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C o x  P oi nt  Pr o c ess   R e gr essi o n
Ál v ar o   G aj ar d o a n d   H a n s- G e or g   M üll er

A bstr a ct —  P oi nt  p r o c ess es  i n  ti m e  h a v e  a   wi d e  r a n g e  of
a p pli c ati o n s  t h at i n cl u d e  t h e  cl ai ms  a r ri v al  p r o c ess i n i n s u r a n c e
o r t h e  a n al ysis  of  q u e u es i n  o p e r ati o n s  r es e a r c h.   D u e t o  a d v a n c es
i n  t e c h n ol o g y,  s u c h  s a m pl es  of  p oi nt  p r o c ess es  a r e  i n c r e asi n gl y
e n c o u nt e r e d.   A  k e y  o bj e ct  of  i nt e r est  is  t h e  l o c al  i nt e n sit y
f u n cti o n.  It  h as  a  st r ai g htf o r w a r d  i nt e r p r et ati o n  t h at  all o ws
t o  u n d e rst a n d  a n d  e x pl o r e  p oi nt  p r o c ess  d at a.   We  c o n si d e r
f u n cti o n al  a p p r o a c h es  f o r  p oi nt  p r o c ess es,   w h e r e  o n e  h as  a
s a m pl e of r e p e at e d r e ali z ati o n s of t h e  p oi nt  p r o c ess.   T his sit u ati o n
is  i n h e r e ntl y  c o n n e ct e d   wit h   C o x  p r o c ess es,   w h e r e  t h e  i nt e n sit y
f u n cti o n s  of  t h e  r e pli c ati o n s  a r e   m o d el e d  as  r a n d o m  f u n cti o n s.
H e r e   w e  st u d y  a  sit u ati o n   w h e r e  o n e  r e c o r d s  c o v a ri at es  f o r  e a c h
r e pli c ati o n  of t h e  p r o c ess,  s u c h  as t h e  d ail y t e m p e r at u r e f o r  bi k e
r e nt als.   F o r   m o d eli n g  p oi nt  p r o c ess es  as  r es p o n s es   wit h  v e ct o r
c o v a ri at es  as  p r e di ct o rs   w e  p r o p os e  a  n o v el  r e g r essi o n  a p p r o a c h
f o r  t h e  i nt e n sit y  f u n cti o n  t h at  i s  i nt ri n si c all y  n o n p a r a m et ri c.
W hil e  t h e  i nt e n sit y  f u n cti o n  of  a  p oi nt  p r o c ess  t h at  is  o nl y
o b s e r v e d  o n c e  o n  a  fi x e d  d o m ai n  c a n n ot  b e  i d e nti fi e d,   w e  s h o w
h o w  c o v a ri at es  a n d  r e p e at e d  o b s e r v ati o n s  of  t h e  p r o c ess  c a n  b e
utili z e d t o   m a k e c o n sist e nt esti m ati o n  p ossi bl e, a n d   w e  als o  d e ri v e
as y m pt oti c  r at es  of  c o n v e r g e n c e   wit h o ut  i n v o ki n g  p a r a m et ri c
ass u m pti o n s.

I n d e x   Ter ms —  C o x  p r o c ess,   F r é c h et  r e g r essi o n, i nt e n sit y f u n c-
ti o n,  n o n p a r a m et ri c  r e g r essi o n,   W ass e rst ei n   m et ri c.

I.  I N T R O D U C T I O N

T E M P O R A L  p oi nt  pr o c e ss es  ar e e n c o u nt er e d i n i n s ur a n c e
i n t h e f or m of t h e cl ai m arri v al pr o c e ss, ris k pr o c e ss es a n d

r ui n t h e or y   w hi c h t ar g ets t h e s ol v e n c y of t h e i n s ur er [ 1]; q u e u e
t h e or y i n o p er ati o n s r e s e ar c h [ 2]; s eis m ol o g y; d e m a n d p att er n s
i n  bi k e  s h ari n g  s y st e m s  [ 3];  or  bi d  arri v als i n  o nli n e  a u cti o n s
[ 4], [ 5].  Si n gl e r e ali z ati o n s  of  p oi nt  pr o c e ss es  h a v e  b e e n   w ell
st u di e d  i n  t h e  lit er at ur e  [ 2],  [ 6] –[ 9].   O n e  i m p ort a nt  t ar g et  is
t h e i nt e n sit y f u n cti o n,  d u e t o its  str ai g htf or w ar d i nt er pr et ati o n
a s  t h e  r at e  of  o c c urr e n c e  of  p oi nts  p er  u nit  ti m e  [ 2].  I n  t h e
c o nt e xt  of  s eis m ol o g y,  o n e  e x p e cts  t h e  i nt e n sit y  f u n cti o n  of
t h e  aft er s h o c k  arri v al  pr o c e ss  t o  d e p e n d  o n  t h e  si z e  of  t h e
e art h q u a k e  t h at  tri g g er e d  t h e  aft er s h o c k s.   T his  e x e m pli fi e s
p oi nt  pr o c e ss  d at a  f or   w hi c h  t h e  i nt e n sit y  f u n cti o n  d e p e n d s
o n  c o v ari at e s,  a n d  pr o vi d e s t h e   m oti v ati o n t o  d e v el o p  fl e xi bl e

M a n us cri pt  r e c ei v e d   N o v e m b er  2 8,  2 0 2 0;  r e vis e d   O ct o b er  1 4,  2 0 2 1;
a c c e pt e d   O ct o b er  2 0,  2 0 2 1.   D at e  of  p u bli c ati o n   N o v e m b er  8,  2 0 2 1;  d at e  of
c urr e nt  v ersi o n  J a n u ar y  2 0,  2 0 2 2.   T his   w or k   w as  s u p p ort e d  i n  p art  b y  t h e
N ati o n al  S ci e n c e  F o u n d ati o n  u n d er   G r a nt   D M S- 2 0 1 4 6 2 6.   A n  e arli er  v ersi o n
of  t his  p a p er   w as  pr es e nt e d  i n  p art  at  t h e  J oi nt   Virt u al   C o nf er e n c e   C F E-
C M St atisti cs  2 0 2 0  ( 1 3t h  I nt er n ati o n al   C o nf er e n c e  of  t h e   E R CI M   W G  o n
C o m p ut ati o n al  a n d   M et h o d ol o gi c al  St atisti cs  a n d  1 4t h  I nt er n ati o n al   C o nf er-
e n c e  o n   C o m p ut ati o n al  a n d Fi n a n ci al   E c o n o m etri cs). ( C orr es p o n di n g  a ut h or:
Ál v ar o   G aj ar d o.)

T h e  a ut h ors  ar e   wit h t h e   D e p art m e nt  of  St atisti cs,   U ni v ersit y  of   C alif or ni a
at   D a vis,   D a vis,   C A  9 5 6 1 6   U S A  ( e- m a il:  a e g aj ar d o @ u c d a vis. e d u).

C o m m u ni c at e d  b y   O.  J o h ns o n,   Ass o ci at e   E dit or  f or  Pr o b a bilit y  a n d
St atisti cs.

C ol or  v ersi o ns  of  o n e  or   m or e  fi g ur es  i n  t his  arti cl e  ar e  a v ail a bl e  at
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n o n p ar a m etri c   m et h o d s f or s u c h  d at a.  S p e ci fi c all y,   w e  pr o p o s e
a  n o n p ar a m etri c  r e gr e ssi o n   m et h o d  f or  p oi nt  pr o c e ss es  as
r e s p o n s e s,  c o u pl e d   wit h   E u cli d e a n  pr e di ct or s i n R p .

P oiss o n  pr o c e ss es  ar e  o n e  of  t h e   m o st  i m p ort a nt  p oi nt
pr o c e ss es  as  t h e y  h a v e  b e e n  s h o w n  t o  pr o vi d e  s u c c e ssf ul
m o d els  f or  a   wi d e  r a n g e  of  s ci e nti fi c  a p pli c ati o n s  i n v ol v-
i n g  r a n d o m  p h e n o m e n a  a n d  all o w  t h e  c o n str u cti o n  of   m or e
c o m pl e x  pr o c e ss es  [ 2]  s u c h  a s  t h e   C o x  or  d o u bl y  st o c h a sti c
P oiss o n  pr o c ess  [ 6].   T h e  esti m ati o n  of  t h e  i nt e n sit y  f u n cti o n
of  a  n o n- h o m o g e n e o u s  P oiss o n  pr o c e ss  ( N H P P)  h a s  f o u n d
m u c h  i nt er est  i n  t h e  lit er at ur e.  F or  a  si n gl e  r e ali z ati o n  of  a
N H P P, [ 9] pr o p o s e d a n a p pr o a c h b a s e d o n p e n ali z e d pr oj e cti o n
e sti m at or s  b ut  c o n sist e n c y t o w ar d s  t h e  i nt e n sit y  f u n cti o n  c a n
o nl y  b e  a c hi e v e d   w h e n  t h e  e x p e ct e d  n u m b er  of  o b s er v e d
e v e nts  di v er g e s.   A  st a n d ar d  a s y m pt oti c  fr a m e w or k  h a s  b e e n
t o  ass u m e t h at t h e i nt e n sit y  of t h e  o b s er v e d  pr o c ess λ̃ (t) c a n
b e   writt e n  as  a  s c al ar   m ulti pl e  of  a n  u n d erl yi n g  i nt e nsit y  of
i nt er est λ (t),   w h er e t h e  s c al ar  is  all o w e d t o  di v er g e  a n d  t h us
e n a bl es  t o  o b s er v e  i n cr e a si n gl y   m or e  p oi nts  [ 1 0] –[ 1 2].  F or
m ulti pl e  r e ali z ati o n s  or  r e pli c at e d   N H P P,  [ 1 3]  c o n si d er  t h e
sit u ati o n   w h er e t h e i nt e n siti es  ar e  c o m m o n  a cr o ss r e pli c ati o n s
b ut  o nl y  diff er  i n  t h at  t h e y  ar e  ti m e  s hift e d  at  r a n d o m  i.i. d.
ti m e  p oi nts   wit h a  k n o w n d e n sit y f u n cti o n. I n [ 1 4] a r e pli c at e d
N H P P  fr a m e w or k   wit h  a  c o m m o n  n o n-r a n d o m  u n d erl yi n g
i nt e n sit y  f u n cti o n  is  c o n si d er e d   wit h  r es ults  o n  c o n sist e nt
esti m ati o n  of t h e  c u m ul ati v e i nt e n sit y  f u n cti o n,   w hil e i n  [ 1 5]
c o n v er g e n c e  r e s ults  t o w ar d s  t h e  c o m m o n  i nt e n sit y  f u n cti o n
ar e  o bt ai n e d.   T h e s e  pr e vi o u s  a p pr o a c h e s  d o  n ot  i n c or p or at e
c o v ari at e s  a n d t h u s  d o  n ot  st u d y  a r e gr e ssi o n fr a m e w or k.   T h e
st u d y  of  s e c o n d  or d er  s u m m ar y  st atisti cs  s u c h  as  t h e  p air
c orr el ati o n f u n cti o n [ 1 6] i n t h e c o nt e xt  of r e pli c ati o n s  of  p oi nt
pr o c ess es  h as  als o  r e c ei v e d i nt er est  [ 1 7].

I n  t h e  c o nt e xt  of  st ati o n ar y   C o x  pr o c e ss es  [ 6],  n o n p ar a-
m etri c  k er n el  esti m ati o n  of t h e i nt e n sit y  f u n cti o n f or j u st  o n e
o b s er v e d  p oi nt  pr o c e ss  h a s  b e e n  pr o p o s e d [ 7],  c o n n e cti n g t his
pr o bl e m  t o  k er n el  d e n sit y  e sti m ati o n.   H o w e v er,   w h e n  o n e
h a s  j u st  o n e  r e ali z ati o n  of  t h e  p oi nt  pr o c e ss,  n o  c o n sist e nt
e sti m at or  of  t h e  i nt e n sit y  f u n cti o n  e xists  [ 1 8],  d u e  t o  t h e
u n a v ail a bilit y  of  a  c o n sist e nt  esti m at or  of  t h e  s c al e  f a ct or  of
t h e i nt e n sit y f u n cti o n, i. e. λ (t)dt . I n ot h er   w or k t h at e x pl or es
t h e i nt erf a c e  of s p ati o-t e m p or al p oi nt  pr o c e ss es a n d f u n cti o n al
d at a  a n al y sis,  [ 1 9]  pr o p o s e d  a  s e mi- p ar a m etri c  g e n er ali z e d
li n e ar   mi x e d   m o d el   wit h  a  l at e nt  pr o c e ss  c o m p o n e nt,  a n d
e st a blis h e d  as y m pt oti c  pr o p erti es  u n d er  i n cr e a si n g  d o m ai n
a s y m pt oti cs,  a  d e si g n  ass u m pti o n  t h at  is  c o m m o nl y  u s e d
f or  s p ati al  pr o c e ss es.   We  c o n si d er  h er e  a  diff er e nt  s c e n ari o,
w h er e  r e pli c ati o n s  of  a  t e m p or al  p oi nt  pr o c e ss  ar e  a v ail a bl e,
al o n g   wit h  a n   E u cli d e a n  c o v ari at e X ∈ R p .   A  pr e vi o u s
r e pli c at e d  p oi nt  pr o c e ss  r e gr e ssi o n  a p pr o a c h  [ 2 0]  als o  d e alt
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wit h r e p e at e dl y o b s er v e d n o n- h o m o g e n e o u s P oiss o n  pr o c e ss es
a s  r e s p o n s e s;  h o w e v er  t his  pr e vi o u s  a p pr o a c h  r eli e d  h e a vil y
o n  p ar a m etri c  s p e ci fi c ati o n s,  f or   w hi c h  di a g n o sti cs  is  v er y
dif fi c ult,   w h er e a s   w e  ai m  h er e  at  a  fl e xi bl e  n o n p ar a m etri c
a p pr o a c h t h at  a p pli es   m u c h   m or e  g e n er all y.

I n  t h e  c o nt e xt  of   C o x  pr o c e ss es,   w h er e  t h e i nt e n sit y  f u n c-
ti o n Λ ( t) is  a  p o siti v e  l o c all y  i nt e gr a bl e  r a n d o m  f u n cti o n,
a  c o m m o n  a p pr o a c h   w h e n  d e ali n g   wit h  r e p e at e dl y  o bs er v e d
p oi nt  pr o c e ss es  ( b ut   wit h o ut  a  c o v ari at e X )  h as  b e e n  t o
c o m bi n e  li k eli h o o d   m et h o d s  a n d  t e c h ni q u e s  fr o m  F u n cti o n al
D at a   A n al y sis [ 3], [ 2 1] –[ 2 4]. F or e x a m pl e, i n [ 2 3] a   K ar h u n e n-
L o è v e  e x p a n si o n  [ 2 5],  [ 2 6]   w as  a p pli e d  t o  t h e  l o g  i nt e n sit y
r a n d o m f u n cti o n s,

l o g ( Λ (t))   = µ (t) +
∞

k = 1

U k φ k (t), 0 ≤ t ≤ T,

w h er e 0 < T   < ∞ a n d µ ∈ L 2 ([ 0 , T ]) is  t h e   m e a n  f u n cti o n,
t h e U k ar e  u n c orr el at e d  r a n d o m  v ari a bl es  a n d φ 1 , φ2 , . . .
f or m  a n  ort h o n or m al  b a sis  of L 2 ([ 0 , T ]).   T h e n,  b y  u si n g
t e c h ni q u e s  s u c h  as  F u n cti o n al  Pri n ci p al   C o m p o n e nt   A n al y sis
( F P C A),  a  tr u n c at e d  v er si o n  of  t h e  e x p a n si o n  is  c o n si d er e d
wit h  o nl y p c o m p o n e nts  a n d  t h u s  t h e  f u n cti o n al  pr o bl e m  of
esti m ati n g µ a n d t h e φ k i s r e d u c e d t o  a   m ulti v ari at e a p pr o a c h,
m o d eli n g t h e  f u n cti o n s i n  a  fi nit e  di m e n si o n al f u n cti o n  s p a c e
of  b asis  f u n cti o n s  li k e   B- s pli n es.   Distri b uti o n al  ass u m pti o n s
s u c h  as   G a ussi a nit y  of t h e U k ar e  als o i ntr o d u c e d i n  or d er t o
j u stif y  a li k eli h o o d  a p pr o a c h t o  o bt ai n  esti m at e s  f or t h e  b a sis
c o ef fi ci e nts.   T h e  pr e vi o u s tr a n sf or m ati o n a p pr o a c h is  e xtri n si c
si n c e it  d o e s  n ot t ar g et  dir e ctl y i nt e n sit y f u n cti o n s,   w hi c h  ar e
s u bj e ct  t o  a  p o siti vit y  c o n str ai nt.   T his  c o n str ai nt   m a k es  t h e
i nt e n sit y  s p a c e  c o n v e x  b ut  n ot li n e ar  a n d t h u s f u n cti o n al  d at a
a n al y sis  ( F D A)   m et h o d s  a n d  es p e ci all y  f u n cti o n al  pri n ci p al
c o m p o n e nts  a n al y sis  ( F P C A)  dir e ctl y  a p pli e d t o Λ ( t) ar e  n ot
w ell  s uit e d  [ 2 7].

Si mil arl y, [ 2 8]  pr o p o s e d  a f u n cti o n al  a p pr o a c h t h at  d e c o m-
p o s e s  t h e  i nt e n sit y  f u n cti o n  i nt o  a n  i nt e n sit y  f a ct or  a n d  a
s h a p e f u n cti o n  a n d t h e n  p erf or m e d  a   K ar h u n e n- L o è v e e x p a n-
si o n  f or  t h e  s h a p e  f u n cti o n,  b orr o wi n g  str e n gt h  a cr o ss  t h e
r e pli c ati o n s.   T h e s e   m et h o d s  f a c e  c o n str ai nts  d u e  t o  t h e  n o n-
n e g ati v e n at ur e  of t h e i nt e n sit y f u n cti o n a n d c a n n ot b e  dir e ctl y
e xt e n d e d  t o  est a blis h  r e gr e ssi o n   m o d els  f or  p oi nt  pr o c e ss es.
Si n c e  t h e  r a n d o m  i nt e n sit y  f u n cti o n s  ar e  n ot  o b s er v e d,  t h e
e v e nt  arri v al  ti m es  ar e  u s e d  i n  t h e  esti m ati o n  pr o c e d ur es.
F or   C o x  pr o c ess es,  t h e  k e y  r el ati o n  t h at  all o ws  t his  is  t h at
c o n diti o n al  o n n e v e nts  o c c urri n g  i n  a n  i nt er v al [ 0, T ] a n d
Λ = λ ,  t h e  u n or d er e d  arri v al  ti m e s  f or m  a n  i.i. d.  s a m pl e
wit h  d e n sit y λ / λ ;  t his  is  a   w ell- k n o w n  pr o p ert y  f or  n o n-
h o m o g e n e o u s  P oiss o n  pr o c e ss es  [ 2].  F urt h er m or e,  as  n ot e d
i n  [ 2 8],  t h e  i nt e n sit y  f u n cti o n λ c a n  b e  d e c o m p os e d  i nt o  a
s h a p e  f u n cti o n f = λ / λ a n d  a n  i nt e nsit y  f a ct or τ = λ .
T his  d e c o m p o siti o n  is  t h e  k e y  r el ati o n s hi p  t h at   will  e n a bl e
u s  t o  s plit  t h e  pr o bl e m  of  esti m ati n g  t h e  i nt e n sit y  f u n cti o n
c o n diti o n al  o n c o v ari at es i nt o t w o  p arts:   E sti m ati n g t h e c o n di-
ti o n al  s h a p e  f u n cti o n  a n d  e sti m ati n g t h e  c o n diti o n al i nt e n sit y
f a ct or  of  t h e  pr o c ess.   W hil e  t his  d e c o m p o siti o n  is  d e fi ni n g
t h e  str u ct ur e  of  t h e  pr o bl e m,  i n  or d er  t o  a c hi e v e  c o n sist e nt
esti m ati o n  of  t h e  s h a p e  f u n cti o n, τ is ass u m e d t o di v er g e

s o  t h at  i n cr e a si n gl y   m or e  p oi nt s  ar e  a v ail a bl e.   T h er ef or e,
w e  o b s er v e  a   C o x  pr o c e ss (N ( n ) , Λ ) s u c h  t h at,  c o n diti o n al
o n Λ , N ( n ) ( T ) h as  a  P oiss o n  distri b uti o n   wit h  r at e α n τ f or
s o m e  p o siti v e  s e q u e n c e α n → ∞ .

