y, c¢s; ¢, and ¢, denote the search constant, the follow constant, the lead forward constant,
and the transport constant. These constants parameterize the probability that the corresponding type of action
succeeds. Finally, 4 controls for how noisy individual ants’ decision-making is, with higher A values cor-
responding to lower individual noise levels. For example, when an ant is searching for nests, a higher 1 means
that she has a higher probability of moving to a more desirable nest and a lower probability of moving to a
less desirable nest, where the desirability of a nest depends on both the quality and population of that nest.

All constants other than A range between 0 and 1; A ranges from 1 to 16 (Zhao et al., 2021). See Table 1
for an example of values used for these parameters in experiments performed in Zhao et al. (2021).

2.2. Helper functions

This subsection defines the helper functions that are called in the house-hunting algorithm, which is
given in Section 2.3.

select_action(a): The input is an ant a. Let n’ be a nest chosen uniformly at random from all of the nests
other than a.location. Let g be the quality of a.location, and let p and p, be the number of ants and active
ants in that nest, respectively. Finally, let ¢’ and p’ denote the quality and population of nest n’. The ant
probabilistically chooses an action u, sampled from a Bernoulli random variable u € {advance, hold} with
parameters that depend on a.state as shown in Eq. (1). The function select_action(a) returns (u, n').

TABLE 1. AN EXAMPLE OF A SET OF PARAMETER VALUES THAT ARE BIOLOGICALLY PLAUSIBLE

Parameter Value Source

Quality coefficient 0.25 Trial-and-error from Zhao et al. (2021)
Population coefficient p, 0.35 Trial-and-error from Zhao et al. (2021)
Quorum threshold 0 0.15 Pratt et al. (2002), Franks et al. (2015)
Search constant c; 0.025 Trial-and-error from Zhao et al. (2021)
Follow constant ¢, 0.4 Pratt (2008), Glaser and Griiter (2018)
Lead forward constant ¢, 0.6 Trial-and-error from Zhao et al. (2021)
Transport constant c, 0.7 Pratt et al. (2005)

A 8 Trial-and-error from Zhao et al. (2021)
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A -1
Pr[u=advance|a.state = At Nest;] = (1 +e_)'('“q"1+ﬂp‘;)) fori € {E, C, T} (1)

. 1
Pr [u=advance| a.state = Search;]=c; - <1 +e_‘(“q'(q/_q)+""'lnp)> fori e {E, C, T}

1 if quorum has been met — thatis, p,>0 - n,
Pr [u = advance| a.state = Quorum Sensing] = and a.location has not dropped out of competition
0 otherwise
Pr [u=advance| a.state = Transport] = ¢,

¢, if g>¢
Pr [u=advance| a.state =Lead Forward] = )
0 otherwise

select_ant(a, n’, action): This function takes as input an ant a, a nest n’, and an action action. If action is
hold, then this function immediately returns null. First, we set a’ to null. If a.state is Lead Forward and
there is at least one active ant in nest 7/, then let @’ be an active ant chosen uniformly at random from r’.
If a.state is Transport and there is at least one passive ant in nest #/, then let a’ be a passive ant chosen
uniformly at random from n’. We return o’ with probability ¢, and return null otherwise. Note that the
returned ant cannot be a because a is not in nest n’.

transition(a, a’, n’, action): This function takes as input ants a and d’, a nest n’, and an action action.

If a.state is Search; for any i € {E, C, T} and action is advance, then we set a.location to n’. If a.state is
Lead Forward or Transport and action is advance, then we set @'.location to a.location. We set a.state to
the state obtained by starting from a.state and following the arrow corresponding to action in the state
transition diagram (Fig. 1). If ¢’ is not null, we set ' .state to At Nestg.

2.3. Algorithm

With the helper functions defined, we are ready to present the house-hunting algorithm. Let P be a
permutation of the integers 1 to n, chosen uniformly at random for every round, and the active ants are
denoted a; for i € {1, ..., n,}.

