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Abstract

Low rank tensor approximation is a fundamental tool in modern machine learning and
data science. In this paper, we study the characterization, perturbation analysis, and an
efficient sampling strategy for two primary tensor CUR approximations, namely Chidori
and Fiber CUR. We characterize exact tensor CUR decompositions for low multilinear rank
tensors. We also present theoretical error bounds of the tensor CUR approximations when
(adversarial or Gaussian) noise appears. Moreover, we show that low cost uniform sam-
pling is sufficient for tensor CUR approximations if the tensor has an incoherent structure.
Empirical performance evaluations, with both synthetic and real-world datasets, establish
the speed advantage of the tensor CUR approximations over other state-of-the-art low
multilinear rank tensor approximations.

Keywords: tensor decomposition, low-rank tensor approximation, CUR decomposition,
randomized linear algebra, hyperspectral image compression

1. Introduction

A tensor is a multi-dimensional array of numbers, and is the higher-order generalization of
vectors and matrices; thus tensors can express more complex intrinsic structures of higher-
order data. In various data-rich domains such as computer vision, recommendation systems,
medical imaging, data mining, and multi-class learning consisting of multi-modal and multi-
relational data, tensors have emerged as a powerful paradigm for managing the data deluge.
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Indeed, data is often more naturally represented as a tensor than a vector or matrix; for
instance hyperspectral images result in 3–mode tensors, and color videos can be represented
as 4–mode tensors. The tensor structure of such data can carry with it more information; for
instance, spatial information is kept along the spectral or time slices in these applications.
Thus, tensors are not merely a convenient tool for analysis, but are rather a fundamental
structure exhibited by data in many domains.

As in the matrix setting, but to an even greater extent, an important tool for handling
tensor data efficiently is tensor decomposition, in which the tensor data is represented by a
few succinctly representable components. For example, tensor decompositions are used in
computer vision (Vasilescu and Terzopoulos, 2002; Yan et al., 2006) to enable the extraction
of patterns that generalize well across common modes of variation, whereas in bioinformat-
ics (Yener et al., 2008; Omberg et al., 2009), tensor decomposition has proven useful for
the understanding of cellular states and biological processes. Similar to matrices, tensor de-
compositions can be utilized for compression and low-rank approximation (Mahoney et al.,
2008; Zhang et al., 2015; Du et al., 2016; Li et al., 2021). However, there are a greater
variety of natural low-rank tensor decompositions than for matrices, in part because the
notion of rank for higher order tensors is not unique.

Tensor decompositions have been widely studied both in theory and application for
some time (e.g., (Hitchcock, 1927; Kolda and Bader, 2009; Zare et al., 2018)). Examples of
different tensor decompositions include the CANDECOMP/PARAFAC (CP) decomposition
(Hitchcock, 1927), Tucker decomposition (Tucker, 1966), Hierarchical-Tucker (H-Tucker)
decomposition (Grasedyck, 2010), Tensor Train (TT) decomposition (Oseledets, 2011), and
Tensor Singular Value Decomposition (t-SVD)(Kilmer et al., 2013). However, most current
tensor decomposition schemes require one to first unfold the tensor along a given mode
into a matrix, implement a matrix decomposition method, and then relate the result to a
tensor form via mode multiplication. Such algorithms are matricial in nature, and fail to
properly utilize the tensor structure of the data. Moreover, tensors are often vast in size, so
matrix-based algorithms on tensors often have severe computational complexity, whereas
algorithms that are fundamentally tensorial in nature will have drastically lower complexity.
Let us be concrete here. Suppose a tensor has order n and each dimension is d; most of the
algorithms to compute the CP decomposition are iterative. For example, the ALS algorithm
with line search has a complexity of order O(2nrdn + nr3) (Phan et al., 2013) where r
is the CP–rank. Similarly, if the multilinear rank of the tensor is (r, . . . , r), computing
the HOSVD by computing the compact SVD of the matrices obtained by unfolding the
tensor would result in complexity of order O(rdn). To accelerate both CP and Tucker
decomposition computations, many works have applied different randomized techniques.
For instance, there are several sketching algorithms for CP decompositions (Battaglino
et al., 2018; Song et al., 2019; Erichson et al., 2020; Gittens et al., 2020; Cheng et al.,
2016) based on the sketching techniques for low-rank matrix approximation (Woodruff,
2014), and these techniques have been shown to greatly improve computational efficiency
compared to the original ALS algorithm. For Tucker decomposition, several randomized
algorithms (Ahmadi-Asl et al., 2021; Che et al., 2021) based on random projection have
been developed to accelerate HOSVD and HOOI.

The purpose of this work is to explore tensor-based methods for low-rank tensor decom-
positions. In particular, we present two flexible tensor decompositions inspired by matrix
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CUR decompositions, which utilize small core subtensors to reconstruct the whole. More-
over, our algorithms for forming tensor CUR decompositions do not require unfolding the
tensor into a matrix. The uniform sampling based tensor decompositions we discuss subse-
quently have computational complexity O(r2n log2(d)), which is a dramatic improvement
over those discussed above.

Matrix CUR decompositions (Hamm and Huang, 2020b), which are sometimes called
pseudoskeleton decompositions (Gorĕınov et al., 1995; Chiu and Demanet, 2013), utilize
the fact that any matrix X ∈ Rm×n with rank (X) = r can be perfectly reconstructed
via X = CU †R by choosing submatrices C = X(:, J), R = X(I, :), and U = X(I, J)
such that rank (U) = r. Consequently, CUR decompositions only require some of the
entries of X governed by the selected column and row submatrices to recover the whole.
This observation makes CUR decompositions extremely attractive for large-scale low-rank
matrix approximation problems.

It is natural to consider extending the CUR decomposition to tensors in a way that
fundamentally utilizes the tensor structure. We will see subsequently that there is no
single canonical extension of matrix CUR decompositions to the tensor setting; however,
we propose that a natural tensor CUR decomposition must be one that selects subsets of
each mode, and which is not based on unfolding operations on the tensor.

1.1 Contributions

In this paper, our main contributions can be summarized as follows:

1. We first provide some new characterizations for CUR decompositions for tensors and
show by example that the characterization for tensors is different from that for ma-
trices. In particular, we show that exact CUR decompositions of low multilinear rank
tensors are equivalent to the multilinear rank of the core subtensor chosen being the
same as that of the data tensor.

2. Real data tensors rarely exhibit exactly low-rank structure, but they can be mod-
eled as a low multilinear rank tensor plus noise. We undertake a novel perturbation
analysis for low multilinear rank tensor CUR approximations, and prove error bounds
for the two primary tensor CUR decompositions discussed here. These bounds are
qualitative and are given in terms of submatrices of singular vectors of unfoldings of
the tensor, and represent the first approximation bounds for these decompositions.
We additionally provide some specialized bounds for the case of low multilinear rank
tensors perturbed by random Gaussian noise. Our methods and analysis affirmatively
answer a question of Mahoney et al. (2008) regarding finding tensor CUR decompo-
sitions that preserve multilinear structure of the tensor.

3. When the underlying low multilinear rank tensor has an incoherence property and is
perturbed by noise, we show that uniformly sampling indices along each mode yields
a low multilinear rank approximation to the tensor with good error bounds.

4. We give guarantees on random sampling procedures of the indices for each mode that
ensure that an exact CUR decomposition of a low multilinear rank tensor holds with
high probability.
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5. We illustrate the effectiveness of the various decompositions proposed here on syn-
thetic tensor datasets and real hyperspectral imaging datasets.

1.2 Organization

The rest of the paper is laid out as follows. Section 1.3 contains a comparison of our work
with prior art in both the low-rank tensor approximation and tensor CUR literature. Sec-
tion 2 contains the notations and descriptions of low multilinear rank tensor decompositions
necessary for the subsequent analysis. Section 3 contains the statements of the main results
of the paper, with Section 3.1 containing the characterization theorems for exact tensor
CUR decompositions, Section 3.2 containing the statements of the main approximation
bounds for CUR approximations of arbitrary tensors, and Section 3.3 giving error bounds
for CUR decompositions obtained via randomly sampling indices. Section 4 contains the
proofs of the characterization theorems (Theorems 2 and 3), Section 5 contains proofs of
the approximation bounds, and Section 6 contains proofs related to random sampling of
core subtensors to either achieve an exact decomposition of low multilinear rank tensors or
achieve good approximation of arbitrary tensors. Experiments on synthetic and real hyper-
spectral data are contained in Section 7, and the paper ends with some concluding remarks
and future directions in Section 8.

1.3 Prior Art

CUR decompositions for matrices have a long history; a similar matrix form expressed via
Schur decompositions goes back at least to Penrose (1956); more recently, they were studied
as pseudoskeleton decompositions (Gorĕınov et al., 1995, 1997). Within the randomized
linear algebra, theoretical computer science, and machine learning literature, they have
been studied beginning with the work of Drineas, Kannan, and Mahoney (Drineas et al.,
2006, 2008; Mahoney and Drineas, 2009; Chiu and Demanet, 2013; Sorensen and Embree,
2016; Voronin and Martinsson, 2017). For a more thorough historical discussion, see (Hamm
and Huang, 2020b).

The first extension of CUR decompositions to tensors (Mahoney et al., 2008) involved a
single-mode unfolding of 3–mode tensors. Accuracy of the tensor-CUR decomposition was
transferred from existing guarantees for matrix CUR decompositions, and gave additive
error guarantees (containing a factor of ε‖A‖2F ). Later, Caiafa and Cichocki (2010) proposed
a different variant of tensor CUR that accounts for all modes, which they termed Types 1 and
2 Fiber Sampling Tensor Decompositions. In this work, we dub these with more descriptive
monikers Fiber and Chidori CUR decompositions (Section 3). The decompositions we
discuss later are generalizations of those of Caiafa and Cichoki, as their work considers
tensors with multilinear rank (r, . . . , r) and identically sized index sets (Ii described in
Section 3).

In (Hamm and Huang, 2020b), there are several equivalent characterizations for CUR
decompositions in the matrix case. We find that there are characterizations for CUR de-
compositions in the tensor case (Theorems 2 and 3 here). Interestingly, the tensor charac-
terization has some significant differences from that of matrices (see Example 1).