T h e  pr o p o s e d r e gr e ssi o n a p pr o a c h f or t h e i nt e n sit y f u n cti o n
of r e pli c at e d t e m p or al  p oi nt  pr o c e ss es  o n   E u cli d e a n  pr e di ct or s
utili z es  c o n diti o n al  Fr é c h et   m e a ns  [ 2 9]  f or  a  s uit a bl e   m etri c
o n  t h e  s p a c e  of  i nt e n sit y  f u n cti o n s,   w h er e  t his   m etri c  c a n  b e
d e c o m p o s e d  i nt o  t w o  p arts, o n e  t h at  q u a nti fi es  diff er e n c es
i n  s h a p e  a n d  a  s e c o n d  p art  t h at  q u a nti fi es  diff er e n c es  i n
t h e  i nt e n sit y  f a ct or s.   As   w e  n e e d  t o  esti m at e  t h e  d e n sit y
f u n cti o n ass o ci at e d   wit h t h e  arri v al ti m es  of t h e  p oi nt  pr o c ess,
o ur  a s y m pt oti c  c o n sist e n c y  r e s ults  f or  t h e  i nt e n sit y  f u n cti o n
als o  utili z e  t o ols  t h at   w er e  d e v el o p e d i n  [ 3 0].   T h e  c o m m o n
ass u m pti o n  of l etti n g t h e  o b s er v ati o n   wi n d o w T → ∞ is  oft e n
n ot a p pli c a bl e, i n cl u di n g t h e  d at a s c e n ari o s   w e c o n si d er  b el o w
t o   m oti v at e o ur   m et h o d s.   T h er ef or e,   w e c o n si d er a n a s y m pt oti c
fr a m e w or k   w h er e T r e m ai n s fi x e d a n d t h e n u m b er of r e pli c at e s
of t h e  p oi nt  pr o c e ss i n cr e a s e s.

W hil e i n  g e n er al t h e i nt e n sit y f u n cti o n  of  a  d o u bl y st o c h a s-
ti c  P oiss o n  pr o c e ss  c a n n ot  b e  c o n sist e ntl y  e sti m at e d  a s  it  is
r a n d o m,   w e  d e m o n str at e  h er e  t h at  t h e  sit u ati o n  is  diff er e nt
f or  p oi nt  pr o c e ss es  c o n diti o n al  o n  a  c o v ari at e,  a s   w e  e st a blis h
a s y m pt oti c  c o n sist e n c y   wit h  r at es  of  c o n v er g e n c e  f or  c o n di-
ti o n al i nt e n sit y f u n cti o n s.   We ill u str at e t h e i m pl e m e nt ati o n  of
t h e  pr o p o s e d  p oi nt  pr o c e ss  r e gr e ssi o n   wit h  si m ul ati o n s  a n d
s h o w t h at it l e a ds t o   w ell i nt er pr et a bl e r es ults f or t h e   C hi c a g o
Di v v y  bi k e  tri p s  a n d  t h e   N e w   Yor k  y ell o w  t a xi  tri p s  d at a.
A n  a p pli c ati o n t o  t h e  e art h q u a k e  aft er s h o c k  pr o c e ss  i n   C hil e
is  pr es e nt e d i n  s e cti o n   VI- C.

T h e   m ai n  i n n o v ati o ns  pr es e nt e d  i n  t his  p a p er  ar e:  ( 1)
We  d e v el o p  t h e  fir st  f ull y  n o n p ar a m etri c  r e gr e ssi o n   m et h o d
t h at  f e at ur e s  p oi nt  pr o c e ss es  as  r e s p o n s e s   wit h   E u cli d e a n
pr e di ct or s;  ( 2)   We  o bt ai n  as y m pt oti c  r at es  of  c o n v er g e n c e
f or  c o n diti o n al i nt e n sit y  f u n cti o n s,   w hil e  s u c h  a  r e s ult  is  n ot
a c hi e v a bl e  f or  i nt e n sit y  f u n cti o n s  u n c o n diti o n all y;  ( 3)   O ur
a p pr o a c h d o e s n ot r e q uir e f u n cti o n al pri n ci p al c o m p o n e nts a n d
d o es n ot r e q uir e distri b uti o n al ass u m pti o n s, as it is n ot utili zi n g
li k eli h o o d s; ( 4)   T h e  pr o p o s e d a p pr o a c h is s h o w n t o   w or k   w ell
i n  r el e v a nt  a p pli c ati o n s.

II.   T H E S P A C E   O F I N T E N S I T Y F U N C T I O N S

L et { N (t), t ≥ 0 } b e  a t e m p or al  p oi nt  pr o c e ss   w h er e N (t)
r e pr e s e nts t h e  n u m b er  of  e v e nts t h at  o c c ur i n t h e ti m e i nt er v al
[ 0, t] a n d N ( 0 )   =  0 .   We  s u p p o s e  t h at N (t) is  o b s er v e d  o n
t h e ti m e   wi n d o w [ 0, T ] f or  s o m e  e n d p oi nt T > 0 , a n d is s u c h
t h at m (t) : = E (N (t)) < ∞ f or 0 ≤ t ≤ T .  I n t h e  c o nt e xt  of
r e pli c at e d  p oi nt  pr o c e ss es t h at   w e  c o n si d er  h er e, it  is  n at ur al
t o   w or k   wit hi n t h e  fr a m e w or k  of  a  d o u bl y  st o c h a sti c  P oiss o n
pr o c ess (N, Λ ) w h er e  o n e  a ss u m e s t h at t h er e is  a n  u n d erl yi n g
st o c h asti c  i nt e n sit y  pr o c ess Λ ( t) t h at  g e n er at es  n o n- n e g ati v e
i nt e gr a bl e  f u n cti o n s  o n [ 0, T ] s u c h  t h at  c o n diti o n al  o n  a
r e ali z ati o n Λ = λ , N |Λ = λ is  a  n o n- h o m o g e n e o u s  P oiss o n
pr o c ess   wit h  i nt e n sit y  f u n cti o n λ [ 6].   A  f e at ur e  t h at  gr e atl y
f a cilit at es a n al y sis  of s u c h  pr o c ess es [ 3], [ 2 3], [ 2 8], [ 3 0] is t h e
f a ct  t h at  a  P oiss o n  pr o c ess  h as  t h e  or d er  st atisti cs  pr o p ert y,
i. e.,  c o n diti o n al  o n m e v e nts  b ei n g  o b s er v e d  i n [ 0, T ], t h e
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s u c c essi v e  e v e nt  ti m es  ar e  distri b ut e d  as  t h e  or d er  st atisti cs
of m i n d e p e n d e nt a n d i d e nti c all y  distri b ut e d r a n d o m  v ari a bl es
wit h  a  d e n sit y t h at is  pr o p orti o n al t o t h e i nt e n sit y f u n cti o n [ 2].

D e n oti n g t h e  s p a c e  of i nt e n sit y  f u n cti o n s  a s

Ω = Λ: [ 0 , T ] → R + s u c h t h at
T

0

Λ ( t)dt   < ∞ ,

t w o  k e y  q u a ntiti es f or  e a c h Λ ∈ Ω ar e t h e i nt e n sit y f a ct o r, t h e
s c al ar

τ : =
T

0

Λ ( t)dt,

w hi c h is t h e  e x p e ct e d  n u m b er  of  e v e nts i n [ 0, T ],  c o n diti o n al
o n Λ ( ·); a n d t h e s h a p e f u n cti o n

f (t) : =
Λ ( t)

τ
, w h er e

T

0

f (t)dt = 1 , f(t) ≥ 0 ,

t ∈ [ 0, T ],

w hi c h  is  a  d e n sit y  f u n cti o n.   H e n c e, Λ ( ·) = τ f (·) a n d  si n c e
t h er e  is  a  o n e-t o- o n e  c orr e s p o n d e n c e  b et w e e n Λ a n d (τ, f )
w e   m a y  r e g ar d Ω as  a  pr o d u ct  s p a c e Ω = Ω T × Ω F w h er e
Ω T = ( 0 , ∞ ) a n d

Ω F = { f : [ 0, T ] → R s u c h t h at f ≥ 0 a n d
T

0

f (t)dt = 1 } .

F or  o ur  t h e or eti c al  r e s ults,   w e  f o c u s  o n  a  s u b s p a c e  of Ω F

c o n si sti n g of d e nsiti es t h at ar e   w ell b e h a v e d a n d b o u n d e d a w a y
fr o m  z er o,  s e e  ass u m pti o n s ( S 1)  a n d ( S 2) i n  s e cti o n I V.   Wit h
a  sli g ht  a b u s e  of  n ot ati o n,   w e   will  c o nti n u e  t o  r ef er  t o  t his
s u b s p a c e  a s Ω F .

F urt h er m or e, if   w e e n d o w Ω T a n d Ω F wit h   m etri cs d T a n d
d F ,  r es p e cti v el y,   w e   m a y  r e g ar d ( Ω, d) a s  a  pr o d u ct   m etri c
s p a c e ( Ω T , dT ) × ( Ω F , dF ), w h er e

d ((τ 1 , f1 ), (τ 2 , f2 )) : = d 2
T (τ 1 , τ2 ) + d 2

F (f 1 , f2 ). ( 1)

I n  t h e  c o nt e xt  of   m etri c  g e o m etr y  s u c h  pr o d u ct   m etri c
s p a c es  f or   w hi c h  t h e  dist a n c e  aris es  as  a n l2 -t y p e  n or m
b et w e e n  t h e  u n d erl yi n g   m etri cs  h a v e  b e e n  e xt e n si v el y  st u d-
i e d.  I n  p arti c ul ar,  it  is   w ell  k n o w n  t h at Ω is  a  g e o d e si c
s p a c e  if  a n d  o nl y  if Ω T a n d Ω F ar e  g e o d e si c  s p a c e s  [ 3 1].
T his  d e c o m p o siti o n  e n a bl es  u s  t o   m e as ur e  diff er e n c es  i n
s h a p e  a n d   m a g nit u d e  s e p ar at el y.   We  c h o o s e  t h e   E u cli d e a n
m etri c d T (τ 1 , τ2 ) : = d E (τ 1 , τ2 ) a n d  t h e 2 - Wass er st ei n   m et-
ri c d F (f 1 , f2 ) : = d W (µ 1 , µ2 ),   w hi c h  f or  t w o  pr o b a bilit y
m e as ur es µ 1 , µ2 o n [ 0, T ] wit h  a ss o ci at e d  d e n sit y  f u n cti o n s
f 1 , f2 a n d  q u a ntil e f u n cti o n s Q 1 , Q2 is  d e fi n e d  a s  [ 3 2]

d 2
W (µ 1 , µ2 ) = d 2

L 2 ( Q 1 , Q2 ) =
1

0

(Q 1 (t) − Q 2 (t)) 2 dt,

w h er e   w e  ass u m e  t hr o u g h o ut  t h at t h es e  q u a ntiti es  e xist  a n d
ar e   w ell  d e fi n e d.   T h e   Wass erst ei n   m etri c  h as  b e e n  s h o w n  t o
b e  a   m ost  u s ef ul   m etri c i n  pr a cti c al  a p pli c ati o ns t h at i n v ol v e
s a m pl es  of  distri b uti o n s  [ 3 3].   T h e 2 - Wass er st ei n   m etri c  o n
t h e  s p a c e  of  d e n sit y  f u n cti o n s Ω F h as  v er y  ri c h  g e o m etri c al
i nt er pr et ati o n s  d u e  t o  its  c o n n e cti o n s   wit h  o pti m al  tr a n s p ort
[ 3 4].   Alt h o u g h  o n e  c o ul d  c o n si d er  a   m etri c  b a s e d  o n  t h e
v erti c al  ali g n m e nt  s u c h  as  t h e L 2 m etri c,  t h es e   m etri cs  ar e

n ot   w ell  s uit e d  f or  d e n siti es  d u e  t o  t h eir  i n h er e nt  c o n str ai nts
f ≥ 0 a n d

T

0 f (t)dt = 1 ,   w hi c h  i m pl y  t h at  t h e  s p a c e Ω F ,
w hil e  c o n v e x, is  n ot  a li n e ar  s p a c e  [ 2 7].

A  b asi c  n oti o n  f or  st atisti c al   m o d eli n g  is  t h e   m e a n  of  a
r a n d o m  v ari a bl e,   w h er e  f or  r a n d o m  o bj e cts i n  a   m etri c  s p a c e
( Ω̃ , d̃,  P ) it  h a s  pr o v e d  a d v a nt a g e o u s t o  a d o pt t h e  b ar y c e nt er
or  Fr é c h et   m e a n [ 3 5],  d e fi n e d  as w ⊕ : =  a r g   mi n

w ∈ Ω̃

E ( d̃ 2 ( Y,  w ))

w h er e Y ∈ Ω̃ is  a  r a n d o m  o bj e ct.   T h e  Fr é c h et   m e a n   m a y
b e  r e g ar d e d  as  a n  e xt e nsi o n  of t h e  st a n d ar d  c o n c e pt  of   m e a n
i n   E u cli d e a n  s p a c e t o  a bstr a ct   m etri c  s p a c es i n t h e  s e ns e t h at
w h e n Ω̃ i s  a  c o n v e x  s u bs et  of  t h e   E u cli d e a n  s p a c e  a n d d̃ is
t h e   E u cli d e a n   m etri c, t h e n t h e  or di n ar y   m e a n  a n d t h e  Fr é c h et
m e a n c oi n ci d e.   T h e  b ar y c e nt er a n d its  esti m ati o n  h as attr a ct e d
m u c h  i nt er est  f or  distri b uti o n  s p a c es   wit h  t h e   Wass erst ei n
m etri c  [ 3 0],  [ 3 4],  [ 3 6] –[ 3 8];   w e  a d o pt  t h e s e  s p a c e s  h er e  f or
t h e  s h a p e  p art  of t h e i nt e n sit y  f u n cti o n.

III.   F R A M E W O R K   F O R I N T E N S I T Y F U N C T I O N R E G R E S S I O N

A.   Pr eli mi n a ri es

O ur g o al is t o   m o d el t h e r e gr e ssi o n r el ati o n b et w e e n r a n d o m
i nt e n sit y  f u n cti o n s Y i n  t h e  a b o v e  s p a c e ( Ω, d) a s  r e s p o n s e s
a n d  a n   E u cli d e a n  pr e di ct or X ∈ R ,  f or   w hi c h   w e  a d o pt
t h e  r e c e ntl y  d e v el o p e d fr a m e w or k  of  Fr é c h et r e gr essi o n  [ 2 9],
w hi c h  c a n  b e  vi e w e d  as  a  g e n er a li z ati o n  of  Fr é c h et   m e a ns t o
t h e   m or e  g e n er al  n oti o n  of  c o n diti o n al  Fr é c h et   m e a ns.  F or-
m all y,  d e fi n e  t h e  r e gr e ssi o n  or  c o n diti o n al  i nt e n sit y  f u n cti o n
m ⊕ (x ) as

m ⊕ (x ) : = a r g mi n
w ∈ Ω

M ⊕ (w,  x ),

M ⊕ (w,  x ) : = E (d 2 (Y,  w )|X = x ),

w h er e w = ( τ 0 , f0 ) ∈ Ω = Ω T × Ω F a n d Y = ( τ, f ) ∈
Ω T × Ω F ,  s o t h at  b y  ( 1),

M ⊕ (w,  x ) = E (d 2
T (τ, τ 0 )|X = x ) + E (d 2

F (f, f 0 )|X = x ).

H e n c e, t h e  o pti mi z ati o n  pr o bl e m is  s e p ar a bl e   wit h  o pti m al
s ol uti o n m ⊕ (x ) = (τ ⊕ (x ), f⊕ (x )), w h er e

τ ⊕ (x ) = a r g mi n
τ 0 ∈ Ω T

E (d 2
T (τ, τ 0 )|X = x )

= m a x { E (τ |X = x ), 0 } ; ( 2)

f ⊕ (x ) = a r g mi n
f 0 ∈ Ω F

E (d 2
F (f, f 0 )|X = x ). ( 3)

As   w e  f o c u s  o n  a  s u b s p a c e  of Ω F c o n sisti n g  of  d e n siti es
t h at  ar e   w ell  b e h a v e d  a n d  b o u n d e d  a w a y fr o m  z er o, t h e  s p a c e
of  c orr e s p o n di n g  q u a ntil e  f u n cti o n s Q ( Ω F ) is  a  cl o s e d  a n d
c o n v e x s u bs et  of t h e   Hil b ert s p a c e L 2 ([ 0 , 1]) ( s e e ass u m pti o ns
(S 1 ) , (S 2 ) a n d   L e m m a  1  i n  s e cti o n  I V- A).   B y  e q ui v al e ntl y
c asti n g  t h e  o pti mi z ati o n  pr o bl e m  ( 3)  i n  t er m s  of  q u a ntil e
f u n cti o n s, as p er t h e d e fi niti o n of t h e 2 - Wass er st ei n   m etri c, a n d
e m pl o yi n g  pr o p erti es  of  t h e L 2 -i n n er  pr o d u ct,   L e m m a  S. 1 0
i n  t h e   A p p e n di x  i m pli es  t h e  e xist e n c e  a n d  u ni q u e n e ss  of
t h e  s ol uti o n  t o  t his  pr o gr a m.   T h e  s ol uti o n  a d mits  a  cl o s e d
f or m i n t er m s  of t h e  q u a ntil e f u n cti o n s Q ⊕ (x ) c orr e s p o n di n g
t o f ⊕ (x ),  a n d  is  gi v e n  b y Q ⊕ (x ) = E (Q |X = x ). T his
s h o ws  t h at  u n d er  r e g ul arit y  c o n diti o ns m ⊕ (x ) e xists  a n d  is
u ni q u e.   N ot e  t h at  si n c e   w e   m e a s ur e  t h e  diff er e n c e s  i n  t h e
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i nt e n sit y  f a ct or  fr o m  t h e  c h a n g e s  i n  s h a p e  s e p ar at el y,  t h e
or d er  of   m a g nit u d e  b et w e e n  t h e  t w o   m etri cs  is  n ot  r el e v a nt.
M or e  pr e cis el y, m ⊕ (x ) r e m ai n s t h e s a m e f or   w ei g ht e d   m etri cs
d 2

λ = α d 2
T + β d 2

F wit h α, β   > 0 .
T h e  l o c al  Fr é c h et  r e gr essi o n  f u n cti o n m ⊕ (x ) o p er at es

dir e ctl y  o n  t h e  s p a c e  of  i nt e n sit y  f u n cti o n s  s o  t h at  t h e
r e gr e ssi o n is  p erf or m e d i n t h e  g e o m etri c  s p a c e  c orr e s p o n di n g
t o  t h e  o pti m al  tr a n s p ort  g e o m etr y  t h at  is  i n d u c e d  b y  t h e
2 - Wa ss er st ei n   m etri c  o n t h e  s h a p e  c o m p o n e nts.   T h u s m ⊕ (x )
pr o vi d e s  a  n oti o n  of  c o n diti o n al  c e nt er  t h at  is  s h a p e d  b y  t h e
u n d erl yi n g  g e o m etr y  of  t h e  d at a  g e n er ati n g   m e c h a nis m  t h at
pr o d u c es  r a n d o m  i nt e nsiti es.   We  s h o w  t hr o u g h  a  si m ul ati o n
e x a m pl e  i n  s e cti o n   H  i n  t h e   A p p e n di x  t h at  t h e  st a n d ar d
E u cli d e a n  c o n diti o n al i nt e n sit y E ( Λ |X = x ) c a n  b e  s e v er el y
dist ort e d,   w hil e m ⊕ (x ) c a pt ur e s  t h e  u n d erl yi n g  g e o m etr y  of
t h e  pr o bl e m  a n d  pr o vi d e s a  b ett er  n oti o n  of  c e nt er.   As m ⊕ (x )
is  a  v ali d i nt e n sit y  f u n cti o n, it  still  e nj o y s t h e  u s u al i nt er pr e-
t ati o n  of  r at e  of  e v e nts  p er  u nit  ti m e,   w hil e  r e pr es e nti n g  t h e
( c o n diti o n al)  p oi nt  pr o c e ss  b ar y c e nt er  at  pr e di ct or l e v el x .

