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Fig. 1: An illustrative example of the knowledge graph used in a
recommender system. There are three types of knowledge graph
entities (Movie, Director and Style) and two types of relations (Direct,
Has director), where entities are connected in a hierarchical (tree-
like) structure. The style entities demonstrate the higher hierarchy
than the director entities and movie entities.

contain factual knowledge of the type (head entity, relation,
tail entity). Recent studies have demonstrated the wide ap-
plications of KGs in information retrieval systems, such as
semantic search (searching information with meaning and not
only with lexical match) [3], [4], conversational search (taking
conversational input and return fluent conversational responses
to support multi-round conversations) [22], [25], question
answering (answering questions posed in natural language
automatically) [11], [17], and recommender systems (predict-
ing a user’s preference) [15], [33]–[37]. Incorporating KGs
into information retrieval systems brings two-fold benefits:
information retrieval systems can get boosted performance;

Abstract—Knowledge graph enhanced information retrieval 
systems have attracted considerable attention due to their ability 
to improve performance and provide additional explainability. 
As the knowledge graphs usually include fruitful facts, they 
are also good sources of side information. However, recent 
studies have shown that the usefulness of knowledge graphs 
depends highly on their representation, e.g., the embeddings 
of entities and relations. Embedding entities and relations in 
low-dimensional space is a successful knowledge graph repre-
sentation solution. Most of the works lie in modeling symme-
try/asymmetry/composition/inversion relations but pay less atten-
tion to the hierarchical relations. Recent studies have observed 
the fact that there exist rich semantic hierarchical relations in 
knowledge graphs such as Freebase (entities are connected in a 
taxonomic hierarchy) and WordNet (entities are synsets linked 
together in a hierarchy).

To address the above problems, we propose Hierarchical 
Hyperbolic Neural Graph Embedding (H2E), a new knowledge 
graph representation approach, which is able to better preserve 
hierarchical relations. Specifically, the entities/relations represen-
tations are learned in a hyperbolic polar embedding space. In a 
hyperbolic polar embedding space, the entity and relation are 
modeled as a dual-embedding with modulus embedding part 
and phase embedding part, enabling the explicitly modeling of 
two types of hierarchies: inter-level hierarchy and intra-level 
hierarchy. As the polar embedding is defined i n hyperbolic 
space, the ability of modeling and inferring hierarchical relations 
are mutual enhanced. In addition, by noticing the existence of 
the rich relational context, we propose an attentional neural 
context aggregation to adaptively integrate the relational context 
for further enhancing the ability to preserve the hierarchical 
relations. The empirical study on three benchmark datasets for 
the link prediction task demonstrates significant performance 
gains compared to some existing state-of-the-art methods and 
verifies the e ffectiveness of the proposed method on hierarchical 
relations.

Index Terms—knowledge graph representation, knowledge 
graph link prediction, graph neural network, hyperbolic space 
embedding

I. INTRODUCTION

Knowledge Graphs (KGs) have emerged as an effective
way to integrate disparate knowledge bases (KBs), which
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and the retrieval results are explainable. As KGs cover rich
facts and these facts are connected as a graph, they are good
sources of side information. However, recent studies [35],
[36] have shown that the usefulness of knowledge graphs
depends highly on their representations, e.g., the embedding
of knowledge graph entities and relations. Improperly learned
KG representations might even deteriorate the performance.
Therefore, finding good knowledge graph representations is a
task of fundamental importance.

Recent studies have demonstrated that embedding methods
are effective and scalable for knowledge graph representation
learning. The basic idea is to map the knowledge graph entities
and relations to a low dimensional vector space, where the se-
mantics and inherent structures are preserved. The relations in
KGs demonstrate multiple properties, such as symmetry (e,g,
marriage), anti-symmetry (e.g., affiliation), inversions (e.g.,
hypernym and hyponym), and compositions (e.g., my mother’s
sister is my aunt). Most works attempt to either implicitly
or explicitly model one or a few of these relation patterns
[6], [10], [28], [30], [41]. However, these methods fail to
adequately model semantic hierarchical relations in knowledge
graphs. Besides, they usually require high dimensionality to
capture specific types of relations, which suffers from the curse
of dimensionality and bad scalability. Therefore, an approach
that is able to model and infer semantic hierarchical relations
is needed.

Semantic hierarchical relations are widely presented in
knowledge graphs [1], [7], [39], [42], [43]. For example, Fig-
ure 1 shows a subgraph taken from Freebase [5], which is used
in a knowledge graph enhanced movie recommender system.
We can see that entities are linked together in a hierarchical
(tree-like) structure, e.g., in the triple (Adventure, has director,
Peter Jackson), adventure is a parent of Peter Jackson, which
demonstrates a higher level than Peter Jackson; in the triple
(Peter Jackson, direct, The Lord of Rings), Peter Jackson is
a parent of The Lord of Rings, which demonstrates a higher
level than The Lord of Rings; based on previous two triples,
we can infer that the Adventure shows a higher level than The
Lords of Rings. A user’s preference in a recommender system
is hierarchical, e.g., a user might be interested in a specific
director and a user might be interested in a specific style, as
the director has a lower level, recommended candidates based
on the director preference (lower hierarchy) should get higher
rank than the ones based on the style preference (higher hier-
archy). Therefore, modeling the hierarchical relations during
the knowledge graph representation learning is meaningful and
important to information retrieval task, such as recommender
system.