There are very few approximation bounds for any tensor CUR decompositions. Mahoney
et al. (2008) provide some basic additive error approximation bounds for a tensor CUR
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decomposition made from only taking slices along a single mode. In contrast, the bounds
given in this paper (Theorems 5, 7, and 10) are the first general bounds for both Fiber and
Chidori CUR decompositions which subsample along all modes. Our analysis positively
answers the question of Mahoney et al. by giving sampling methods which are able to truly
account for the multilinear structure of the data tensor in a nontrivial way.

A tensor CUR decomposition based on the t-SVD was explored by Wang et al. (2017),
and the authors give relative error guarantees for a specified oversampling rate along each
mode. Their decomposition is fundamentally different from ours as it uses t-SVD techniques
which use block circulant matrices related to the original data tensor. Consequently, their
decomposition is much more costly than those described here. Additionally, their factor
tensors are typically larger than the constituent parts of the decompositions described here.

For matrices, uniform random sampling is known to provide good CUR approximations
under incoherence assumptions, e.g., (Chiu and Demanet, 2013). Theorem 7 extends this
analysis to tensors of arbitrary number of modes. Additionally, there are several standard
randomized sampling procedures known to give exact matrix CUR decompositions with
high probability (Hamm and Huang, 2020a); Theorem 13 provides a sample extension of
these results for tensors.

The next section contains further comparison of tensor CUR decompositions with other
standard low-rank tensor decompositions such as the HOSVD.

2. Preliminaries and Notation

Tensors, matrices, vectors, and scalars are denoted in different typeface for clarity below.
In the sequel, calligraphic capital letters are used for tensors, capital letters are used for
matrices, lower boldface letters for vectors, and regular letters for scalars. The set of the
first d natural numbers is denoted by [d] := {1, · · · , d}. We include here some basic notions
relating to tensors, and refer the reader to, e.g., (Kolda and Bader, 2009) for a more thorough
introduction.

A tensor is a multidimensional array whose dimension is called the order (or also mode).
The space of real tensors of order n and size d1 × · · · × dn is denoted as Rd1×···×dn . The
elements of a tensor X ∈ Rd1×···×dn are denoted by Xi1,··· ,in .

An n–mode tensor X can be matricized, or reshaped into a matrix, in n ways by
unfolding it along each of the n modes. The mode-k matricization/unfolding of tensor
X ∈ Rd1×···×dn is the matrix denoted by X(k) ∈ Rdk×

∏
j 6=k dj whose columns are composed

of all the vectors obtained from X by fixing all indices except for the k-th dimension. The
mapping X 7→ X(k) is called the mode-k unfolding operator.

Given X ∈ Rd1×···×dn , the norm ‖X‖F is defined via

‖X‖F =

( ∑
i1,··· ,in

X 2
i1,··· ,in

) 1
2

.

There are various product operations related to tensors; the ones that will be utilized
in this paper are the following.
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• Outer product: Let a1 ∈ Rd1 , · · · ,an ∈ Rdn . The outer product among these n
vectors is a tensor X ∈ Rd1×···×dn defined as:

X = a1⊗⊗⊗ · · · ⊗⊗⊗ an, Xi1,··· ,in =
n∏
k=1

ak(ik).

The tensor X ∈ Rd1×···×dn is of rank one if it can be written as the outer product of
n vectors.

• Kronecker product of matrices: The Kronecker product of A ∈ RI×J and B ∈ RK×L
is denoted by A⊗B. The result is a matrix of size (KI)× (JL) defined by

A⊗B =


A11B A12B · · · A1JB
A21B A22B · · · A2JB

...
...

. . .
...

AI1B AI2B · · · AIJB

 .

• Mode-k product: Let X ∈ Rd1×···×dn and A ∈ RJ×dk , the multiplication between X
on its k-th mode with A is denoted as Y = X ×k A with

Yi1,··· ,ik−1,j,ik+1,··· ,in =

dk∑
s=1

Xi1,··· ,ik−1,s,ik+1,··· ,inAj,s.

Note this can be written as a matrix product by noting that Y(k) = AX(k). If we have
multiple tensor matrix product from different modes, we use the notation X ×si=t Ai
to denote the product X ×t At ×t+1 · · · ×s As.

For the reader’s convenience, we also summarize the notation in Table 1.

2.1 Tensor Rank

The notion of rank for tensors is more complicated than it is for matrices. Indeed, rank
is non-uniquely defined. In this work, we will primarily utilize the multilinear rank (also
called Tucker rank) of tensors (Hitchcock, 1928). The multilinear rank of X is a tuple
r = (r1, · · · , rn) ∈ Nn, where rk = rank(X(k)).

Multilinear rank is relatively easily computed, but is not necessarily the most natural
notion of rank. Indeed, the CP rank of a tensor (Hitchcock, 1927, 1928) is the smallest
integer r for which X can be written as the sum or rank-1 tensors. That is, we may write

X =
r∑
i=1

λi a
(i)
1 ⊗⊗⊗ · · · ⊗⊗⊗ a(i)

n (1)

for some {λi} ⊆ R and a
(i)
k ∈ Rdk . Regard that the notion of rank-1 tensors is unambiguous.
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Table 1: Table of Notation.

Notation Definition
X tensor
X matrix
x vector
x scalar

X ×k X tensor X times matrix X along the k-th mode
X ⊗ Y Kronecker product of the matrices X and Y
x⊗⊗⊗ y outer product of vectors x and y
X(k) mode-k unfolding of X
X(I, :) row submatrix of X with row indices I
X(:, J) column submatrix of X with column indices J

X (I1, · · · , In) subtensor of X with indices Ik at mode k
[d] = {1, · · · , d} the set of the first d natural numbers
r = (r1, · · · , rn) multilinear rank

‖ · ‖2 `2 norm for vector, spectral norm for matrix
‖ · ‖F Frobenius norm
( · )> transpose
( · )† Moore–Penrose pseudoinverse

2.2 Tensor Decompositions

Tensor decompositions are powerful tools for extracting meaningful, latent structures in
heterogeneous, multidimensional data (see, e.g., (Kolda and Bader, 2009)). Similar to the
matrix case, there are a wide array of tensor decompositions, and one may select a different
one based on the task at hand. For instance, CP decompositions (of the form (1)) are typi-
cally the most compact representation of a tensor, but the substantial drawback is that they
are NP–hard to compute (Kruskal, 1989). On the other hand, Tucker decompositions and
Higher-order Singular Value Decompositions (HOSVD) are natural extensions of the matrix
SVD, and thus useful for describing features of the data. Matrix CUR decompositions give
factorizations in terms of actual column and row submatrices, and can be cheap to form by
random sampling. CUR decompositions are known to provide interpretable representations
of data in contrast to the SVD, for example (Mahoney and Drineas, 2009). Similarly, tensor
analogues of CUR decompositions represent a tensor via subtubes and fibers of it. We will
discuss this further in the following subsection.

The Tucker decomposition was proposed by Tucker (1966) and further developed in
(Kroonenberg and De Leeuw, 1980; De Lathauwer et al., 2000a). A special case of Tucker
decompositions is called the Higher-order SVD (HOSVD): given an n-order tensor X , its
HOSVD is defined as the modewise product of a core tensor T ∈ Rr1×···×rn with n factor
matrices Wk ∈ Rdk×rk (whose columns are orthonormal) along each mode such that

X = T ×1 W1 ×2 · · · ×nWn =: JT ;W1, · · · ,WnK,

where rk = rank (X(k)). If we unfold X along its k-th mode, we have

X(k) = WkT(k)(W1 ⊗ · · · ⊗Wk−1 ⊗Wk+1 ⊗ · · · ⊗Wn)>.
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The HOSVD can be computed as follows:

1. Unfold X along mode k to get matrix X(k);

2. Compute the compact SVD of X(k) = WkΣkV
>
k ;

3. T = X ×1 W
>
1 ×2 · · · ×nW>n .

For a more comprehensive introduction to tensor decompositions, readers are referred
to (Acar and Yener, 2008; Kolda and Bader, 2009; Sidiropoulos et al., 2017).

In the statements below, a & b means that a ≥ cb for some absolute constant c > 0.

2.3 Matrix CUR Decompositions

To better compare the matrix and tensor case, we first discuss the characterization of CUR
decompositions for matrices obtained in (Hamm and Huang, 2020b).

Theorem 1 ((Hamm and Huang, 2020b)) Let A ∈ Rm×n and I ⊆ [m], J ⊆ [n]. Let
C = A(:, J), U = A(I, J), and R = A(I, :). Then the following are equivalent:

(i) rank (U) = rank (A),

(ii) A = CU †R,

(iii) A = CC†AR†R,

(iv) A† = R†UC†,

(v) rank (C) = rank (R) = rank (A),

(vi) Suppose columns and rows are rearranged so that A =

[
U B
D E

]
, and the generalized

Schur complement of A with respect to U is defined by A/U := E − DU †B. Then
A/U = 0.

Moreover, if any of the equivalent conditions above hold, then U † = C†AR†.

We note that equivalent condition (vi) in Theorem 1 is not proven in (Hamm and Huang,
2020b), but can readily be deduced using basic methods and Corollary 19.1 of (Matsaglia
and PH Styan, 1974).

Notice that if the matrix is treated as a two-way tensor, the matrix CUR decomposition
as in (ii) can be written in the form:

A = CU †R = U ×1 CU
† ×2 R

>(U>)†.

CUR decompositions provide a representation of data in terms of other data, hence
allowing for more ease of interpretation of results. They have been used to practical effect
in exploratory data analysis related to natural language processing (Mahoney and Drineas,
2009), subspace clustering (Aldroubi et al., 2018, 2019), and basic science (Yip et al., 2014;
Yang et al., 2015). Additionally, CUR is often used as a fast approximation to the SVD
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(Drineas et al., 2006, 2008; Boutsidis and Woodruff, 2017; Voronin and Martinsson, 2017)
(see also the more general survey of randomized methods (Halko et al., 2011)). Recently,
CUR decompositions have been used to accelerate algorithms for Robust PCA Cai et al.
(2021a,b). See (Hamm and Huang, 2020b) for a more thorough survey of CUR decomposi-
tions and their utility.

