
From Sketching to Natural Language: Expressive Visual
Querying for Accelerating Insight

Tarique Siddiqui
Microsoft Research

tasidd@microsoft.com

Paul Luh
University of Illinois (UIUC)

luh2@illinois.edu

Zesheng Wang
University of Illinois (UIUC)
zwang180@illinois.edu

Karrie Karahalios
University of Illinois (UIUC)
kkarahal@illinois.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Data visualization is the primary means by which data analysts ex-
plore patterns, trends, and insights in their data. Unfortunately, ex-
isting visual analytics tools offer limited expressiveness and scal-
ability when it comes to searching for visualizations over large
datasets, making visual data exploration labor-intensive and time-
consuming. We first discuss our prior work on Zenvisage that
helps accelerate exploratory data analysis via an interactive inter-
face and an expressive visualization query language, but offers lim-
ited flexibility when the pattern of interest is under-specified and
approximate. Motivated from our findings from Zenvisage, we
develop ShapeSearch, an efficient and flexible pattern-searching
tool that enables the search for desired patterns via multiple mech-
anisms: sketch, natural-language, and visual regular expressions.
ShapeSearch leverages a novel shape querying algebra that can ex-
press a large class of shape queries and supports query-aware and
perceptually-aware optimizations to execute shape queries within
interactive response times. To further improve the usability and
performance of both Zenvisage and ShapeSearch, we discuss a
number of open research problems.

1. INTRODUCTION
With the pressing need to derive value from data, domain ex-

perts, spanning virtually all sectors of society, spend considerable
time exploring data to identify patterns and trends. These domain
experts often have limited understanding of programming and hence
rely heavily on visual analytic tools such as Excel and Tableau to
understand their data. The state of the art for domain experts is to
load their data into a visualization tool, and repeatedly generate vi-
sualizations until the desired patterns or insights are identified. Un-
fortunately, this repeated process of manual examination to scour
for desired insights becomes painful, tedious, and time-consuming
as the size and complexity of datasets increase. Even on moderately
sized datasets, a domain scientist may need to examine as many as
tens of thousands of visualizations, all to test a single hypothesis, a
severe impediment to data exploration.

We characterize this problem of visualization search using ex-
amples from genomic data analysis.
Motivating Example. Genomic researchers often study genes dur-
ing clinical trials, e.g., how genes affect clinical trial outcomes,
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Figure 1: Two Facets of the Visualization Search Problem

how the behavior of genes get affected on specific medications, etc.
As an example, given a dataset consisting of clinical trial outcomes
(positive vs. negative), researchers often want to find genes that
can visually explain the differences in these outcomes. To do so,
current tools require the researchers to manually generate tens of
thousands of scatter plots—with the x- and y- axes each referring to
a gene, and each outcome depicted as a point in the scatterplot—to
determine whether the outcomes can be clearly distinguished in the
scatter plot.

Similarly, researchers study changes in gene expressions while
investigating the impact of drugs on disease treatment. For do-
ing so, they often explore trend line visualizations, one correspond-
ing to each gene, with the x-axis as days, and the y-axis as the
expression values. For example, when influenced by an external
factor, a gene can get induced (up-regulated), or repressed (down-
regulated), or can have both induced or repressed pattern within
a certain time window. Based on their domain understanding, re-
searchers first hypothesize the expected change in expression that
an affected gene should depict. They, then, generate thousands of
visualizations, one for each gene, and manually inspect them for
the hypothesized patterns.
In both of the above scenarios, the common theme is the manual ex-
amination of a large number of generated visualizations for a spe-
cific visual pattern. As depicted in Figure 1, there are two facets to
this visualization search problem. First, it is challenging for users
to specify the search space of visualizations they are interested in,
which forces them to manually generate a large collection of visu-
alizations. The space of visualizations is determined by the num-
ber of possible attributes for X and Y axes, aggregation functions
and possible subsets of data (denoted by symbol Z in Figure 1a).
This space grows exponentially as the size and number of attributes
in the data increases. The second facet deals with visualization
matching. Given a specific pattern of interest, users are typically
interested in a subset of visualizations that closely match this pat-
tern. Unfortunately, existing visualization tools are not expressive
enough to capture either of the two facets.

Our first attempt to address these challenges resulted in a visual
data exploration system, Zenvisage [11,23,24]. Zenvisage takes as
input a high level specification of what the user wants and automat-
ically identifies the relevant visualizations. It supports an interac-
tive interface that allows users to quickly search for simple patterns
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via sketching. For expressing more complex search enumeration
and visualization matching, Zenvisage supports ZQL—an expres-
sive visualization exploration language that lets users operate over
a collection of visualizations using a core set of primitives (e.g.,
comparison, filtering, sorting) based on visual patterns.

While Zenvisage is an useful first step in solving the visualiza-
tion search problem, it only supports standard distance measures
such as Euclidean distance for matching visualizations, thereby
lacking flexibility in terms of how a visualization is matched. For
instance, it is unable to support search when the desired shape is
under-specified or approximate, e.g., finding products whose sales
is decreasing over some 3 month window, without specifying when,
or those whose sales has many increasing and decreasing portions,
without specifying when these portions occur, their magnitude or
their width.

Thus, to support such flexible querying mechanisms, we devel-
oped ShapeSearch [25, 26], a pattern querying system that sup-
ports multiple mechanisms for helping users express and search
for desired visual patterns. ShapeSearch incorporates an expres-
sive shape query algebra consisting of shape-based primitives and
operators, for expressing a large variety of patterns in trendlines.
We developed this algebra after discussions with domain experts,
including those from astronomy and genomics, as well as studying
a large corpus of pattern queries collected via Mechanical Turk.
ShapeSearch supports multiple specification mechanisms that

are internally translated to a shape query algebra representation:
ShapeSearch supports a natural language interface, coupled with
a sophisticated parser and translator for translating them into the al-
gebra. ShapeSearch also supports a sketching interface for simpler
patterns, and returns visualizations that precisely match the drawn
trends. To support more complex needs, the system provides a vi-
sual regular expression language for issuing queries that cannot be
easily expressed via natural language or sketching. The three in-
terfaces can be used simultaneously and interchangeably, as user
needs and pattern complexities evolve.