Some recent works take hierarchical relations into con-
sideration when learning knowledge graph representations,
including explicit [39], [42], [43] and implicit approaches
[1], [7]. In [39], [42], [43], the authors explicitly modeled
the hierarchical relations, where [39], [43] used additional
data and preprocess to get the hierarchical patterns; and [42]
proposed a polar coordinate system to model the hierarchical
relations. On the other hand, [1], [7] implicitly modeled

the hierarchical relations by mapping knowledge graph enti-
ties/relations into a hyperbolic space. In hyperbolic space, the
surface area of a hypersphere with a specific center ”increases”
exponentially [9] and more room can be used to distinguish the
leaf nodes in a hierarchy. As a benefit from this property, the
hierarchical structure can be naturally preserved during the KG
representation learning even in a very low dimensional space.
Although there has been some attempts, it is still challenging
to model hierarchical relations because: 1) explicit approaches
require additional information or higher dimensionality; and 2)
implicit approaches have limited power to model hierarchical
relations.

To address the above issues, in this paper we propose a novel
knowledge graph representation learning approach called
Hierarchical Hyperbolic Neural Graph Embedding (H2E),
which learns knowledge graph entity/relation representations
in a hyperbolic polar embedding space. In a hyperbolic polar
embedding space, the entities and relations are modeled as
a dual-embedding with modulus embedding part and phase
embedding part, which enables the explicit modeling of two
types of hierarchies: inter-level hierarchy and intra-level hier-
archy. As the polar embedding is defined in hyperbolic space,
the ability of modeling and inferring hierarchical relations are
mutual reinforced. In addition, by noticing the existence of
the rich relational context, we propose an attentional neural
context aggregation to adaptively integrate the hierarchical
relational context in the hyperbolic polar embedding space to
further enhance the ability of capturing hierarchical relations.
To demonstrate the effectiveness of the proposed knowledge
graph representation learning method, we conduct extensive
experiments on three benchmark datasets for link prediction
task. Our experimental results show significant performance
gains compared to some existing state-of-the-art methods and
demonstrate the effectiveness of the proposed method on
hierarchical relations.

In a nutshell, this paper makes the following contributions:

• We formulate the problem of the hierarchy-preserving
knowledge graph representation learning in a hyperbolic
polar embedding space and develop a graph neural net-
work based framework, which can model the hierarchical
relations explicitly and implicitly in a joint manner.

• We propose the hyperbolic polar embedding space with
trainable curvatures to represent knowledge graph entities
and relations, which can better preserve the hierarchical
structure in the KG.

• We propose attentional graph neural networks in hy-
perbolic polar embedding spaces, which can leverage
relational context to enhance the ability of capturing
hierarchical relations.

• We conduct extensive experiments on three different
knowledge graph datasets and demonstrate that the pro-
posed method can effectively capture hierarchical rela-
tions during the KG representation learning and outper-
forms existing state-of-the-art embedding methods on the
link prediction task.
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The rest of the paper is organized as follows. We introduce
preliminaries and problem formulation in Section 2. Section 3
discusses our proposed Hierarchical Hyperbolic Neural Graph
Embedding in detail. Section 4 provides the experiment results
and ablation studies. Section 5 discusses related work. Finally,
Section 6 concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the preliminaries and
some notations for the proposed hierarchical hyperbolic neural
graph embedding model, including hyperbolic space and Gy-
rovector space algebra. Then we give the problem formulation
of hierarchy-preserving knowledge graph representation in a
hyperbolic polar embedding space.

A. Preliminaries

Definition 1. (Hyperbolic space) Hyperbolic space H is
a homogeneous, isotropic, negatively curved (with constant
negative curvature c) Riemann space, defined by a Riemannian
manifold [19]. Typically, there are types of the Riemannian
manifold, including Euclidean space (constant vanishing sec-
tional curvature), hyperbolic space (constant negative sectional
curvature), and spherical space (constant positive sectional
curvature). As the hyperbolic space is negatively curved, it
expands faster (exponentially) than Euclidean space (polyno-
mially).

Definition 2. (Poincaré disk model) Poincaré disk model is
a model used for describing a n-dimensional hyperbolic space
in which all points are embedded in a Riemannian manifold
Hn

c = (Pn
c , gH). Pn

c = {x ∈ Rn : ||x||2< 1
c} is an open n-

dimensional ball equipped with a Riemannian distance metric
gH(x) = ( 2

1−||x||2 )gE . Here x ∈ Pn
c , ||·|| is the Euclidean

norm, and gE is the Euclidean distance metric. The induced
distance between two points u and v is given by:

dP
n
c (u, v) =

2√
c
tanh−1(

√
c||− (1 + 2cuTv + c||v||2)u+ (1− c||u||2)v

1 + 2cuTv + c2||u||2||v||2
||)

(1)

Definition 3. (Gyrovector space algebra) Gyrovector space
algebra is an analogy to the Euclidean geometry vector space
operations for hyperbolic geometry. Möbius operations [13],
[31] are defined in Gyrovector space and used to perform
vector operation. The commonly used Möbius operations are
described in Table I.