In Machine Learning, the Nyström method (CUR decompositions in which the same
columns and rows are selected to approximate symmetric positive semi-definite matrices) is
heavily utilized to estimate large kernel matrices (Williams and Seeger, 2001; Gittens and
Mahoney, 2016; Bertozzi and Flenner, 2016).

For multidimensional data, (Mahoney et al., 2008) proposed tensor-CUR decompositions
which only takes advantage of linear but not multilinear structure in data tensors. The
authors therein raise the following open problem.

Question 1 ((Mahoney et al., 2008, Remark 3.3)) Can one choose slabs and/or fibers
to preserve some nontrivial multilinear tensor structure in the original tensor?

We address this question in this work, and show that the answer is affirmative. Our
methods are inspired by matrix CUR techniques, but are determined to account for the
tensorial nature of data beyond simple unfolding based methods.

3. Main Results

Our main results are broken into three main themes: characterizations of modewise de-
compositions of tensors inspired by Theorem 1, perturbation analysis for the variants of
tensor decompositions proposed here, and upper bounds for low multilinear rank tensor
approximations via randomized sampling as well as randomized sampling guarantees for
exact reconstruction of low multilinear rank tensors.

Now let us be concrete as to the type of tensor CUR decompositions we will consider
here. The first is the most direct analogue of the matrix CUR decomposition in which a
core subtensor is selected which we call R, and the other factors are chosen by extruding
R along each mode to produce various subtensors. That is, given indices Ii ⊆ [di], we
set R = A(I1, . . . , In), Ci = A(i)(:,⊗j 6=iIj) := (A(I1, · · · , Ii−1, :, Ii+1, · · · , In))(i), and Ui =
Ci(Ii, :). This decomposition is illustrated in Figure 1, and we call it the Chidori CUR
decomposition1.

The second, more general tensor CUR decomposition discussed here, we call the Fiber
CUR decomposition. In this case, to form Ci, one is allowed to choose Ji ⊆ [

∏
j 6=i dj ]

without reference to Ii. Thus, the Ci are formed from mode-i fibers which may or may not
interact with the core subtensor R. Fiber CUR decompositions are illustrated in Figure 2.

3.1 Characterization Theorems

First, we characterize Chidori CUR decompositions and compare with the matrix CUR
decomposition of Theorem 1.

1. Chidori joints are used in contemporary Japanese woodworking and are based on an old toy design. The
joints bear a striking resemblance to Figure 1.
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Figure 1: Illustration of Chidori CUR decomposition à la Theorem 2 of a 3-mode tensor
in the case when the indices Ii are each an interval and Ji = ⊗j 6=iIj . The matrix C1 is
obtained by unfolding the red subtensor along mode 1, C2 by unfolding the green subtensor
along mode 2, and C3 by unfolding the yellow subtensor along mode 3. The dotted line
shows the boundaries of R. In this case Ui = R(i) for all i.

Figure 2: Illustration of the Fiber CUR Decomposition of Theorem 3 in which Ji is not
necessarily related to Ii. The lines correspond to rows of C2, and red indices within corre-
spond to rows of U2. Note that the lines may (but do not have to) pass through the core
subtensor R outlined by dotted lines. Fibers used to form C1 and C3 are not shown for
clarity.

Theorem 2 Let A ∈ Rd1×···×dn with multilinear rank (r1, . . . , rn). Let Ii ⊆ [di]. Set R =
A(I1, · · · , In), Ci = A(i)(:,⊗j 6=iIj), and Ui = Ci(Ii, :). Then the following are equivalent:

(i) rank (Ui) = ri,

(ii) A = R×1 (C1U
†
1)×2 · · · ×n (CnU

†
n),

(iii) the multilinear rank of R is (r1, · · · , rn),

10
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(iv) rank (A(i)(Ii, :)) = ri for all i = 1, · · · , n.

Moreover, if any of the equivalent statements above hold, then A = A×ni=1 (CiC
†
i ).

Note that for the indices chosen in Theorem 2, we have Ui = R(i). Interestingly enough,

unlike the matrix case, the projection based decomposition A = A ×ni=1 (CiC
†
i ) is not

equivalent to the other parts of Theorem 2 as is shown in the following example.

Example 1 Let A ∈ R3×3×2 with the following frontal slices:

A1 =

1 2 1
2 4 2
3 8 5

 , A2 =

2 5 3
4 10 6
3 7 4

 .
Then the multilinear rank of A is (2, 2, 2). Set I1 = {1, 2}, I2 = {1, 2} and I3 = {1, 2}.
Then the frontal slices of R are

R1 =

[
1 2
2 4

]
, R2 =

[
2 5
4 10

]
.

The multilinear rank of R is (1, 2, 2). Thus the Chidori CUR decomposition does not hold,

i.e., A 6= R×1 (C1U
†
1) ×2 (C2U

†
2) ×3 (C3U

†
3). However, rank (Ci) = 2 for i = 1, 2, 3 which

implies that A = A×3
i=1 (CiC

†
i ).

Next we find that, in contrast to the matrix case, the indices {Ii} and {Ji} do not nec-
essarily have to be correlated (see Figure 2). In the case that the indices Ji are independent
from Ii, we have the following characterization of the Fiber CUR decomposition.

Theorem 3 Let A ∈ Rd1×···×dn with multilinear rank (r1, . . . , rn). Let Ii ⊆ [di] and Ji ⊆
[
∏
j 6=i dj ]. Set R = A(I1, · · · , In), Ci = A(i)(:, Ji) and Ui = Ci(Ii, :). Then the following

statements are equivalent

(i) rank (Ui) = ri,

(ii) A = R×1 (C1U
†
1)×2 · · · ×n (CnU

†
n),

(iii) rank (Ci) = ri for all i and the multilinear rank of R = (r1, · · · , rn).

Moreover, if any of the equivalent statements above hold, then A = A×ni=1 (CiC
†
i ).

The implications (i) =⇒ (ii) in Theorems 2 and 3 are essentially contained in (Caiafa
and Cichocki, 2010), though they consider tensors with constant multilinear rank (r, . . . , r),
and force the condition |Ii| = |Ij | for all i and j. All other directions of these characterization
theorems are new to the best of our knowledge, and it is of interest that the characterizations
of each type of tensor CUR decomposition presented here (Fiber and Chidori) are different
from the matrix case (e.g., the projection based version is no longer equivalent as Example
1 shows).

Remark 4 Mahoney et al. (2008) consider tensor CUR decompositions for order-3 tensors
of the form R ×3 (C3U3) (after translating to our notation). One can show that this is
essentially a particular case of the Chidori CUR decomposition in which C1 = U1 = A(1)

and C2 = U2 = A(2), although the matrix U3 undergoes some additional scaling in their
algorithm not present here.
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3.2 Perturbation Bounds

The above characterizations are interesting from a mathematical viewpoint, but here we
turn to more practical purposes and undertake an analysis of how well the decompositions
mentioned above perform as low multilinear rank approximations to arbitrary tensors. To
state our results, we consider the additive noise model that we observe Ã = A + E , where
A has low multilinear rank (r1, . . . , rn) with ri < di for all i, and E is an arbitrary noise
tensor. Our main concern is to address the following.

Question 2 If we choose the subtensors of Ã in the manner of Section 3.1, how do the
Chidori and Fiber CUR approximations of Ã as suggested by Theorems 2 and 3 relate to
Chidori and Fiber CUR decompositions of A?

To understand the results answering this question, we first set some notation. In what
follows, tildes represent subtensors or submatrices of Ã, the letter R corresponds to core
subtensors of the appropriate tensor, C corresponds to either fibers or subtubes depending
on if we are discussing Fiber or Chidori CUR, and U corresponds to submatrices of C. If
R, C, or U appears without a tilde, it is a subtensor/matrix of A. In particular, consider

R̃ = A(I1, · · · , In), ER = E(I1, · · · , In),

C̃i = Ã(i)(:, Ji), EJi = E(i)(:, Ji), Ũi = C̃i(Ii, :), EIi,Ji = EJi(Ii, :)
(2)

for some index sets Ii ⊆ [di] and Ji ⊆ [
∏
j 6=i dj ], and we write

R̃ = R+ ER, C̃i = Ci + EJi , Ũi = Ui + EIi,Ji , (3)

where R = A(I1, . . . , In) ∈ R|I1|×···×|In|, Ci = Ai(:, Ji) ∈ Rdi×|Ji| and Ui = Ci(Ii, :) ∈
R|Ii|×|Ji|. We also consider enforcing the rank on the submatrices Ũi formed from the
Chidori and Fiber CUR decompositions. Here, Ũi,ri is the best rank ri approximation of

Ũi, and Ũ †i,ri is its Moore–Penrose pseudoinverse. With these notations, our goal is to
estimate the error

A−Aapp := A− R̃ ×ni=1 (C̃iŨ
†
i,ri

). (4)

To measure accuracy, we consider the Frobenius norm of the difference of A and its low
multilinear rank approximation Aapp.

Theorem 5 Let Ã = A+E, where the multilinear rank of A is (r1, · · · , rn) and the compact
SVD of A(i) is A(i) = WiΣiV

>
i . Let Ii ⊆ [di] and Ji ⊆ [

∏
j 6=i dj ]. Invoke the notations of

(2)–(4), and suppose that σri(Ui) > 8 ‖EIi,Ji‖2 for all i. Then,

‖A −Aapp‖F ≤
9n

4n

(
n∏
i=1

∥∥∥W †i,Ii∥∥∥2
)
‖ER‖F

+

n∑
j=1

9n−j

4n−j
∥∥R(j)

∥∥
2

∏
i 6=j

∥∥∥W †i,Ii∥∥∥2
(5

∥∥∥U †j ∥∥∥
2

∥∥∥W †j,Ij∥∥∥2 ∥∥EIj ,Jj∥∥F + 2
∥∥∥U †j ∥∥∥

2

∥∥EJj∥∥F) ,
where Wi,Ii := Wi(Ii, :).