Finally, for ensuring interactive response times on ad-hoc queries,
ShapeSearch leverages a pattern-matching engine that relies on
minimal pre-processing or indexing. Directly generating and pro-
cessing a large collection of visualizations, where each visualiza-
tion has thousands of values, can lead to a long response time. In-
stead, ShapeSearch uses perceptually-aware pattern scoring mech-
anisms and query-aware optimizations—that help prune a large
number of visualizations and/or parts of visualizations, for effec-
tive and efficient pattern matching.
Outline. The rest of our paper is organized as follows. We first
discuss our experiences from our prior work on Zenvisage that
motivated us to develop ShapeSearch, describing a simple inter-
active interface and ZQL (Section 2). We then give an overview of
ShapeSearch, discussing how it addresses the limitations of Zen-
visage (Section 3). Next, we dive into the details of shape algebra
that makes the core of ShapeSearch (Section 4). We then describe
efficient algorithms for executing shape queries (Section 5). We
discuss how we support natural language queries in ShapeSearch
(Section 6). In the end, we discuss future directions to further im-
prove the usability and performance of both Zenvisage and Shape-
Search (Section 7).

2. EXPERIENCES FROM ZENVISAGE
Zenvisage is a visual analytics system that supports an interac-

tive interface for searching for visualization with simple patterns,
along with an expressive query language for more complex queries.
We briefly discuss each of these modes and then describe the find-
ings from our user evaluation.

2.1 Interactive Search Interface
Figure 2 shows the interactive search interface of Zenvisage loaded

with a real estate dataset.
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31	

Figure 2: Zenvisage interactive visual query interface

Attribute Selection. The first step is attribute selection (Box 1).
Here the user can specify the desired X axis attribute, and the de-
sired Y axis attribute for the visualization(s) that the user is inter-
ested in. In this case, the user has specified the X axis as quarters
(in other words, time), and the Y axis as the real-estate sold price.
Additionally, the user specifies the category: this is a variable in-
dexing the space of candidate visualizations the user is operating
over. Here, the selected category is “metro”—indicating a metro
area or township. We depicted the category as “Z” in Figure 1a.
Summarization of Typical and Outlier Trends. As soon as the
user selects the X, Y and category, immediately, Zenvisage popu-
lates Box 2 with typical or representative trends across categories,
and outliers. In this case, there are three typical trends that were
found across different metros (i.e., categories): one corresponding
to a spike in the middle (Panama City), one to a gradual increasing
trend (San Jose), and one to a trend that increased and then de-
creased (Reno)—most of the other trends were found to be similar
to one of these three. The outlier visualizations (Pittsburgh, Peoria,
Cedar Rapids) have a large number of seemingly random spikes.
Drawing or Drag-and-Drop Canvas. Then, in Box 3, the editable
canvas, the user can either draw a shape that they are looking for, or
alternatively drag and drop one of the displayed visualizations into
the canvas. In this manner, the user indicates that they would like to
see a similarity search starting from the shape or pattern that they
have drawn or dragged onto the canvas. The user is also free to edit
the drawn pattern. In this figure, the user has drawn a trend which
is gradually increasing up, then gradually decreasing after that.
Similarity Search Results. As soon as the user completes an in-
teraction in Box 3, Box 4 is populated with results corresponding
to visualizations (on varying the category) that are most similar to
the trend in Box 3, ordered by similarity. The system allows users
to choose between three different similarity metrics. Currently, the
three metrics Zenvisage provides are Euclidean Distance, DTW,
and Segmentation [24].

Overall, this interactive search interface satisfies simple pattern
search needs via sketching and drag-and drop, and provides context
via representative and outlier patterns. However, it offers limited
expressiveness when it comes to more complex data exploration
needs. For instance, it is difficult to search for visualizations across
a wide range of X and Y attributes (recall that before sketching,
we need to set the X and Y axis to specific attributes), or compare
two visualizations without using the drawing canvas (e.g., finding
2 products that similar revenue and profit trends over years). Fur-
thermore, one cannot specify multi-step queries involving search
for multiple patterns simultaneously, e.g., find products with in-
creasing sales trend in Europe but decreasing sales trend in the US.
For supporting these more complex needs, we introduced a second
mode, called ZQL, short for Zenvisage Query Language, that users
can specify in Box 5 in Figure 4.

2.2 ZQL: AVisualization Querying Language
ZQL is a high level language that automates the manual visual

data exploration process by allowing users to specify their desired

52 SIGMOD Record, March 2021 (Vol. 50, No. 1)



Name X Y Z Process
f1 year soldprice z1 <– ‘state’.‘*’
f2 year soldpricepersqft z1 z2 <– argmaxz1[k = 1]D( f 1, f 2)

*f3 year {soldprice, soldpricepersqft} z2

Table 1: A ZQL query retrieving visualizations for a state where the soldprice over year trends are most dissimilar to the soldpricepersqft
trend.

Name X Y Z Process
f1 x1 <– * y1 <– * ‘state’.‘CA’
f2 x1 y1 ‘state’.‘NY’ x2,y2 <– argmaxx1,y1[k = 1]D( f 1, f 2)

*f3 x2 y2 ‘state’.{‘NY’, ’CA’}

Table 2: A ZQL query retrieving two different visualizations (among different combinations of x and y) for states of CA and NY that are the
most dissimilar.

visualization objective in a few lines. Instead of providing the low-
level data retrieval and manipulation operations, users operate at the
level of sets of visualizations, and compare, sort, filter, and trans-
form visualizations as well as attributes—eventually visualized on
either the X or Y axis, or used to sub-select the set of data that is
visualized.