Algorithm 1: One Round of the HOUSE-HUNTING Algorithm

M: a set of ants, initially @
for i=1 to n, do
if ap(i € M then
action, n’ : =select_action(ap)
d' : =select_ant(ap, n’, action)
if @ € M then
a <« null
end
transition(ap), a’, ', action)
M:=MU {ap(,«)} @] {a,}
end
end

Algorithm 1 shows one round of the house-hunting algorithm. We study how many times the procedure
given in Algorithm 1 repeats until all of the passive ants have moved from Nest O to a winning nest, a nest
that has better quality than Nest 0. When this happens, we say that the algorithm converges. We note that
not all of the active ants are required to be in the winning nest (WN) when the algorithm converges since
the active ant population is more mobile.

In Algorithm 1, the set M serves to make sure that each ant transitions at most once: either actively by
initiating an action or passively by getting recruited. If there are conflicts between actions involving two
ants (i.e., tandem runs or transports), then P serves as a tie breaker between the conflicting actions.

In short, for every i € {1, ..., n,}, if ant g; has not been recruited (by a tandem run or transport) by the
time all active ants preceding a; in the permutation have transitioned in a given round, the ant a; will
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probabilistically select an action to take using the select_action function and select an accompanying ant @’
using the select_ant function. If g; is not successfully transporting or leading forward, then &’ will be set to
null. Finally, the transition helper function updates the states and locations of ants a; and @’ to reflect the
changes caused by the action that ant a; executed.

3. A LOWER BOUND

In this section, we asymptotically lower bound the number of rounds required for a colony of ants to
complete the house-hunting process with high probability. We use ideas from the lower bounds on
spreading a rumor in a graph from Karp et al. (2000) and proof methods from Ghaffari et al. (2015). We
also use terminology from Ghaffari et al. (2015): an informed ant knows the location of the WN, and an
ignorant ant does not know.

Ghaffari et al. (2015) proved an asymptotic lower bound on the convergence rate of their algorithm that
grew logarithmically in the number of ants. There is a subtle difference between our model and that of
Ghaffari et al.’s that affects the proof of the lower bound. In the model used by Ghaffari et al., the prob-
ability that any ignorant ant becomes informed on any given round can be upper bounded by a constant less
than 1 (Lemma 3.1 of (Ghaffari et al., 2015).

In contrast, in our algorithm, the probability that a given passive ant in the OHN gets transported to the
WN on any given round cannot be upper bounded by a constant less than 1: when there are many active
ants in the WN trying to transport ants from the OHN to WN and a few passive ants in the OHN, each
passive ant in the OHN gets transported with high probability.

Even though we are not able to lower bound the probability that any ignorant ant remains ignorant in
any given round of our algorithm, we are able to lower bound this quantity for a fraction of the passive ants,
as shown in the following lemma.

Lemma 1. Let m= ¢ If n, > 4, then for any given round r where there are at least %” ignorant passive
ants in Nest 0 at the beginning of round r, a passive ant in Nest 0 that is ignorant at the beginning of round
r remains ignorant at the end of round r with probability at least (%)m.

Proof. Let B > "7" > 2 be the number of ignorant passive ants in Nest 0 at the beginning of round r. The
only way for an ignorant passive ant to become informed is for that ant to be transported by an active ant.
There are at most n,, active ants transporting passive ants out of Nest O on any given round. While there are
passive ants in Nest 0, an active ant transporting from that nest chooses one of those passive ants to
transport uniformly at random. Thus, the probability that any given passive ant does not get transported

during round r is at least
B-1\"™
B .

Using the fact that ()%)x > 1 when x > 2, we have

1
4

B-1\" _ (1\* _ (1\"
—) >(=) > (=) .
(5) =6 =)

finishing the proof of the lemma. ]

Ghaffari et al. (2015) proved a lower bound of €(logn) on the running time of their house-hunting
algorithm. Their proof depended on a lemma that stated that all ignorant ants stay ignorant with constant
probability during each round; we showed in Lemma 1 that this result is true for "7' of the passive ants. This
discrepancy by a constant factor does not affect the asymptotic behavior of the algorithm. More formally,

we use Lemma 1 and proof methods from Ghaffari et al. (2015) to show the following theorem:

Theorem 1. If n, > 4, then for any constant ¢ > 0, our proposed house-hunting algorithm requires
Q(logn) rounds for all of the passive ants to move from Nest O to the WN with probability at least ni
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Proof. Let m= "¢, and let p= ( ) Because n,=0®(n) and n,=0(n), we have p=0(1). Let S be the set
of the first 2 passwe ants to become informed. We investigate the number of rounds required for all of the
ants in S to become informed with high probability. By Lemma 1, with probability at least p, an ant in S that
is ignorant at the beginning of round r remains ignorant at the end of round r.