12
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Remark 6 The bounds in Theorem 5 contain the exponential terms
(
9
4

)n
, which is un-

avoidable, but the base number 9
4 is not necessarily sharp. For more details see Equation

(7).

The error bounds in Theorem 5 are qualitative in that they are given in terms of the
Frobenius norms of subtensors of the noise tensor E . These bounds can be applied generally,
but can also be applied to give error estimates for approximating the HOSVD by low
multilinear tensor approximation; this can be achieved by setting A to be the HOSVD
approximation of a certain multilinear rank of Ã. Note also that ‖R(j)‖2 ≤ ‖R‖F for all j
by basic norm inequalities, so if desired, this can be taken out of the summation for simpler
error bounds.

The drawback of the above bounds is that they include norms of subtensors of A, which
can be difficult to estimate in general. In the case that the indices Ji depend on Ii, we can
achieve more specialized bounds that can be expressed in terms of submatrices of singular
vectors of the unfoldings of A as in the following theorem.

Theorem 7 Invoke the notations of Theorem 5 and (2)–(4), and let Ji = ⊗j 6=iIj. Suppose
that σri(Ui) > 8‖EIi,Ji‖2 for every 1 ≤ i ≤ n, and let the compact SVD of A(i) be WiΣiV

>
i .

Then

‖A −Aapp‖F ≤
9n

4n

( n∏
i=1

∥∥∥W †i,Ii∥∥∥2
)
‖ER‖F

+
n∑
j=1

9n−j

4n−j
∥∥R(j)

∥∥
2

(∏
i 6=j

∥∥∥W †i,Ii∥∥∥22
)∥∥∥A†(j)∥∥∥2 ∥∥∥W †j,Ij∥∥∥2 (5

∥∥∥W †j,Ij∥∥∥2 ∥∥EIj ,Jj∥∥F + 2
∥∥EJj∥∥F) .

Remark 8 Notice that the bounds in Theorem 5 and 7 are in terms of the submatrices
of singular vectors of unfoldings of the tensor. These bounds are quite general, but they
illustrate how one ought to sample Ii and Ji to ensure good bounds. Theorems 10 and 11
give more user friendly versions of these bounds for the concrete case when a low multilinear
rank tensor A is perturbed by noise.

In the matrix case, there are error bounds for CUR decompositions in terms of the
optimal low rank approximations of the given matrix. It is interesting, yet challenging, to
derive upper bounds for tensor CUR decompositions in terms of the optimal low multilinear
rank approximations of the given tensor.

The norms of pseudoinverses of submatrices of singular vectors can vary extensively
depending on the sampling method. In particular, if maximum volume sampling is used
(Civril and Magdon-Ismail, 2009; Goreinov et al., 2010; Mikhalev and Oseledets, 2018), then
one can give generic bounds on these terms (see (Hamm and Huang, 2021) for examples of
upper bounds for maximum volume sampling for matrix CUR decompositions). However,
maximum volume sampling is often intractable in practice. However, if the matrices A(i)

have good incoherence, then uniform sampling yields submatrices W †i,Ji with small norm
(cf. (Tropp, 2011, Lemma 3.4)).

13
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3.3 Error Bounds for Random Sampling Core Subtensors

Randomized sampling for column and row submatrices has been shown to be an effective
method for low-rank approximation, and can provide a fast and reliable estimation of the
SVD of a matrix (Frieze et al., 2004; Drineas et al., 2006; Rudelson and Vershynin, 2007;
Wang and Zhang, 2013). First, let us state the formation of both Chidori and Fiber CUR
decompositions via random sampling in algorithmic form here.

Algorithm 1 Randomized Chidori CUR Decomposition

1: Input: A ∈ Rd1×···×dn , sample sizes ti, and probability distributions {p(i)} over [di],
i = 1, . . . , n.

2: for i = 1 : n do
3: Sample ti indices from [di] without replacement from {p(i)}, and denote the index set

Ii
4: Ji = ⊗j 6=iIi
5: Ci = A(i)(:, Ji)
6: Ui = Ci(Ii, :)
7: end for
8: R = A(I1, . . . , In)

9: Output: R, Ci, Ui such that A ≈ R×ni=1 (CiU
†
i ).

Algorithm 2 Randomized Fiber CUR Decomposition

1: Input: A ∈ Rd1×···×dn , sample sizes ti, si, and probability distributions {p(i)}, {q(i)}
over [di] and [

∏
j 6=i dj ], respectively, i = 1, . . . , n.

2: for i = 1 : n do
3: Sample ti indices from [di] without replacement from {p(i)}, and denote the index set

Ii
4: Sample si indices from [

∏
j 6=i dj ] without replacement from {q(i)}, and denote the

index set Ji
5: Ci = A(i)(:, Ji)
6: Ui = Ci(Ii, :)
7: end for
8: R = A(I1, . . . , In)

9: Output: R, Ci, Ui such that A ≈ R×ni=1 (CiU
†
i ).

For general matrices, sampling columns with or without replacement from sophisticated
distributions such as leverage scores is known to provide quality submatrices that represent
the column space of the data faithfully (Mahoney and Drineas, 2009), but these distributions
come at the cost of being expensive to compute. On the other hand, uniform sampling of
columns is cheap, but is not always reliable (for instance on extremely sparse matrices).
Nonetheless, it is well understood that uniformly sampling column submatrices is both
cheap and effective when the initial matrix is incoherent, e.g., (Talwalkar and Rostamizadeh,
2010; Chiu and Demanet, 2013). Here we extend these ideas to tensors – a task that first
requires defining what tensor incoherence even is.

14
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Definition 9 ((Xia et al., 2021)) Let W ∈ Rd×r have orthonormal columns. Its coher-
ence is defined as

µ(W ) =
d

r
max
1≤i≤d

‖W (i, :)‖22.

For a tensor A ∈ Rd1×···×dn such that A(j) = WjΣjV
>
j is its compact singular value decom-

position with σj1, · · · , σjrj on the diagonal of Σj, we define its coherence as

µ(A) := max {µ(W1), · · · , µ(Wn)} ,

and define

σmin(A) = min {σ1r1 , · · · , σnrn} ,
σmax(A) = max {σ11, · · · , σn1} .

From the above definition, a tensor’s incoherence is defined to be the maximal incoher-
ence of all its unfoldings. With this definition in hand, we may state our main result on
low multilinear rank tensor approximation via uniform sampling.

Note that in Theorem 10 below, the incoherence of the tensor impacts how large the
index sets Ii must be to guarantee a good approximation; this is similar to existing matrix
constructions (Candes and Romberg, 2007; Tropp, 2011; Chiu and Demanet, 2013), and
one should expect a (hopefully mild) oversampling factor for good approximation bounds
in random sampling methods.

Theorem 10 Let A ∈ Rd1×···×dn with multilinear rank (r1, · · · , rn) and A(i) = WiΣiV
>
i be

the compact singular value decomposition of A(i). Suppose that Ã = A + E. Suppose that

Aapp = R̃ ×ni=1

(
C̃iŨ

†
i,ri

)
is formed via the Chidori CUR decomposition (Algorithm 1) with

input Ã, uniform probabilities, and |Ii| ≥ γiµ(Wi)ri for some γi > 0. If δ ∈ [0, 1) such that

(1− δ)
n
2

√∏n
i=1 |Ii|∏n
i=1 di

σmin(A) ≥ 8‖EIi,Ji‖2, then

‖A −Aapp‖F ≤
9n
√∏n

i=1 di

4n(1− δ)
n
2

√∏n
i=1 |Ii|

‖ER‖F

+
9n

4n−1
σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

√√√√ n∏
i=1

di
(1− δ)|Ii|

‖ER‖F

+
2σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

n∑
j=1

9n−j

4n−j

√√√√∏
i 6=j

di
(1− δ)|Ii|

∥∥EJj∥∥F
(5)

with probability at least 1−
n∑
i=1

ri

((
e−δ

(1−δ)1−δ

)γi
+
(

eη

(1+η)1+η

)γi)
for every η ≥ 0.

Let us provide a concrete choice of parameters for illustration of the bounds above: we
assume a simple case where di = d and ri = r for all i, we set δ = η = 0.5 and γ = 10 log(d),
and consider E to have i.i.d. Gaussian entries. The result is the following.
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Theorem 11 Let A ∈ Rd×···×d be an n-mode tensor with multilinear rank (r, · · · , r) and
A(i) = WiΣiV

>
i be the compact SVD of A(i). Suppose that Ã = A + E where E is random

tensor with i.i.d. Gaussian distributed entries with mean 0 and variance σ i.e., Ei1,··· ,in ∼
N (0, σ). Suppose Ii ⊆ [d] with |I1| = · · · = |In| = ` ≥ 10µ(A)r log(d), and Aapp =

R̃ ×ni=1

(
C̃iŨ

†
i,ri

)
is formed via the Chidori CUR decomposition (Algorithm 1) with input

Ã and uniform probabilities. Let p be in the open interval (1, 1 + log(2)
log(`) ). If `pσ2min(A) ≥

2n+8(log(`n−1 + d))dnσ2, then

‖A −Aapp‖F ≤

(
32n

2
3
2
n−1

+
σmax(A)

σmin(A)
· 3

5n
2

2
3n
2
−4

)
`
1−p
2

√
log(`n−1 + d)d

n
2 σ

with probability at least 1− 2rn
d −

2n

(`n−1+d)2`
1−p−1

.

Remark 12 The conclusion of Theorem 11 holds unchanged for Rademacher random noise
with each entry of E being ±σ with equal probability. This is due to the use of (Tropp, 2012,
Theorem 1.5) in the proof, which holds for both types of noise (see Section 3.3 for more
detail).

To conclude our results section, we show an example of how one can guarantee an exact
decomposition of a low multilinear rank tensor with high probability via random sampling
of indices. The theorem is stated in terms of so-called column length sampling of the
unfolded versions of the tensor. Given a matrix A, we define probability distributions over
its columns and rows, respectively, via

pj(A) :=
‖A(j, )‖22
‖A‖2F

, qj(A) :=
‖A(:, j)‖22
‖A‖2F

.