B. Problem Formulation

A knowledge graph is a multi-relational directed graph
denoted by G = (E ,R), with E and R representing the set
of entities (nodes) and relations (edges), respectively. A triple
(eh, r, et) ∈ E × R × E is represented as an edge r between
head entity eh and tail entity et in G. The aim is to map
entities (e ∈ E)/relations (r ∈ R) to their corresponding
embeddings (e(M) ∈ Pn

c , e(P ) ∈ Pn
c )/(r(M) ∈ Pn

c , r(P ) ∈ Pn
c ).

Here Pn
c indicates the embedding space in hyperbolic space

with dimensionality n and curvature c, where hierarchical

structure can be preserved properly. M/P are modulus/phase
part indicators. In particular, the learned KG representation
are used to predict the target entity of a given query with
head entity and relation, q := (eh, r, ? )–such that the predicted
tuple doesn’t exist in G.

III. HIERARCHICAL HYPERBOLIC NEURAL GRAPH
EMBEDDING

In this section, we introduce the proposed Hierarchical
Hyperbolic Neural Graph Embedding (H2E). We start by
providing a framework overview of the proposed method.
Then we detail the different modules of our approach, includ-
ing initial embedding construction, attentional neural context
aggregation, hyperbolic polar translation, hyperbolic scoring,
and loss.

A. Framework Overview

The framework overview of the Hierarchical Hyperbolic
Neural Graph Embedding (H2E) is shown in Figure 2. It
consists of following five important modules:
• Initial Embedding Construction Given a triple
(e1, r3, e3) ∈ E × R × E and the relational contexts
(e1, r1, e2) and (e1, r2, e4), we first get the initial em-
beddings of the head/tail entities and relation. We define
the initial embedding in a dual-embedding setting with
hyperbolic modulus embedding and hyperbolic phase
embedding to explicitly model two types of hierarchies:
inter-level hierarchy and intra-level hierarchy. (See Sec-
tion 3.2 for details)

• Attentional Neural Context Aggregation We develop
a graph neural network to gather the relational context
information around the entities. As different contexts
affect the entity differently, we designed a graph neural
network with attention – attentional neural context aggre-
gation to adaptively integrate the relational context. The
output is a relational context enhanced embedding. As our
embedding consists of hyperbolic modulus embedding
and hyperbolic phase embedding, both embeddings go
through the attentional neural context aggregation and get
their corresponding relational context enhanced embed-
dings. (See Section 3.3 for details)

• Hyperbolic Polar Translation After we get the relational
context enhanced embeddings for modulus embedding
and phase embedding, we perform the hyperbolic mod-
ulus translation and hyperbolic phase translation to get
the hyperbolic translated modulus embedding and phase
embedding. (See Section 3.4 for details)

• Hyperbolic Scoring Based on the hyperbolic trans-
lated modulus/phase embedding and relational context
enhanced modulus/phase embedding for entity tail, we
compute their hyperbolic distances as the scores and
combine them together to get the final score. (See Section
3.5 for details)

• Loss After the hyperbolic final score is obtained, we add
it to a negative sampling loss to train the model. (See
Section 3.6 for details)
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TABLE I: Commonly used Möbius operations for hyperbolic space.

Operation Notation Explanation

Möbius addition ⊕c x⊕c y =
(1+2cxT y+c||y||2)x+(1−c||x||2)y

1+2cxT y+c2||x||2||y||2
Möbius scalar multiplication ⊗c r ⊗c x = expco(r log

c
o(x))

Möbius element-wise multiplication �c x�c y = expco(x ◦ logco(y))
Möbius matrix multiplication ⊗c M⊗c x = expco(M logco(x))

Möbius activation σc σc(x) = expco(σ(log
c
o(x)))

Möbius exponential map expco expco(u) = tanh(
√
c||u||) u√

c||u||
Möbius logarithmic map logco logco(v) = tanh−1(

√
c||v||) v√

c||v||
Möbius distance dP

n
c dP

n
c (u,v) = 2√

c
tanh−1(

√
c||−u⊕c v||)

Loss

Hyperbolic
Modulus

Embedding

Hyperbolic
Phase

Embedding

Hyperbolic
Modulus

Translation

Hyperbolic
Phase
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Attentional Neural Context Aggregation Attentional Neural Context Aggregation

Hyperbolic
Polar
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Hyperbolic
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Hyperbolic
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Hyperbolic
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Fig. 2: The left part is a subgraph of the knowledge graph with four facts. The right part is the framework overview of the Hierarchical
Hyperbolic Neural Graph Embedding (H2E), which consists of five key modules: Initial Embedding Construction (See Section 3.2 for
details), Attentional Neural Context Aggregation (See Section 3.3 for details), Hyperbolic Polar Translation (See Section 3.4 for details),
Hyperbolic Scoring (See Section 3.5 for details), and Loss (See Section 3.6 for details). Hierarchical Hyperbolic Neural Graph Embedding
is a dual-embedding, which consists of modulus part embedding and hyperbolic phase part. Modulus part embedding models the inter-level
hierarchy. Phase Embedding models the intra-level hierarchy. Initial Embedding Construction prepares the initial embedding of the knowledge
graph entities/relations as hyperbolic modulus embedding and hyperbolic phase embedding. Attentional Neural Context Aggregation takes
the relational context into consideration and adaptively integrate these relational contexts to get the relational context enhanced embedding.
Hyperbolic Polar Translation compute the translated head entity over the specific relation in both modulus and phase part. Hyperbolic Scoring
measures the distance between the translated head entity over the specific relation and the tail entity. The Loss component combines the
scores from Hyperbolic Scoring to compute the training loss.