A  b asi c  dif fi c ult y is t h at t h e  f u n cti o n Λ ( ·) is  n ot  o b s er v e d.
If s uf fi ci e ntl y   m a n y arri v al ti m es ar e o bs er v e d f or e a c h r e pli c a-
ti o n  of t h e  p oi nt  pr o c e ss, t h e n it is   w ell  k n o w n t h at  c o n sist e nt
esti m ati o n  of  t h e  d e n sit y  f u n cti o n f m a y  b e  a c hi e v e d  b y
cl a ssi c al  d e n sit y  e sti m ati o n  t e c h ni q u e s  [ 7],  [ 3 0],   w hil e  s o m e
w or k- ar o u n d s  e xist  f or  s p ar s el y  o b s er v e d  p oi nt  pr o c e ss es
[ 2 8].   H o w e v er,  t h e  sit u ati o n  is   m u c h  l e ss  b e ni g n  r e g ar di n g
esti m ati o n  of t h e i nt e n sit y  p ar a m et er τ . It   w o ul d  b e  n at ur al t o
e m pl o y t h e t ot al  c o u nt N (T ),   w hi c h is  c o n diti o n all y  u n bi a s e d
f or τ i n  t h e  s e n s e  t h at E (N (T )|Λ )   = τ b ut  is  n ot  ( c o n-
diti o n all y)  c o n sist e nt  as   Var (N (T )|Λ )   = τ .   W h e n  j u st  o n e
r e pli c at e  of  a  p oi nt  pr o c e ss is  o b s er v e d,  c o n sist e nt  e sti m ati o n
of  t h e  i nt e n sit y  f u n cti o n  is  t h er ef or e  n ot  p o ssi bl e.  F urt h er
m oti v ati n g  c o n diti o n al  i nt e n sit y  f u n cti o n   m o d eli n g,   w e  s h o w
i n t h e f oll o wi n g t h at t h e sit u ati o n is  diff er e nt   w h e n c o n si d eri n g
c o n diti o n al i nt e n sit y f u n cti o n s.   We  d e m o n str at e t h at t h e c o u nts
N i (T ) c a n  b e  u s e d as i niti al esti m at es f or t h e r a n d o m i nt e nsit y
f a ct ors τ i ,  fr o m   w hi c h  c o nsist e nt  esti m at ors  c a n  t h e n  b e
d eri v e d.   T his  p h e n o m e n o n  is  a n al o g o u s  t o  cl a ssi c al  li n e ar
r e gr e ssi o n   m o d eli n g,   w h er e  o n e  h a s  err or s  i n  t h e  r e s p o n s e s
a n d  y et  c o n sist e nt  esti m ati o n  of  t h e  c o n diti o n al  e x p e ct ati o n
t h at  c orr e s p o n d s  t o  t h e  tr u e  r e gr e ssi o n  f u n cti o n  is  a c hi e v e d.
T his  pr o vi d e s str o n g   m oti v ati o n f or t h e  pr o p o s e d   m et h o d s a n d
t h e  st u d y  of  c o n diti o n al  p oi nt  pr o c e ss es.

B.  L o c al   R e g r essi o n f o r  I nt e n sit y   F u n cti o n s

S u p p o s e t h at a s a m pl e  of r e pli c at e s (X i , Ni , fi , τi ) is  dr a w n
fr o m t h e j oi nt  distri b uti o n  of (X,   N, f, τ ), i = 1 , . . . , n, w h er e
N |Λ = f × τ is  a  P oiss o n  pr o c ess   wit h  i nt e n sit y  f u n cti o n
λ = f × τ .   We  e m pl o y  e m piri c al   w ei g hts  fr o m  l o c al  li n e ar
r e gr e ssi o n [ 3 9] t h at ar e i n h er e nt t o t h e l o c al  Fr é c h et r e gr e ssi o n
a p pr o a c h [ 2 9],  a n d  ar e  gi v e n  b y

s i n (x, h ) =
1

σ̂ 2
0

K h (X i − x ) [ û 2 − û 1 ( X i − x )] , ( 4)

w h er e û j = n − 1 n
i = 1 K h (X i − x )(X i − x ) j wit h j ∈

{ 0 , 1 , 2 } , σ̂ 2
0 = û 0 û 2 − û 2

1 a n d K h (·) = h − 1 K (·/ h ), t h e k er n el
K is a c o nti n u o u s a n d s y m m etri c d e n sit y f u n cti o n   wit h s u p p ort
[− 1 , 1] , a n d h = h n is  a  s e q u e n c e  of  b a n d wi dt h s.

As   w e c a n f a ct ori z e t h e r e s p o n s e i nt o a  d e n sit y f u n cti o n a n d
a n i nt e nsit y f a ct or, o n e r e gr essi o n c o m p o n e nt is t h e c o n diti o n al
m e a n E (τ |X = x ).  F or  esti m ati n g  t his  q u a ntit y   w e  e m pl o y
l o c al  li n e ar  r e gr essi o n.  If  t h e τ i w er e  o b s er v e d,  t h e n  a  n ai v e
e sti m at or  f or  ( 2)   w o ul d  b e  gi v e n  b y

τ̂ ⊕ ( x ) = m a x { 0 , n− 1
n

i = 1

s i n ( x, h )τ i } , ( 5)

as  l o c al  li n e ar  r e gr essi o n  is  a  li n e ar  esti m at or,  assi g ni n g
w ei g hts s i n (x, h ) t o  t h e  r e s p o n s e s.   H o w e v er,  t his  esti m at or
is  b as e d  o n  t h e  i nt e n sit y  f a ct or s τ i ,   w hi c h  ar e  n ot  o b s er v e d;
w e o nl y o b s er v e t h e c o u nts of arri v als N i (T ) f or e a c h r e pli c at e
of  t h e  p oi nt  pr o c e ss.   T his  dif fi c ult y  c a n  b e  r e s ol v e d  b y
n oti n g t h at t h e  o b s er v e d  c o u nts N i (T ) s atisf y t h e r el ati o n s hi p
E (N i (T )|Λ i ) = τ i ,   w hi c h  e n a bl es  u s t o  r e pl a c e τ i b y N i (T )
i n  ( 5)  si n c e E (N (T )|X ) = E (E (N (T )|X, Λ ) |X ) = E (τ |X )
is  o n  t ar g et.   H e n c e,  u n d er  s uit a bl e  r e g ul arit y  c o n diti o ns  o n e
r e a dil y  o bt ai n s   w ell  k n o w n  n o n- p ar a m etri c  c o n v er g e n c e r at e s
f or t h e  c orr e s p o n di n g l o c all y   w ei g ht e d l e a st s q u ar e s  esti m at or
of τ ⊕ (x ) ( 2)  [ 3 9].   As   w e  r e q uir e  a n  i n cr e asi n g  as y m pt oti c
i nt e n sit y fr a m e w or k, o ur  fi n al e mpiri c al esti m at e f or t h e i nt e n-
sit y  f a ct or  p art   will  b e  pr es e nt e d i n  s e cti o n  I V- B.

If  t h e  d e n siti es f i a ss o ci at e d   wit h  p oi nt  pr o c ess es N i

w er e  c o m pl et el y  o bs er v e d,   w e  c o ul d i m pl e m e nt l o c al  Fr é c h et
r e gr essi o n  o n t h e  s p a c e  of  d e n siti es  f or  ( 3) [ 2 9],

f̂ ⊕ ( x ) = a r g mi n
f 0 ∈ Ω F

n − 1
n

i = 1

s i n ( x, h )d
2
F (f i , f0 ). ( 6)

We  h o w e v er  o nl y  o b s er v e  t h e  arri v al  ti m e s,  fr o m   w hi c h
t h e  d e n siti es f i m u st  b e  e sti m at e d,  a n d  t his   will  i n d u c e  a n
a d diti o n al err or t h at  n e e d s t o  b e a c c o u nt e d f or   w h e n a n al y zi n g
t h e  fi n al esti m at or.   E xist e n c e a n d  u ni q u e n e ss of t h e s ol uti o n t o
t h e o pti mi z ati o n pr o gr a m i n ( 6) c a n b e o bt ai n e d b y c o n si d eri n g
c orr es p o n di n g  q u a ntil e f u n cti o ns,   w hi c h   w e  dis c uss  n e xt.

As  n ot e d  b y [ 4 0],  o n e  of t h e   m ai n  diff er e n c e s  c o m p ar e d t o
cl a ssi c al  d e n sit y  e sti m ati o n  t e c h ni q u e s  is  t h at  i n  t h e  c o nt e xt
of  p oi nt  pr o c e ss es   w e  c a n n ot  l et  t h e  n u m b er  of  o b s er v ati o n s
g o  t o  i n fi nit y  a s  it  is  a  r a n d o m  f e at ur e  of  t h e  p oi nt  pr o c e ss
its elf. I nst e a d it is  us ef ul t o  c o nsi d er a n  as y m pt oti c fr a m e w or k
w h er e  t h e  i nt e n sit y  f a ct or s τ i di v er g e  t o  i n fi nit y,   w hil e  t h e
o b s er v ati o n   wi n d o w [ 0, T ] r e m ai n s  fi x e d;  s u c h  fr a m e w or k s
h a v e  b e e n  c o n si d er e d  b ef or e i n t h e lit er at ur e  a n d  all o w t o  a d d
i nf or m ati o n  e v er y w h er e  o n [ 0, T ] a s  o p p o s e d t o  t h e  c o m m o n
d o m ai n  as y m pt oti cs T → ∞ ,   w hi c h  ar e  oft e n  n ot  a p pli c a bl e,
s e e  als o  [ 3 0]  or  [ 4 1].   T his  fr a m e w or k   will  b e  i ntr o d u c e d  i n
s e cti o n  I V.  Fr o m  n o w  o n, τ will  d e n ot e  a  g e n eri c  r a n d o m

i nt e n sit y f a ct or s u c h t h at τ i =
T

0 Λ i (s )d s
ii d
∼ τ , i = 1 , . . . , n.

T h e   mi ni mi z ati o n  pr o bl e m  ( 6)  is  e asil y  s ol v e d  b y  c o n-
si d eri n g  q u a ntil e  f u n cti o n s.  If Q i is  t h e  q u a ntil e  f u n cti o n
c orr e s p o n di n g  t o f i , i = 1 , . . . , n a n d Q̂ ⊕ ( ·, x) : [ 0 , 1] →
[ 0, T ] is  t h e  q u a ntil e  f u n cti o n  c orr es p o n di n g  t o  t h e  d e nsit y
f̂ ⊕ ( x ) i n  ( 6),

Q̂ ⊕ ( ·, x) = a r g mi n
q ∈ Q ( Ω F )

n − 1
n

i = 1

s i n ( x, h )||Q i − q ||2L 2 ([ 0 ,1] ) ,

w h er e Q ( Ω F ) i s t h e s p a c e  of  q u a ntil e f u n cti o ns c orr es p o n di n g
t o  d e n siti es i n Ω F .  St a n d ar d  pr o p erti es  of t h e L 2 ([ 0 , 1]) i n n er

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v of C alif D a vi s. D o w nl o a d e d o n M a y 0 4, 2 0 2 2 at 0 9: 3 3: 4 3 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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pr o d u ct i m pl y  ( Pr o p ositi o n  1 i n  [ 2 9])

Q̂ ⊕ ( ·, x) = a r g mi n
q ∈ Q ( Ω F )

||q − n − 1
n

i = 1

s i n ( x, h )Q i ||
2
L 2 ([ 0 ,1] ) . ( 7)

E xist e n c e a n d u ni q u e n e ss of t h e s ol uti o n of ( 7) a n d t h er ef or e
of ( 6) is  g u ar a nt e e d a s Q̂ ⊕ ( ·, x) c orr e s p o n d s t o t h e  ort h o g o n al
pr oj e cti o n  of n − 1 n

i = 1 s i n ( x, h )Q i a s  a n  el e m e nt  of  t h e
Hil b ert  s p a c e L 2 ([ 0 , 1]) o n t h e  cl o s e d  a n d  c o n v e x  s et Q ( Ω F )
a s s h o w n i n   L e m m a  1  u n d er r e g ul arit y c o n diti o ns o n t h e s p a c e
Ω F .

T o  dis c u ss  esti m ati o n  of  t h e Q i ,   w hi c h  ar e  n e e d e d  i n  ( 7)
b ut ar e  n ot  dir e ctl y a v ail a bl e, it is  h el pf ul t o  c o n si d er a u xili ar y
pr o b a bilit y   m e as ur es µ̂ i o n [ 0, T ] t h at  c orr e s p o n d  t o  t h e
e m piri c al   m e a s ur e  of  t h e  arri v al  ti m e s   w h e n  t h e  t ot al  c o u nt
N i (T ) ≥ 1 a n d  t o  t h e  u nif or m   m e a s ur e  o n [ 0, T ] ot h er wis e
( s e e  [ 3 0]).   T h at is,

µ̂ i =






1

N i (T )

N i ( T )

j = 1

δ Z i j , if N i (T ) ≥ 1

1
T L , if N i (T ) = 0 ,

w h er e Z i j ar e t h e  arri v al ti m e s  of t h e  p oi nt  pr o c e ss N i a n d L
i s t h e   L e b es g u e   m e as ur e  o n [ 0, T ].  F or  a  pr o b a bilit y   m e as ur e
µ o n [ 0, T ] wit h  c df F µ w e  c o n si d er  its  q u a ntil e  f u n cti o n
Q µ (t) : = i nf { x ∈ [ 0, T ]: F µ (x ) ≥ t} . L et Q̂ i : = Q µ̂ i , t h e n
r e pl a ci n g Q i b y Q̂ i i n  ( 7) l e a ds t o t h e  e m piri c al  esti m at e

Q̃ ⊕ ( ·, x) : = a r g mi n
q ∈ Q ( Ω F )

||q − n − 1
n

i = 1

s i n ( x, h ) Q̂ i ||
2
L 2 ([ 0 ,1] ) . ( 8)

I V.   A S Y M P T O T I C R E S U L T S

A.   C o n v e r g e n c e  of t h e  S h a p e   F u n cti o n   Esti m at e s

L et f̃ ⊕ ( x ) b e  t h e  d e n sit y  f u n cti o n  c orr e s p o n di n g  t o  t h e
q u a ntil e  f u n cti o n Q̃ ⊕ ( ·, x).   T h u s, f̃ ⊕ ( x ) c orr e s p o n d s  t o  t h e
e m piri c al  e sti m at e  f or  ( 6).   We  r e q uir e t h e  f oll o wi n g  a ss u m p-
ti o n s,   w hi c h  g u ar a nt e e  t h at Q ( Ω F ) is  a  cl o s e d  a n d  c o n v e x
s u bs et  of  t h e   Hil b ert  s p a c e L 2 ([ 0 , 1]) ,  yi el di n g  e xist e n c e  a n d
u ni q u e n e ss of t h e n ai v e a n d e m piri c al e sti m at or s i n ( 7) a n d ( 8),
r es p e cti v el y.

( S 1)  S u p p o s e  t h at  t h er e  e xists 0 < M   < L < ∞ s u c h  t h at
Q ∈ Q ( Ω F ) if

M |x − y | ≤ |Q (x ) − Q (y )| ≤ L |x − y |,

f or  all x, y ∈ [ 0, 1] .
( S 2)  S u p p o s e  t h at  f or  a n y Q ∈ Q ( Ω F ) it  h ol d s  t h at Q ( 0 )   =

0 a n d Q ( 1 )   = T .

T h es e  ass u m pti o n s  ar e  n e e d e d  t o  e n s ur e  t h at  t h e  q u a ntil e
f u n cti o n s  d o  n ot i n cr e a s e t o o  r a pi dl y  or  t o o  sl o wl y,   w hi c h  is
e q ui v al e nt t o  c o n str ai ni n g t h e  c orr e s p o n di n g  d e n sit y f u n cti o n s
t o  b e   w ell  b e h a v e d  a n d  b o u n d e d  a w a y  fr o m  z er o.

L e m m a  1: U n d er (S 1 ) − (S 2 ) , Q ( Ω F ) is  a  cl o s e d  a n d
c o n v e x  s et  o n t h e   Hil b ert  s p a c e L 2 ([ 0 , 1]) .

L e m m a  1  g u ar a nt e e s  e xist e n c e  a n d  u ni q u e n e ss  of t h e l o c al
Fr é c h et  r e gr e ssi o n  f u n cti o n  o n  s h a p e  s p a c e f ⊕ (x ) d e fi n e d
i n  ( 3).   B y  e m pl o yi n g t h e   Hil b ert  s p a c e  str u ct ur e  of L 2 ([ 0 , 1])
a n d  pr o p erti es  of  t h e 2 - Wass er st ei n   m etri c,   L e m m a  S. 1 0  i n

t h e   A p p e n di x  s h o ws  t h at f ⊕ (x ) c orr e s p o n d s  t o  t h e  d e n sit y
f u n cti o n   wit h  ass o ci at e d  q u a ntil e  f u n cti o n E (Q |X = x );
t h e  l att er  c a n  b e  s h o w n  t o  r esi d e  i n Q ( Ω F ).   R e g ar di n g  t h e
c o n v er g e n c e  of f̃ ⊕ ( x ) t o w ar d s f ⊕ (x ) i n  t h e 2 - Wa ss er st ei n
m etri c,  b y t h e tri a n gl e i n e q u alit y

d F (f ⊕ (x ), f̃ ⊕ ( x )) ≤ d F (f ⊕ (x ), f̂ ⊕ ( x ))   + d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x )),

( 9)

a n d f or t h e t er m d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x )) w e  o b s er v e t h at  pr o p erti es
of t h e  ort h o g o n al  pr oj e cti o n  o n  a  cl o s e d  a n d  c o n v e x s et i n t h e
Hil b ert  s p a c e L 2 ([ 0 , 1]) i m pl y t h at

d F ( f̃ ⊕ ( x ), f̂ ⊕ ( x ))   = ||Q̃ ⊕ ( ·, x) − Q̂ ⊕ ( ·, x)||L 2 ([ 0 ,1] )

≤ n − 1
n

i = 1

|s i n ( x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] ) .

( 1 0)

T h er ef or e,  c o n v er g e n c e  hi n g e s  o n  c o n sist e nt  e sti m ati o n  of
t h e  q u a ntil e  f u n cti o n s Q i .  F or  t h e  as y m pt oti c  fr a m e w or k,

w e  c o n si d er  a  n e w  s e q u e n c e  of   C o x  p oi nt  pr o c e ss es N
( n )
i

w hi c h  h a v e  t h e  s a m e  s h a p e  f u n cti o n f i b ut  a n  i n cr e asi n g
i nt e n sit y  f a ct or α n τ i s o  t h at  i n cr e a si n gl y   m or e  p oi nts  ar e
o b s er v e d  p er  p oi nt  pr o c e ss  as  s a m pl e  si z e i n cr e a s e s [ 3 0].   T h e
as y m pt oti c fr a m e w or k is t h e n  as  f oll o ws :

1)   A  fir st  r a n d o m   m e c h a nis m  g e n er at e s  p air s  of  pr e di ct or s
X i a n d i nt e n sit y  f u n cti o n s Λ i ,

(X 1 , Λ 1 ), . . . , (X n , Λ n )
ii d
∼ (X, Λ ) w hi c h  e n c a p s ul at es

t h e  d e p e n d e n c y  b et w e e n t h es e  r a n d o m  q u a ntiti es.   W hil e
t h e X i ar e  o b s er v e d, t h e Λ i ar e  n ot  o b s er v e d.

2)   Gi v e n t h e  r a n d o m i nt e n sit y  f u n cti o n s Λ i ,  a  s e c o n d i n d e-
p e n d e nt  r a n d o m   m e c h a nis m  t h e n  g e n er at e s  t h e  o b s er v-

a bl e  n u m b er  of  arri v als N
( n )
i ( T ) a n d  t h e  arri v al  ti m es

Z i1 , . . . , Z
i N

( n )
i ( T )

f or  t h e i-t h  p oi nt  pr o c e ss N
( n )
i , i =

1 , . . . , n.
3)   C o n diti o n al  o n N

( n )
i ( T ),  t h e  ( u n or d er e d)  arri v al  ti m e s

Z i1 , . . . , Z
i N

( n )
i ( T )

i i d
∼ f i .

4)   Gi v e n  t h e  r a n d o m  i nt e n sit y  f u n cti o n Λ i , N
( n )
i ( T ) ∼

P (α n τ i ) f or  a  p o siti v e  s e q u e n c e α n → ∞ , w h er e P (η )
d e n ot e s  a  P oiss o n  r a n d o m  v ari a bl e   wit h  r at e η .

We  n ot e t h at  c o n diti o n s  1- 3  ar e  st a n d ar d  i n  t h e  c o nt e xt  of
C o x  pr o c ess es   w hil e  c o n diti o n  4  all o ws  f or  t h e  o b s er v a bl e

n u m b er  of  arri v als N
( n )
i ( T ) t o  di v er g e  as n i n cr e as es  a n d

t o  a v oi d  e m pt y  p oi nt  pr o c e ss es  [ 3 0],   w hi c h  is  t h e  k e y  f or
c o n sist e nt  esti m ati o n  of Q i b y  u si n g  t h e  e m piri c al   m e a s ur e

of  t h e  arri v al  ti m es µ̂ i wit h N
( n )
i ( T ) i n  pl a c e  of N i (T ).