Subsequently, for a tensor A, we set

p
(i)
j := pj(A(i)), q

(i)
j := qj(A(i)).

In the following theorems, c > 0 is an absolute constant, and comes from the analysis of
Rudelson and Vershynin (2007).

Theorem 13 Let A ∈ Rd1×···×dn with multilinear rank (r1, · · · , rn). Let 0 < εi <

κ(A(i))
−1. Let Ii ⊆ [di], Ji ⊆

[∏
j 6=i

dj

]
satisfy

|Ii| &
(
ri log(di)

ε4i

)
log

(
ri log(di)

ε4i

)
, |Ji| &

(
ri log(

∏
j 6=i dj)

ε4i

)
log

(
ri log(

∏
j 6=i dj)

ε4i

)
.

and let R, Ci, Ui be obtained from the Fiber CUR decomposition (Algorithm 2) with proba-

bilities p
(i)
j and q

(i)
j . Then with probability at least

n∏
i=1

(
1− 2

dci

)1− 2(∏
j 6=i dj

)c
 ,

we have rank (Ui) = ri, hence A = R×ni=1 (CiU
†
i ).
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Theorem 14 Let A ∈ Rd1×···×dn with multilinear rank (r1, · · · , rn). Let 0 < εi < κ(A(i))
−1.

Let Ii ⊆ [di] satisfy |Ii| &
(
ri log(di)

ε4i

)
log
(
ri log(di)

ε4

)
. Let R, Ci, Ui be obtained via the Chi-

dori CUR decomposition (Algorithm 1) with probabilities p
(i)
j . Then with probability at least∏n

i=1

(
1− 2

dci

)
, we have A = R×ni=1 (CiU

†
i ).

More results of a similar nature to Theorems 13 and 14 can be obtained by extending
the analysis done here to other sampling probabilities as was done in (Hamm and Huang,
2020b), but we only state a sample of what one can obtain here for simplicity. One can
readily state analogues of the above results for uniform sampling, or small perturbations of
the distributions given above mimicking Theorem 5.1, and Corollaries 5.2, 5.4, and 5.5 of
Hamm and Huang (2020b), which would yield exact Fiber or Chidori CUR decompositions
with high probability via uniform and leverage score sampling (here one would need to
utilize the leverage score distributions for each of the unfoldings of A, which would be
computationally intensive).

3.4 Computational Complexity

Let A ∈ Rd1×···×dn with multilinear rank (r1, · · · , rn). The complexity of randomized
HOSVD decomposition is O(r

∏n
i=1 di) with r = mini{ri}. Whereas, computing the tensor-

CUR approximation only involves the computations of the pseudoinverse of Ui.

1. (Chidori CUR) If we sample Ii uniformly with |Ii| = O(ri log(di)) and set Ji = ⊗j 6=iIj ,
then the complexity of computing the pseudoinverse of Ui is O(ri

∏n
j=1(rj log(dj))).

2. (Fiber CUR) If we sample Ii and Ji uniformly, then the size of Ii and Ji should be

O(ri log(di)) and O
(
ri log(

∏
j 6=i dj)

)
. Thus the complexity of computing the pseu-

doinverse of Ui is O
(
r2i log(di)

(∑
j 6=i log(dj)

))
.

Conversion of tensor CUR to HOSVD: The low multilinear rank approximations
discussed here are in terms of modewise products of a core subtensor of the data tensor
and matrices formed by subsampling unfolded versions of the tensor, but if a user wishes
to obtain an approximation in Tucker format, it is easily done via Algorithm 3. Note that
converting from HOSVD to a tensor CUR decomposition is not as straightforward.

Algorithm 3 Efficient conversion from CUR to HOSVD

1: Input: R, Ci, Ui: CUR decomposition of the tensor A.
2: [Qi, Ri] = qr(CiU

†
i ) for i = 1, · · · , n

3: T1 = R×1 R1 ×2 · · · ×n Rn
4: Compute HOSVD of T1 to find T1 = T ×1 V1 ×2 · · · ×n Vn
5: Output: JT ;Q1V1, · · · , QnVnK: HOSVD decomposition of A.
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4. Proofs of Characterization Theorems

Here we provide the proofs of the characterization theorems in Section 3.1. We do so
in reverse order to the presentation due to the fact that Theorem 3 is the more general
statement, and thus implies some of the statements of Theorem 2.

4.1 Proof of Theorem 3

(i) =⇒ (ii): A special case of this was proved by Caiafa and Cichocki (2010), but we give
a complete and simplified proof here.

Since rank (U1) = r1, we have A(1) = C1U
†
1(R1)(1) with R1 ∈ R|I1|×d2×···×dn defined to

be A(I1, :, · · · ), then we have A = R1 ×1 (C1U
†
1). Similarly, we have

A(2) = C2U
†
2(A(:, I2, :, · · · ))(2),

which implies that

(R1)(2) = (A(I1, :, · · · ))(2) = C2U
†
2(A(I1, I2, :, · · · ))(2).

Now set R2 = A(I1, I2, :, · · · ). Thus, (R1)(2) = C2U
†
2(R2)(2) and R2 = R1 ×2 (C2U

†
2).

Continuing in this manner, we have Rn−1 = Rn ×n (CnU
†
n). Thus we have

A = R1 ×1 (C1U
†
1) = · · · = R×1 (C1U

†
1)×2 · · · ×n (CnU

†
n). (6)

(ii) =⇒ (iii): Since R and Ci only contain part of A, we have multilinear rank of
R ≤ multilinear rank of A = (r1, · · · , rn) and rank (Ci) ≤ rank (A(i)) = ri. In addition,

A = R ×1 (C1U
†
1) ×2 · · · ×n (CnU

†
n), so ri = rank (A(i)) ≤ min{rank (R(i)), rank (Ci)}.

Therefore, (iii) holds.
(iii) =⇒ (i) Notice that since Ui is a submatrix of Ci, we have rank (Ui) ≤ ri. Since

rank (R(i)) = ri and R(i) is a submatrix of (A(· · · , Ii, · · · ))(i), we have

rank ((A(· · · , Ii, · · · ))(i)) = ri.

By Theorem 1, we see that rank (Ui) = ri, completing the proof.

Now we turn to the proof of Theorem 2, which handles the case when the column indices
Ji of Ci are chosen to be Ji = ⊗j 6=iIj i.e., Ci = (A(I1, · · · , Ii−1, :, Ii+1, · · · , In))(i).

4.2 Proof of Theorem 2

Evidently, the equivalence (i)⇐⇒ (ii) follows as a special case of Theorem 3. Similarly, we
have (ii) =⇒ (iii).

To see (iii) =⇒ (ii), note that since A has multilinear rank (r1, · · · , rn), A has HOSVD
decomposition A = T ×1 W1 ×2 · · · ×n Wn such that T ∈ Rr1×···×rn satisfies rank (T(i)) =

ri and Wi ∈ Rdi×ri has rank ri. By the condition rank (A(i)(Ii, :)) = ri, we have that

rank
(
Wi(Ii, :)T(i)

(
⊗j 6=iW>j

))
= ri. Thus rank (Wi(Ii, :)) = ri. Notice that

Ci = A(i)(: ⊗j 6=iIj) = WiT(i) (⊗j 6=i(Wj(Ij , :)))
> .
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Sylvester’s rank inequality implies that

rank (Ci) = rank (WiT(i) (⊗j 6=i(Wj(Ij , :)))
>)

≥ rank (WiT(i)) + rank (⊗j 6=i(Wj(Ij , :)))−
∏
j 6=i

rj

= ri +
∏
j 6=i

rj −
∏
j 6=i

rj = ri.

The proof that R has multilinear rank (r1, · · · , rn) is similar, which yields (iv) =⇒ (iii).

The condition on the rank of Ci and R imply that A = R×ni=1 (CiU
†
i ) by Theorem 3.

To see (i) =⇒ (iv), notice that Ui = Ci(Ii, :) = A(i)(Ii,⊗j 6=iIj) which is a submatrix of
A(i)(Ii, :). Since rank (Ui) = ri, we have rank (A(i)(Ii, :)) ≥ rank (Ui) = ri. Additionally,
rank (A(i)) = ri, so rank (A(i)(Ii, :)) = ri. Thus, (iv) holds.

5. Perturbation Analysis

Real data tensors are rarely exactly low rank, but can be modeled as low multilinear rank
data + noise. In this section, we give proofs for the perturbation analysis expoused in
Section 3.2. Our primary task is to consider a tensor of the form:

Ã = A+ E ,

where A ∈ Rd1×···×dn has low multilinear rank (r1, · · · , rn) with ri < di, and E ∈ Rd1×···×dn
is an arbitrary noise tensor.

5.1 Ingredients for the Proof of Theorem 5

The main ingredients for proving Theorem 5 is the following.

Theorem 15 Let Ã = A+ E ∈ Rd1×···×dn, where the multilinear rank of A is (r1, . . . , rn).
Let Ii ⊆ [di] and Ji ⊆ [

∏
j 6=i dj ]. Invoke the notations of (2)–(4), and suppose that σri(Ui) >

8‖EIi,Ji‖2 for all i. Then,

‖A −Aapp‖F ≤
9n

4n

(
n∏
i=1

∥∥∥CiU †i ∥∥∥
2

)
‖ER‖F

+
n∑
j=1

9n−j

4n−j
∥∥R(j)

∥∥
2

∏
i 6=j

∥∥∥CiU †i ∥∥∥
2

(5
∥∥∥U †j ∥∥∥

2

∥∥∥CjU †j ∥∥∥
2

∥∥EIj ,Jj∥∥F + 2
∥∥∥U †j ∥∥∥

2

∥∥EJj∥∥F) .
Proposition 16 ((Hamm and Huang, 2021, Proposition 3.1)) Suppose that A ∈ Rm×n
has rank r and its compact SVD is A = WAΣAV

>
A . Let C, U , and R be the submatrices of

A (with selected row and column indices I and J , respectively) such that A = CU †R. Then

‖CU †‖2 = ‖W †A,I‖2,

where WA,I = WA(I, :).
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5.2 Proof of Theorem 5

Combining Theorem 15 with Proposition 16 directly yields the conclusion of Theorem 5.