B. Initial Embedding Construction

Based on the hierarchical level, KG relations among entities
can be classified in two categories: (i) Inter-level hierar-
chy: hierarchical relations among entities in different levels
(e.g. Adventure vs Director, Director vs Movie). (ii) Intra-
level hierarchy: hierarchical relations among entities in the
same level (e.g. Adventure vs Comedy, Peter Jackson vs
James Cameron). Implicit approaches [1], [7] model knowl-
edge graph entities/relations in hyperbolic space, which can
preserve the hierarchical structure automatically during the
embedding stage. In order to enhance the modeling power
of the hierarchical structure, we model the knowledge graph
entities/relations in a hyperbolic polar embedding space, which
can take the benefit of both explicit and implicit approaches
and mutually enhance each other. In particular, hyperbolic
polar embedding consists of hyperbolic modulus embedding

and hyperbolic phase embedding, with hyperbolic modulus
embedding modeling the inter-level hierarchy and hyperbolic
phase embedding modeling the intra-level hierarchy.

Given a triple (eh, r, et) ∈ E × R × E , we first get the
initial embeddings of the head/tail entities and the relation.
Specifically, there are two types of embeddings: hyperbolic
modulus embedding and hyperbolic phase embedding. Their
corresponding initial embeddings are defined as follows:


e
(M)
h , e

(M)
t ∈ Pn

c hyperbolic modulus entity embedding
r(M) ∈ Pn

c hyperbolic modulus relation embedding
e
(P )
h , e

(P )
t ∈ Pn

c hyperbolic phase entity embedding
r(P ) ∈ Pn

c hyperbolic phase relation embedding
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C. Attentional Neural Context Aggregation

Recent studies [2], [23], [26], [32] on graph neural net-
works have demonstrated improved KG embedding quality by
leveraging relational context. In addition, the context can help
to model hierarchical relations with good explainability. For
example, entities are more similar if they have deeper least
common ancestors. Furthermore, a triple may have multiple
contexts, but not all the contexts are helpful. For example, to
determine if two entities are similar, the higher hierarchical-
level common contexts are more useful. Motivated by these
ideas, we propose attentional neural context aggregation, a
graph-neural-network-based approach to get the relational
context enhanced embedding by selectively aggregating the
relational context information. Formally, it can be described
as follows:

ê
(Pn

c )(M/P )
i = Agg(e(P

n
c )(M/P )

j , r
(Pn

c )(M/P )
k |j ∈ Ni, k ∈ Rij)

(2)
where n, c, Pn

c and M/P are the dimension indicator, cur-
vature indicator, space indicator and modulus/phase indicator
respectively. ê(P

n
c )(M/P )

i denotes the output relational context
enhanced embedding, e(P

n
c )(M/P )

j denotes the embedding of
a tail entity ej corresponding to the target entity ei with
the embedding e

(Pn
c )(M/P )

i . Ni represents set of entity typed
relational context of entity ei and Rij denotes the set of
relations between entities ei and ej . Both hyperbolic modulus
embedding and hyperbolic phase embedding go through the
attentional neural context aggregation to get their relational
context enhanced embeddings for the next module.

Different from traditional graph, the context of an entity is
more than a neighbourhood entity. It also includes the relation
between the neighbouring entities. Therefore, we gather the
relational context m(Pn

c )(M/P )
i,j,k with both neighbourhood entity

and corresponding relation to update the entity embedding.
The relational context is computed by concatenating and linear
transforming the entities and relation embeddings as follows:

m
(Pn

c )(M/P )
i,j,k = W′

1 ⊗c [e
(Pn

c )(M/P )
i ||e(P

n
c )(M/P )

j ||r(P
n
c )(M/P )

k ]
(3)

where W′
1 denotes the linear transformation matrix and ⊗c

indicates the Möbius matrix multiplication as described in
Table I. [ || || ] represents the concatenation operation.