A  si mil ar  fi x e d  d o m ai n  as y m pt oti c  p oi nt  pr o c e ss  fr a m e w or k
w as  c o n si d er e d i n  [ 3 0]  b ut   wit h o ut  c o v ari at e s.

T h e f oll o wi n g r e s ult s h o ws t h at t h e s e c o n d t er m  o n t h e ri g ht

h a n d  si d e  of  ( 9) is O p (α
− 1 / 4
n ) pr o vi d e d t h at t h e  s u p p ort  of τ

is  b o u n d e d  a w a y  fr o m  z er o  a n d α n gr o ws f a st  e n o u g h.

( S 3)   T h er e e xists a s c al ar κ > 0 s u c h t h at τ ≥ κ al m o st s ur el y.

Pr o p ositi o n  1: S u p p o s e t h at (S 1 ) , (S 2 ) a n d (S 3 ) h ol d, t h e
m ar gi n al  d e n sit y f X of X s atis fi es f X (·) > 0 a n d  is  t wi c e

c o nti n u o u sl y  diff er e nti a bl e,
α n

l o g n
→ ∞ as n → ∞ , a n d t h e
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b a n d wi dt h  s e q u e n c e h = h n s atis fi es h n → 0 a n d n h n → ∞
as n → ∞ . T h e n

d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x ))   = O p (α − 1 / 4
n ) .

T h e  t er m d F (f ⊕ (x ), f̂ ⊕ ( x )) o n  t h e  ri g ht  h a n d  si d e  of  ( 9)
w as  s h o w n  t o  b e O p (n − 2 / 5 ) u n d er  t h e  f oll o wi n g  r e g ul arit y
c o n diti o n [ 2 9]:

( L 1)   T h e   m ar gi n al d e n sit y f X of X , as   w ell as t h e  c o n diti o n al
d e n siti es g y of X |Ỹ = y , e xist f or Ỹ ∈ Ω F a n d ar e t wi c e
c o nti n u o u sl y  diff er e nti a bl e, t h e l att er f or  all y ∈ Ω F , a n d
s u p x, y |g y (x )| < ∞ .   A d diti o n all y, f or a n y o p e n U ⊂ Ω F ,

U
d F Ỹ |X ( x, y ) is  c o nti n u o u s  a s  a  f u n cti o n  of x .

S u m m ari zi n g t h es e  r es ults,   w e  o bt ai n
T h e o r e m  1: S u p p o s e t h at (S 1 ) , (S 2 ) , (S 3 ) a n d (L 1 ) h ol d,

t h e  d e n sit y  f u n cti o n  s atis fi es f X (·) > 0 ,
α n

l o g n
→ ∞ as

n → ∞ a n d h = h n ∼ c 0 n − 1 / 5 f or  s o m e  c o n st a nt c 0 > 0 .
T h e n

d F (f ⊕ (x ), f̃ ⊕ ( x ))   = O p (n − 2 / 5 + α − 1 / 4
n ) .

A c c or di n gl y, c o n sist e nt esti m ati o n i n t h e 2 - Wass er st ei n   m et-
ri c  f or  t h e  s h a p e  p art  of  t h e  c o n diti o n al  i nt e n sit y  f u n cti o n
c a n  b e  a c hi e v e d  at  t h e  r at e O p (n − 2 / 5 ) a s  l o n g  as n 8 / 5 α − 1

n

i s  b o u n d e d  a b o v e.  If  t his  ass u m pti o n  h ol d s,  t h e   w ell- k n o w n
r at e  of  c o n v er g e n c e f or l o c al li n e ar r e gr essi o n   wit h r e al  v al u e d
r e s p o n s e s is t h u s  o bt ai n a bl e.

B.   C o n v e r g e n c e  of t h e  I nt e n sit y   F a ct o r   E sti m at e s

I n  t h e  i n cr e asi n g  as y m pt oti cs  fr a m e w or k  t h at   w as  i ntr o-
d u c e d  i n  t h e  pr e vi o u s  s e cti o n,   w e  a ss u m e d  t h at  t h er e  is  a
c o m m o n i nt e n sit y  f a ct or   m ulti pli er α n s u c h t h at α n → ∞ as
n → ∞ .   T his  l e d  t o  c o n sist e nt  esti m ati o n  of  t h e  c o n diti o n al
i nt e n sit y f u n cti o n s f or t h e  s h a p e f u n cti o n  p art  of t h e i nt e n sit y
f u n cti o n,   w h er e  o n e   w or k s  i n  t h e  d e n sit y  s p a c e Ω F . Si n c e
i nt e n sit y  f u n cti o n s  c a n  b e  f a ct ori z e d i nt o  a  s h a p e  p art,   w hi c h
c orr e s p o n d s  t o  a  d e n sit y  f u n cti o n,  a n d  a n  i nt e n sit y  f a ct or,
it  r e m ai n s t o  c o n str u ct a n esti m at or f or t h e i nt e n sit y f a ct or ( 2)
c o n diti o n al  o n  pr e di ct or s X .

It t ur n s  o ut t h at t his is  a  c h all e n g e,  as  a n  esti m at or  f or  ( 5)
is  n ot  e asil y  a v ail a bl e.   T his is  b e c a us e i n  or d er t o  esti m at e t h e
s h a p e f u n cti o n s c o n sist e ntl y, it is  n e c ess ar y t o  ass u m e t h at t h e
e x p e ct e d  n u m b er  of  e v e nts i n cr e a s e s   wit h o ut  b o u n d.   We s h o w
i n t h e f oll o wi n g  h o w t his  c h all e n g e c a n  b e  o v er c o m e a n d  c o n-
sist e nt esti m ati o n of E (τ |X ) is n e v ert h el ess still  p o ssi bl e u p t o
t h e  c o n st a nt E (τ ),  s o t h at r el ati v e i nt e n siti es  c a n  b e  esti m at e d
c o n sist e ntl y.   T h e  k e y  t o  a c hi e v e  t his  is  t o  utili z e  t h e  a v er a g e

o b s er v e d  n u m b er  of  arri v als ¯N (T ) : = n − 1 n
i = 1 N

( n )
i ( T ).

We  r e q uir e t h e  f oll o wi n g r e g ul arit y  c o n diti o n s.

( L L 1)   T h e  r e gr e ssi o n  f u n cti o n m (x ) = E (τ |X = x ), t h e
d e n sit y  f u n cti o n f X (x ) > 0 of X a n d σ 2 (x ) =
E (e 2 |X = x ), w h er e e = τ − m (X ),  ar e  t wi c e
c o nti n u o u sl y  diff er e nti a bl e i n x .

( L L 2)  F or  t h e  b a n d wi dt h  s e q u e n c e h , n h 5 = O ( 1 ), as n →
∞ .

( L L 3)   T h er e e xists δ > 0 a n d σ̄ > 0 s u c h t h at E (|e |2 + δ |X ) ≤
σ̄ ,  f or  all  pr e di ct or s X .

We  n ot e  t h at  ass u m pti o n (L L 1 ) is  a  b a si c  s m o ot h n e ss
ass u m pti o n  t h at is  n e e d e d  t o  e x p a n d t h e  bi as  f or  l o c al  li n e ar

s m o ot hi n g,   w hil e (L L 2 ) is  als o  a  c o m m o n  ass u m pti o n  a n d
i m pli es t h at  as n → ∞ a n d  f or q ∈ N , w e h a v e n h q → ∞ if
0 ≤ q ≤ 4 a n d n h q → 0 f or q > 5 .   Ass u m pti o n (L L 3 ) will
b e  u s e d  f or  a n  a p pli c ati o n  of t h e  c e ntr al li mit t h e or e m.

O ur   m ai n  r es ult  o n  c o n diti o n al  i nt e n sit y  esti m ati o n  is  as
f oll o ws.  F or t w o  s e q u e n c e s β n a n d γ n ,  d e n ot e  b y β n γ n if
c 1 β n ≤ γ n ≤ c 2 β n f or  s o m e  c o n st a nts c 1 , c2 > 0 .   D e n ot e  b y
τ̃ ⊕ ( x ) t h e  e m piri c al a n d st a n d ar di z e d  esti m at e  of t h e i nt e n sit y
f a ct or  p art,   w hi c h is  gi v e n  b y

τ̃ ⊕ ( x ) = m a x 0 ,
n − 1 n

i = 1 s i n ( x, h )N
( n )
i ( T )

¯N (T )
. ( 1 1)

T h e o r e m  2: U n d er (L L 1 ) − (L L 3 ) a n d (S 3 ) ,  s u p p o s e t h at
τ ≤ M 1 al m o st  s ur el y  f or  a  c o n st a nt M 1 ∈ [κ, ∞ ) wit h κ as
i n  ass u m pti o n  ( S 3).  If ψ (α n ) n 2 / 5 f or  s o m e  f u n cti o n ψ :
R + → R , h = h n = c 0 n − 1 / 5 f or  s o m e  c o n st a nt c 0 > 0 a n d
α n

l o g n
→ ∞ as n → ∞ , t h e n

τ̃ ⊕ ( x ) =
1

E (τ )
τ ⊕ (x ) + O p (n − 2 / 5 ) .

T hi s   m e a ns  t h at τ ⊕ (x ) c a n  still  b e  c o n sist e ntl y  esti m at e d
u p  t o  t h e  c o n st a nt E (τ ) b y  u si n g  t h e  o b s er v a bl e  n u m b er s

of  arri v als N
( n )
i ( T ) of  e a c h  r e pli c ati o n  of  t h e  p oi nt  pr o c ess

i nst e a d  of t h e tr u e i nt e nsit y f a ct ors τ i ,   w hi c h ar e  n ot  o b s er v e d.

F urt h er m or e,  a s  t h e  o b s er v e d  c o u nts N
( n )
i ( T ) gr o w   wit h α n

a s n → ∞ ,   w e  c a n  st a bili z e  t h e  l o c al  li n e ar  esti m at or  b y
e m pl o yi n g c o m p aris o n s a g ai n st t h e a v er a g e  n u m b er of arri v als
¯N (T ).   We  r e m ar k  t h at  e v e n  t h o u g h  t h e  q u a ntit y E (τ ) is
u n k n o w n, r el ati v e i nt e n sit y f a ct or s  at  diff er e nt c o v ari at e l e v els
c a n  still  b e  r e c o v er e d  c o n sist e ntl y,   w hi c h  is  a  k e y  r es ult  of
i nt er e st i n  o ur  fr a m e w or k.

T h e ass u m pti o n s r e q uir e t h at ψ (α n ) d o e s n ot i n cr e as e f ast er
t h a n n 2 / 5 f or  s o m e  f u n cti o n ψ : R + → R .   T his  is  d u e  t o
t h e f a ct t h at l o c al li n e ar r e gr essio n esti m at ors   wit h r e al  v al u e d
r e s p o n s e s ar e e m pl o y e d.   T h e s e h a v e a   w ell- k n o w n o pti m al r at e
of  c o n v er g e n c e O p (n − 2 / 5 ) u n d er   mil d  a ss u m pti o n s,   w hi c h is
o bt ai n e d  u n d er  o ur  a ss u m pti o n s  f or  g e n er al  gr o wt h  r at es  of
α n .  F or  e x a m pl e, if α n = c 1 n ρ h a s  a  p ol y n o mi al  gr o wt h r at e,
w h er e c 1 , ρ   > 0 , t h e n  o ur  a ss u m pti o n s  ar e  s atis fi e d  b y t a ki n g
ψ : t → t2 / ( 5 ρ ) , t > 0 , l e a di n g t o t h e  o pti m al r at e O p (n − 2 / 5 ) .
Si mil arl y, if α n = c 1 e x p( n γ ) h a s  a n  e x p o n e nti al  gr o wt h r at e,
w h er e c 1 , γ   > 0 ,  t h e n  t h e  c o n diti o n s  ar e  s atis fi e d  b y  t a ki n g
ψ : t → (l o g (t)/ γ ) 2 / 5 , t > 0 .

C.   C o n v e r g e n c e  of t h e   C o n diti o n al I nt e n sit y   F u n cti o n
Esti m at es

We  ar e  n o w i n  p o siti o n t o  c o n str u ct a n  esti m at e f or t h e c o n-
diti o n al i nt e n sit y  f u n cti o n  b y  c o m bi ni n g  o ur  pr e vi o u s r e s ults.
R e c all  t h at  t h e  r e gr essi o n  or  c o n diti o n al  i nt e nsit y  f u n cti o n
s atis fi es m ⊕ (x ) = τ ⊕ (x )f ⊕ (x ) w h er e τ ⊕ (x ) a n d f ⊕ (x ) ar e
d e fi n e d i n  ( 2)  a n d  ( 3), r es p e cti v el y,  a n d

τ̃ ⊕ ( x ) = m a x 0 ,
n − 1 n

i = 1 s i n ( x, h )N
( n )
i ( T )

¯N (T )
,

w hi c h c orr e s p o n d s t o t h e esti m at e  of τ ⊕ (x ),  u p t o t h e c o n st a nt
E (τ ),  as  p er   T h e or e m  2.
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Si n c e Λ ⊕ (x ) = τ ⊕ (x )f ⊕ (x ), w e o bt ai n a n esti m at e of
Λ ⊕ (x ) b y  pl u g gi n g  i n  t h e  pr e vi o u sl y  o bt ai n e d  esti m at e s  of
t h e  i nt e n sit y  f a ct or τ ⊕ (x ) a n d  of  t h e  s h a p e  f u n cti o n f ⊕ (x ),
l e a di n g t o

Λ̂ ⊕ ( x ) = τ̃ ⊕ ( x ) f̃ ⊕ ( x ). ( 1 2)

H er e f̃ ⊕ ( x ) is  t h e  d e nsit y  c orr es p o n di n g  t o  t h e  q u a ntil e
f u n cti o n  d e fi n e d  i n  ( 8).   T his  esti m at or  is  c o n sist e nt  f or  t h e
c o n diti o n al i nt e n sit y f u n cti o n  u p t o E (τ ),  as  p er t h e f oll o wi n g
r es ult.

C o r oll a r y  1: U n d er t h e r e g ul arit y c o n diti o n s of   T h e or e m s 1
a n d  2, t h e esti m at e Λ̂ ⊕ ( x ) of t h e c o n diti o n al i nt e n sit y f u n cti o n
m ⊕ (x ) is  c o n sist e nt  u p t o t h e  c o n st a nt E (τ ) i n t h e  s e n s e t h at

d (m ⊕ (x ), E(τ ) Λ̂ ⊕ ( x ))   = O p (n − 2 / 5 + α − 1 / 4
n ) ,

w h er e α n / l o g n → ∞ as n → ∞ a n d ψ (α n ) n 2 / 5 f or
s o m e  f u n cti o n ψ : R + → R .

T his  r es ult  f oll o ws  dir e ctl y  fr o m   T h e or e m s  1  a n d  2.  If  t h e
s e q u e n c e α n h a s  a  p ol y n o mi al  gr o wt h  r at e α n / n ρ → C as
n → ∞ f or s o m e ρ > 0 a n d C > 0 , t h e n t h e  c o n v er g e n c e r at e
i n t h e   C or oll ar y is O p (n − ρ / 4 ) if ρ ∈ ( 0 , 8 / 5 ) w hil e t h e   w ell-
k n o w n n o n- p ar a m etri c r at e f or l o c al li n e ar r e gr e ssi o n   wit h r e al
v al u e d  r e s p o n s e s O p (n − 2 / 5 ) is  a c hi e v e d   w h e n e v er ρ ≥ 8 / 5 .
T h e  f ast est  c o n v er g e n c e  r at e  a c hi e v a bl e  is  o bt ai n e d   w h e n
ρ is  at  l e ast 8 / 5 w hi c h  l e a ds  t o d (m ⊕ (x ), E(τ ) Λ̂ ⊕ ( x ))   =
O p (n − 2 / 5 ) .  I n  t his  c as e,  b ot h  t h e  esti m ati o n  of  t h e  i nt e n sit y
f a ct or  p art,  u p  t o  t h e  c o n st a nt E (τ ),  a n d  t h e  s h a p e  p art  of
t h e  c o n diti o n al i nt e n sit y f u n cti o n  c a n  b e r e c o v er e d  at t h e  r at e
O p (n − 2 / 5 ) .

We  r e m ar k t h at i n  t h e  s p e ci al  c as e   w h er e   Var (τ ) = 0 a n d
t h e  distri b uti o n of t h e r a n d o m d e n sit y f c orr e s p o n d s t o a  p oi nt
m ass i n t h e   Wass er st ei n  s p a c e  of  pr o b a bilit y  distri b uti o n s Ω F

e n d o w e d   wit h  t h e 2 - Wass er st ei n   m etri c,  o n e  h as  t h at f = g
al m o st  s ur el y f or  s o m e  d e n sit y g wit h  c orr es p o n di n g  q u a ntil e
f u n cti o n Q g ∈ Q ( Ω F ) a n d τ = η 0 al m o st  s ur el y  f or  s o m e
c o n st a nt η 0 ∈ [κ,   M 1 ] wit h κ,   M 1 a s  i n   T h e or e m  2.   T his
s etti n g c orr es p o n ds t o t h e sit u ati o n   w h e n t h er e is  n o r e gr essi o n
of t h e  p oi nt  pr o c e ss  o n X a n d is  still  c o v er e d  b y   C or oll ar y  1.
M or e o v er, i n t his  s p e ci al  c as e  o ur fr a m e w or k is  e q ui v al e nt t o
t h at  of r e pli c at e d  P oiss o n  pr o c e ss es as t h e  u n d erl yi n g i nt e n sit y
f u n cti o n s  ar e  n o n-r a n d o m  a n d  i d e nti c al.   L e m m a  S. 1 2  i n  t h e
A p p e n di x  s h o ws  t h at τ̃ ⊕ ( x ) = η 0 a n d f̃ ⊕ ( x ) = g s o  t h at
m ⊕ (x ) is e q ui v al e nt t o t h e  u n d erl yi n g c o m m o n i nt e n sit y.   T h u s
t h e  pr o bl e m  tr a n sl at es  i nt o  o n e  of  c o n sist e nt  esti m ati o n  of
t h e  c o m m o n  u n d erl yi n g i nt e n sit y f u n cti o n  a cr o ss i n d e p e n d e nt
r e pli c ati o n s  of  a  si n gl e  P oiss o n  pr o c e ss,   w hi c h   w e  o bt ai n
u p  t o  a  c o n st a nt.  I n  t his  dir e cti o n,  s e v er al   w or k s  e xist  s u c h
a s  [ 1 5]   w h er e  a  n o n- p ar a m etri c  e sti m at e  of  t h e  u n d erl yi n g
i nt e n sit y f u n cti o n is  c o n si d er e d a n d  p oi nt wis e as   w ell  as   M S E
c o n v er g e n c e  r es ults  ar e  d eri v e d.  P ar a m etri c  a p pr o a c h es  h a v e
als o  b e e n e xt e n si v el y st u di e d; s e e [ 4 2] –[ 4 6] f or f urt h er  d et ails.
N o n- p ar a m etri c  a p pr o a c h es  usi n g   w a v el ets  h a v e  als o  b e e n
e x pl or e d i n [ 4 7] a n d s e mi p ar a m etri c a p pr o a c h e s i n [ 4 8].   W h e n
r e pli c ati o n s  of  a  n o n- h o m o g e n e o u s  P oiss o n  pr o c e ss   wit h  a
c o m m o n  a n d  n o n-r a n d o m  u n d erl yi n g  i nt e n sit y  f u n cti o n  ar e
a v ail a bl e  [ 1 5],  o n e  c a n  r e a dil y  e x pl oit  t his  f a ct  s o  t h at  a n
a s y m pt oti c  i n fill  fr a m e w or k  is  n ot  r e q uir e d  i n  t his  sit u ati o n;
r at h er,  o n e  c a n  p ull  o b s er v ati o n s  t o g et h er  t o  e sti m at e  t h e

c o m m o n  s h a p e  or  i nt e n sit y  f a ct or  c o m p o n e nts,  h o w e v er  t h e
sit u ati o n is  diff er e nt i n t h e r e gr essi o n fr a m e w or k t h at   w e st u d y
h er e.

It  is  oft e n  of  i nt er est  t o  st u d y  t h e  ass o ci ati o n  b et w e e n
c at e g ori c al  pr e di ct or s  a n d  p oi nt  pr o c e ss es,  f or   w hi c h t h e  pr e-
vi o u sl y st u di e d l o c al r e gr e ssi o n  a p pr o a c h e s  ar e  n ot  a p pli c a bl e
a s  c o nti n uit y  of t h e  pr e di ct or X is  r e q uir e d.   T h e  n e xt  s e cti o n
is  d e v ot e d  t o  t h e  c o n str u cti o n  of  a  s e c o n d  r e gr e ssi o n   m o d el
t h at  hi n g es  o n  a  g e n er ali z ati o n  of  t h e  cl assi c al  p ar a m etri c
m ulti v ari at e li n e ar r e gr essi o n   m o d el i n t h e   E u cli d e a n c as e, a n d
all o ws t o  a d dr e ss t his  pr o bl e m.