We describe the capabilities of ShapeQuery via two examples
(depicted via Table 1 and Table 2). Consider the first example
where we want to find the states where the soldprice trend is most
similar to the soldpricepersqft (i.e., sold price per square foot) trend.
Table 1 depicts a 3-line ZQL query for this task. We first compose
two collections of visualizations. The first row composes the first
collection with X = year, Y = avg(soldprice), and Z = state.*, con-
sisting of one visualization for each possible state. The Z column
corresponds to the Category header in the previous section, indicat-
ing the space of visualizations over which the user is operating—in
this case, the Z column is fairly simple, there is a single visualiza-
tion, corresponding to each state. Similarly, the second row com-
poses the second collection with X and Z column stay similar and
Y is set to avg(soldpricepersqft).

Once we have composed the two visualization collections (re-
ferred via f1 and f2),the Process column is used to compare, sort,
and filter the visualizations between the collections. In this exam-
ple, we iterate the visualizations for each state (notice the variable
z1) in f1 and f2 and compare them using a functional primitive
D, computing distance, via D(f1, f2). Then, argmin is a sort-filter
primitive that sorts the states based on distance scores and selects
the top 1 state with minimum scores. Finally, in row 3, we output
the overall sales over year visualizations for the selected products
as bar-charts. The * in *f3 indicates that these visualizations are to
be output to the user.

As another example, say we are interested in finding a pair of
X and Y axes where the visualizations for two specific states ‘NY’
and ‘CA’ differ the most. For doing this, we write a ZQL query de-
picted in Table 2. In the first line, we fetch all visualizations for the
states ‘NY’ that can be formed by having different combinations of
X and Y axes. Similarly in the second row, we retrieve all possible
visualizations for the product ‘stapler’. In the process column, we
iterate over the possible pairs of X and Y axes values, compare the
corresponding visualizations in f1 and f2 and finally select the pair
of X and Y axis values where the two products differ the most. In
the last two rows, we output these visualizations.

Overall, ZQL can capture a wide range of visual exploration
queries, including drill-downs and filtering based on specific pat-
terns. We formally describe the expressive power of ZQL using a
visual exploration algebra in [23].

2.3 Takeaways from User Evaluation
To understand the utility of Zenvisage, we conducted user stud-

ies with both novice and experienced data analysts [23], as well as
case-studies with collaborating researchers from domains such as
genomics, astronomy, and battery science [11].

Our findings show that Zenvisage enables faster and more ac-
curate exploration compared to existing visualization tools such as
Tableau, which require considerable manual exploration for find-

ing visualizations with specific patterns. Users who had worked
with MATLAB, Python, and R said that ZQL can lead to faster
initial exploration of data without requiring to write a lot of code.
Those having experience with SQL found ZQL a lot less compli-
cated, less verbose and faster when it comes to comparing subsets
of data [23]. Similarly, our collaborating researchers have used
Zenvisage for various findings, including the fact that a dip in a
light curve was caused by malfunctioning equipment (for astron-
omy), the fact that a relationship between two specific physical
properties of electrolytes was independent of a third one (for bat-
tery science), and for reproducing of characteristic gene expression
profiles from a recent paper (for genetics) [11].

While Zenvisage offers a promising first step to the problem of
painful manual exploration of visualizations, the underlying chal-
lenge of visualization search is far from solved. We discovered
two main challenges. One pertains to the usability of ZQL. In or-
der to leverage ZQL, domain experts need to learn and switch to
a new querying language, a major hindrance to its broader adop-
tion. Domain experts with prior experience with computational
notebooks often expressed a need for transitioning between writing
code and using ZQL abstractions. Additionally, instead of writing
their queries in one step, users often intended to construct them in
an incremental manner using prior queries as context. In Section
7, we discuss these issues and potential solutions in more detail,
highlighting another system LUX [1] from Lee et al. that partially
addresses these issues.

The second challenge with Zenvisage deals with how visualiza-
tions are matched. For the rest of the paper, we focus on this chal-
lenge and present a new system ShapeSearch to address it.

2.3.1 The Problem of Flexible Shape Matching
The sketch-based interface in Zenvisage as well as other simi-

lar visualization searching tools [7, 13, 27] offer limited flexibility
in terms of how a visualization is matched. For instance, visual-
ization search often involves pattern matching where the desired
pattern of interest is under-specified and approximate, e.g., find-
ing stocks whose prices are decreasing for some time, followed by
a sharp rise, with the position and intensity of movements being
left unspecified, or when the desired shape is complex, e.g., finding
gene expression profiles where there is an unspecified number of
peaks and valleys followed by a flattening out. We highlight the
key characteristics of such pattern matching tasks below.

Fuzzy Matching. Domain experts (i) typically search for patterns
that are approximate, and are often not interested in the specific de-
tails or local fluctuations as much as the overall shape, and (ii) they
often do not specify or even know the exact location of the occur-
rence of patterns. For example, biologists routinely look for struc-
tural changes in gene expression, e.g., rising and falling at different
times (Figure 3a), characterizing internal biological processes such
as the cell cycle or circadian rhythms, or external perturbation, such
as the influence of a drug or presence of a disease.

Searching Multiple Simple Patterns. We notice that domain ex-
perts often describe complex patterns using a combination of mul-
tiple simple ones. Each individual pattern is typically described
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Figure 3: Shapes characterizing real world phenomena

using words such as "increasing", "stable", "falling", that are easy
to state in natural language but hard to specify using existing query
languages. Moreover, pattern matching tasks often go beyond find-
ing a sequence of patterns, requiring arbitrary combinations, e.g.,
disjunction, conjunction or quantification, with varying location or
width constraints. Examples include finding stocks with at least 2
peaks within a span of 6 months, e.g., the so-called "double/triple
top" patterns that indicate future downtrends [2], or finding cities
where the temperature rises from November to January and falls
during May to July such as Sydney.
Ad-hoc and Interactive Querying. Pattern-based queries are of-
ten defined on-the-fly during analysis, based on other patterns ob-
served. For instance, biologists often search for a pattern in a
group of genes similar to a pattern recently discovered in another
group [11]. Similarly, astronomers monitor the shape of the lumi-
nosity trends of stars over time to search for and characterize new
planetary objects (Figure 3c). For example, a dip in brightness of-
ten indicates a planetary object passing between the star and the
telescope.