As different context might have different levels of im-
portance, we gather the relation context in an attentional
manner. In particular, we leverage the multi-head attention and
perform two iterations of embedding update to gather two-hop
relational context. The new entity embedding is computed as
follows:

b
(Pn

c )(M/P )
i,j,k = expco(LeakyReLU(logco(W

′
2 ⊗c m

(Pn
c )(M/P )

ijk ))
(4)

α
(Pn

c )(M/P )
i,j,k = softmaxjk(b

(Pn
c )(M/P )

i,j,k ) (5)

e
(Pn

c )(M/P )′

i =

‖Ll=1 σc

∑
j∈Ni

∑
k∈Rij

α
(Pn

c )(M/P )(l)
i,j,k ⊗c m

(Pn
c )(M/P )(l)

i,j,k

 (6)

e
(Pn

c )(M/P )′′

i =

σc

 1

L

L∑
l=1

∑
j∈Ni

∑
k∈Rij

α
(Pn

c )(M/P )(l)′

ijk ⊗c m
(Pn

c )(M/P )(l)′

ijk


(7)

Equation 4 computes the context importance b(P
n
c )(M/P )

i,j,k corre-

sponding to relation embedding m
(Pn

c )(M/P )
i,j,k , Equation 5 com-

putes the attention value corresponding to relation embedding
m

(Pn
c )(M/P )

i,j,k and Equation 6 computes the 1-hop new entity
embedding after the attentional relational context embedding
fusion. Equation 7 computes the 2-hop new entity embedding
after the attentional relational context embedding fusion. Here
W′

2 is a linear transformation matrix. L indicates the number
of heads.

The new representation of the relation is computed by
applying two linear transformations:

r
(Pn

c )(M/P )′′

k = W′′
rel ⊗c (W

′
rel ⊗c r

(Pn
c )(M/P )

k ) (8)

where W′
rel and W′′

rel denotes the 1-hop and 2-hop linear
transformation matrices respectively for the relation embed-
ding.

As the initial embedding is also important, we further em-
ploy a linear transformation layer to fuse the initial embedding
and the new embedding as follows:

e
(Pn

c )(M/P )′′′

i = (W′
f ⊗c e

(Pn
c )(M/P )

i )⊕c e
(Pn

c )(M/P )′′

i (9)

where W′
f is a weight matrix to trade-off the old and new

representations. In the end, the resulting relational context
enhanced embeddings of entity and relation are described as
follows:

ê
(Pn

c )(M/P )
i = e

(Pn
c )(M/P )′′′

i (10)

r̂
(Pn

c )(M/P )
k = r

(Pn
c )(M/P )′′

k (11)

D. Hyperbolic Polar Translation

After the relational context enhanced embeddings are ob-
tained, we feed them to a translational distance framework,
such that the new head entity embedding is combined with
the relation embedding to compute the translated embedding.
The hyperbolic polar embedding consists of two sub-parts: hy-
perbolic modulus embedding (to model inter-level hierarchies)
and hyperbolic phase embedding (to model intra-level hierar-
chies). In this section, we introduce the proposed hyperbolic
modulus translation and hyperbolic phase translation.

The hyperbolic modulus translation aims to translate the
head entity to its translated tail entity over a specific relation
in hyperbolic modulus embedding space. Entities linked in a
hierarchical structure, usually demonstrate the different level,
e.g., in the triple (Adventure, has director, Peter Jackson),
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Adventure is a parent of Peter Jackson, which demonstrates
a higher level than Peter Jackson; in the triple (Peter Jackson,
direct, The Lord of Rings), Peter Jackson is a parent of
The Lord of Rings, which demonstrates a higher level than
The Lord of Rings. Therefore, we can use depth to model
different levels of hierarchies. In this way, each entry of
entity corresponds to a modulus and each entry of relation
corresponds to a scaling transformation between two entities
in the hyperbolic space. Formally, we describe the hyperbolic
modulus translation as follows:

t(P
n
c )(M) = trans(P

n
c )(M)(ê

(Pn
c )(M)

h , r(P
n
c )(M))

= ê
(Pn

c )(M)
h �c r

(Pn
c )(M)

(12)

where �c denotes the Möbius element-wise product. The
output t(P

n
c )(M) is the hyperbolic translated modulus entity

embedding.
The hyperbolic phase translation intend to translate the

head entity to its translated tail entity over a specific relation
in hyperbolic phase embedding space. Entities in the same
hierarchical level can lie on a circle, as they share the same
radius but have different angles. In particular, each entry
of entity corresponds to a phase and each entry of relation
corresponds to a phase transformation between two phases.
Formally, we describe the hyperbolic phase translation as
follows:

t(P
n
c )(P ) = trans(P

n
c )(P )(ê

(Pn
c )(P )

h , r(P
n
c )(P ))

= (ê
(Pn

c )(P )
h ⊕c r

(Pn
c )(P ))mod 2π

(13)

where ⊕c denotes the Möbius addition. The output t(P
n
c )(P )

is the hyperbolic translated phase entity embedding.

E. Hyperbolic Scoring

Based on the hyperbolic translated modulus/phase entity
embeddings, we can perform the hyperbolic scoring to com-
pute the distance between the translated modulus/phase entity
embeddings and the tail entity embedding. In particular, the
hyperbolic scoring consists of two parts: hyperbolic modulus
scoring and hyperbolic phase scoring.