For every ant a € § and every round r, let Y} be a Bernoulli random variable with Pr[Y] =1]=p". Let
Y,= > s Y. We define random variable S, to be the number of ants in S ignorant after r rounds. Note that
for every a € S and every round r, Pr[Y] =1]= p” lower bounds the probability that ant a is ignorant after r
rounds. Thus, we have

Pr[S, < x] < Pr[¥, < x] for any round r and any x. (2)
For r= jlog,-: (411) log,-1 (8¢), we have E[Y,]=|S|p" =8c+/n, and
E[Y,
Pr [S < [2 ]} §Pr[ f EY, ]] (Using (2))
:e_c\/r_l

1 1
< —.(e‘/i < —forx > O)
n¢ X

I’l2
Therefore, with probability at least 1— - . at least 4c\/n passive ants are ignorant after 1log o gm”l)
log,-1 (8¢c)=0O(log n) rounds. Thus the number of rounds required for all of the passive ants to move to the
WN with probability at least --is Q(logn). O

4. AN EXPECTED UPPER BOUND FOR SINGLE-NEST EMIGRATIONS

In this section, we consider an environment with only two nests: Nest 0 (with quality go) and Nest 1 (with
quality g; > qo). All of the ants are in Nest O in the At Nestg state at the beginning of Round 1, and we
investigate how long it takes for the house-hunting algorithm to converge as the number of ants n varies."

Since an active ant will change location if it advances from a Search state, the frequency at which ants
are in Search states is of interest to us.

Definition 1. For every integer k > 0, we define R(k) and R(k) using the states and locations of the
active ants at the beginning of round k. Random varlable R(k) is I if there are no active ants in Nest 0;
otherwise, R( is the fraction of active ants in Nest 0 that are in one of the Search states (Searchg, Searchc,
or Searchy). Slmllarly, random variable R( ) is 0 if there are no active ants in Nest 1; otherwise, R( )
the fraction of actwe ants in Nest I that are in one of the Search states. We define fy : = ming~; E [R( ) ] and
fi 1 = maxy E[ ]

We do not exphculy compute f; and f] since this would require intensive computations. Instead, we make
the following useful observation:

Observation 1. We have fy, fi > ¢ for some constant ¢ > 0 that is independent of n.

Proof. Since all ants start out in the At Nestg state in Nest 0, we have R)’=0. For k > 1,
Pr [R(k) > O] > 0 since there is the possibility that an active ant in Nest O stays in the At Nestg state until it
moves to the Searchg state during the (k—1)™ round. Thus, IE[ (k)} >0 for k> 1,s0fy>0.

If fi =0, then that means that either no active ants ever enter Nest 1 or the expected fraction of active
ants in Nest 1 that are in a Search state is O for every round. Both of these statements are clearly not true,
and so, we have f; > 0 by contradiction.

'Our algorithm relaxes some assumptions made in the algorithms by Ghaffari et al. (2015). In their optimal
algorithm, nests with a decreasing population drop out of competition, and in their simple algorithm, ants only search
for nests at the beginning of the algorithm. Because our algorithm does not use these assumptions, the proof methods
that they use to show their upper bound results do not work for our algorithm.
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Because the state transition diagram has a recurrent class that is finite, aperiodic, and irreducible, the
states in that class are associated with unique steady-state probabilities. The states Searchc and Searchr are
recurrent states, and so, their steady-state probabilities are positive. The values E [ng)] for i € {0, 1} only
depend on the transition probabilities of the model and k, and they converge to the corresponding steady-
state probabilities, which also only depend on the transition probabilities. All of the transition probabilities
of the model can be upper and lower bounded by positive constants independent of n. Thus, fy and f; can
also be lower bounded by a constant independent of n. ]

Recall from Section 2 that we say that the algorithm converges when all of the passive ants are in the
WN. In this section, we prove the main theorem (Theorem 2), which says that the algorithm converges in
expected O(logn) rounds in an environment with two nests as long as some restrictions on the parameters
are satisfied. We begin with a definition.