To address these issues, we developed ShapeSearch, described
next.

3. OVERVIEW OF SHAPESEARCH
ShapeSearch provides powerful yet flexible mechanisms for users
to search for trendline visualizations with a desired shape. In this
section, we first present an overview of ShapeSearch along with
user experience.
ShapeSearch supports an interactive interface for composing sha-

pe queries. Figure 4 depicts this interface, with an example query
on genomics data discussed in the introduction. Here, the user is in-
terested in searching for genes that get suppressed due to the influ-
ence of a drug, depicted by a specific shape in their gene expression—
first rising, then going down, and finally rising again—with three
patterns: up, down, and up, in a sequence. To search for this shape,
the user first loads the dataset [6]) via form-based options on the
left (Figure 4 Box 1), and then selects the space of visualizations to
explore by setting the x axis as time, the y axis as expression values,
and the category as gene. Each value of the category attribute re-
sults in a candidate visualization with the given x and y axis. Thus,
the category attribute defines the space of visualizations over which
we match the shape. ShapeSearch supports three mechanisms for
shape specification—natural language, regular expressions (regex
for short), and sketching on a canvas:

Sketching on Canvas. By drawing the desired shape as a sketch
on the canvas (Figure 4 Box 2a), the user can search for visual-
izations that are precisely similar (using a distance measure such
as Euclidean distance or Dynamic Time Warping [18]). As soon
as the user finishes sketching, ShapeSearch outputs visualizations
that are similar to the drawn sketch in the results panel (Figure 4
Box 4).

Natural Language (NL). For searching for visualizations that ap-
proximately match patterns, users can use natural language. For
instance, as in Figure 4 Box 2b, the desired shape in the aforemen-
tioned genomics example can be expressed as “show me genes that
are rising, then going down, and then increasing”. Similarly, scien-
tists analyzing cosmological data can easily search for supernovae
(bright stellar explosions) using “find objects with a sharp peak in
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3
1

2b

2c

4

Attribute Selection

Sketch-based Querying

Natural language-based Querying

Regular expression-based Querying

Search Results

Correction Panel

ShapeSearch Components Overview

Figure 4: ShapeSearch Interface, consisting of six components. 1) Data
upload, attribute selection, and applying filter constraints 2) Query speci-
fication: 2a) Sketching canvas 2b) Natural language query interface, and
2c) Regular expression interface, 3) Correction panel, and 4) Results panel

luminosity”. We describe in Siddiqui et al. [26] how ShapeSearch
translates natural language queries to a structured internal represen-
tation.

Regular Expression (regex). For queries that involve complex
combinations of patterns that are difficult to express using natu-
ral language or sketch, the user can issue a regular expression-like
query that directly maps to the structured internal representation,
consisting of ShapeSearch primitives and operations, described in
detail in Section 4.

During exploration, users can choose specification mechanisms
interchangeably based on the complexity of the query. For both
NL as well as regex, ShapeSearch additionally supports an auto-
complete functionality to guide users towards their target query. We
use the term user query to refer to the submitted query using any of
the specification mechanisms.

The ShapeSearch back-end parses and translates the user query
into a ShapeQuery, a structured internal representation of the query
consisting of operators and primitives supported in our algebra (Sec-
tion 4). The back-end supports an ambiguity resolver that uses
a set of rules for automatically resolving syntactic and semantic
ambiguities, as well as forwards the parsed query to the user for
further corrections and validation (Figure 4 Box 3). The validated
query is finally optimized and executed by the execution engine
(Section 4.3), and the top visualizations that best match the Shape-
Query are presented to the user in the results panel (Figure 4 Box
4). Next, we discuss a ShapeQuery algebra that makes the core of
ShapeSearch.

4. SHAPE ALGEBRA
ShapeQueries help express a large variety of patterns over trend-

lines with a minimal set of primitives and operators. A Shape-
Query represents a shape as a combination of multiple simple pat-
terns. A simple pattern can either be precise with specific loca-
tion constraints, e.g., matching y = x between x = 2 to x = 6, or
fuzzy, e.g., roughly increasing, where the notion of the pattern
is approximate and its location unspecified. Each simple pattern
along with its precise or imprecise constraints is called a Shape-
Segment. Complex shapes, e.g., rising and then falling, are formed
by combining multiple ShapeSegments using one or more opera-
tors. One can search for multiple patterns in a sequence (concat,⊗)
or matching the same sub-region of the trendline (and, �), or one
of many patterns matching a sub-region (or, ⊕), described later.

As an example,“rising from x=2 to x=5 and then falling” can be
translated into a ShapeQuery [x.s=2,x.e=5, p=up]⊗[p=down]
consisting of two ShapeSegments separated by a ⊗ operator. The
first ShapeSegment captures “rising from x = 2 to x = 5”; the sec-
ond expresses a “falling" pattern. Since the second must “follow”
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Table 3: Primitives and Operators in ShapeQuery
Symbol Name Type
x.s START X VALUE Location Sub-Primitive
y.s START Y VALUE Location Sub-Primitive
x.e END X VALUE Location Sub-Primitive
y.e END Y VALUE Location Sub-Primitive
v SKETCH Location Sub-Primitive
. ITERATOR Location Sub-Primitive
p PATTERN Primitive
$ POSITION Pattern Sub-Primitive
m MODIFIER Primitive
> MORE Modifier value
>2 ATLEAST 2X Modifier value
= SIMILAR Modifier value
⊗ CONCAT Operator
� AND Operator
⊕ OR Operator
! OPPOSITE Operator

the first, the two ShapeSegments are combined using the CON-
CAT operator, denoted by⊗. We now describe the shape primitives
and operators that constitute the ShapeQuery algebra. Table 3 lists
these primitives and operators.