D.   Gl o b al   R e g r e ssi o n   Fr a m e w o r k f o r  I nt e n sit y   F u n cti o n s

We  bri e fl y  d e m o n str at e  h er e  a  g e n er ali z ati o n  of   m ulti-
pl e  li n e ar  r e gr e ssi o n  t o  t h e  c a s e   w h er e  r e s p o n s e s  ar e  p oi nt
pr o c e ss es  t h at  all o ws  t h e  i n cl u si o n  of  c at e g ori c al  pr e di ct or s
w hil e r e s p o n s e s  ar e  o bj e cts r e si di n g i n i nt e n sit y  s p a c e ( Ω, d).
T h e  k e y is  a  c h ar a ct eri z ati o n  of   m ulti pl e li n e ar r e gr essi o n as  a
w ei g ht e d s u m  of t h e r e s p o n s e s,   w hi c h  c a n t h e n  b e  g e n er ali z e d
t o t h e  c as e  of   w ei g ht e d  Fr é c h et   m e a ns [ 2 9].

C o nsi d er  a n   E u cli d e a n  pr e di ct or X ∈ R p a n d  ass u m e
t h at µ : = E (X ) a n d Σ : = Va r (X ) e xist,   wit h Σ p o siti v e
d e fi nit e.  I n  p arti c ul ar,  t his  all o ws  t o  c o n si d er  eit h er  c o nti n-
u o u s  or  c at e g ori al  pr e di ct or s.   T h e  st a n d ar d  li n e ar  r e gr e ssi o n
s etti n g  f or (X, Ỹ ) ∈ R p × R is  t h at  t h e  r e gr essi o n  f u n cti o n
E ( Ỹ |X = x ) = β 0 + β T

1 (x − µ ) is li n e ar i n x , w h er e β 0 a n d
β 1 ar e t h e  s c al ar i nt er c e pt  a n d  sl o p e  v e ct or, r es p e cti v el y. [ 2 9]
r e c h ar a ct eri z e d  t h e  li n e ar r e gr e ssi o n  f u n cti o n  as E ( Ỹ |X =
x ) = a r g mi n

y ∈ R
E (s (X,  x )d 2

E ( Ỹ , y )), w h er e s (X,  x ) : = 1 +

(X − µ ) T Σ − 1 ( x − µ ) ar e   w ei g hts  t h at  v ar y   wit h x a n d d E

i s t h e   E u cli d e a n   m etri c.   T his  all o ws  a  dir e ct  g e n er ali z ati o n t o
li n e ar r e gr essi o n i n i nt e n sit y  s p a c e ( Ω, d) b y si m pl y r e pl a ci n g
Ỹ b y  t h e  o bj e ct Y ∈ Ω a n d  t h e  st a n d ar d   E u cli d e a n  dist a n c e
d E b y t h e   m etri c d i n i nt e nsit y s p a c e,   w hi c h i n h erits pr o p erti es
of t h e  st a n d ar d li n e ar  r e gr e ssi o n  s et u p  as   w e  s h o w  b el o w.

T h e  gl o b al r e gr e ssi o n f u n cti o n  of Y ∈ Ω o n X is  gi v e n  b y

m G ⊕ (x ) : = a r g mi n
w ∈ Ω

E (s (X,  x )d 2 (Y,  w )).

Alt h o u g h Ω is  n ot  a  li n e ar  s p a c e  d u e  t o  t h e  n o n- n e g ati v e
n at ur e  of  t h e  i nt e n sit y  f u n cti o n s,  t h e  gl o b al  r e gr e ssi o n  c ur v e
m G ⊕ (x ) p a ss es  t hr o u g h  t h e  Fr é c h et   m e a n  of Y at x = µ
si n c e s (X,  µ ) = 1 ,  a  f e at ur e  i n h er e nt  t o  li n e ar  r e gr e ssi o n
m o d els.   M or e o v er, t h e   w ei g hts s (X,  x ) c a n  b e n e g ati v e, d o n ot
n e c ess aril y  d e c a y  t o  z er o  a w a y  fr o m x ,  a n d  d o  n ot  d e p e n d
o n  a  t u ni n g  p ar a m et er  li k e  l o c al   m et h o d s  d o.   Ar g u m e nts
si mil ar t o t h os e  o utli n e d i n s e cti o n III- A s h o w t h at m G ⊕ (x ) =
(τ G ⊕ (x ), fG ⊕ (x )), w h er e

τ G ⊕ (x ) = a r g mi n
τ 0 ∈ Ω T

E (s (X,  x )d 2
T (τ, τ 0 ))

= m a x { E (s (X,  x )τ ), 0 } ; ( 1 3)

f G ⊕ (x ) = a r g mi n
f 0 ∈ Ω F

E (s (X,  x )d 2
F (f, f 0 )). ( 1 4)

L e m m a  1  g u ar a nt e e s e xist e n c e a n d  u ni q u e n e ss of t h e  gl o b al
Fr é c h et r e gr e ssi o n f u n cti o n  o n  s h a p e  s p a c e f G ⊕ (x ).  Si mil arl y
a s i n t h e l o c al fr a m e w or k,   L e m m a  S. 1 1 i n t h e   A p p e n di x s h o ws
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t h at t h e   Hil b ert s p a c e str u ct ure all o ws t o c h ar a ct eri z e t h e q u a n-
til e f u n cti o n c orr es p o n di n g t o f G ⊕ (x ) a s t h e ort h o g o n al pr oj e c-
ti o n  of Q x = E (s (X,  x )Q ) as  a n  el e m e nt  of L 2 ([ 0 , 1]) o n t h e
cl os e d  a n d  c o n v e x s et Q ( Ω F ).  S u p p o s e t h at  a s a m pl e  of r e pli-

c at es (X i , Ni , fi , τi )
ii d
∼ (X,   N, f, τ ), w h er e N |Λ = f × τ is  a

P oiss o n  pr o c ess   wit h i nt e n sit y f u n cti o n λ = f × τ , is  a v ail a bl e
a n d  c o n si d er  t h e  s a m e  as y m pt oti c  fr a m e w or k  as  o utli n e d  i n
s e cti o n  I V- A.   T o  o bt ai n  e m piri c al  esti m at es,  d e fi n e s i n (x ) : =
1 + ( X i − ¯X ) T Σ̂ − 1 ( x − ¯X ), w h er e ¯X : = n − 1 n

i = 1 X i a n d

Σ̂ : = n − 1 n
i = 1 ( X i − ¯X )(X i − ¯X ) T .   T h e  n e xt  r e s ult  s h o ws

t h at t h e  gl o b al r e gr e ssi o n  f u n cti o n i n Ω T s p a c e, τ G ⊕ (x ),  c a n
b e  c o n sist e ntl y  esti m at e d  u p t o t h e  c o n st a nt E (τ ).

T h e o r e m  3: S u p p o s e  t h at  ( S 3)  h ol d s  a n d τ ≤ M 1 al m o st
s ur el y f or s o m e c o n st a nt M 1 ∈ [κ, ∞ ) wit h κ as i n ass u m pti o n
( S 3).  If ψ (α n ) n 1 / 2 f or  s o m e  f u n cti o n ψ : R + → R a n d
α n / l o g n → ∞ as n → ∞ , t h e n

m a x 0 ,
n − 1 n

i = 1 s i n ( x )N
( n )
i ( T )

¯N (T )
=

1

E (τ )
τ G ⊕ (x )

+ O p (n − 1 / 2 ) .

T h e or e m  3  s h o ws t h at t h e  p ar a m etri c
√

n - c o n v er g e n c e r at e
c a n  b e  o bt ai n e d  u n d er   mil d  c o n diti o ns  o n  t h e  gr o wt h  of α n .
T h u s  f ast er  r at es  ar e  o bt ai n e d  c o m p ar e d  t o  t h e  l o c al  s etti n g.
F or  e x a m pl e,  if α n = c 1 n ρ h a s  a  p ol y n o mi al  gr o wt h  r at e,
w h er e c 1 , ρ   > 0 , t h e n t h e  a ss u m pti o n s  ar e  s atis fi e d  b y t a ki n g
ψ : t → t1 / ( 2 ρ ) , t > 0 ,   w hi c h  l e a ds  t o  t h e  o pti m al

√
n -r at e.

Si mil arl y, if α n = c 1 e x p( n γ ) h a s  a n  e x p o n e nti al  gr o wt h r at e,
w h er e c 1 , γ   > 0 ,  t h e n  t h e  c o n diti o n s  ar e  s atis fi e d  b y  t a ki n g
ψ : t → (l o g (t)/ γ ) 1 / 2 , t > 0 .

Si mil arl y  as  i n  t h e  l o c al  r e gr e ssi o n  s et u p,  t h e  s h a p e  c o m-
p o n e nts f i r e m ai n  u n o b s er v e d  a n d   m u st  b e  e sti m at e d  fr o m
t h e  arri v al  ti m es  a cr oss  e a c h  r e pli c ati o n.   We  c o nsi d er  t h e
s a m e  esti m ati o n  s c h e m e  f or  t h e  s h a p e  f u n cti o n s  as  o utli n e d
i n  s e cti o n  III- B  b ut  r e pl a ci n g  t h e  l o c al   w ei g hts s i n (x, h ) b y
t h e  gl o b al   w ei g hts s i n (x ).   T his l e a ds t o t h e e m piri c al esti m at e
f̃ G ⊕ ( x ) of f G ⊕ (x ).   T h e f oll o wi n g r es ult s h o ws  c o n sist e n c y  of
t h e  esti m at e d  gl o b al r e gr e ssi o n f u n cti o n i n Ω F s p a c e.

T h e o r e m  4: S u p p o s e  t h at (S 1 ) , (S 2 ) a n d (S 3 ) h ol d,  a n d
α n

l o g n
→ ∞ as n → ∞ . T h e n

d F (f G ⊕ ( x ), f̃ G ⊕ ( x ))   = O p (n − 1 / 2 + α − 1 / 4
n ) .

T h u s,  if α n h a s  a  p ol y n o mi al  gr o wt h  r at e α n / n ρ → C
as n → ∞ f or  s o m e ρ > 0 a n d C > 0 ,   w e  o bt ai n  t h e√

n -r at e  as l o n g  as ρ ≥ 2 . If ρ ∈ ( 0 , 2 ) , t h e n t h e r at e  a c hi e v e d
is O p (n − ρ / 4 ) .   T h e  f oll o wi n g  c or oll ar y  s u m m ari z e s  t h e  c o n-
sist e n c y,  u p  t o  t h e  c o n st a nt E (τ ),  of  t h e  e m piri c al  esti m at e

Λ̂ G ⊕ ( x ) : = m a x 0 ,
n − 1 n

i = 1 s i n ( x ) N
( n )
i ( T )

¯N ( T )
f̃ G ⊕ ( x ) of  t h e

gl o b al r e gr e ssi o n f u n cti o n m G ⊕ (x ).
C o r oll a r y  2: U n d er t h e r e g ul arit y c o n diti o n s of   T h e or e m s 3

a n d  4,  t h e  esti m at e Λ̂ G ⊕ ( x ) of  t h e  c o n diti o n al  i nt e n sit y
f u n cti o n m G ⊕ (x ) is  c o n sist e nt  u p  t o  t h e  c o n st a nt E (τ ) i n
t h e  s e n s e t h at

d (m G ⊕ (x ), E(τ ) Λ̂ G ⊕ ( x ))   = O p (n − 1 / 2 + α − 1 / 4
n ) ,

w h er e α n / l o g n → ∞ as n → ∞ a n d ψ (α n ) n 1 / 2 f or
s o m e  f u n cti o n ψ : R + → R .

T h u s,   w h e n α n h a s  a  p ol y n o mi al  gr o wt h  r at e α n / n ρ → C
as n → ∞ f or  s o m e ρ > 0 a n d C > 0 ,  t h e  p ar a m etri c√

n -r at e is  a c hi e v e d   w h e n e v er ρ ≥ 2 a n d  ot h er wis e t h e r at e is
O p (n − ρ / 4 ) if ρ ∈ ( 0 , 2 ) ,   w hi c h  is  att ai n e d  b y  t h e  esti m ati o n
of t h e  c orr e s p o n di n g s h a p e  c o m p o n e nt  p art.

Si mil arl y  as i n  s e cti o n  I V- C, t h e  s p e ci al  c as e  of  n o  r e gr es-
si o n  o n X w h e n τ = η 0 al m o st  s ur el y  f or  s o m e  p o siti v e
c o n st a nt η 0 ∈ [κ,   M 1 ] a n d f = g al m o st  s ur el y  f or  s o m e
d e n sit y g wit h  c orr es p o n di n g  q u a ntil e  f u n cti o n Q g ∈ Q ( Ω F )
is  still  c o v er e d  b y   C or oll ar y  2.   L e m m a  S. 1 3 i n t h e   A p p e n di x
s h o ws  t h at  i n  t his  c as e τ G ⊕ (x ) = η 0 a n d f G ⊕ (x ) = g .   T h u s
t h e  gl o b al  Fr é c h et r e gr e ssi o n f u n cti o n c oi n ci d e s   wit h t h e l o c al
v er si o n  a n d is  e q ui v al e nt t o t h e  c o m m o n  u n d erl yi n g i nt e n sit y
f u n cti o n  a cr o ss  i n d e p e n d e nt  r e pli c ati o n s  of  a  si n gl e  P oiss o n
pr o c e ss.   H er e  c o n v er g e n c e t o w ar d s m G ⊕ (x ) = η 0 g , u p t o a
c o n st a nt,  c a n  b e  a c hi e v e d  at  t h e  p ar a m etri c  r at e  if α n gr o ws
f ast er t h a n n 2 .

V.  S I M U L A T I O N S

A.   N u m eri c al   A p p r o xi m ati o n f o r t h e  S h a p e   C o m p o n e nt
Esti m at es

T h e   mi ni mi z ati o n  pr o bl e m  f o r t h e l o c al  Fr é c h et  r e gr essi o n
o n  t h e  s h a p e  c o m p o n e nt  a s  i n  ( 8)  is  s ol v e d  n u m eri c all y
a n d  si mil ar t o  t h e  q u a dr ati c  o pti mi z ati o n  pr o bl e m  c o n si d er e d
i n  [ 2 9].   R e c all t h at

Q̃ ⊕ ( ·, x) = a r g mi n
q ∈ Q ( Ω F )

||q − n − 1
n

i = 1

s i n ( x, h ) Q̂ i ||
2
L 2 ([ 0 ,1] ) .

L et r j , j = 1 , . . . , ν,  b e  a n  e q uis p a c e d  gri d  i n ( 0 , 1 ) ,
w h er e ∆ r ν = 1 / (ν + 1 ) is  t h e  gri d  s p a ci n g  a n d ν is  a
p o siti v e  i nt e g er.   D e n ot e  t h e  o bj e cti v e  f u n cti o n  b y M (q ) =
||q − W ||2L 2 ([ 0 ,1] ) , w h er e W (·) = n − 1 n

i = 1 s i n ( x, h ) Q̂ i ( ·)
a n d q ∈ Q ( Ω F ).   We  e m pl o y   Ri e m a n n  s u m  a p pr o xi m a-
ti o n s  t o  n u m eri c all y  s ol v e  ( 8)  as  f oll o ws.   L etti n g w j : =
W (r j ) = n − 1 n

i = 1 s i n ( x, h ) Q̂ i ( r j ), j = 1 , . . . , ν, t h e Ri e-
m a n n  s u m  a p pr o xi m ati o n  of M (q ) is  gi v e n  b y M ν (q ) : =

ν
j = 1 ( q j − w j )

2 ∆ r ν , w h er e q j = q (r j ).   R e pl a ci n g M (q ) b y
M ν (q ) i n ( 8) l e a ds t o a n i nt er m e di ate dis cr eti z e d  o pti mi z ati o n
pr o bl e m

S ν : =  a r g   mi n
q ∈ Q ( Ω F )

M ν (q ).

H er e S ν is t h e  s et  of  all  s u c h  o pti m al  s ol uti o n s i n Q ( Ω F ).
T his  s et  is  n o n- e m pt y,   w hi c h  c a n  b e  s e e n  b y  c o n si d eri n g  a n
a u xili ar y  q u a dr ati c  c o n v e x  o pti mi z ati o n  pr o gr a m

q ∗
ν : =  a r g   mi n

q̃ ∈ R ν

q̃ − w 2
E , ( 1 5)

s u bj e ct t o  t h e  c o n str ai nts 0 < q̃ 1 ≤ · · ·   ≤ q̃ ν < T , M ∆ r ν ≤
q̃ j + 1 − q̃ j ≤ L ∆ r ν , j = 1 , . . . , ν − 1 , M ∆ r ν ≤ q̃ 1 ≤ L ∆ r ν ,
a n d M ∆ r ν ≤ 1 − q̃ ν ≤ L ∆ r ν , w h er e w = ( w 1 , . . . , wν ) T .
T h er ef or e a n y f u n cti o n q ∈ Q ( Ω F ) t h at i nt er p ol at es t h e  v al u es
q ∗

ν at  t h e  gri d  p oi nts r 1 , . . . , rν b el o n g s  t o S ν .   T h e  n e xt
pr o p ositi o n  s h o ws t h at Q̃ ⊕ ( ·, x) c a n  b e   w ell  r e c o v er e d i n t h e
L 2 - n or m  b y  c h o o si n g  a  s uf fi ci e ntl y  fi n e  gri d.   L et Q ⊕ ν b e
a n y ( fi x e d) el e m e nt i n S ν ,   w hi c h  c a n  b e s el e ct e d  b y t h e a xi o m
of  c h oi c e.
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P r o p o siti o n  2: S u p p o s e t h at (S 1 ) a n d (S 2 ) h ol d.   T h e n

||Q̃ ⊕ ( ·, x) − Q ⊕ ν ||L 2 ([ 0 ,1] ) = o ( 1 ),

as ν → ∞ .
A  n at ur al  el e m e nt i n S ν c orr e s p o n d s t o t h e  st a n d ar d li n e ar

i nt er p ol ati o n f u n cti o n  c o n str u ct e d fr o m q ∗
ν ,   w hi c h is  gi v e n  b y

Q ∗
ν (t) = q ∗

ν, j + ( t − r j )(q
∗
ν, j + 1 − q ∗

ν, j ) / ∆ r ν f or t ∈ [r j , rj + 1 ) ,
j = 0 , . . . , ν, w h er e q ∗

ν, j i s  t h e j t h  c o or di n at e  of q ∗
ν , j =

1 , . . . , ν, a n d q ∗
ν, 0 = 0 , r 0 = 0 , q ∗

ν, ν + 1 = T a n d r ν + 1 = 1 .
B y  c o nti n uit y,   w e  d e fi n e Q ∗

ν ( 1 )  : =  li m t → 1 − Q ∗
ν ( t) = T

as  t h e  l eft-li mit.   L e m m a  S. 9  i n  t h e   A p p e n di x  s h o ws  t h at
Q ∗

ν ∈ Q ( Ω F ) a n d  t h u s Q ∗
ν li es  i n S ν .  I n  pr a cti c e, M,  L ar e

t a k e n as v er y s m all/l ar g e c o n st a nts, M = 1 0 − 1 0 a n d L = 1 0 1 0 .
T his  c h oi c e   w or ks  v er y   w ell  i n  p r a cti c e.   T h e  o pti mi z ati o n
pr o bl e m ( 1 5) is  a  q u a dr ati c  c o n v e x  pr o gr a m ( Q P)   wit h li n e ar
c o n str ai nts  si mil ar  t o  t h e  o n e  c o n si d er e d  i n  [ 2 9]  b ut  sli g htl y
m o dif yi n g  t h e  c o n str ai nt   m atri x  ass o ci at e d   wit h  t h e   Q P,  a n d
c a n  b e  s ol v e d  u si n g  st at e  of  t h e  art  o pti mi z ati o n  r o uti n es.
T h e  li n e ar  i nt er p ol ati o n Q ∗

ν of  t h e  o pti m al  dis cr et e  s ol uti o n
q ∗

ν c orr e s p o n d s  t o  a  dis cr eti z e d  v er si o n  of Q̃ ⊕ ( ·, x) w hi c h
is  t h e n   m a p p e d  b a c k  t o  d e n sit y  s p a c e  t o  o bt ai n  a  dis cr et e
a p pr o xi m ati o n  of t h e  c orr e s p o n di n g  d e n sit y f u n cti o n f̃ ⊕ ( ·, x).
T h e  l att er  st e p  is  p erf or m e d  b y  fir st  c o n str u cti n g  t h e  c df
ass o ci at e d   wit h q ∗

ν a n d  t h e n  utili zi n g  l o c al  li n e ar  s m o ot hi n g
m et h o d s [ 4 9].   T h e i m pl e m e nt ati o n  of t h e  gl o b al r e gr e ssi o n is
si mil ar.