Definition 2. The function a : R — R is defined as follows:

J’fﬁ—x
a(x)=ng| = ,

i
1
where o= —(1,(q1 — qo) — 1,)-

Theorem 2. For any small constant ¢ € (0, ;—‘1’) let random variable R, denote the number of rounds
required for at least a(e) of the active ants and all of the passive ants to move from Nest O to Nest 1. If
the quorum threshold satisfies 1 — ? <0< %) then E[R;]=0O(logn).

We note that a condition of Theorem 2 is that the quorum threshold 6 must fall within the range

1- %), %6) . In particular, we see in Proposition 2 that the lower bound on the quorum threshold
guarantees that backward transports from Nest 1 to Nest O cease to happen after O(logn) rounds. The upper
bound on the quorum threshold simply guarantees that the quorum will be met at Nest 1, allowing for
transports to that nest. When we plug in the biologically plausible values /=8, u,=.25, u,=.35, g1 =2, go =0,
let e=.00001, and use the estunatefO ~ 1, we find that the condition becomes 0 € (.2315, .7685). If we instead
plug in ¢; =3, then the condition becomes 0 € (.0392, .9608). By comparing with Section 2.1, we see that the
bounds on the quorum threshold required by the theorem are reasonable and not overly restrictive.

We further note that the condition 1— ”f) <0< "(3) is sufficient but not proven to be necessary for the
algorithm to converge in O(log n) rounds. In addltlon it is possible to choose ¢, parameter values, and nest
qualities such that 1— “(’) > “(‘) In this case, it is impossible for the condition to be satisfied. Intuitively,
this means that for such a set ‘of parameter values, the positive difference g; —¢qo is not large enough; in
other words, Nest 1 is not better than Nest 0 by enough for efficient convergence to be guaranteed by the
theorem. More formally, using the estimate ©2 —2¢ ~ 1, the condition 1— “(8) < “(g) becomes g; —qp > ”
a lower bound on the difference in quality between the two nests in order for efﬁcwnt convergence to be
guaranteed by Theorem 2. It would be interesting for this prediction about the effect of nest qualities on ant
colony house-hunting to be tested in an experiment with real ants.

We prove Theorem 2 by separately examining the emigration of active and passive ants. We examine
active ant emigration in Section 4.1, and we examine passive ant emigration in Section 4.2.

4.1. Active ant emigration

In this subsection, we focus on the emigration of active ants. We use the quantities f; and f; from
Definition 1 to study the expected number of ants that move between the nests during each round.

Lemma 2. Suppose there are x active ants in Nest 0 at the beginning of a round r > 1. The expected
number of active ants that move from Nest 0 to Nest 1 during round r is at least

Cs 'fO - X

1+ e Hgl@1=q0)= 1)

Proof. We can see that active ants change location only when they advance from a Search state or get recruited
to a new nest by another active ant via a tandem run. In our model, a tandem run can only cause an active ant to
be recruited from an inferior nest to a nest with better quality. Thus, tandem runs will only speed up the rate at
which ants move from Nest O to Nest 1, and so, we can disregard the population changes caused by tandem runs
without loss of generality and focus on ants that change locations by advancing from the Search state.
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We denote by pg and p; the population in Nest O and Nest 1 at the beginning of round r, respectively. The
probability p that an active ant in a Search state at Nest O advances, thus moving to Nest 1, is

Cg
P o = a0 ko —p0)/m)
c
> min - 2
o pE{0 1, ) 1 + e~ Mutg(q1 = qo) + 1, (pr = po) /m)
=0 : Cs

= 1+ e~ gl =q0) = 1,)°

where the last line follows because p is minimized when p; —po is minimized, which is achieved when
po=n and p; =0.

The expected number of active ants in a Search state at Nest O at the beginning of round r is at least f; - x.
Thus, the expected number of active ants that move from Nest O to Nest 1 during round r is at least
fo-x-p'. O

We can obtain the following lemma using the same reasoning that we used in the proof of Lemma 2.