4.1 Shape Primitives and Operators
A ShapeSegment is described using two high level primitives:

LOCATION andPATTERN. The LOCATION values can be skipped
in order to match the PATTERN anywhere in the trendline. Simi-
larly, users can input the exact trendline to match, or the endpoints
of the ShapeSegments to match without specifying thePATTERN.
Specifying LOCATION. LOCATION defines the endpoints of the
sub-region of the trendline between which a pattern is matched:
starting X/Y coordinate (x.s/y.s), ending X/Y coordinate (x.e/y.e).
For example, [x.s=2,x.e=10, y.s=10, y.e=100] is a simple Shape-
Query to find trendlines whose trend between x=2 to x=10 is sim-
ilar to the line segment from (2,10) to (10,100). Users can also
draw a sketch to find trendlines similar to the sketch, a functional-
ity supported in other tools alluded to in the introduction [7,14,23].
ShapeSearch translates the pixel values of the user-drawn sketch
to the domain values of the X and Y attributes, and adds the trans-
formed vector of (x,y) values as a vector v in the ShapeQuery.
As an example, the ShapeQuery [v=(2:10,3:14,...,10:100)] finds
trendlines that have precisely similar values to v using some dis-
tance measure, e.g., Euclidean distance, or dynamic time warp-
ing [18].
Specifying PATTERN. PATTERN defines a trend or a seman-
tic feature in a sub-region of the trendline. A number of basic
semantic patterns, commonly used for characterizing trendlines,
are supported, such as up, down, flat, or the slope (θ ) in degrees.
For example [p=up] finds trendlines that are increasing, [p=45]
finds trendlines that are increasing with a slope of about 45◦, and
[x.s=2,x.e=10, p=up] finds trendlines that are increasing from
x = 2 to 10. Finally, one can use p=* to match any pattern and
p=empty to ensure that there are no points over the sub-region.
Combining PATTERNs. ShapeQuery supports three operators to
combine ShapeSegments:
• CONCAT (⊗) specifies a sequence of two or more ShapeSeg-
ments. For example, using [p=up]⊗[p=down] one can search
for genes that are first rising, and then falling. Note that ⊗ is one
of the most frequently used operations, and we sometimes omit
⊗ between ShapeSegments, e.g, [p=up][p =down], to make it
succinct to describe.

• AND (�) simultaneously matches multiple patterns in the same
sub-region of the trendline. Unlike CONCAT, all of the patterns
must be present in the same sub-region. For example, one can
look for genes whose expression values rise twice but do not fall
more than once within the same sub-region.

• OR (⊕) searches for one among many patterns in the same sub-
region of the trendline, picking the one that matches the sub-
region best. For example, one can search for genes whose ex-
pressions are either up- or down-regulated.

Table 4: Pattern Scores
P Score

up 2·tan−1(slope)
π

down − 2·tan−1(slope)
π

flat (1.0−‖ 4·tan−1(slope)
π ‖)

θ = x (1.0−‖ 2·tan−1(slope−x))
(π−‖tan−1(x‖) ‖)

∗ 1
empty -1
v L2 norm (configurable)

Table 5: Operator Scores
O Score
⊗ ∑k

i=1 scorei/k
� min(score1, ...,scorek)
⊕ max(score1, ...,scorek)

Comparing Patterns. In some cases, one may want to compare
the pattern in a ShapeSegment with the preceding or succeeding
ShapeSegments. To support such use cases, ShapeSearch (i) al-
lows a ShapeSegment to refer to the previous or the next Shape-
Segment using $+ or $− respectively, and (ii) compare patterns
between the current and referred ShapeSegment using operations
>, <, or =. For example, astronomers can issue a ShapeQuery
[p=up]⊗[p < $−.p] with x=time and y=luminosity (brightness) to
search for celestial objects that were initially moving rapidly to-
wards earth, but after some point either slowed down or started
moving away. [p < $−.p] ensures that the slope of brightness over
time is less than that in the previous sub-region [p=up].

Expressing Complex Patterns. The aforementioned basic primi-
tives and operators are powerful enough to express more complex
ShapeSearch use-cases. We discuss three such complex patterns
below, along with shortcuts for their easy specification.

1. Searching shapes of specific width. In some cases, users
want to find specific shapes irrespective of their start location, e.g.,
searching for cities with the steepest rise in temperature over a
width of 3 months. To express such queries, ShapeSearch supports
the ITERATOR (.), e.g., [x.s=.,x.e=x.s+3, p=up] that iterates
over all points in the trendline, setting each point as the start x po-
sition, with the x end position set to 3 units ahead. Internally, for
a trendline of length n, this query can be rewritten as an OR oper-
ation over (n− 3+ 1) ShapeSegments, where, for the ith Shape-
Segment, x.s=i and x.e=i+3.

2. Quantifiers. One can search for trendlines where a pattern
occurs a specific number of times using quantifiers, denoted by q.
For example, [p=up,q={1,2}] can be used to search for trendlines
where there is an increasing pattern at least once and at most twice.
Quantifiers can be internally rewritten using an OR of one or more
CONCAT operations. For example, the above query is rewritten as
([p=*] ⊗[p=up] ⊗[p=*])⊕([p=*] ⊗[p=up]⊗[p=*] ⊗[p=up]
⊗[p=*]).

3. Nesting. A combination of patterns can be constrained to
be within a specific sub-region by specifying them as a value of
the PATTERN primitive. For example, to search for stocks that
increased anytime between February to October, we can use nesting
as follows: [x.s=2,x.e=10, p=([p=*] [p=up][p=*])]. This can
be rewritten using CONCAT operations as follows: [x.s=2,p=*]
⊗[p=up]⊗[p=*]⊗[x.s=10,p=*].