For the hyperbolic modulus scoring, the distance function
is defined as follows:

s(P
n
c )(M)(eh, et) = d(P

n
c )(M)(eh, et)

= d(P
n
c )(M)(t(P

n
c )(M), ê

(Pn
c )(M)

t )
(14)

As for the scoring is in hyperbolic space, the Möbius
distance d(P

n
c ) is used. Similarly, for the hyperbolic phase

scoring, the distance function is defined as follows:

s(P
n
c )(P )(eh, et) = d(P

n
c )(P )(eh, et)

= d(P
n
c )(P )(t(P

n
c )(P ), ê

(Pn
c )(P )

t )
(15)

Combining the hyperbolic modulus scoring and the hyper-
bolic phase scoring, we can obtain the overall hyperbolic polar
scoring, whose distance function is given by:

s(P
n
c )(eh, et) = s(P

n
c )(M)(eh, et) + λs(P

n
c )(P )(eh, et) (16)

where λ is a parameter learned by the model.

F. Loss

To train our proposed H2E model, we minimize a negative
sampling loss function as [28], where Ne negative samples
are constructed for each triple (eh, r, et) by performing the
negative triple sampling with a distribution given by:

p(e′h(j), r, e
′
t(j)|{(eh(i), ri, et(i))}) =

expαs(P
n
c )(e′h(j), e

′
t(j))∑

i expαs
(Pn

c )(e′h(i), e
′
t(i))

(17)

where α is the temperature of sampling, (e′h(i), ri, e
′
t(i)) is the

i-th negative sample. Formally, the loss function is given by:

L = − log σ(γ − s(P
n
c )(eh, et))

−
Ne∑
i=1

p(e′h(i), ri, e
′
t(i)) log σ(s

(Pn
c )(e′h(i), e

′
t(i))− γ)

(18)

where γ denotes the fixed margin, σ denotes the sigmoid
function. To optimize the proposed model properly, following
[8], all parameters are defined in the tangent space at the
origin. Moreover, we adopt the trainable curvature as [8] and
set curvature c as a trainable parameter in order to better model
the hierarchical structure.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed methods on three
KG benchmark datasets. We first introduce the datasets used in
the experiments, the compared methods and the experimental
setup. Next,we show the overall results. We further conduct
several ablation studies, including dimensionality, graph neural
network, and relation type.

A. Datasets

To evaluate the performace of the proposed method on the
link prediction task and in order to cover different levels
of hierarchical structure and different scales, we perform
experiments on three commonly used benchmark datasets:
WN18RR [29], FB15k-237 [10], and YAGO3-10 [21]. We
provide the data statistics in Table II.

B. Compared Methods

To evaluate the performance of the proposed method, we
compare with the following state-of-the-art KG representation
methods:
• RESCAL [24]: Euclidean embedding models with each

relations as a full rank matrix.
• TransE [6]: First translational distance Euclidean embed-

ding.
• DisMult [6]: Euclidean embedding models with rela-

tional matrix being diagonal.
• MuRE [1]: Translational distance Euclidean embedding

with diagonal relation matrix.
• complEx [30]: Extension of DisMult in complex space.
• RotatE [28]: Extension of TransE in a complex space

with modulus part and phase part.
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TABLE II: Statistics of datasets.

Dataset #Entity #Relation #Train #Valid #Test Hierarchical Structure Scale
WN18RR 40,943 11 86,835 3,034 3,134 Rich Small
FB15-237 14,541 237 272,115 17,535 20,466 Medium Medium
YAGO3-10 123,182 37 1,079,040 5,000 5,000 Rich Large

• Conve [10]: NN-based method with score function de-
fined by the convolutional neural network.

• CompGCN [32]: NN-based method with score function
defined by the graph convolutional network.

• A2N [2]: NN-based method with score function defined
by the graph attentional network.

• HAKE [42]: Hierarchical aware translational distance
model in the polar embedding space.

• MuRP [1]: Translational distance hyperbolic embedding
with diagonal relation matrix.

We report the results taken from the original papers in Section
4.4 for these baseline methods.

Since the proposed H2E consists of several components, to
analyze the advantage of hyperbolic modeling/polar embed-
ding/graph neural network, we consider several non-hyperbolic
variations of H2E as follow:
• HE: polar embedding with attentional GNN.
• PE: polar embedding only without GNN.
• HGCNE: polar embedding only with GCN.
• HGATE-khead: polar embedding only with k-head-

attentional GNN.

C. Experimental Setup

Following previous KG link prediction work [6], MRR
and Hits@K are used as evaluation metrics. We perform
the optimization in tangent space as [8] and use standard
Euclidean optimizers. We implement the proposed method in
PyTorch and conduct the experiments on NVIDIA Tesla V100
GPU. For our proposed model, we conduct a hyperparameter
search on dimensionality, learning rate, optimizer, negative
sample size, batch size and number of attention heads. We
report the best hyperparameters (dimensionality, learning rate,
optimizer, negative sample size, batch size and number of
attention head) for each dataset as follows: {WN18RR: 200,
0.001, Adam, 500, 500, 4}, {FB15k-237: 200, 0.05, Adagrad,
500, 500, 4}, {YAGO3-10: 500, 0.005, Adam, 250, 500, 4}.