Lemma 3. Suppose there are x active ants in Nest 0 at the beginning of a round r. The expected number
of active ants that move from Nest I to Nest 0 during round r is at most

Cy 'fl . (na_x)

14+ e Huglgo—g0+u)

Proof. As in the proof of Lemma 2, we only focus on ants that move nests by advancing from a Search state.
We denote by p, and p, the population in Nest 0 and Nest 1 at the beginning of round r, respectively. We
upper bound the probability g that an active ant in a Search state at Nest 1 advances, thus moving to Nest O:

Cs
=7 + ¢~ Mitg(qo = a0+ iy (po=p1)/n)
Ce
< max -
popefo, 1, .on? 1+ e~ Mutg(go—q1)+ 1, (po—p1)/n)
p— / . CY
_q M

- 1+ e Auglao-a0+m)°

where the last line follows because ¢ is maximized when py—p; is maximized, which is achieved when
po=n and p; =0.

The expected number of active ants in a Search state at Nest 1 at the beginning of round 7 is at most
fi - (ng—x). Thus, the expected number of active ants that move from Nest 1 to Nest 0 during round r is at
most fi - (n,—x) - ¢'. O

Now, we put Lemma 2 and Lemma 3 together to show that the number of rounds required for a constant
fraction of the active ant population to move to Nest 1 is independent of the size of the ant colony. Recall
the definitions of function a( - ) and constant o from Definition 2.

Lemma 4. Let random variable A, denote the number of active ants in Nest 1 after r rounds. For every
constant § € (0, %), there exists a constant ¢, independent of n, such that E[A.] > a(d).

Proof. Let random variable Y, denote the number of ants that Nest 1 gains during a round r > 1 that
begins with x active ants in Nest 0. Putting Lemma 2 and Lemma 3 together, we have

es-forx ¢ fi- (na—x)
1+e* 1+e >

o{atremnmste)

E[Y,] >

1

(C]

(
of:

X

ety 1) (l+e“)—na(1+el))

e '+ 1) —na>.
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If x> n,—a(d)=n, (/5:‘3) we have
E[Yx]=9<na<f—+5> (J% P 1) —na>
e 1
e

=Q(n).

Thus, while there are at least n, —a(d) active ants in Nest 0, Nest O loses Q(n) active ants and Nest 1
gains ()(n) active ants in expectation during every round. As a result, the expected number of ants in Nest 0
drops down to at most n,—a(d) in a constant number of rounds. O

Now that we have shown that the number of rounds required for expected a(¢) active ants to move to
Nest 1 is independent of the size of the ant colony, we use that result to show that the expected number of
rounds required for a(e) active ants to move to Nest 1 is also independent of colony size. In particular, now
our random variable is the number of rounds, rather than the number of active ants in Nest 1.

Proposition 1. For any constant ¢ € (0, ’(—‘]"2,, let random variable R, denote the number of rounds
before Nest 1 first has at least a(e) active ants. We have that E[R;]=0(1).

Proof. We choose constant J such that 0 < 0 < ¢ <L‘l). Let ¢ be the number of rounds required for an
expected a(o) of the active ants to move to Nest 1. By Lemma 4, ¢ is a constant independent of .

We denote by the random variable A the number of active ants that Nest 1 gains in ¢ rounds. By
definition, E[A]=a(d) > a(e). Using the fact that A < n, we upper bound Pr[A < a(e)]:

E[A] < Pr[A < a(e)]a(e)+ (1 - Pr[A < a(e)])n
n—a(d)

= Pr[A < a(e)] < )

For any integer r > 1, we have that Pr[R,=r] is upper bounded by

: _ H
Pr [Rg > r] <Pr [A < a((c)]l—d < <f’l a(é))

n—a(e)

because in order for R, > r, Nest 1 must have gained less than a(¢) ants every consecutive ¢ rounds since
the start of the algorithm.
We thus have

E[R.]=) Pr[R;=r]-r
r=1

o< (n—a(5)>m_r
T = \n—a(e)

=0(1).