5.3 Proof of Theorem 7

Note that when the column index Ji of Ci can be written as Ji = ⊗j 6=iIj , we have Ui = R(i).

If A has HOSVD A = T ×1 W1 ×2 · · · ×n Wn, then Ui = Wi,IiT(i)
(
⊗j 6=iWj,Ij

)>
. Thus∥∥∥U †i ∥∥∥

2
≤
∥∥∥T †(i)∥∥∥2∏n

j=1

∥∥∥W †j,Ij∥∥∥2 =
∥∥∥A†(i)∥∥∥2∏n

j=1

∥∥∥W †j,Ij∥∥∥2. Combining this bound with The-

orem 5 yields the required bound.

5.4 Ingredients for the proof of Theorem 15

To prove Theorem 15, we first need some preliminary observations.

Lemma 17 Let A and B be two rank r matrices, then∥∥∥AA† −BB†∥∥∥
2
≤
‖A−B‖2
σr(A)

,
∥∥∥A†A−B†B∥∥∥

2
≤ ‖A−B‖2

σr(A)
,

and ∥∥∥AA† −BB†∥∥∥
F
≤
√

2‖A−B‖F
σr(A)

,
∥∥∥A†A−B†B∥∥∥

F
≤
√

2‖A−B‖F
σr(A)

.

Proof Let A = WΣV > be the compact SVD of A. Then AA† = WΣV >V Σ−1W> =
WW>. Similarly, A†A = V V >. Then, we achieve the claims by applying (Cai et al., 2019,
Lemma 6).

Prior to stating a corollary of this lemma, note that EI,J = E(I, J) in the matrix case.

Likewise, note that Ũr is the best rank–r approximation of Ũ , and Ũ †r is the Moore–Penrose
pseudoinverse of Ũr.

Corollary 18 Suppose that A ∈ Rm×n has rank r with compact SVD A = WΣV ∗ and Ã =
A + E. Let C̃ = Ã(:, J) and Ũ = Ã(I, J) with I ⊆ [m] and J ⊆ [n]. If σr(U) > 4 ‖EI,J‖2,
then ∥∥∥C̃Ũ †r − CU †∥∥∥ ≤

∥∥U †∥∥
2

(∥∥CU †∥∥
2
‖EI,J‖+ ‖EJ‖

)
1− 4 ‖U †‖2 ‖EI,J‖2

+ 2
√

2
∥∥∥CU †∥∥∥

2

∥∥∥U †∥∥∥
2
‖EI,J‖ .

Here ‖ · ‖ can be ‖ · ‖2 or ‖ · ‖F .

Proof Since σr(U) > 4‖EI,J‖2, we have σr(Ũ) ≥ σr(U) − ‖EI,J‖2 > 3‖EI,J‖2 ≥ 0. Thus

rank (Ũr) = r. Notice that C = CU †U . Then

‖C̃Ũ †r − CU †‖ ≤ ‖CŨ †r − CU †‖+ ‖EJ Ũ †r‖
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= ‖CU †UŨ †r − CU †UU †‖+ ‖EJ Ũ †r‖

≤ ‖CU †‖2‖(Ũ − EI,J)Ũ †r − UU †‖+ ‖EJ Ũ †r‖

≤ ‖CU †‖2‖Ũ Ũ †r − UU †‖+ ‖CU †‖2‖Ũ †r‖2 ‖EI,J‖+ ‖Ũ †r‖2‖EJ‖

≤
√

2‖CU †‖2‖Ũr − U‖‖U †‖+ ‖CU †‖2‖Ũ †r‖2 ‖EI,J‖+ ‖Ũ †r‖2‖EJ‖

≤ 2
√

2
∥∥∥CU †∥∥∥

2

∥∥∥U †∥∥∥
2
‖EI,J‖+

∥∥U †∥∥
2

(∥∥CU †∥∥
2
‖EI,J‖+ ‖EJ‖

)
1− 4 ‖U †‖2 ‖EI,J‖2

,

where the penultimate inequality uses Lemma 17. We also used the facts that Ũ Ũ †r = ŨrŨ
†
r

(similar to (Hamm and Huang, 2021)), and that ‖Ũr−U‖ ≤ ‖Ũr−Ũ‖+‖Ũ−U‖ ≤ 2‖EI,J‖.

Lemma 19 ((Hamm and Huang, 2021, Lemma 8.3)) Suppose that A ∈ Rm×n has
rank r with compact SVD A = WΣV > and Ã = A + E. Let C̃ = Ã(:, J) and Ũ = Ã(I, J)
with I ⊆ [m] and J ⊆ [n]. If σr(U) > 4 ‖EI,J‖2, then

∥∥∥C̃Ũ †r∥∥∥ ≤ ∥∥∥CU †∥∥∥
(

1 +

∥∥U †∥∥
2
‖EI,J‖2

1− 4 ‖U †‖2 ‖EI,J‖2

)
+

∥∥U †∥∥
2
‖EJ‖

1− 4 ‖U †‖2 ‖EI,J‖2
.

Now, we are in the stage to prove Theorem 15.

5.5 Proof of Theorem 15

Notice that σri(Ui) > 8‖EIi,Ji‖2 ≥ 0 implies that rank (Ui) = ri, thus A = R×ni=1

(
CiU

†
i

)
by Theorem 3. Therefore,

‖A −Aapp‖F
=
∥∥∥R×ni=1

(
CiU

†
i

)
− R̃ ×ni=1

(
C̃iŨ

†
i,ri

)∥∥∥
F

≤
∥∥∥(R− R̃)×ni=1 (C̃iŨ

†
i,ri

)
∥∥∥
F

+
n∑
j=1

∥∥∥R×j−1i=1 CiU
†
i × (CjU

†
j − C̃jŨ

†
j,rj

)×ni=j+1 C̃iŨ
†
i,ri

∥∥∥
F

≤ ‖ER‖F
n∏
i=1

∥∥∥C̃iŨ †i,r∥∥∥
2

+
n∑
j=1

∥∥R(j)

∥∥
2

(
j−1∏
i=1

∥∥∥CiU †i ∥∥∥
2

)∥∥∥CjU †j − C̃jŨ †j,rj∥∥∥F
 n∏
i=j+1

∥∥∥C̃iŨ †i,ri∥∥∥2
 .

By Lemma 19, we have

∥∥∥C̃iŨ †i,r∥∥∥
2
≤
∥∥∥CiU †i ∥∥∥

2

(
1 +

‖U †i ‖2 ‖EIi,Ji‖2
1− 4‖U †i ‖2 ‖EIi,Ji‖2

)
+

‖U †i ‖2‖EJi‖2
1− 4‖U †i ‖2‖EIi,Ji‖2

≤ 5

4

∥∥∥CiU †i ∥∥∥
2

+
1

4

≤ 9

4

∥∥∥CiU †i ∥∥∥
2
.

(7)
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By Corollary 18,∥∥∥CjU †j − C̃jŨ †j,rj∥∥∥F
≤

∥∥∥U †j ∥∥∥
2

(∥∥∥CjU †j ∥∥∥
2

∥∥EIj ,Jj∥∥F +
∥∥EJj∥∥F)

1− 4
∥∥∥U †j ∥∥∥

2

∥∥EIj ,Jj∥∥2 + 2
√

2
∥∥∥CjU †j ∥∥∥

2

∥∥∥U †j ∥∥∥
2

∥∥EIj ,Jj∥∥F
≤ 2

∥∥∥U †j ∥∥∥
2

(∥∥∥CjU †j ∥∥∥
2

∥∥EIj ,Jj∥∥F +
∥∥EJj∥∥F)+ 2

√
2
∥∥∥CjU †j ∥∥∥

2

∥∥∥U †j ∥∥∥
2

∥∥EIj ,Jj∥∥F
≤ 5

∥∥∥U †j ∥∥∥
2

∥∥∥CjU †j ∥∥∥
2

∥∥EIj ,Jj∥∥F + 2
∥∥∥U †j ∥∥∥

2

∥∥EJj∥∥F .
(8)

Combining (7) and (8), we get

‖A −Aapp‖F ≤
9n

4n

(
n∏
i=1

∥∥∥CiU †i ∥∥∥
2

)
‖ER‖F

+

n∑
j=1

9n−j

4n−j
∥∥R(j)

∥∥
2

∏
i 6=j

∥∥∥CiU †i ∥∥∥
2

(5
∥∥∥U †j ∥∥∥

2

∥∥∥CjU †j ∥∥∥
2

∥∥EIj ,Jj∥∥F + 2
∥∥∥U †j ∥∥∥

2

∥∥EJj∥∥F) .
This concludes the proof.

6. Random Sampling Methods

The main purpose of this section is to prove the results of Section 3.3. From Theorem 3
and 5, we see that the existence of a tensor-CUR decomposition and the error for a tensor-
CUR approximation both depend crucially on the chosen indices Ii and Ji. Here, we
study randomized sampling procedures for selecting these indices to determine how the
sampling affects the quality of the tensor approximation, and when it can guarantee an
exact decomposition when A has low multilinear rank.

6.1 Guaranteeing Exact Decompositions

We begin by answering the question: when does random sampling guarantee an exact
tensor-CUR decomposition for low multilinear rank A. While this is not overly important
in practice, we are able to use this analysis to provide approximation guarantees in the
general case. First, we review a related sampling result for matrix CUR decompositions.

Lemma 20 ((Hamm and Huang, 2020a, Theorem 4.1)) Let A ∈ Rm×n have rank r.
Let 0 < ε < κ(A)−1. Let d1 ∈ [m], d2 ∈ [n] satisfy

d1 &

(
r log(m)

ε4

)
log

(
r log(m)

ε4

)
, d2 &

(
r log(n)

ε4

)
log

(
r log(n)

ε4

)
.