4.2 Scoring
A ShapeQuery Q operates on one trendline, Vi, at a time, and

returns a real number, called score, between−1 to +1. The Shape-
QueryQ operates on Vi with the help of ShapeSegments (S1,S2,. . . ,
Sn) and operators (O1,O2, . . . , Om). Each ShapeSegment Si op-
erates on V p,q

i , a sub-region of Vi starting at p = x.s and ending
at q = x.e and returns a scorei ∈ [−1,1] using scoring functions we
describe subsequently. One or more ShapeSegments are combined
using operators such as ⊗, �, ⊕. Formally, an operator Oi takes as
input the scores score1,score2, . . . ,scoren from its n input Shape-
Segments and outputs another scorei using scoring functions that
capture the behavior of the operators.

For both efficiency and effectiveness, ShapeSearch approximates
each sub-region with a line, using the slope to quantify how closely

SIGMOD Record, March 2021 (Vol. 50, No. 1) 55



it captures any given ShapeSegment. As depicted in Table 4,
ShapeSearch uses different scoring functions for each pattern prim-
itive that transforms the slope to a value in [−1,1] using a tan−1

function. For example, for an up pattern, the function returns a
score between [0,1] for a trendline with a slope from 0◦ to 90◦, a
score of [−1,0] for a slope of less than 0◦ (opposite of up).

For execution, ShapeSearch takes the entire trendline, the Ab-
stract Tree Representation (AST) of ShapeQuery, and the list of
scoring functions ScrFunc as in Tables 4 and 5 as inputs. If the root
node of the ShapeQuery tree is a ShapeSegment, ShapeSearch di-
rectly computes the score of ShapeSegment on the specified part
of the trendline. If the root node is � or ⊕, ShapeSearch invokes
each of the operands (i.e., child sub-trees) to compute their scores
on the sub-region independently, combining the scores as per op-
erator’s functions. However, if the root node is a CONCAT with
k operands, i.e., child sub-trees, ShapeSearch segments L into all
possible k sub-regions: L1,L2, ...,Lk and then, for each segmenta-
tion, invokes the ith operand on ith segment. Finally, the maximum
score across all segmentations is output.

4.3 Executing Fuzzy ShapeQueries
A common subclass of ShapeQueries are fuzzy ShapeQueries,

consisting of at least one ShapeSegment with missing or multi-
ple possible values for x.s or x.e. Thus, for fuzzy ShapeQueries,
we try all possible values of p and q, selecting the sub-region that
leads to the best score. This becomes prohibitively expensive as the
number of points in the trendline increases. For a CONCAT with
k operands, the exhaustive approach creates n(k−1) segmentations,
where n is the number of points in the trendline.
The Dynamic Programming Algorithm. We can show [26] that
for the CONCAT operation, the scoring of the jth operand on jth
sub-region does not depend on the scoring of the first j−1 operands
on the first j− 1 sub-regions. We use this idea to develop a faster
dynamic programming algorithm (DP) for scoring CONCAT op-
erations over ShapeSegments. Formally, let OPT (1, t,(1 : j−1))
be the best score corresponding to the optimal segmentation over
the sub-region between x = 1 to x = t for the first j− 1 operands,
and SC(t + 1, i, j) be the score of the jth operand over the sub-
region between x = t+1 and x = i. Then, the optimal segmentation
OPT (1, i,(1 : j)) for the first j operands over x = 1 and x = i can
be computed using the following recursion:
OPT (1, i,(1, j)) = MAX

t
{ ( j−1)×OPT (1,t,(1: j−1))+SC(t+1,i, j))

j }
Unfortunately, even though the DP algorithm is orders of magni-

tude faster than the exhaustive approach, for trendlines with large
number of points, even a ShapeQuery with a single CONCAT op-
eration can be slow, because of its quadratic runtime. We, next,
discuss optimizations to further decrease the runtime of CONCAT
operation on ShapeSegments.

4.3.1 A Pattern-Aware Bottom-up Approach
While the DP-based optimal approach scores all possible sub-

regions for each operand in the CONCAT operation, a more effi-
cient approach could be to select end points to be those where the
slope (or pattern) changes drastically. We first illustrate our intu-
ition, and then describe an algorithm that performs segmentation in
a pattern-aware manner.
Intuition. As depicted in Figure 5, consider two sub-regions A on
the left and B on the right for the trendline L. Say the trendline
in sub-region A is inverted V-shaped, i.e., increasing until a point
P and then decreasing. Now, for all possible segmentations where
[p=up]’s sub-region lies completely in A, there are the following
possibilities for x.e of [p=up]: 1) [p=up]’s x.e point is before P.
2) [p=up]’s x.e point is after P. 3) [p=up]’s x.e point is at P.

Since [p=down] follows [p=up], we can see that option 1 that
sets [p=up]’s x.e < P is less likely to be optimal as that will lead
to scoring of a part of [p=down] on an increasing trend. Similarly,

A B

P

Option 1 [p=up] [p=down][p=flat]

Option 2 [p=up] [p=down][p=flat]

Option 3 [p=up] [p=down][p=flat]

Figure 5: Pattern-aware selection of LOPs

x.e > P is less optimal as that will lead to scoring of a part of
[p=up] on a decreasing trend. Thus, if we have to (greedily) select
one point in sub-region A for [p=up]’s x.e, P is likely a better
choice. We call such a point as locally optimal point (LOP).
A Bottom-up Algorithm. Based on the above intuition, we de-
velop a much faster algorithm that uses the following assumption
to reduce the number of segmentations.

Assumption 4.1 (Closure). If a point is not locally optimal for any
of the sub-expressions in the CONCAT operation (i.e., a CONCAT
on a sub-sequence of the operands), it cannot be x.s or x.e of a
ShapeSegment in the optimal segmentation.

That is, local optimality leads to global optimality. Because of
this assumption, our proposed algorithm is approximate. However,
our empirical results show that despite this assumption, the accu-
racy of the algorithm is very close to that of DP, while taking orders
of magnitude less time.