D. Overall Results

In this subsection, we compare the proposed method with
existing state-of-the-art methods. The experimental results are
shown in Table III, where results of the baseline methods are
reported as indicated in the original paper with the best hyper-
parameters. Both proposed HE and H2E almost outperforms
all the baseline on datasets with rich hierarchical structure,
such as WN18RR and YAGO3-10, and achieves the second
best results on hierarchy-medium dataset FB15k-237. These
experimental results confirm the effectiveness of the proposed
methods in preserving hierarchical relations in KG. H2E out-
performs its variant HE, which demonstrates the effectiveness
of hyperbolic embeddings. Besides, we can see hyperbolic

methods achieve top performance on WN18RR and YAGO3-
10 and beat the non-hyperbolic methods. Another interesting
experiment result is that the GNN-based methods demonstrate
strong performance on all the datasets, which means levering
that relational contexts is beneficial to the KG representation.

E. Analysis on Dimensionality
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Fig. 3: MRR per embedding dimensionality with
d ∈ {10, 15, 20, 40, 100, 200, 500} on WN18RR dataset. Average
computed over 10 runs.

In this subsection, the role of the dimensionality is in-
vestigated. We conduct experiments on WN18RR and re-
port the MRR of HE, H2E against state-of-the-art meth-
ods MuRP, compGCN at different dimensions d ∈
{10, 15, 20, 40, 100, 200, 500}. Fig. 3 shows the results, which
are obtained by averaging over 10 runs. H2E achieves better
performance across a broad range of dimensions, especially in
lower dimensionality.

F. Analysis on Graph Neural Network

In this section, the effectiveness of the graph neural network
module is studied. We show the ablation results on WN18RR
and FB15k-237 datasets in Table IV. We can see that the
model with graph neural network outperforms the non-GNN
model. The graph attention network with one head has similar
performance compared to the graph convolutional variants.
When the number of heads increases, the performance also
increases.

To further study the effectiveness of the graph atten-
tion mechanism, we take some qualitative examples from
FB15-k-237. The examples in Fig. 4 demonstrate how the
model can benefit from the relational contexts. In the first
example queries, to predict the tail of the head entity
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TABLE III: Link prediction results for embeddings on WN18RR, FB15k-237 and YAGO3-10. Best results are in bold and the second best
results are in underlined.

WN18RR FB15k-237 YAGO3-10
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@1 H@10
RESCAL .420 - - .447 .270 - - - - - -
TransE .226 - - .501 .294 - - .465 - - - -
DisMult .430 .390 .440 .490 .241 .155 .263 .419 .340 .240 .380 .540
ComplEx .440 .410 .460 .510 .247 .158 .275 .428 .360 .260 .400 .550
ConvE .430 .400 .440 .520 .325 .237 .356 .501 .440 .350 .490 .620
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670
MuRE .465 .436 .487 .554 .336 .245 .370 .521 - - - -
MuRP .481 .440 .495 .566 .335 .243 .367 .518 - - - -
CompGCN .479 .443 .494 .546 .355 .264 .390 .535 .489 .395 .500 .582
A2N .430 .410 .440 .510 .317 .232 .348 .486 .445 .349 .482 .501
HAKE .497 .452 .516 .582 .346 .250 .348 .486 .445 .349 .482 .501
HE .490 .451 .517 .583 .345 .249 .384 .535 .520 .431 .581 .675
H2E .500 .456 .522 .593 .355 .260 .386 .533 .559 .466 .604 .694

TABLE IV: Ablation results on WN18RR and FB15k-237 datasets. We compare with variants of the proposed model using various graph
neural network setting.

WN18RR FB15k-237
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
CompGCN .479 .443 .494 .546 .355 .264 .390 .535
A2N .430 .410 .440 .510 .317 .232 .348 .486
PE .458 .421 .452 .523 .344 .248 .381 .538
HGCNE .485 .444 .508 .580 .347 .243 .386 .527
HGATE-1head .482 .442 .509 .578 .347 .241 .387 .526
HGATE-4head .492 .448 .518 .588 .350 .248 .388 .531
HGATE-8head .497 .450 .521 .591 .353 .263 .390 .532

Fig. 4: Example of queries. We provide their top prediction and the
set of top 3, bottom 2 attention relational contexts with corresponding
attention probabilities for the H2E model.

Fantastic Four: Rise of the Silver Surfer and relation genre,
the contextual triples with the same relation are assigned the
high attention scores, while the contextual triples with the
relations irrelevant to the given relation genre are assigned
the lower scores. In the second example, given the head entity
Burt Young and relation nationality, the contextual triples with
the relation highly correlating with nationality are assigned
the high scores. Also, the prediction can be the tails of these
relations. Therefore, the attention mechanism helps to identify
the useful relational contexts, and the relational contexts with
high attention scores play key roles in identifying the correct

prediction.

G. Analysis on Relation Type

In this subsection, we investigate how the performance
of the proposed method is affected by relation types on
WN18RR. We report a number of metrics to describe each
relation, including the measures of hierarchy-level (global
graph curvature ξG [14] and Krackhardt hierarchy score (Khs)
[18]), and maximum/average shortest path between any two
nodes in the KG for hierarchical relations. Specifically, we
compare hits@10 for each relation of RotatE, MuRE, MuRP,
HE and H2E for entity embeddings at a lower dimension with
n = 20. Table V demonstrates that all the models achieve com-
parable performance on non-hierarchical, symmetric relations
with the low hierarchy-level, such as verb group, whereas
H2E generally outperforms the other models on hierarchical
relations. In additional, the performance gap between HE and
H2E is generally bigger for relations with deep hierarchy.