Choose I ⊆ [m] by sampling d1 rows of A independently without replacement according

to probabilities q
(i)
j and choose J ⊆ [n] by sampling d2 columns of A independently with

22



Mode-wise Tensor Decomposition

replacement according to p
(i)
j . Set R = A(I, :), C = A(:, J), and U = A(I, J). Then with

probability at least (1− 2
nc )(1− 2

mc ),

rank (U) = r.

Proof [Proof of Theorem 13] Lemma 20 applied to each Ci, Ui implies condition (i) of

Theorem 3, which implies that A = R×1 (C1U
†
1)×2 · · · ×n (CnU

†
n) as required.

Recall that according to Theorem 2, if Ji = ⊗j 6=iIi, and rank (Ai(Ii, :)) = ri for all i,

then A = R ×ni=1 (CiU
†
i ). Theorem 14 shows a sampling scheme only requiring choosing

indices Ii to achieve an exact Chidori CUR decomposition with high probability.

Proof [Proof of Theorem 14] This theorem is derived in the same way as Theorem 13 but
applying Theorem 2 instead of Theorem 3.

6.2 Ingredients for the Proof of Theorem 10

We now turn toward the proof of the main result (Theorem 10) regarding approximation
bounds of tensor-CUR approximations via randomized sampling. Before proving Theo-
rem 10, we state an fundamental result of Tropp about uniform random sampling of matrices
with low incoherence .

Lemma 21 ((Tropp, 2011, Lemma 3.4)) Suppose that W ∈ Rd×r has orthonormal columns.
If I ⊆ [d] with |I| ≥ γµ(W )r for some γ > 0 is chosen by sampling [d] uniformly without
replacement, then

P

(∥∥∥W (I, :)†
∥∥∥
2
≤

√
d

(1− δ)|I|

)
≥ 1− r

(
e−δ

(1− δ)1−δ

)γ
, for all δ ∈ [0, 1),

P

(
‖W (I, :)‖2 ≤

√
(1 + η)|I|

d

)
≥ 1− r

(
eη

(1 + η)1+η

)γ
, for all η ≥ 0.

Lemma 21 easily results in the following corollary for uniformly sampling indices of a
tensor.

Corollary 22 Let A ∈ Rd1×···×dn with multilinear rank (r1, · · · , rn) and let A(i) = WiΣiV
>
i

be A(i)’s compact SVD. If Ii ⊆ [di] with |Ii| ≥ γiµ(Wi)ri for some γi > 0 are cho-
sen by sampling [di] uniformly without replacement, then with probability at least 1 −∑n

i=1

(
ri

(
e−δ

(1−δ)1−δ

)γi
+ ri

(
eη

(1+η)1+η

)γi)

‖Wi(Ii, :)
†‖2 ≤

√
di

(1− δ)|Ii|
, ‖Wi(Ii, :)‖2 ≤

√
(1 + η)|Ii|

di
(9)

for all i = 1, · · · , n and all δ ∈ [0, 1) and η ≥ 0.
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6.3 Proof of Theorem 10

The proof follows essentially by combining Theorem 7 and Corollary 22. Suppose that the
HOSVD of A is A = T ×1 W1 ×2 · · · ×nWn. Then

‖R(i)‖2 = ‖Wi,IiT(i)
(
⊗j 6=iWj,Ij

)> ‖2
≤ ‖T(i)‖2

n∏
j=1

‖Wj,Ij‖2

= σi1

n∏
j=1

‖Wj,Ij‖2 ≤ σmax(A)
n∏
j=1

‖Wj,Ij‖2.

According to Corollary 22, with probability at least

1−
n∑
i=1

(
ri

(
e−δ

(1− δ)1−δ

)γi
+ ri

(
eη

(1 + η)1+η

)γi)
we have

‖Wi(Ii, :)
†‖2 ≤

√
di

(1− δ)|Ii|
, ‖Wi(Ii, :)‖2 ≤

√
(1 + η)|Ii|

di
.

Therefore,

‖R(i)‖2 ≤

√
(1 + η)n

∏n
j=1 |Ii|∏n

j=1 dj
σmax(A)

and ∥∥∥U †i ∥∥∥
2

=
∥∥∥R†(i)∥∥∥ =

∥∥∥∥(Wi,IiT(i)
(
⊗j 6=iWj,Ij

)>)†∥∥∥∥
2

≤ ‖T †i ‖2
n∏
j=1

‖W †j,Ij‖2

≤

√ ∏n
j=1 dj

(1− δ)n
∏n
j=1 |Ij |

∥∥∥A†(i)∥∥∥2
=

√ ∏n
j=1 dj

(1− δ)n
∏n
j=1 |Ij |

1

σiri

≤ 1

σmin(A)

√ ∏n
j=1 dj

(1− δ)n
∏n
j=1 |Ij |

.

Additionally, √
(1− δ)n

∏n
i=1 |Ii|∏n

i=1 di
σmin(A) ≥ 8‖EIi,Ji‖2,

thus σri(Ui) ≥ 8‖EIi,Ji‖ holds given the condition that ‖Wi(Ii, :)
†‖2 ≤

√
di

(1−δ)|Ii| . Combing

this with Theorem 7, with probability at least

1−
n∑
i=1

(
ri

(
e−δ

(1− δ)1−δ

)γi
+ ri

(
eη

(1 + η)1+η

)γi)
,
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we have

‖A −Aapp‖F

≤ 9n

4n

(
n∏
i=1

∥∥∥W †i,Ii∥∥∥2
)
‖ER‖F

+
n∑
j=1

9n−j

4n−j
∥∥R(j)

∥∥
2

∏
i 6=j

∥∥∥W †i,Ii∥∥∥22
∥∥∥W †j,Ij∥∥∥2 ∥∥∥A†(j)∥∥∥2 (5

∥∥∥W †j,Ij∥∥∥2 ∥∥EIj ,Jj∥∥F + 2
∥∥EJj∥∥F)

≤ 9n

4n

√ ∏n
j=1 dj

(1− δ)n
∏n
j=1 |Ij |

‖ER‖F

+

n∑
j=1

σmax(A)9n−j

4n−j

√
(1 + η)n

∏n
j=1 |Ii|∏n

j=1 dj

∏
i 6=j di

(1− δ)n−1
∏
i 6=j |Ii|

√
dj

(1− δ)|Ij |

∥∥∥A†(j)∥∥∥2
·

(
5

√
dj

(1− δ)|Ij |
∥∥EIj ,Jj∥∥F + 2

∥∥EJj∥∥F
))

≤ 9n

4n

√ ∏n
j=1 dj

(1− δ)n
∏n
j=1 |Ij |

‖ER‖F

+
σmax(A)

σmin(A)

√
(1 + η)n

(1− δ)n
n∑
j=1

9n−j

4n−j

√ ∏
i 6=j di

(1− δ)n−1
∏
i 6=j |Ii|

(
5

√
dj

(1− δ)|Ij |
∥∥EIj ,Jj∥∥F + 2

∥∥EJj∥∥F
)

≤
9n
√∏n

i=1 di

4n(1− δ)
n
2

√∏n
i=1 |Ii|

‖ER‖F +
9n

4n−1
σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

√√√√ n∏
i=1

di
(1− δ)|Ii|

‖ER‖F

+
2σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

n∑
j=1

9n−j

4n−j

√√√√∏
i 6=j

di
(1− δ)|Ii|

∥∥EJj∥∥F .
The last equation holds because of ‖EIi,Ji‖F = ‖ER‖F for i = 1, · · · , n and

∑n
j=1

9n−j

4n−j
≤

4
5 ·

9n

4n . This completes the proof.

6.4 Proof of Theorem 11

To prove this corollary, we need to use (Tropp, 2012, Theorem 1.5). For the reader’s
convenience, we state the theorem here:

Theorem 23 ((Tropp, 2012, Theorem 1.5)) Consider a finite sequence {Bk} of fixed
matrices with dimension m1×m2, and let {ξk} be a finite sequence of independent standard
normal variables. Define the variance parameter

φ2 := max

{∥∥∥∥∥∑
k

BkB
>
k

∥∥∥∥∥
2

,

∥∥∥∥∥∑
k

B>k Bk

∥∥∥∥∥
2

}
.
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Then, for all t ≥ 0, ∥∥∥∥∥∑
k

ξkBk

∥∥∥∥∥
2

≤ t

with probability at least 1− (m1 +m2)e
− t2

2φ2 .

Now, let’s prove Theorem 11 with the case d ≤ `n−1. Since d1 = · · · = dn = d, r1 = · · · = rn,
|I1| = · · · = |In| = `, δ = η = 1

2 , and γ = 10r log(d), (5) of Theorem 10 can be restated as

‖A −Aapp‖F

≤
9n
√∏n

i=1 di

4n(1− δ)
n
2

√∏n
i=1 |Ii|

‖ER‖F +
9n

4n−1
σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

√√√√ n∏
i=1

di
(1− δ)|Ii|

‖ER‖F

+
2σmax(A)

σmin(A)

(
1 + η

1− δ

)n
2

n∑
j=1

9n−j

4n−j

√√√√∏
i 6=j

di
(1− δ)|Ii|

∥∥EJj∥∥F
=

(
9
√

2d

4
√
`

)n
‖ER‖F +

9n

4n−1
· σmax(A)

σmin(A)
· 3

n
2 ·
√

(2d)n

`n
‖ER‖F

+
2σmax(A)

σmin(A)
· 3

n
2 ·
√

(2d)n−1

`n−1
·
n∑
j=1

9n−j

4n−j
‖EJj‖F ,

with probability at least

1−
n∑
i=1

(
ri

(
e−δ

(1− δ)1−δ

)γi
+ ri

(
eη

(1 + η)1+η

)γi)

= 1− nr

( e−
1
2

(12)
1
2

)10 log(d)

+

(
e

1
2

(32)
3
2

)10 log(d)


≥ 1− nr
(

1

d3/2
+

1

d1.08

)
≥ 1− 2nr

d
.