The last equality follows because % is less than 1 and has no dependency on n since a(d), a(e) =

B(n,)=0O(n), and so, the factors of n in the numerator and denominator cancel out. O

4.2. Passive ant emigration

Passive ants only change location when they are transported by active ants. Thus, we first examine the
changes in the number of transports as the algorithm proceeds. We start by proving a lemma that will be
useful for converting bounds on expected number of ants to bounds on expected number of rounds.

Lemma 5. Consider an environment with n ants. On every discrete round, each ant may independently
and probabilistically decide to leave and never come back. Let random variable R denote the number of
rounds that it takes for all of the ants to leave. If the expected number of ants that leave on every round
is at least cX[the number of ants remaining at the beginning of that round] for some constant ¢ € (0, 1]
independent of n, then E[R]=O(log n).
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Proof. Let r* = log, _. 2—1n and let random variable A denote the number of ants remaining after »* rounds.
By Markov’s Inequality,

PriA > 1] <E[A] < n(l-¢)" = %

Let random variable R; denote the number of rounds that it takes for all but at most one ant to leave.
For any integer t > 0, we have that

Prjt-r* <Ry < (t+1) - r*] < Pr[R; >t 1]
<Prja> 1]

1 1
<[|=].
We use this inequality to bound E[R].

E[Rl]:ZPr[Rlzr]-r
=1

IN

ZPr[z‘ <Ry < (t+ D] e+ D
t=0

[e%¢} 1 t
<r* - -
<r Z ( 2) (t+1)
=0
=0(logn).
Now, we investigate R— R, that is, the number of additional rounds it takes for all of the ants to leave

after all but at most one ant already left.

E[R-R;] < ZPr[R—Rl >r]-r
r=1

(I-¢y~'r

Mz

=0(1).

—_

Thus, E[R]=E[R;]+E[R—-R;]=0(logn)+O(1)=0(logn). O

Proposition 2. Let random variable R denote the number of rounds that the algorithm runs for before
no more ants perform transports from Nest 1 to Nest O for the rest of the algorithm. If the quorum threshold
satisfies 0 > 1— % then E[R]=O(logn).

Proof. By Proposition 1, after an expected constant number of rounds, there will be at most n, —a(e)
active ants in Nest 0, which is below the quorum threshold. After the fraction of active ants that are in Nest
0 drops below the quorum threshold 6, Nest O drops out of competition, and no more active ants will
commit to Nest O (i.e., advance from the Quorum Sensing state while in Nest 0). After this point, the
number of ants committed to Nest 0 cannot increase.

By the reasoning from Lemma 2, a constant fraction of the ants committed to Nest O are expected to
move to Nest 1 (thus becoming no longer committed to Nest 0) on any given round. Hence, the expected
number of ants committed to Nest 0 decreases by a constant factor on each round after the number of active
ants in Nest O drops below quorum. After Nest O drops out of competition, we say that an ant that is not
committed to Nest O is an ant that has ‘‘left”” in Lemma 5, and we can use Lemma 5 to conclude that there
will be no more ants committed to Nest O after expected O(logn) rounds. O

By Proposition 2, we have that the effect of transports from Nest 1 to Nest 0 is negligible after expected
O(logn) rounds. We can now bound the expected number of rounds required for all of the passive ants to
be moved to Nest 1.

Proposition 3. Let random variable R denote the number of rounds required for all of the passive ants
to be transported to Nest 1. If the quorum threshold satisfies 1 — %L) <0< %, we have E[R]=O(logn).
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Proof. We consider any given round of the algorithm; we let a; denote the number of active ants
transporting from Nest 0 to Nest 1 at the beginning of that round, and we let p, denote the number of
passive ants in Nest 0 at the beginning of that round. We break into two cases depending on how a; and pg
compare with each other.

Case 1: a; < §po.

Each active ant in Nest 1 that is transporting (i.e., advancing from the Transport state) has at least a 50%
chance of successfully moving a passive ant to Nest 1 on this round. This is because less than half of the
passive ants in Nest O could have already been transported by a different active ant during that round. Thus,
in this case, the expected number of passive ants that get transported to Nest 1 in this round is at least
%]E[al]. If quorum has been met in Nest 1, we expect a constant fraction of the active ants in Nest 1 to be
transporting and thus %E[al 1=0(,)=0n)=Q(py).