B.  Si m ul ati o n s f o r  L o c al   Fr é c h et   R e g r essi o n

T o  a ss ess  t h e  fi nit e  s a m pl e  p erf or m a n c e  of  t h e  pr o p o s e d
c o n diti o n al  i nt e n sit y  f u n cti o n  esti m at e s,   w e  c o n str u ct e d  a
g e n er ati v e   m o d el  t h at  pr o d u c e s  si m ul at e d  r a n d o m  i nt e n sit y
f u n cti o n s Λ ( ·) = f (·)τ al o n g   wit h  a n   E u cli d e a n  pr e di ct or
X ∈ R .  Fir st,  t o  g e n er at e  a  r a n d o m  d e n sit y  f u n cti o n f w e
c o n si d er t h e tr a n sf or m ati o n t o  a Hil b ert  s p a c e  a p pr o a c h  usi n g
t h e  l o g  q u a ntil e  d e n sit y  tr a n sf or m ati o n  ( L Q D)  [ 2 7],   w h er e
a   K ar h u n e n- L o è v e  ( K L)  d e c o m p ositi o n  is  e m pl o y e d  f or  t h e
tr a nsf or m e d  d e nsit y,   w hi c h is  a n  el e m e nt  of L 2 ,  a n d t h e l att er
c ur v e is   m a p p e d  b a c k t o  d e nsit y  s p a c e.  S p e ci fi c all y,  d e n oti n g
b y ψ : f → − l o g[f (Q (·))] t h e   L Q D  tr a n sf or m  of f , w h er e
Q is  t h e  q u a ntil e  f u n cti o n  c orr es p o n di n g  t o  t h e  d e nsit y f ,
w e  c o nsi d er  a tr u n c at e d   K L  d e c o m p ositi o n [ 5 0]  c o n diti o n all y
o n X = x

ψ (f )(·) = µ (·, x) +
K

k = 1

ξ k (x )φ k (·), ( 1 6)

w h er e µ (·, x) is  t h e  ( c o n diti o n al)   m e a n  f u n cti o n  of  t h e
L 2 pr o c e ss ψ ,   w hi c h   w e  ass u m e   G a u ssi a n,  t h e ξ k (x ) ar e
i n d e p e n d e nt  a cr o ss k s u c h  t h at ξ k (x ) ∼ N ( 0 , υk (x )), w h er e
t h e  ei g e n v al u es υ 1 (x ) a n d υ K (x ) ar e  stri ctl y  p o siti v e  f or
all x i n  t h e  s u p p ort  of F X ,  a n d  t h e  ei g e nf u n cti o n s φ k ar e
ort h o n or m al  i n L 2 .   T h u s  t h e   m e a n  f u n cti o n  a n d  t h e  s c or e s
ar e all o w e d t o v ar y wit h x w hil e  t h e  ei g e nf u n cti o n s  ar e
i n d e p e n d e nt  of x ,   w hi c h  pr o vi d es  b ett er  i nt er pr et a bilit y  of
t h e  d e p e n d e n c y  of ψ (f ) o n X = x .  P erf or mi n g  t h e   K L
d e c o m p o siti o n  i n  t h e  tr a n sf or m e d   Hil b ert  s p a c e  r at h er  t h a n
i n  d e n sit y  s p a c e  is   w ell  s uit e d  d u e  t o  t h e  f or m er  b ei n g  a

li n e ar  v e ct or s p a c e   w h er e as t h e l att er l a c ks li n e arit y str u ct ur e,
a n d t h er ef or e a tr u n c at e d   K L  e x p a n si o n a p pli e d  dir e ctl y t o t h e
d e n sit y  pr o c e ss   m a y  n ot r e si d e i n  d e n sit y  s p a c e  [ 2 7].

T h e  d at a  g e n er ati o n   m e c h a nis m  f or  t h e  s h a p e  p art  of  t h e
i nt e n sit y  f u n cti o n  is  as  f oll o ws:  Fir st  g e n er at e  t h e  c o v ari at e
X ∼ U ( 0 , 1 ) .   T h e n  a  r a n d o m  el e m e nt X (s ), s ∈ ( 0 , 1 ) ,
i n L 2 is  g e n er at e d  fr o m  ( 1 6)  b y  s a m pli n g  t h e  F u n cti o n al
Pri n ci p al   C o m p o n e nt  ( F P C)  s c or e s ξ k .   T h e  r a n d o m  d e n sit y
f u n cti o n f wit h  s u p p ort [ 0, T ], w h er e T = 1 ,  is  o bt ai n e d  b y
m a p pi n g  b a c k X (·) t o  d e n sit y  s p a c e  u si n g  t h e  i n v er s e   L Q D
tr a n sf or m,  i. e. Q (t) = θ − 1

X
t

0 e x p( X (s ))d s , w h er e θ X =
1

0
e x p( X (s ))d s a n d f is  t h e  d e n sit y  c orr e s p o n di n g  t o  t h e

q u a ntil e f u n cti o n Q .
F or  t h e  i nt e n sit y  f a ct or τ ,   w e  c o n si d er  a  li n e ar  r e gr e ssi o n

s etti n g E (τ |X = x ) = a 1 + b 1 x s u c h  t h at  t h e  v al u es  o n
t h e  ri g ht  h a n d  si d e  ar e  all  p o siti v e.   T h e  c o n diti o n al i nt e n sit y
f a ct ors τ f or  c o v ari at e l e v el X w er e  o bt ai n e d t hr o u g h  a li n e ar
r e gr e ssi o n   m o d el τ = a 1 + b 1 X + ε , w h er e ε is  i n d e p e n d e nt
of X a n d  h as  a tr u n c at e d  n or m al  d istri b uti o n   wit h   m e a n  z er o,
v ari a n c e σ 2

1 a n d  s u p p ort [c 1 , d1 ].   T h e  c h oi c e  of t h e  c o n st a nts
a b o v e  ar e  s u c h t h at a 1 + b 1 x + ε > 0 f or  all x i n t h e  s u p p ort
of F X .

N e xt,  r a n d o m  s a m pl es  of  d at a (X i , τi , Qi ), i = 1 , . . . , n,
w er e  g e n er at e d f oll o wi n g t h e  a b o v e  pr o c e d ur e,   w h er e a 1 = 1 ,
b 1 = 0 .2 , c 1 = − 0 .2 , d 1 = 0 .2 , σ 1 = 1 .5 , K = 2 ,
µ (s, x ) = e x p( 1 .5 x ) + e x p( 1 .5 s ), φ 1 (s ) = −

√
2 c o s ( π s ) ,

φ 2 (s ) =
√

2 si n ( π s ) , s ∈ [ 0, 1] , υ 2
1 (x ) = 3 + 2 x a n d

υ 2
2 (x ) = ( 2 − x ) 2 .   A  tri a n g ul ar  arr a y  of  p oi nt  pr o c e ss es

w as  t h e n  o bt ai n e d  as  f oll o ws:   C o n diti o n al  o n (X i , τi , Qi ),
t h e  o b s er v a bl e  n u m b er  of  arri v als  f or  t h e i-t h  p oi nt  pr o c e ss

N
( n )
i ( T ) w as  s a m pl e d  fr o m  a  P oiss o n  distri b uti o n   wit h  r at e

α n τ i , w h er e α n = 4 0 n 4 / 5 .   T h e n, c o n diti o n al  o n N
( n )
i ( T ) a n d

Q i , t h e  arri v al ti m e s   w er e  g e n er at e d  as  a n i.i. d. s a m pl e  of si z e

N
( n )
i ( T ) fr o m Q i .  F or  t his  st e p,   w e  utili z e  i n v er s e  s a m pli n g

m et h o d  b y  g e n er ati n g N
( n )
i ( T ) i.i. d.  u nif or m i n ( 0 , 1 ) r a n d o m

v ari a bl es u 1 , . . . , u
N

( n )
i ( T )

,  i n d e p e n d e nt  of  all  ot h er  r a n d o m

q u a ntiti es,  a n d  t h e n  t h e  arri v al  ti m es  ar e  o bt ai n e d  fr o m  t h e

Q (u k ), k = 1 , . . . , N
( n )
i ( T ).   We  g e n er at e Q i o v er a  d e n s e gri d

o n ( 0 , 1 ) a n d  u s e d  t h e  b a n d wi dt h  s e q u e n c e h = h n = n − 1 / 5

f or t h e l o c al  Fr é c h et r e gr essi o n  st e p.
Fi g ur e  1 s h o ws t h e  “ or a cl e ” r e gr e ssi o n f u n cti o n   wit h i nt e n-

sit y f a ct or s E (τ |X = x ) a n d  s h a p e ( d e n sit y) f u n cti o n  d e fi n e d
t hr o u g h t h e  c orr e s p o n di n g  q u a ntil e  f u n cti o n E (Q (·)|X = x ),
w h er e   w e  c o nsi d er  a  gri d  of 5 0 e q uis p a c e d  pr e di ct or  v al u es i n
( 0 , 1 ) . H er e E (Q (·)|X = x ) is a p pr o xi m at e d t hr o u g h a   M o nt e
C arl o  a p pr o a c h   w h er e   w e  a v er a g e a cr oss r a n d o m  q u a ntil es Q i

g e n er at e d  at  pr e di ct or l e v el x .
We  r a n 1 0 0 0 si m ul ati o n s f or s a m pl e si z e s n =  1 0 0 , 2 0 0 a n d

5 0 0 . F or t h e r t h si m ul ati o n,   w e   m e a s ur e  t h e  p erf or m a n c e
of  t h e   m et h o d  b y  c o m p ari n g  a g ai n st t h e  “ or a cl e ”  c o n diti o n al
i nt e n sit y  f u n cti o n  as  d e fi n e d  b ef or e.   D e n oti n g  b y f̃ r

⊕ ( x ) a n d
τ̃ r

⊕ ( x ) t h e  e m piri c al  esti m at es  f or  t h e  s h a p e  f u n cti o n  a n d
i nt e n sit y f a ct or p arts of t h e c o n diti o n al i nt e n sit y f u n cti o n i n t h e
r -t h  si m ul ati o n,  r es p e cti v el y,   w e   m e as ur e d  t h e  q u alit y  of  t h e
esti m ati o n  b y i nt e gr at e d  s q u ar e d  err or s  si mil ar  t o  [ 2 9],  u si n g
t h e m etri c as i n ( 1). Si n c e τ ⊕ (x ) c a n  b e c o n sist e ntl y esti m at e d
u p t o t h e c o n st a nt E (τ ),   w e e x p e ct t h e esti m at es a n d τ ⊕ (x ) t o
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Fi g.  1.   C o n diti o n al i nt e nsit y  f u n cti o ns i n t h e  si m ul ati o n  s etti n g  o v er  a  d e ns e
gri d  of  pr e di ct or  l e v els x ,  dis pl a y e d  i n  bl u e   w h e n x = 0 t o  r e d   w h e n x =
1 i n  t h e  o nli n e  v ersi o n  ( d ar k  gr e y  a n d  li g ht  gr e y  i n t h e  pri nt  v ersi o n,  r es p.).
T h e  u p p er  p a n el  s h o ws  t h e  a p pr o xi m ati o n  of Λ ⊕ ( x ) t hr o u g h  a   M o nt e   C arl o
a p pr o a c h   w hil e  t h e  b ott o m  p a n el  s h o ws t h e  esti m at e Λ̂ ⊕ ( x ) a dj ust e d  b y t h e
c o nst a nt E ( τ ) usi n g n = 2 0 0 0 .

diff er  b y  a  p o siti v e c o n st a nt a n d t h e  e sti m at e s τ̃ r
⊕ ( x ) of τ ⊕ (x )

a s i n   T h e or e m  2  b y E (τ ).   T his l e a ds t o

I S E r =
1

0

d 2
L 2 ( Q̃ ⊕ ( x ), E(Q (·)|X = x ))

+ d 2
E (E (τ ) τ̃ r

⊕ ( x ), E(τ |X = x )) d x

= I S E F
r + I S E T

r .

T h e  pr e vi o u s  i nt e gr als  ar e  o bt ai n e d  n u m eri c all y  o v er  a
d e n s e  gri d  of  pr e di ct or  v al u e s  c o n sisti n g  of 2 0 0 e q ui dist a nt
p oi nts  i n ( 0 , 1 ) , w h er e E (Q (·)|X = x ) is  o bt ai n e d  t hr o u g h

Fi g.  2.   B o x pl ots  of  t h e  err ors  f or  t h e c o n diti o n al  s h a p e  f u n cti o n  esti m at es
I S E F

r ( u p p er  p a n els)  a n d  t h e  c o n diti o n al  i nt e nsit y  f a ct ors I S E T
r ( b ott o m

p a n els),  i n  t h e  si m ul ati o n  s etti n g  f or n =  1 0 0 (l eft), n = 2 0 0 ( mi d dl e)  a n d
n = 5 0 0 (ri g ht).   H er e  f o ur  a n d  t hr e e  o utli ers   w er e  r e m o v e d  f or  t h e  s h a p e
a n d i nt e nsit y  f a ct or  b o x pl ots   w h e n n = 1 0 0 ,  r es p e cti v el y.

a   M o nt e   C arl o  a p pr o a c h  f or  e a c h x i n  t h e  d e n s e  gri d  as
e x pl ai n e d  b ef or e.   T h e  b o x pl ots  of I S E F

r a n d I S E T
r ar e

pr e s e nt e d  i n  Fi g ur e  2.   As  s a m pl e  si z e  i n cr e as es,  t h es e  err or
esti m at es  ar e  s e e n  t o  d e cr e as e  t o w ar ds 0 .   T his  i n di c at es  t h at
t h e  esti m at e d  c o n diti o n al i nt e n sit y f u n cti o n s  c o n v er g e t o t h eir
tr u e  c o u nt er p arts,  u p t o t h e  c o n st a nt E (τ ).

C.  Si m ul ati o n s f o r   Gl o b al   Fr é c h et   R e g r essi o n

I n  t his  s e cti o n   w e  ass ess  t h e  fi nit e  s a m pl e  p erf or m a n c e  of
t h e  gl o b al  Fr é c h et  r e gr e ssi o n  e sti m at e s.   T h e  d at a  g e n er ati o n
m e c h a nis m  is  as  f oll o ws.  Fir st  g e n er at e  t h e  c o v ari at e X ∼
U ( 0 , 1 ) .   T h e n t h e r a n d o m d e n sit y f c orr e s p o n d s t o a tr u n c at e d
n or m al  r a n d o m  v ari a bl e   wit h  s u p p ort [ 0, T ], T = 1 ,   m e a n
µ (x ) = a 2 + b 2 x + ε 1 a n d  st a n d ar d  d e vi ati o n σ (x ) = a 3 +
b 3 x + ε 2 , w h er e ε k , k = 1 , 2 , is i n d e p e n d e nt of all ot h er r a n d o m
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q u a ntiti es  a n d  h as  a  tr u n c at e d  n or m al  distri b uti o n   wit h   m e a n
z er o, st a n d ar d d e vi ati o n σ k a n d s u p p ort [e k , fk ] s u c h t h at σ (x )
is  p o siti v e f or  all x i n t h e s u p p ort  of F X .   T h u s  b ot h t h e   m e a n
a n d  st a n d ar d  d e vi ati o n  c h a n g e  li n e arl y   wit h x .   We  c h o o s e
a 2 = 0 .3 , b 2 = 0 .4 , a 3 = 0 .1 , b 3 = − 0 .0 1 , e 1 = − 0 .1 , f 1 =
0 .1 , e 2 = − 0 .0 1 , f 2 = 0 .0 1 a n d σ 1 = σ 2 = 0 .5 .   T h e s e s etti n g s
r e fl e ct  a  sit u ati o n   w h er e  t h e  s h a p e  c o m p o n e nts  ar e   G a u ssi a n
a n d  p u s h e d  t o  t h e  ri g ht  a s x i n cr e as es   w hil e  t h e  i nt e n sit y
f a ct or  b e c o m es  l ar g er.  Fi g ur e  3  s h o ws  t h e  “ or a cl e ”  gl o b al
Fr é c h et  r e gr e ssi o n  f u n cti o n  o v er  a  d e n s e  gri d  of  pr e di ct or
v al u e s  a n d t h e  e sti m at e d  c o u nt er p art  a dj u st e d  b y t h e  c o n st a nt
E (τ ).   L e m m a  S. 1 1 i n t h e  a p p e n di x s h o ws t h at Q (f G ⊕ (x )) is
t h e  ort h o g o n al  pr oj e cti o n  of Q G (·, x) = E (s (X,  x )Q (·)) o nt o
Q ( Ω F ), w h er e Q i s t h e  q u a ntil e f u n cti o n c orr es p o n di n g t o t h e
g e n eri c r a n d o m d e n sit y f .   We  o bt ai n Q G (·, x) at e a c h  v al u e of
x i n t h e  gri d  b y  e m pl o yi n g  a   M o nt e   C arl o  a p pr o a c h si mil arl y
a s  i n  s e cti o n   V- B  b y  a v er a gi n g  a cr o ss  r a n d o m  tr aj e ct ori es
s (X,  x )Q i .

We  r a n 1 0 0 0 si m ul ati o n s f or s a m pl e si z e s n =  1 0 0 , 2 0 0 a n d
5 0 0 . F or t h e r t h si m ul ati o n,   w e   m e a s ur e  t h e  p erf or m a n c e  of
t h e   m et h o d  b y  c o m p ari n g a g ai n st t h e  “ or a cl e ”  gl o b al i nt e n sit y
f u n cti o n  as  d e fi n e d  b ef or e  a n d  u si n g i nt e gr at e d s q u ar e d  err or s
a n al o g o us t o t h e  o n es  o utli n e d i n s e cti o n   V- B.   T h e  b o x pl ots of
t h e  err or   m etri cs  a g ai nst t h e  “ ora cl e ”  gl o b al i nt e n sit y f u n cti o n
ar e  pr es e nt e d i n  Fi g ur e  4  a n d  ar e  cl e arl y  s e e n t o  c o n v er g e t o
z er o  as  s a m pl e  si z e i n cr e as es.

VI.   D A T A A P P L I C A T I O N S   A N D E X T E N S I O N S

A.   C hi c a g o’s   Di v v y   Bi k e  S yst e m

We  ill u str at e  o ur  a p pr o a c h  f or  t h e  bi k e  tri p s  r e c or d s  of
t h e   C hi c a g o   Di v v y  bi k e  s y st e m,   w hi c h  ar e  p u bli cl y  a v ail-
a bl e at  htt p s:// w w w. di v v y bi k es. c o m/s y st e m- d at a.   T h e  bi k e tri p
r e c or d s c o nt ai n i nf or m ati o n s u c h  as t h e  bi k e  pi c k u p  a n d  dr o p-
off  l o c ati o n,  d at e  a n d  ti m e,  b et w e e n   m or e  t h a n 6 0 0 bi k e
r e nt al  st ati o n s  i n   C hi c a g o.  I n t h e  c o nt e xt  of  r e pli c at e d  t e m-
p or al  P oiss o n  pr o c ess es, [ 3]  a n al y z e d t his  d at as et  b y  a d a pti n g
a n  a d diti v e  pri n ci p al  c o m p o n e nt   m o d el  t o  t h e  l o g-i nt e n sit y
f u n cti o n s  of  d ail y  pi c k u p s  a n d  esti m ati n g   m o d el  p ar a m et er s
t hr o u g h  a  li k eli h o o d  b a s e d  a p pr o a c h,  a n d  s u c h  bi k e  s h ari n g
s y st e ms  h a v e  b e e n e xt e nsi v el y st u di e d [ 5 1].   We c o nsi d er e d t h e
p oi nt  pr o c e ss  of  d ail y  pi c k u p s  of  bi k es i n  a  cl u st er  c o n sisti n g
of 6 st ati o n s  n ot  f ar  fr o m  e a c h  ot h er  i n  t h e   C hi c a g o   Di v v y
s y st e m  d uri n g   w e e k d a y s  of 2 0 1 7 ,  c o n sisti n g  of  a  st ati o n  o n
E ast  S o ut h   Wat er str e et a n d t h e  fi v e  n e ar est bi k e r e nt al st ati o ns
s o ut h  of t h e   C hi c a g o ri v er.