Additionally, Ei1,··· ,in are i.i.d. and Ei1,··· ,in ∼ N (0, σ). Thus, EIi,Ji can be rewritten in the
form

∑
k,s ξk,sBk,s where Bk,s ∈ R|Ii|×|Ji| is a matrix where the only nonzero entry is σ with

index (k, s) and ξk,s ∼ N (0, 1). Then φ2 = max
{
‖
∑

k,sB
>
k,sBk,s‖2, ‖

∑
k,sBks,B

>
k,s‖2

}
=

σ2`n−1. By applying Theorem 23, we have with probability at least 1 − (`n−1 + d)1−2`
1−p

‖EIi,Ji‖2 ≤ 2σ
√
`n−p log(`n−1 + d) and ‖EIi,Ji‖F ≤ 2σ

√
`n+1−p log(`n−1 + d),

where 1 < p < 1 + log(2)
log(`) . Similarly, we have with probability at least 1 − (`n−1 + d)1−2`

1−p

‖EJi‖2 ≤ 2σ
√
`n−p log(`n−1 + d) and ‖EJi‖F ≤ 2σ

√
d`n−p log(`n−1 + d).
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By using the union bound of all these probabilities, we find that

‖A −Aapp‖F

≤

(
9
√

2d

4
√
`

)n
· 2σ

√
`n+1−p log(`n−1 + d)

+
9n

4n−1
· σmax(A)

σmin(A)
· 3

n
2 ·
√

(2d)n

`n
· 2σ

√
`n+1−p log(`n−1 + d)

+
2σmax(A)

σmin(A)
· 3

n
2

n∑
j=1

9n−j

4n−j

√
(2d)n−1

`n−1
· 2σ

√
d`n−p log(`n−1 + d)

≤

(
32n

2
3
2
n−1

+
σmax(A)

σmin(A)
· 3

5n
2

2
3n
2
−4

)
`
1−p
2

√
log(`n−1 + d)d

n
2 σ

with probability at least 1 − 2rn
d −

2n

(`n−1+d)2`
1−p−1

.

The proof of the case when d > `n−1 follows from a slight modification of the same
argument and the fact that φ2 = σ2d.

7. Numerical Experiments

In this section, we evaluate the empirical performance of the proposed tensor CUR decom-
positions against other state-of-the-art low multilinear rank tensor approximation methods:
HOSVD from (De Lathauwer et al., 2000b; Tucker, 1966), sequentially truncated HOSVD
(st-HOSVD) from (Vannieuwenhoven et al., 2012), and higher-order orthogonal iteration
(HOOI) from (De Lathauwer et al., 2000b; Kroonenberg and De Leeuw, 1980). All tests are
conducted on a Ubuntu workstation equipped with Intel i9-9940X CPU and 128GB DDR4
RAM, and executed from Matlab R2020a. We use the implementations of HOSVD, st-
HOSVD and HOOI from tensor toolbox v3.12. The codes for Fiber and Chidori CUR de-
compositions are available online at https://github.com/caesarcai/Modewise_Tensor_

Decomp.
To implement the tensor CUR decompositions, we set Ci to have size di×2ri log(

∏
j 6=i dj)

and Ui to be ri log(di) × 2ri log(
∏
j 6=i dj) for the Fiber CUR decomposition, and set Ci to

have size di ×
∏
j 6=i rj log(dj) and Ui to be ri log(di)×

∏
j 6=i rj log(dj) for the Chidori CUR

decomposition. The indices used to determine R, Ci, and Ui are sampled uniformly at
random, and the sampling size comes from the sampling guarantee results of Section 3.3.

7.1 Synthetic Dataset

We generate a 3-mode tensor X ∈ Rd×d×d with rank (r, r, r) by

X := T ×1 G1 ×2 G2 ×3 G3,

where the core tensor T ∈ Rr×r×r and matrices G1, G2, G3 ∈ Rd×r are random tensor/-
matrices with i.i.d. Gaussian distributed entries (∼ N (0, 1)). In addition, we generate the

2. Website: https://gitlab.com/tensors/tensor_toolbox/-/releases/v3.1.
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additive i.i.d. Gaussian noise E ∈ Rd×d×d with some given variance σ so that we have the
noisy observation

X̃ := X + E .

We evaluate the robustness and computational efficiency of all tested methods under
four different noise levels (i.e., σ = 10−1, 10−4, 10−7, and 0). For all methods, we denote
the output of multilinear rank (r, r, r) tensor approximation to be Xr, and the relative
approximation error is

err :=
‖Xr −X‖F
‖X‖F

.

The test results are averaged over 50 trials and summarized in Figure 3. One can see that
both variations of the proposed tensor CUR decomposition are substantially faster than
all other state-of-the-art methods. In particularly, Fiber CUR achieves over 150× speedup
when d is large. In the noiseless case (i.e., σ = 0), all methods, including the proposed ones,
approximate the low multilinear rank tensor with the same accuracy. However, when addi-
tive noise appears, the proposed methods have slightly worse but still good approximation
accuracy. We provide more detailed and enlarged runtime plots for only the tensor CUR
decompositions in Figure 4. As discussed in Section 3.4, we verify that both tensor CUR
decompositions have much lower computational complexities than the start-of-the-art, with
Chidori CUR being slightly slower than Fiber CUR.
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Figure 3: Comparison of low rank tensor approximation methods under different noise
levels σ. Rank (5, 5, 5) is used in all tests and d varies from 50 to 600. Top row: relative
approximation errors vs. tensor dimensions. Bottom row: runtime vs. tensor dimensions.

Remark 24 In Figure 4, the time complexities, with respect to the problem dimension d, of
both tensor CUR decompositions appear to be O(d) instead of the claimed O(n log2(d)) and
O(logn(d)) where n is the number of modes of the tensor (see Section 3.4). This is due to
the inefficiency of the subtensor/submatrix extraction in current tensor toolbox, even when
the extracted data is partially contiguous. If we exclude the time for subtensor/submatrix
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Figure 4: Runtime with variance bar vs. tensor dimensions for Fiber and Chidori CUR
under different noise levels σ. Rank (5, 5, 5) is used for all tests and d varies from 50 to
1200.

extraction, then the runtime plots match the theoretical complexities. The empirical time
performance of the tensor CUR decompositions will be further improved with future releases
of the tensor toolbox when the subtensor/submatrix extraction becomes more efficient.

7.2 Hyperspectral Image Compression

Hyperspectral image compression is a standard real-world benchmark for low multilinear
rank tensor approximations (Mahoney et al., 2008; Zhang et al., 2015; Du et al., 2016;
Li et al., 2021). We consider the use of the Fiber and Chidori CUR decompositions for
hyperspectral image compression on three benchmark datasets from (Foster et al., 2004):
Ribeira, Braga, and Ruivaes3. The runtime and approximation performance of the tensor
CUR decompositions are compared against the other state-of-the-art methods. Approxi-
mation performance is evaluated by signal-to-noise ratio (SNR) defined by

SNRdB = 10 log

(
‖X‖2F

‖X − Xr‖2F

)
,

where X is the color image corresponding to the original hyperspectral data and Xr cor-
responds to the compressed data. The experimental results, along with the size and rank
information of the dataset, are summarized in Table 2. In particular, we determine the
ranks based on the original hyperspectral images’ HOSVD where we try our best to balance
between compression efficiency and quality. One can see both tensor CUR decompositions
yield drastically improved speed performance with Fiber CUR being the fastest of the two
variants. On the other hand, Chidori CUR achieves superior approximation results, and
Fiber CUR is still very competitive. These datasets are in the form of tall tensors with

3. The datasets can be found online at https://personalpages.manchester.ac.uk/staff/d.h.foster/

Hyperspectral_images_of_natural_scenes_04.html.
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Table 2: Runtime and relative error.

Ribeira Braga Ruivaes

Size 1017× 1340× 33 1021× 1338× 33 1017× 1338× 33

Rank (60, 60, 7) (60, 60, 5) (65, 65, 4)

Fiber CUR 0.29 0.26 0.31
Runtime Chidori CUR 0.66 0.59 0.55
(seconds) HOSVD 1.49 1.41 1.42

st HOSVD 0.83 0.77 0.76
HOOI 2.29 2.67 3.30

Fiber CUR 24.14 17.93 15.53
SNR Chidori CUR 24.39 18.56 15.84
(dB) HOSVD 22.99 17.70 15.48

st HOSVD 22.18 17.90 15.49
HOOI 24.33 18.00 15.61

Original Fiber CUR Chidori CUR HOSVD st HOSVD HOOI

Figure 5: Visual comparison of the original and compressed hyperspectral images. From
top to bottom, each row of the images are for the datasets Ribeira, Braga and Ruivaes,
respectively.

relatively high ranks, which are conditions typically adverse to CUR methods. Nonetheless,
tensor CUR decompositions were able to achieve remarkable advantages in this real-world
test.

Finally, we present the visual comparison of the compression results in Figure 5. We find
all methods achieve visually good compression regardless of SNR. Once again, the tensor
CUR decompositions are able to finish the compression task in a much shorted time without
substantially sacrificing quality.
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8. Conclusions and Future Prospects

While extensions of CUR decompositions to tensors are not entirely new, this work gives
some of the first nontrivial bounds for quality of approximation of low multilinear rank
tensors via two types of approximations: Fiber and Chidori CUR. This was achieved through
considering arbitrary tensors as perturbations of low multilinear rank ones. As additional
points of interest, we characterized these decompositions and provided error estimates and
exact decomposition guarantees under a simple random sampling scheme on the indices.

We also demonstrated that the Fiber and Chidori CUR decompositions obtained via
uniformly randomly sampling incoherent tensors are significantly faster than state-of-the-
art low-rank tensor approximations without sacrificing quality of reconstruction on both
synthetic and benchmark hyperspectral image data sets.

Given the success of matrix CUR decompositions in a wide range of applications and
the ubiquity of tensor data, we expect that tensor CUR decompositions, including those
discussed here, will become standard tools for practitioners. In the future, it would be of
interest to understand how the idea of reconstructing a tensor from fibers and subtensors
of it can be applied to yield fast algorithms for robust decompositions (similar to robust
PCA for matrices) and tensor completion.
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