Case 2: a; > 1 py.

The probability that a given passive ant does not get transported is at most

1
_1 ap _1 2P0
(Po ) < (Po )
Po Po
< (efﬁ)%po

=e

l—

Since every passive ant in Nest 0 has at least a constant probability of getting transported to Nest 1 in this
case, the expected number of ants that get transported to Nest 1 in this round is Q(py).

By Proposition 1, at least a(e) > 0 - n, active ants will be in Nest 1 after an expected constant number of
rounds, and by Proposition 2, there will be no more ants performing backward transports from Nest 1 to
Nest 0 after an expected O(logn) rounds. After that, the expected number of passive ants that are trans-
ported from Nest O to Nest 1 during each round will be Q(py) in both Case 1 and Case 2. After backward
transports cease to happen, we say that a passive ant in Nest 1 is an ant that has ““left” in Lemma 1, and we
can use Lemma 5 to conclude that all passive ants will be in Nest 1 after expected O(logn) rounds. []

Finally, putting Proposition 1 and Proposition 3 passive ants together proves Theorem 2.

5. DISCUSSION AND FUTURE WORK

In our work, we presented and analyzed the running time of a biologically plausible house-hunting
algorithm. We proved a high probability lower bound of Q(logn) rounds in Theorem 1, which directly
implies an expected lower bound of Q(log ) rounds. We also proved an expected upper bound of O(log )
rounds in Theorem 2 for single-nest emigrations, given that the quorum threshold falls within a certain
range.

In particular, without the lower bound on the quorum threshold, we would not be able to show Pro-
position 2, and the emigration progress may be delayed due to backward transports from the superior nest to
the inferior nest. There is a lot of work in the biology community studying the role that the quorum
threshold plays in the house-hunting process; as we see with our result, mathematical analyses such as ours
can provide possible explanations for why ant colonies have evolved to use quorum sensing to coordinate
behaviors and how ants choose a quorum threshold.

The rest of this section discusses future work. It would be interesting to extend Theorem 2 to the general
multinest setting to understand how competing nests in the environment affect expected running time; it
would also be interesting to derive a corresponding high-probability upper bound on running time. The
condition required by Theorem 2 can be approximated as g, —qo > Zi, a lower bound on the difference in
quality between the two nests in order for efficient convergence to be guaranteed. It would be interesting for
this prediction about the effect of nest qualities on ant colony house-hunting to be tested in an experiment
with real ants. Furthermore, all of our results are asymptotic; computer simulations or biological experi-
ments can give us more information about the hidden constants in the asymptotic notations.

For the sake of simplicity and for our analysis, we made many simplifications to the model from Zhao
et al. (2021), on which our algorithm is based. Although our model consists of fewer states in the state
transition diagram than the model in Zhao et al. (2021), our analysis is robust to changes to the state
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transition diagram, as long as all of the transition probabilities can be bounded by constants independent of
the number of ants and the ways that ants change location are unaffected.

The other key difference is that in the model from Zhao et al. (2021), each ant has more internal variables
(in addition to the state and location of the ant, which our model uses). For example, the home nest,
candidate nest, and previous candidate nest are also stored for each ant. Because of this, the rules for
location changes in the model in Zhao et al. (2021) are also more fine-grained, making analysis more
complicated. It would be interesting to analyze a house-hunting algorithm that is more similar to the one
given in Zhao et al. (2021) as the algorithm in Zhao et al. (2021) has been shown to be biologically
plausible by comparison with biological data (Pratt et al., 2005).

In our model, recruitments via tandem runs can only happen from inferior nests to superior nests, and the
OHN drops out of competition once the fraction of active ants in that nest drops below the quorum
threshold. One potential direction for future research is to analyze our house-hunting algorithm with the
modifications that the direction of tandem runs is unrestricted and the OHN never drops out of competition.
These two modifications would make the algorithm more general.

See Ghaffari et al. (2015) for other possible extensions to the algorithm that may be included, potentially
at the expense of the runtime or simplicity of the algorithm. Some potential extensions include making the
algorithm more fault tolerant and relaxing the synchronous round assumption.
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