T o  st u d y  t h e  eff e ct  of  t h e  t e m p er at ur e  o n  t h e  d e m a n d  of
bi k es,   w e  o bt ai n e d t h e  d ail y  o b s er v e d t e m p er at ur e i n   C hi c a g o
as  r e c or d e d  at  t h e   w e at h er  st a ti o n  ‘ N ort h erl y  isl a n d’  fr o m
htt ps:// w w w. n c d c. n o a a. g o v  a n d fitt e d  a  l o c al  Fr é c h et  r e gr es-
si o n   m o d el t o  o bt ai n t h e  c o n diti o n al i nt e n sit y f u n cti o n s  of t h e
bi k e r e nt als,  u si n g  esti m at e s Λ̂ ⊕ ( x ) a s i n ( 1 2),   w h er e   w e  u s e d
a  b a n d wi dt h  of 1 .5 ◦ C.   T h e  r es ults  ar e  pr es e nt e d i n  Fi g ur e  5.

A  cl e ar  diff er e n c e  e m er g es  b et w e e n  d a ys   wit h t e m p er at ur e
a b o v e 1 0 ◦ C   w hi c h  h a v e  a  u nif or ml y  hi g h er i nt e n sit y f u n cti o n
c o m p ar e d t o  d a ys   wit h  l o w er  t e m p er at ur e.  I n  b ot h  c as es,  t h e
s h a p e  of  t h e  i nt e n sit y  f u n cti o n  a p p e ar s  t o  b e  bi m o d al   wit h
p e a k s  at 9 a m  a n d 5 p m,   w hi c h  ar e  li k el y  d u e  t o  bi k e  r e nt als

Fi g.  3.   C o n diti o n al  gl o b a l  i nt e nsit y  f u n cti o ns m G ⊕ ( x ) i n  t h e  si m ul ati o n
s etti n g  o v er a d e ns e gri d  of pr e di ct or l e v els x , dis pl a y e d i n bl u e   w h e n x = 0 t o
r e d   w h e n x = 1 i n  t h e  o nli n e  v ersi o n  ( d ar k  gr e y  a n d  li g ht  gr e y  i n  t h e  pri nt
v ersi o n, r es p.).   T h e u p p er  p a n el s h o ws t h e a p pr o xi m ati o n  of m G ⊕ ( x ) t hr o u g h
a   M o nt e   C arl o  a p pr o a c h   w hil e t h e  b ott o m  p a n el  s h o ws t h e  esti m at e Λ̂ G ⊕ ( x )
a dj ust e d  b y t h e  c o nst a nt E ( τ ) usi n g n =  2 0 0 0 .

f or t h e  p ur p o s e  of c o m m uti n g t o t h e   w or k pl a c e.   M or e o v er, t h e
c o n diti o n al  i nt e n sit y  f u n cti o n  esti m at e  is  hi g h er  ar o u n d 5 p m
c o m p ar e d t o  t h e  e arl y  p e a k  at 9 a m,   w hi c h   m a y  b e  e x pl ai n e d
b y t h e f a ct t h at it is   w ar m er a n d e a si er t o  bi k e i n t h e aft er n o o n
t h a n  e arl y  i n  t h e   m or ni n g,  s o  p er h a p s  c o m m ut er s  u s e  p u bli c
or s h ar e d tr a n s p ort i n t h e   m or ni n g a n d a  bi k e i n t h e aft er n o o n.

T h er e  a p p e ar s  t o  b e  a  “s h o ul d er ”  or   mi n or  p e a k  of  bi k e
r e nt al  d e m a n d  at  ar o u n d 1 2 p m  o n   w ar m  d a y s  o nl y,   w hi c h
is  li k el y  r el at e d  t o   m or e  or  l ess  o pti o n al  l u n c h  br e a k  r el at e d
bi c y cl e  tr a v el,  f or  l eis ur e  or  t o  c at c h  s o m e  f o o d.   O v er all,
w e  fi n d  t h at  i n cr e a si n g  t e m p er at ur e  b o o sts  t h e  bi k e  r e nt al
d e m a n d  i n  t his  r e gi o n  of   C hi c a g o.  Fi g ur e  5  ( b)  s h o ws  t h e
q u oti e nt  b et w e e n  t h e  esti m at e d  c o n diti o n al i nt e n sit y  f u n cti o n
at x = 2 ◦ C a n d x = 1 8 ◦ C.   We  o b s er v e  t h at  t h e  r ati o  is
m u c h  hi g h er  ar o u n d  n o o n  c o m p ar e d  t o  t h e  r ati o s  at 9 a m
a n d 5 p m;   m or e o v er,  t his  r ati o  is  hi g h er  f or  t h e   m or ni n g
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Fi g.  4.   B o x pl ots  of  t h e  err ors  f or  t h e c o n diti o n al  s h a p e  f u n cti o n  esti m at es
I S E F

r ( u p p er  p a n els)  a n d  t h e  c o n diti o n al  i nt e nsit y  f a ct ors I S E T
r ( b ott o m

p a n els),  i n  t h e  si m ul ati o n  s etti n g  f or n = 1 0 0 (l eft), n = 2 0 0 ( mi d dl e)  a n d
n = 5 0 0 (ri g ht).  Fi v e  o utli ers   w er e r e m o v e d  f or  b ot h t h e  s h a p e  a n d i nt e nsit y
f a ct or  b o x pl ots   w h e n n = 1 0 0 ,  r es p e cti v el y.

c o m m ut e  c o m p ar e d  t o  t h e  e v e ni n g  c o m m ut e,  i n di c ati n g  t h at
t h e  aft er n o o n  d e m a n d  is  n ot  j u st  a  r e fl e cti o n  of  t h e   m or ni n g
d e m a n d.   T his  r ati o  c a n  b e  c h ar a ct eri z e d  as  t h e  d e gr e e  t o
w hi c h  bi k e  tr a v el  is  o pti o n al,   w h er e  t h e  o b vi o u s  alt er n ati v e s
t o   m a ki n g  a tri p  b y  bi k e  ar e  n ot   m a ki n g  a tri p  or   m a ki n g t h e
tri p  b y  ot h er   m e a n s  of tr a n s p ort ati o n.

B.   N e w  Y o r k  Yell o w  T a xi  S yst e m

T h e   N e w   Yor k  y ell o w t a xi  tri p  r e c or ds is  a  ri c h  a n d  l ar g e
s c al e d at a b a s e t h at c o nt ai n s i nf or m ati o n s u c h as t h e t a xi pi c k u p
a n d dr o p- off l atit u d e a n d l o n git u d e l o c ati o n s a s   w ell a s t h e d at e
a n d  ti m e,  a m o n g  s e v er al  ot h er  v ari a bl es.   T h e  d at a  is  a v ail-
a bl e  fr o m  t h e   N Y C   Ta xi  a n d   Li m o u si n e   C o m missi o n  ( T L C)
at  htt ps:// w w w 1. n y c. g o v/sit e/tl c / a b o ut/ d at a. p a g e.   Usi n g  p oi nt
pr o c e ss es, t his  d at a  h a s  b e e n  st u di e d  b y  s e v er al  a ut h or s i n  a n

Fi g.  5.  ( a)   E sti m at e d  c o n diti o n al  i nt e nsit y  f u n cti o ns  i n  d e p e n d e n c e  o n
t e m p er at ur e  v al u es  b et w e e n − 2 ◦ C  ( bl u e)  a n d 2 4 ◦ C  (r e d)  i n  t h e  o nli n e
v ersi o n ( d ar k  gr e y  a n d li g ht  gr e y i n t h e  pri nt  v ersi o n,  r es p.),  usi n g  b a n d wi dt h
h = 1 .5 ◦ C,   wit h  hi g hli g ht e d  c o n diti o n al  i nt e nsit y  f u n cti o ns  at  t e m p er at ur es
2 ◦ C a n d 1 8 ◦ C. ( b)   R ati o  b et w e e n t h e esti m at e d  c o n diti o n al i nt e nsit y f u n cti o ns
at t e m p er at ur e 1 8 ◦ C t o t h at at 2 ◦ C.

a p pli e d s etti n g; s e e f or e x a m pl e [ 5 2] a n d t h e r ef er e n c e s t h er ei n
f or a r e vi e w a n d c o m p aris o n of  diff er e nt i nt e n sit y   m o d els.   T h e
P oiss o n  pr o c e ss  as  a   w or ki n g   m o d el f or t h e t a xi  pi c k u p s  at  a
fi x e d l o c ati o n is   w ell j u sti fi e d t h e or eti c all y  as  a  s u p er p o siti o n
of   m a n y  i n d e p e n d e nt  a n d  s uf fi ci e ntl y  s p ar s e  p oi nt  pr o c e ss es,
si mil ar t o t h e  c a s e  of  c all  arri v als  at  a t el e p h o n e e x c h a n g e [ 6].
It is  of i nt er e st t o st u d y  h o w t h e  d e m a n d  of t a xis is  ass o ci at e d
wit h t h e  d a y  of t h e   w e e k  a n d f or t his   w e  e m pl o y  a r e gr essi o n
a p pr o a c h.
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We  c o n si d er  t h e  p oi nt  pr o c e ss  of  d ail y  pi c k u p s  of  y ell o w
t a xis t h at  o c c urr e d  at  P e n n  st ati o n i n   M a n h att a n  d uri n g 2 0 1 7 .
P e n n  st ati o n  is  a   m aj or  tr ai n  st ati o n  l o c at e d  i n   Mi dt o w n
M a n h att a n t h at  s er v es  c o m m ut er s  fr o m   N e w   Yor k   Cit y,   N e w
J er s e y  a n d   L o n g  I sl a n d,  a n d  c o n n e cts   N Y C   wit h  s e v er al
ot h er  citi es.   We  vi e w  t h es e  d at a  as  a  s a m pl e  of  r e pli c at e d
p oi nt  pr o c ess es,  as  e a c h  d a y  pr o d u c es  a  r e pli c ati o n  of  t h e
u n d erl yi n g  d at a  g e n er ati o n   m e c h a nis m.   T o  st u d y  t h e  eff e ct
of   w e e k d a ys  a n d   w e e k e n ds  o n  t h e  d e m a n d  of  t a xis  at  P e n n
st ati o n,   w e  c o nsi d er  a  c at e g ori c al  pr e di ct or X t h at  i n di c at es
w h et h er  t h e  d a y  c orr e s p o n d s t o  a   M o n d a y- T h ur s d a y,  Fri d a y,
S at ur d a y  or  S u n d a y.  Si n c e  l o c al  s m o ot hi n g  d o e s  n ot  a p pl y
t o  i n di c at or  t y p e  pr e di ct or s,   w e  i n st e a d  c o n si d er  t h e  gl o b al
r e gr e ssi o n fr a m e w or k t h at   w as i ntr o d u c e d i n s e cti o n I V- D a n d
is   w ell  s uit e d  f or  c at e g ori c al  pr e di ct or s.

Fitti n g  a  gl o b al  r e gr essi o n   m o d el  f or t h e i nt e n sit y  f u n cti o n
o n t h e  d a y  of   w e e k X b y  u si n g t h e  e sti m at e s Λ̂ G ⊕ ( x ) d e fi n e d
aft er   T h e or e m  4 l e a ds t o t h e  r es ults  as  pr es e nt e d i n  Fi g ur e  6.
F or  S u n d a y s,  t h e  i nt e n sit y  f u n cti o n  is  hi g h e st  l at e  i n  t h e
d a y  a n d  aft er  4 p m  is  hi g h er  t h a n  o n  all  ot h er  d a y s,  li k el y
d u e  t o  p e o pl e  r et ur ni n g  t o   N e w   Yor k   Cit y  fr o m  a n  o ut  of
t o w n tri p.   T h e   w e e k d a y ( M o n d a y t hr o u g h   T h ur s d a y) i nt e n sit y
f u n cti o n  is  bi m o d al   wit h  a  hi g h er  fir st   m o d e.   T h e s e   m o d e s
li k el y c orr e s p o n d t o t h e c o m m ut er tr af fi c,   w h er e t h e 8 a m   m o d e
w o ul d  b e  d u e t o  c o m m ut er s   w h o li v e  o utsi d e   N e w   Yor k   Cit y
a n d  arri v e  f or   w or k  i n  t h e   Cit y  i n  t h e   m or ni n g,   w hil e  t h e
e v e ni n g   m o d e  li k el y  c orr e s p o n d s  t o  p e o pl e   w h o  r et ur n  fr o m
o ut  of t o w n  at  P e n n  St ati o n  a n d  h ail  a t a xi t h er e.   O n  Fri d a y s,
t h e s a m e   m o d e s ar e  pr e s e nt  b ut   wit h  a r e v er s al  of t h eir  h ei g ht,
a s t h e  s e c o n d   m o d e is  n o w  hi g h er t h a n t h e  fir st   m o d e, li k el y
c orr e s p o n di n g  t o  r e v er s e  c o m m ut er s   w h o  li v e  i n   N e w   Yor k
Cit y  a n d  r et ur n  fr o m  o utsi d e,  p er h a p s  h a vi n g  a   w or k  pl a c e
a w a y  fr o m t h e   Cit y.

T h e p att er n s f or  S at ur d a y ar e als o bi m o d al b ut   wit h diff er e nt
l o c ati o n s a n d l e v els  of t h e   m o d e s, i n di c ati n g t h at r el ati v e l ar g e
n u m b er s  of  p e o pl e  arri v e  at  P e n n  St ati o n  ar o u n d  n o o n  a n d  at
8 p m,  p er h a p s i n di c ati n g l eis ur e  a n d  s h o p pi n g tri p s.

C.   Aft ers h o c k   E a rt h q u a k e   Pr o c e ss i n   C hil e

T h e  pr o p o s e d   C o x  pr o c e ss r e gr e ssi o n  als o  h a s  a p pli c ati o n s
i n  s eis m ol o g y,   w h er e  t h e  ti m e s  e art h q u a k es  stri k e  n at ur all y
f or m s a  p oi nt  pr o c e ss es.  S o it is  n ot s ur prisi n g t h at e art h q u a k e
a cti vit y  h as   m et   wit h   m aj or i nt er est i n t h e  p oi nt  pr o c ess lit er-
at ur e [ 2].   C hil e is   wi d el y  k n o w n f or its str o n g s eis mi c  a cti vit y
i n  b ot h  fr e q u e n c y  a n d  i nt e n sit y.   O ur  g o al  is  t o  st u d y  t h e
aft er s h o c k  pr o c e ss t h at  f oll o ws  a   m aj or  e art h q u a k e  o c c urri n g
at  ti m e t = 0 ,   w h er e  t h e   m aj or  e art h q u a k e  t h at   m a y  tri g g er
aft er s h o c k s is  r ef err e d t o  as  t h e   m ai n s h o c k.   We  f o c u s  o n  t h e
arri v al  of aft er s h o c k s t h at  o c c ur i n  a ti m e   wi n d o w  of 2 m o nt h s
aft er  t h e   m ai n s h o c k  s o  t h at  t h e  aft er s h o c k  pr o c e ss N (t) is
o b s er v e d i n [ 0, T ] f or T = 2 m o nt h s.

T o  d e m o n str at e t h e  pr o p o s e d  r e gr e ssi o n   m et h o d s,   w e  c o n-
si d er e d  t h e   m ai n s h o c ks  t h at  o c c urr e d  b et w e e n 1 9 8 0 a n d
2 0 1 7 i n   C hil e.   T h e s e  i n cl u d e  s o m e  str o n g  e art h q u a k es
s u c h  as  t h e   m a g nit u d e 8 .8 e art h q u a k e  o n  t h e   m o m e nt
m a g nit u d e  s c al e  i n  F e br u ar y 2 0 1 0 , 8 .2 i n   A pril 2 0 1 4 ,
8 .0 i n   M ar c h 1 9 8 5 ,  a n d  ot h er  str o n g  e art h q u a k es.   T h e

Fi g.  6.   E sti m at e d i nt e nsit y f u n cti o ns  us i n g  gl o b al r e gr essi o n   wit h t y p e  of  d a y
as  pr e di ct ors.   T h e  fitt e d  r es p o ns e  f u n cti o ns  ar e  s h o w n  f or   M o n d a y- T h urs d a y
( gr e e n  d ot- d as h e d),  Fri d a y ( m a g e nt a soli d),  S at ur d a y (r e d  d as h e d)  a n d  S u n d a y
( bl a c k  d ott e d) i n t h e  o nli n e  v ersi o n.   T h e   Y- a xis is s c al e d  b y  a f a ct or  of 1 0 − 5 .

T A B L E  I
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d at a   w as  o bt ai n e d  fr o m  t h e   U. S.   G e ol o gi c al  S ur v e y   w e b
p a g e  htt p s:// e art h q u a k e. u s g s. g o v/ e art h q u a k e s/s e ar c h/   w hi c h
pr o vi d e s i nf or m ati o n  c o n c er ni n g t h e l o c ati o n,   m a g nit u d e  a n d
d at e  of  t h e  e art h q u a k es.   We  cl assi fi e d  e a c h  e art h q u a k e  i n
t er m s  of  its   m a g nit u d e  c at e g or y  a n d  s el e ct e d 1 5 m ai n s h o c k s
at  r a n d o m  fr o m  e a c h  c at e g or y  i n  t h e  or d er  str o n g est  t o
w e a k e st.   T his  e n a bl es  u s t o  c o n si d er t h e str o n g e st e art h q u a k es
a b o v e   m a g nit u d e 7 ;  s e e   Ta bl e  I.   Ta bl e  II  s h o ws  s o m e  of  t h e
str o n g e st  aft er s h o c k s  al o n g   wit h  t h eir  arri v al  ti m e  aft er  t h e
2 0 1 0 e art h q u a k e.

I n  or d er t o  a v oi d  i n cl u di n g  a n  aft er s h o c k t h at  c o ul d  c orr e-
s p o n d t o   m or e t h a n  o n e   m ai n s h o c k,   w e  a d o pt e d t h e f oll o wi n g
s el e cti o n  s c h e m e:  If   w e  s el e ct  a n  e art h q u a k e  t h at  o c c urs  at
c al e n d ar  ti m e t0 a s   m ai n s h o c k,  t h e n   w e  c a n n ot  c h o o s e  a n y
e art h q u a k e  t h at  o c c ur s  i n  t h e  i nt er v al (t0 − T, t 0 + T ) as
m ai n s h o c k.  F urt h er m or e,   w e  c o n si d er  a n  e art h q u a k e t o  b e  a
m ai n s h o c k if t h e s e q u e n c e of e art h q u a k es t h at o c c ur d uri n g t h e
f oll o wi n g 2 m o nt h s  aft er its  arri v al ti m e  h a v e  stri ctl y  s m all er
m a g nit u d e s.

We  i m pl e m e nt e d  c o n diti o n al  i nt e n sit y  f u n cti o n  esti m ati o n
u si n g  t h e   m a g nit u d e  of  t h e   m ai n s h o c k  as  a  o n e- di m e n si o n al
pr e di ct or.  Fi g ur e  7  s h o ws  t h e  e sti m at e d  c o n diti o n al  i nt e n sit y
f u n cti o n s ( 1 2) f or diff er e nt l e v els of   m a g nit u d e s b et w e e n 5 a n d
8 .5 ,  al o n g   wit h t h e  c o n diti o n al i nt e n sit y f or t h e   m e a n   m a g ni-
t u d e l e v el x = 6 .3 a n d  f or  a  str o n g  e art h q u a k e  at   m a g nit u d e
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T A B L E  II
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x = 8 .0 .   We  o b s er v e  t h at  t h e  c o n diti o n al  i nt e n sit y  f u n cti o n
f or t h e str o n g e art h q u a k e h a s a n e x p o n e nti al d e c a y, s u g g e sti n g
t h at   m o st aft er s h o c k s o c c ur cl o s er t o t h e   m ai n s h o c k.   T h e s h a p e
of  t h e  r e gr e ssi o n  c ur v e  a gr e e s   wit h  t h e  tr a diti o n al   m o d el  f or
aft er s h o c k  s e q u e n c e s  t h at  c orr e s p o n d  t o  l ar g e  e art h q u a k es,
wit h  i nt e n sit y  f u n cti o n  d e cli ni n g  as  a  p o w er  l a w,   w hi c h  is
k n o w n  a s t h e   m o di fi e d   O m ori l a w  [ 2], [ 5 3].