At a high level, the algorithm starts by dividing the trendline
into smaller contiguous sub-regions. Next, it selects locally opti-
mal points (LOPs) over small sub-regions, followed by a bottom-up
merging step that uses LOPs over small sub-regions to find LOPs
over larger sub-regions.
Selection of LOPs. We define a point P to be a LOP in a sub-
region A for the sub-expression Si if it is either the x.e of the first
ShapeSegment or x.s of the last ShapeSegment of Si. For in-
stance, in the above example, it is easy to see that a LOP P in
sub-region A is the x.e value of [p=up] in the optimal segmenta-
tion of [p=up]⊗[p=down] in A. Since a CONCAT operation with k
operands can have (k2) sub-sequences, there can be a maximum of
2.k2 LOPs in A.
Merging. Next, we incrementally merge nodes in a bottom-up
fashion to select LOPs over larger sub-regions. For example, in
Figure 6, node 4 depicts the sub-sequences formed by combining
sub-sequences from nodes 1 and 2, and node 5 depicts the sub-
sequences formed by combining sub-sequences from nodes 3 and
4. When multiple sub-sequences in the children nodes generate
the same sub-sequence in the parent node, we select the one with
maximum score after concatenation (i.e, the one with the most op-
timal segmentation), thereby pruning out LOPs corresponding to
non-selected sub-sequences. For example, at node 5, a⊗b can be
computed from 1) a from node 3 and b from node 4, 2) a⊗b from
node 3 and b from node 4, and 3) a from node 3 and a⊗b from
node 4. Among these 3 concatenations, we pick the one that gives
the maximum score. This merging process is repeated at each in-
termediate node. Finally, at the root node, we select the points that
result in the maximum score for the entire sequence of operands.
More details along with the pseudo-code can be found in [4].

Given the closure assumption, we prove in [4] that the merging
process leads to optimal segmentation and that the bottom-up algo-
rithm with k CONCAT operands is optimal with a time complexity
of O(nk4), i.e., linear in the number of points in the trendlines.

5. NATURAL LANGUAGE TRANSLATION
So far, we haven’t described how natural language queries are

parsed into ShapeQueries. We provide a brief overview of the
three key steps involved in parsing, and refer readers to our ex-
tended report [4] for additional details. We use the following natu-
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a a,b,c,d a,b,c,d b,d… … a,b,c,d

a,a⊗b,a⊗c a,b,a⊗b,a⊗c,c⊗d,b⊕c⊗d a,b,a⊗b,a⊗c,c⊗d,(b⊕c⊗d)

a,a⊗b,a⊗c,c⊗d,a⊗(b⊕c⊗d) b,a⊗b,a⊗c,c⊗d,(b⊕c⊗d),a⊗(b⊕c⊗d)

a⊗(b⊕c⊗d)

…

a,b,c,d

5

3 4

1 2

6

2
43

1
6

Figure 6: Bottom-up scoring of ShapeQuery

ral language query collected from MTurk for illustration: “show me
the trendlines that are increasing from 2 to 5 and then decreasing”.
Step 1. Primitives and Operators Recognition. Given a natural
language query, the first step is to map words to their correspond-
ing shape primitives and operators. For example, the above query
is tagged as “show (noise) me (noise) the (noise) trendlines (noise)
that (noise) are (noise) increasing (p) from (noise) 2 (x.s) to (noise)
5 (x.e) and then (⊗) decreasing (p)”. In order to do so, we learn a
linear-chain conditional-random field model (CRF) [10] and train
it on the same 250 natural language queries we collected via Me-
chanical Turk (described in [4]) for understanding query character-
istics. For each word, we use its part-of-speech (POS) tags along
with word-level context as features.
Step 2. Identifying Pattern Value. For each of the words pre-
dicted of type p, e.g., increasing and decreasing in the above query,
we additionally map them to the corresponding semantic pattern
supported in ShapeSearch, e.g., “increasing” is mapped to p=up.
For this mapping, ShapeSearch computes the similarity between
the specified word and synonyms of the supported patterns, first
using edit distance and then using wordnet [19]. The semantic pat-
tern with the highest similarity between any of its synonyms and
the specified word is selected.
Step 3. ShapeQuery Generation and Ambiguity Resolution.
Next, we group primitives and operators into a ShapeQuery, first
grouping all primitives between two operators into a single Shape-
Segment. For the example query, the primitives are grouped as fol-
lows: [increasing (p=up), 2 (x.s), 5 (x.e) ] and then (⊗) [ decreasing
(p=down)]. In some cases, this leads to incorrect grouping of prim-
itives, e.g., two patterns in the same ShapeSegment. There could
further be semantic ambiguity because of wrong entity tagging,
e.g., decreasing (p=up) from 5 (y.s) to 10 (y.e) where x.s and x.e
values are wrongly tagged as y.s and y.e respectively. ShapeSearch
uses rule-based transformations that try to reorder and change the
types of entities to get a correct and meaningful ShapeQuery [26].

The parsed ShapeQuery is sent to the front-end (Box 4 in Figure
4) for users to edit or further refine it if needed. The validated query
is then executed to generate the matching trendlines.

6. FUTURE DIRECTIONS
We now discuss open research directions for improving the us-

ability and performance of both Zenvisage and ShapeSearch.

6.1 Search Enumeration + Shape Matching
In ShapeSearch, users currently need to specify the X and Y

attribute before issuing ShapeQueries. However, in certain sce-
narios, users may not know the X and Y attributes in advance or
may want to search for the same shape over different combinations
of attributes. Additionally, users may want to issue a multi-step
query involving multiple shapes at the same time, finding states
with decreasing listing prices trends but increasing soldprice trends
of houses. To support such complex data exploration needs, we
envision integrating ZQL with ShapeQuery. One simple option is
support ShapeQuery as a functional primitive as part of the Process
column in ZQL. For instance, Table 6 depicts an integrated query

for the above example for finding states with decreasing listing
prices trends but increasing soldprice trends. Combining ZQL and
ShapeQuery also adds to expressiveness and efficiency of ZQL—
functional primitives are currently are treated as black boxes and
thus not optimized in Zenvisage. By adding support for Shape-
Query, Zenvisage can leverage the shape matching algorithms dis-
cussed earlier for efficient processing of visualizations.