V. RELATED WORK

Our work is related to non-hierarchy-aware knowledge
graph representation and hierarchy-aware knowledge graph
representation. We briefly discuss them in the following sub-
sections.

A. Non-hierarchy-aware Knowledge Graph Representation

KG representation has been extensively studied, which
typically project entity/relation in the Euclidean embedding
space. Many approaches have been proposed, such as TransE
[6], TransD [16], TransH [38] and TransR [20] and bilinear
models, such as RESCAL [24] and DistMult [40]. Recently,
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TABLE V: Comparison of hits@10 for WN18RR relations for d = 20.

WN relation name ξG Khs MaxPath AvgPath RotatE MuRE MuRP HE H2E
also see -2.09 .24 44 15.2 .473 .634 .705 .694 .726
hypernym -2.46 .99 18 4.5 .102 .161 .228 .230 .236
has part -1.43 1 13 2.2 .198 .215 .282 .301 .316
member meronym -2.90 1 10 3.9 .201 .272 .346 .342 .350
synset domain topic of -0.69 .99 3 1.1 .225 .316 .430 .421 .445
instance hypernum -0.82 1 3 1.0 .453 .488 .471 .475 .477
member of domain region -0.78 1 2 1.0 .287 .308 .347 .345 .352
member of domain usage -0.74 1 2 1.0 .379 .396 .417 .409 .421
derivationally related form -3.84 .04 - - .936 .954 .967 .965 .968
similar to -1.00 0 - - .997 1 1 1 1
verb group -0.5 0 - - .958 .974 .974 .980 .982

neural network models have attracted considerable research
interest, which map the entities and relations into the embed-
ding space via neural network in an end-to-end manner. Based
on the neural network the model use, we can categorize these
methods in three groups: NN-based model [12], [27] (using
fully connected neural network), CNN-based model [10], [10]
(using convolutional neural networks), and GNN-based model
[2], [23], [26] (using graph neural networks). However, all
these approaches overlook the hierarchical nature of relations
and pay less attention on the hierarchical relations during the
KG representation learning.

B. Hierarchy-aware Knowledge Graph Representation

Some recent works take hierarchical relations into consider-
ation when learning knowledge graph representations, they can
be categorized in two categories: implicit model and explicit
model.

1) Implicit model: Recently, a few attempts [1], [7] learn
KG representation in hyperbolic space. MuRP [1] initially
developed the hyperbolic analogy of translational distance
model for KG embedding. It has three limitations: as a
translation model, it cannot encode complex relations; the hy-
perbolic space is defined with a fixed curvature, which has less
flexibility to the data; it ignores the rich context information.
AttH [7] built a rotation based model in hyperbolic space
for KG embedding. However, it overlooks the rich relational
context during the embedding learning.

2) Explicit model: [39], [42], [43] explicit model the
hierarchical relations, where [39], [43] used additional data
and preprocess to get the hierarchical pattern; [42] proposed a
polar coordinate system to model the hierarchical relations.
Although a number of attempts have been done, it is still
challenging to model hierarchical relations. The explicit ap-
proaches require additional information or higher dimension-
ality and they also overlook the rich relational context during
the embedding learning.

A few recent works take hierarchical relations into con-
sideration. [39], [43] explicitly model the semantic hierarchy.
However, they require additional data or process and can-
not capture the hierarchy automatically. [42] uses the polar
coordinate system to model the hierarchical structure, while
its embeddings are defined in the Euclidean space, which
has limited modeling power. On the other hand, embedding
hierarchical data in hyperbolic space has attracted considerable

research interest, due to its ability of naturally capturing
the semantic hierarchies. [1] proposes MuRP to learn KG
embeddings on hyperbolic space in order to capture the hierar-
chical structure automatically. However, MuRP has a number
of limitations. First, it is a translation model, which cannot
encode complex relations. Second, it uses a fixed curvature,
which may not adapt to the data. Third, it ignores the rich
context information. More recently, [7] combines reflections
and rotations in hyperbolic space with attention to capture both
hierarchical and logical patterns. However, it overlooks the rich
relational context during the embedding learning. Instead, our
proposed method overcomes these limitations.

VI. CONCLUSION

In this work, we propose H2E, a new knowledge graph
representation approach to better preserve the hierarchical
relations. H2E learns the entity/relation representation in a
hyperbolic polar embedding space and further enhances the hi-
erarchy preserving ability via attentional neural context aggre-
gation. With the help of the H2E, the hierarchical relations can
be modeled in an automatic and effective way. Experiments
show the significant performance gains over some state-of-
the-art methods on several benchmark datasets in terms of link
prediction and verify the effectiveness of modeling hierarchical
relations.
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mixed-curvature representations in product spaces. 2018.

[15] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui
Xiong, and Qing He. A survey on knowledge graph-based recommender
systems. IEEE Transactions on Knowledge and Data Engineering, 2020.

[16] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowl-
edge graph embedding via dynamic mapping matrix. In Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 687–696, 2015.

[17] Simon Keizer, Markus Guhe, Heriberto Cuayáhuitl, Ioannis Efstathiou,
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