6.2 In-Database Support for Fuzzy Matching
ShapeSearch performs shape matching outside relational databa-

ses; consequently as the size of the dataset increases, the data trans-
fer and serialization/deserialization overheads tend to dominate,
resulting in an increase in latency. On the other hand, recogniz-
ing patterns in a sequence of rows in relational databases has been
widely desired but only supported by a few vendors. For instance,
Oracle Database 12c supports a MATCH RECOGNIZE [3] clause
for pattern matching in native SQL. SQL-TS (Simple Query Lan-
guage for Time Series) [21] is another proposal on SQL extensions
for pattern queries. Nevertheless, none of these extensions sup-
port fuzzy matching capabilities, instead they require users to de-
fine the patterns (e.g, up, down) using values of matching columns
—making the specification quite tedious and verbose.

In order to support fuzzy shape queries, we envision develop-
ing new database extensions that take as input a ShapeQuery as
part of the SQL query and leverage shape matching algorithms for
efficiently executing the ShapeQuery within the database kernel.
For instance, the following query depicts potential extensions for
supporting ShapeQuery within the SQL syntax.

SELECT *
FROM Ticker T,
(MATCH BY symbol ON price
USING PATTERN [p=*]⊗p=down]⊗[p=up]⊗[p=*] AS score
ORDER BY score DESC
LIMIT 1) S
WHERE T.symbol = S.symbol

Given a table Ticker, the above query finds a stock symbol (spec-
ified via MATCH BY clause) with closest matching V-shaped trend
on the values of column price (specified via ON clause) and outputs
its corresponding tuples.

6.3 Supporting Context-Aware Search
During exploratory data analysis, users do not always have a pre-

cise pattern query to start with, instead they compose queries as the
exploration evolves. Often, they break their pattern queries into a
sequence of simpler queries that build upon prior ones. Thus, for a
more fluid user-experience, there are interesting avenues for future
work that capture context, suggest next steps, and support incre-
mental composability. One option is to make meaningful query
suggestions by mining query patterns from past search logs and
match them with immediately preceding queries (i.e., the context)
in the same session. Since there can be a large number of patterns,
efficiently searching for prefixes while effectively capturing user’s
intent is an interesting challenge.

For incremental composability, the context of user exploration
can be represented using a state machine consisting of partial queries
as different possible states. The state can then be incrementally up-
dated as new queries arrive. For novice analysts, interactive query-
ing interfaces, similar to systems such as GestureDB [16] and Dat-
aPlay [5] can help make query specification even easier. In addi-
tion, like in Zenvisage, ShapeSearch can be extended to automat-
ically find typical and outliers patterns to help the users get started
quickly.

6.4 Mixing Code and Interaction
To accelerate the process of data exploration, another important

next step is to integrate visualization search abstractions supported
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Name X Y Z Process
f1 year listprice z1 <– ‘state’.* z2 <– arganyz1[p=down]( f 1)
f2 year soldprice z1 z3 <– arganyz1[p=up]( f 2)

*f3 year {listprice, soldprice } z2 && z3

Table 6: Example of a ZQL query using ShapeQuery as a functional primtive within Process column. The query finds states with decreasing
listprice but increasing sold price over trends of houses.

via ZQL and ShapeQuery with existing data science libraries such
as Pandas. This will allow users to seamlessly transition between
writing code (e.g., for data edits, cleaning, and transformation);
getting recommendations via search specifications, and performing
interactions on visualizations—all in one place. As a step in this
direction, LUX [1], a recent Python library, combines partial user-
specifications with best practices from visual data analysis to rec-
ommend interesting visualizations for guiding users towards next
steps. It further displays visualizations as a widget in-situ within a
Jupyter notebook to support easier transitions between code and in-
teraction. While specification in LUX is inspired from ZQL, adding
natural-language or regex-based pattern searching functionalities,
as supported in ShapeQuery, can further enhance the power of such
libraries.

7. RELATEDWORK
Our work draws on prior work in visual querying, as well as

symbolic pattern mining. Visual querying tools [14, 15, 20, 23, 27]
help users search for visualizations with a desired shape by taking
as input a sketch of that shape. Most of these tools perform precise
point-wise matching using measures such as Euclidean distance or
DTW. A few tools such as TimeSearcher [7] let users apply soft or
hard constraints on the x and y range values via boxes or query en-
velopes, but do not support mechanisms for specifying shape primi-
tives beyond location constraints. ShapeSearch introduces a novel
algebra that improves extensibility by acting as a common “sub-
strate” for various input mechanisms, along with an optimization
engine that efficiently matches patterns against a large collection of
trendlines.

Symbolic sequence matching papers approach the problem of
pattern matching by employing offline computation to chunk trend-
lines into fixed length blocks, encoding each block with a symbol
that describes the pattern in that block [8,9,12,17,22]. Since these
work operates on pre-chunked-and-labeled trendlines, the problem
is one of matching regular expressions against string sequences
(one per pre-labeled trendline). Most of these papers only return a
boolean score for whether the pattern matches the string sequence.
Moreover, since the trendlines are pre-labeled and indexed, they
do not support on-the-fly pattern matching where the same trend-
line can change shapes based on filters or aggregation constraints.
ShapeSearch, on the other hand, adopts a more online query-aware
ranking of trendlines without requiring precomputation, and is thus
more suited for ad-hoc data exploration scenarios.

8. CONCLUSION
In this work, we described ShapeSearch, a pattern matching sys-

tem that complements our prior system Zenvisage by providing ex-
pressive and flexible mechanisms for domain experts to effortlessly
and efficiently search for trendline visualizations. We described
the ShapeQuery algebra that forms the core of ShapeSearch, and
helps express a large variety of patterns with a minimal set of prim-
itives and operators. The algebra is backed by a shape matching
engine that enables on-the-fly and scalable pattern matching. Over-
all, together with Zenvisage, ShapeSearch offers a promising first
step towards substantially simplifying and improving the process
of interactive data exploration for novice and expert analysts alike.
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