T h e  r e gr e ssi o n  c ur v e  f or  a   m a g nit u d e 6 .3 e art h q u a k e  is
m ostl y  fl at  b ut  pr es e nts  a  sl o w  d e c a y  t o w ar ds  t h e  e n d  of  t h e
ti m e   wi n d o w  of  o b s er v ati o n.   T his c o ul d  b e  d u e t o t h e f a ct t h at
m e di u m  or l o w   m a g nit u d e e art h q u a k es  d o  n ot t e n d t o  pr o d u c e
s u b st a nti all y   m or e aft er s h o c k s c o m p ar e d t o t h e  n at ur al s eis mi c
b a c k gr o u n d  a cti vit y i n   C hil e. I n f a ct, t h e  c o n diti o n al i nt e nsit y
f u n cti o n f or t h e str o n g e art h q u a k e is  u nif or ml y hi g h er t h a n t h e
o n e f or t h e   m a g nit u d e 6 .3 m ai n s h o c k.  Fi n all y, t h e  c o n diti o n al
i nt e n sit y  f u n cti o n s  f or  e art h q u a k es  b el o w   m a g nit u d e 6 ar e
m o stl y  fl at,   w hi c h  i n di c at e s  t h at  t h o s e  e art h q u a k es  t e n d  t o
pr o d u c e  aft er s h o c k s t h at  ar e   m or e  u nif or ml y  s c att er e d  a n d  at
l e a st  p artl y  c orr e s p o n d t o  t h e  b a c k gr o u n d  s eis mi c  a cti vit y  i n
C hil e.

VII.   C O N C L U S I O N

We  d e v el o p  h er e  a  n o v el  f ull y  n o n- p ar a m etri c  r e gr e ssi o n
m et h o d t h at f e at ur e s p oi nt pr o c e ss es as r e s p o n s e s c o u pl e d   wit h
E u cli d e a n  pr e di ct or s X ∈ R p b y  e st a blis hi n g  a  c o n n e cti o n
t o  c o n diti o n al  b ar y c e nt er s.   Cr u ci all y,  o ur   m o d el  is  b a s e d  o n
t h e  a v ail a bilit y  of  r e p e at e d  r e ali z ati o n s  of  t h e  s a m e  p oi nt
pr o c e ss.   T h e  r a n d o m  o bj e cts  f or   w hi c h   w e  c o n str u ct  c o n di-
ti o n al b ar y c e nt er s ar e t h e i nt e n sit y f u n cti o n s of   C o x  pr o c e ss es,
w hi c h   w e  c a n  r e pr es e nt  as  t a ki n g  v al u es  i n  a  pr o d u ct   m etri c
s p a c e.   A  n o v elt y  i n  p oi nt  pr o c ess es  is  t h at  t h e  r e gr essi o n
s etti n g   m a k es  it  p o ssi bl e  t o  a c hi e v e  c o n sist e nt  esti m ati o n
of  i nt e n sit y  f u n cti o n s  ( u p  t o  a  c o n st a nt  s c al e  f a ct or  f or  t h e
i nt e n sit y  t h at  is  c o m m o n  t o  all  o b s er v e d  r e ali z ati o n s  of  t h e
p oi nt  pr o c e ss).

O bt ai ni n g s u c h  c o n sist e n c y  h a s  b e e n  a n  el u si v e  g o al  a n d i n
f a ct is  n ot  p o ssi bl e   w h e n  o n e  h a s  o n e r e ali z ati o n  of t h e  p oi nt
pr o c ess  o v er  a  fi x e d  d o m ai n.   W h at   w e  s h o w  h er e is t h at t his
l a c k  of  c o n sist e n c y  c a n  b e  o v er c o m e  i n  a  r e gr essi o n  s etti n g
w h er e  o n e  c a n  h ar n e ss  c o n c e pts  of  c o n diti o n al  b ar y c e nt er s
t h at  h a v e  b e e n  d e v el o p e d  f or  Fr é c h et  r e gr essi o n.  F or  e a c h
p oi nt  pr o c e ss,  o n e   m a y  h a v e  a  c o nti n u o u s  o n e- di m e n si o n al  or
g e n er al  v e ct or  pr e di ct or  t h at  is  a  r a n d o m  v ari a bl e  a ss o ci at e d
wit h  t h e  p oi nt  pr o c e ss.  I n  t h e  f or m er  c a s e   w e  c a n  u s e  a
n o n p ar a m etri c s m o ot hi n g   m et h o d  u n d er   mi ni m al a ss u m pti o n s,
w hil e i n  t h e l att er  c a s e   w e t ar g et  a  gl o b al   m o d el t h at is  a ki n
t o   m ulti pl e li n e ar  r e gr essi o n  a n d   m a k es it  p o ssi bl e t o i n cl u d e
i n di c at or s  as  pr e di ct or s.

O ur  a p pr o a c h  r eli es  o n  str ai g htf or w ar d  c o m p ut ati o n s  a n d
d o e s  n ot  r e q uir e  t h e  u s e  of  f u n cti o n al  pri n ci p al  c o m p o n e nts,
a t o ol t h at is  n ot   w ell  s uit e d f or i nt e n sit y f u n cti o n s  as t h e y  d o

n ot  r e si d e  i n  a  li n e ar  s p a c e  d u e  t o  t h eir  n o n- n e g ati v e  n at ur e.
We  s h o w  t h at  t h e  pr o p o s e d  r e gr e ssi o n   m o d el  is  a p pli c a bl e
t o   m a n y  d at a  sit u ati o n s   w h er e  o n e  is  i nt er est e d  t o  st u d y
t h e  b e h a vi or  of  p oi nt  pr o c e ss es  i n  d e p e n d e n c e  o n  c o v ari at es,
i n cl u di n g  a p pli c ati o n s i n tr a n s p ort ati o n  a n d  s eis m ol o g y.

A P P E N D I X

A.   Pr o ofs  of   R es ults i n  S e cti o n  I V- A

P r o of  of  L e m m a  1: L et Q 1 , Q2 ∈ Q ( Ω F ), λ ∈ [ 0, 1]
a n d Q λ = λ Q 1 + ( 1 − λ )Q 2 a n d x, y ∈ [ 0, 1] .  It  is  cl e ar
t h at Q λ ( 0 )   =  0 , Q λ ( 1 )   = T ,  a n d  b y  t h e  tri a n gl e  i n e q u alit y
|Q λ (x ) − Q λ (y )| ≤ L |x − y |.  S u p p o s e  n o w  t h at x ≤ y ,
t h e n  si n c e Q λ is  n o n- d e cr e a si n g   w e  h a v e |Q λ (x ) − Q λ (y )| =
Q λ (y ) − Q λ (x ).  F urt h er m or e, f or M as i n  ( S 1),

Q λ (y ) − Q λ (x )

= λ (Q 1 (y ) − Q 1 (x ))   + ( 1 − λ )(Q 2 (y ) − Q 2 (x ))

≥ λ M (y − x ) + ( 1 − λ )M (y − x )

= M (y − x ),

w hi c h i m pli es |Q λ (x )− Q λ (y )| ≥ M |x − y | f or all x, y ∈ [ 0, 1] .
H e n c e, Q ( Ω F ) i s c o n v e x a n d it is cl e arl y a s u bs et of L 2 ([ 0 , 1])
si n c e t h e  q u a ntil e f u n cti o ns ar e  b o u n d e d.   N e xt, l et Q 1 , Q2 , . . .

b e  a  s e q u e n c e i n Q ( Ω F ) s u c h  t h at Q n
L 2

→ Q ∈ L 2 ([ 0 , 1]) as
n → ∞ .   We  s h o w t h at Q ∈ Q ( Ω F ).  I n  f a ct,  si n c e t h e  f a mil y
{ Q n } ∞

n = 1 h a s a c o m m o n   Li p s c hit z c o n st a nt L , it f oll o ws t h at it
is  u nif or ml y e q ui c o nti n u o u s.   M or e o v er, si n c e [ 0, 1] is  c o m p a ct

a n d Q n
L 2

→ Q ∈ L 2 ([ 0 , 1]) t h e n Q n → Q u nif or ml y  a s n →
∞ .   T his  i m pli es Q ( 0 )   =  0 a n d Q ( 1 )   = T . N e xt, f or a n y
x, y ∈ [ 0, 1] a n d > 0 w e  h a v e  t h at ||Q n − Q ||∞ ≤ / 2 f or
n l ar g e  e n o u g h  a n d

|Q (x ) − Q (y )|

≤ | Q (x ) − Q n (x )| + |Q n (x ) − Q n (y )| + |Q n (y ) − Q (y )|

≤ 2 ||Q n − Q ||∞ + L |x − y |

≤ + L |x − y |,

f or l ar g e e n o u g h n ( ), u si n g t h at Q n ∈ Q ( Ω F ) b y  ass u m pti o n
a n d t h e f u n cti o n s i n t his  s p a c e  s atisf y t h e   Li p s c hit z  c o n diti o n
wit h  c o n st a nt L . Ta ki n g ↓ 0 w e  o bt ai n  t h at Q is  als o
Li p s c hit z   wit h  c o n st a nt L .  Si mil arl y, f or n l ar g e  e n o u g h

M |x − y | ≤ |Q n (x ) − Q n (y )|

≤ 2 ||Q n − Q ||∞ + |Q (x ) − Q (y )|

≤ + |Q (x ) − Q (y )|,

s o t h at Q s atis fi es c o n diti o n (S 1 ) .   T h er ef or e, Q ( Ω F ) is cl os e d.

T h e  f oll o wi n g l e m m a  s h o ws t h at t h er e  ar e  n o  e m pt y  p oi nt
pr o c e ss es a n d f oll o ws  b y a d o pti n g a n al o g o u s ar g u m e nts a s t h e
o n es  o utli n e d i n t h e  pr o of  of   L e m m a  3 i n [ 3 0].   We  pr es e nt it
h er e o nl y f or c o m pl et e n e ss a n d   wit h o ut pr o of. I n   w h at f oll o ws,
w e  i ntr o d u c e  a u xili ar y  q u a ntiti es s i (x, h ) = σ − 2

0 K h (X i −
x )[u 2 − u 1 (X i − x )], i = 1 , . . . , n, w h er e u j = E (K h (X 1 −
x )(X 1 − x ) j ), j ∈ { 0 , 1 , 2 } a n d σ 2

0 = u 0 u 2 − u 2
1 .
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Fi g.  7.   E sti m at e d  c o n diti o n al  i nt e nsit y f u n cti o ns  f or  t h e  aft ers h o c k  pr o c ess
f or  diff er e nt l e v els  of   m a g nit u d e  b et w e e n 5 .0 ( bl u e) a n d 8 .5 (r e d) i n t h e  o nli n e
v ersi o n,   wit h  s p e ci fi c  c o n diti o n al  i nt e nsit y  f u n cti o ns  at   m a g nit u d es 6 .3 a n d
8 .0 ,  a n d  b a n d wi dt h 0 .8 i n   m a g nit u d e.   T h e   Y- a xis  is  s c al e d  b y  a  f a ct or  of
1 0 − 3 .

L e m m a  S. 1: S u p p o s e t h at τ ≥ κ > 0 al m o st  s ur el y   wit h κ
as i n  ass u m pti o n (S 3 ) a n d α n / l o g n → ∞ as n → ∞ . T h e n

li m i nf
n → ∞

mi n 1 ≤ i ≤ n N
( n )
i ( T )

α n
≥

( 1 − e − 1 )κ

2
a.s. .

P r o of  of   P r o p ositi o n  1: Fr o m  ( 1 0)   w e  h a v e

d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x )) ≤ n − 1
n

i = 1

|s i n ( x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] ) .

( 1 7)

Fr o m t h e  pr o of  of   L e m m a 2 i n  [ 2 9],   w e  h a v e s i n (x, h ) −
s i (x, h ) = W 0 n K h (X i − x ) + W 1 n K h (X i − x )(X i − x ), w h er e
W 0 n = û 2 / σ̂ 2

0 − u 2 / σ 2
0 = O p ((n h ) − 1 / 2 ) a n d W 1 n = û 1 / σ̂ 2

0 −
u 1 / σ 2

0 = O p ((n h 3 ) − 1 / 2 ) .   T h u s

n − 1
n

i = 1

|s i n ( x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

≤ n − 1
n

i = 1

|s i n ( x, h ) − s i (x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

+ n − 1
n

i = 1

|s i (x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

≤ W 0 n n − 1
n

i = 1

K h (X i − x )||Q̂ i − Q i ||L 2 ([ 0 ,1] )

+ W 1 n n − 1
n

i = 1

K h (X i − x )|X i − x | ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

+ |u 2 / σ 2
0 | n − 1

n

i = 1

K h (X i − x )||Q̂ i − Q i ||L 2 ([ 0 ,1] )

+ |u 1 / σ 2
0 | n − 1

n

i = 1

K h (X i − x )|X i − x | ||Q̂ i − Q i ||L 2 ([ 0 ,1] ) .

( 1 8)

L et µ i b e t h e  pr o b a bilit y   m e as ur e o n [ 0, T ] wit h c orr e s p o n d-
i n g  q u a ntil e f u n cti o n Q i .   N ot e t h at

||Q̂ i − Q i ||L 2 ([ 0 ,1] )

= d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) > 0 )

+ d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) = 0 )

≤ d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) > 0 )

+ T 1
( N

( n )
i ( T ) = 0 )

≤ d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) > 0 )

,

al m o st s ur el y a n d f or l ar g e e n o u g h n ,   w h er e t h e l ast i n e q u alit y
is  d u e t o   L e m m a  S. 1  a b o v e  u si n g t h e  c o n diti o n α n / l o g n →
∞ as n → ∞ .   T his  al o n g   wit h t h e  f a ct t h at

E (d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) > 0 )

|Λ i , Xi )

= E (d W ( µ̂ i , µi ) 1 ( N
( n )
i ( T ) > 0 )

|Λ i )

≤ (T / ( 2 κ ) 1 / 4 ) α − 1 / 4
n ,

f or l ar g e e n o u g h n ,   w hi c h f oll o ws  b y si mil ar  ar g u m e nts as t h e
o n es  o utli n e d i n t h e  pr o of  of   T h e or e m  2 i n  [ 3 0],  s h o ws t h at

E (||Q̂ i − Q i ||L 2 ([ 0 ,1] ) |Λ i , Xi ) = O (α − 1 / 4
n ) ,

f or l ar g e  e n o u g h n , w h er e t h e O (α
− 1 / 4
n ) t er m is  u nif or m i n i.

T h u s, f or j ∈ { 0 , 1 } a n d  b y  a  c o n diti o ni n g ar g u m e nt,   w e  h a v e

E n − 1
n

i = 1

K h (X i − x )|X i − x |j ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

= n − 1
n

i = 1

E K h (X i − x )|X i − x |j

E (||Q̂ i − Q i ||L 2 ([ 0 ,1] ) |Λ i , Xi )

= O (α − 1 / 4
n ) n − 1

n

i = 1

E K h (X i − x )|X i − x |j

= O (h j α − 1 / 4
n ) ,

w hi c h i m pli es

n − 1
n

i = 1

K h (X i − x )|X i − x |j ||Q̂ i − Q i ||L 2 ([ 0 ,1] )

= O p (h j α − 1 / 4
n ) . ( 1 9)

D e fi n e  a u xili ar y  q u a ntiti es γ k =
1

− 1
u k K (u )d u , k =

0 , 1 , 2 .   B y   Ta yl or  e x p a nsi o n it is  e as y t o s e e t h at u 0 = f (x ) +

h
1

− 1 u K (u )f (ξ 0 u )d u , u 1 = h 2 (
1

− 1 u 2 K (u )f (ξ 1 u )d u ),

u 2 = h 2 γ 2 f (x ) + h 3 1

− 1 u 3 K (u )f (ξ 2 u )d u , w h er e ξ 1 u ,
ξ 2 u a n d ξ 3 u ar e  b et w e e n x a n d x + u h . Si n c e a k : =

1

− 1
u k + 1 K (u )f (ξ k u )d u , k = 0 , 1 , 2 ,  s atis fi es |a k | ≤

s u p s ∈ [x − 1 , x+ 1] |f (s )| < ∞ f or  l ar g e  e n o u g h n ,  it  f oll o ws
t h at

|u 2 / σ 2
0 |

= ( γ 2 f (x ) + h a 2 )/ (γ 2 f 2 (x ) + h (a 2 f (x ) + a 0 γ 2 f (x ))

+ h 2 (a 0 a 2 − a 2
1 ))   = O ( 1 ),

|u 1 / σ 2
0 |

= a 1 / (γ 2 f 2 (x ) + h (a 2 f (x ) + a 0 γ 2 f (x ))   + h 2 (a 0 a 2 − a 2
1 ))

= O ( 1 ),
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a s n → ∞ .   C o m bi ni n g   wit h ( 1 8), ( 1 9) a n d t h e f a ct t h at W 0 n =
O p ((n h ) − 1 / 2 ) a n d W 1 n = O p ((n h 3 ) − 1 / 2 ) l e a ds t o

n − 1
n

i = 1

|s i n ( x, h )| ||Q̂ i − Q i ||L 2 ([ 0 ,1] ) = O p (α − 1 / 4
n ) ,

a n d t h e  r es ult t h e n  f oll o ws fr o m  ( 1 7).
P r o of  of  T h e o r e m  1: U n d er  t h e  a ss u m pti o n s (K 0 ) , (L 1 )

a n d f X > 0 wit h  u n b o u n d e d  s u p p ort  a n d  t h e  c h oi c e  of h n ,
w e  h a v e  fr o m   C or oll ar y 1 i n  [ 2 9] t h at

d F (f ⊕ (x ), f̂ ⊕ ( x ))   = O p (n − 2 / 5 ) .

N e xt,  fr o m  Pr o p ositi o n  1   w e  o bt ai n d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x ))   =

O p (α
− 1 / 4
n ) .   C o m bi ni n g   wit h  t h e  tri a n gl e  i n e q u alit y  ( 9)  l e a d s

t o

d F (f ⊕ (x ), f̃ ⊕ ( x )) ≤ d F (f ⊕ (x ), f̂ ⊕ ( x ))   + d F ( f̂ ⊕ ( x ), f̃ ⊕ ( x ))

= O p (n − 2 / 5 + α − 1 / 4
n ) ,

w hi c h  s h o ws t h e  r es ult.

B.   Pr o ofs  of   R es ults i n  S e cti o n  I V- B

We  b e gi n  b y  est a blis hi n g  f o ur  a u xili ar y l e m m as.
L e m m a  S. 2: S u p p o s e  t h at  t h er e  e xists M 1 < ∞ s u c h

t h at τ ≤ M 1 al m ost  s ur el y  a n d  l et i ∈ { 1 , . . . , n} .   T h e n,

c o n diti o n all y  o n  a r e ali z ati o n  of Λ i , N
( n )
i ( T )/ α n − τ i i s   m e a n

z er o   wit h  ( c o n diti o n al)  v ari a n c e  b o u n d e d  a b o v e  b y M 1 / α n .

P r o of  of  L e m m a  S. 2: Si n c e N
( n )
i i s  a   C o x  pr o c ess,  it  is

g e n er at e d  b y t w o  i n d e p e n d e nt r a n d o m   m e c h a nis m s:  Fir st  t h e
g e n er ati o n  of  t h e  i nt e n sit y  f u n cti o n Λ i ,  a n d t h e n,  c o n diti o n al

o n Λ i ,  of t h e r e ali z ati o n s  of N
( n )
i c orr e s p o n di n g t o t h o s e  of  a

P oiss o n  pr o c ess N
( n )
i ( ·|Λ i ) wit h i nt e n sit y  f u n cti o n α n Λ i [ 2].

T h u s,   w e   m a y r e g ar d t h e  pr o b a bilit y s p a c e ass o ci at e d   wit h t h e
g e n er ati o n  of t h e i nt e n sit y f u n cti o n a n d t h e  P oiss o n  pr o c ess as
a  pr o d u ct  pr o b a bilit y s p a c e W 1 × W 2 s u c h t h at Λ i = Λ i (w 1 ),
w h er e w 1 ∈ W 1 l e a d s t o  a r e ali z ati o n  of t h e i nt e n sit y f u n cti o n

a n d  t h e n N
( n )
i ( ·) = N

( n )
i ( ·, w2 ), w h er e w 2 ∈ W 2 l e a ds  t o  a

r e ali z ati o n  of  a  P oiss o n  pr o c ess   wit h i nt e n sit y f u n cti o n α n Λ i .

F or τ i =
T

0 Λ i (s )d s , w e h a v e t h at gi v e n Λ i (w 1 ), N
( n )
i ( T ) ∼

P (α n τ i (w 1 )),   wit h  ( c o n diti o n al)  v ari a n c e α n τ i (w 1 ).   T h u s

E W 2 ( (N
( n )
i ( T )/ α n − τ i (w 1 ))|Λ i (w 1 ))   =  0 a n d

E W 2 ( (N
( n )
i ( T )/ α n − τ i (w 1 )) 2 |Λ i (w 1 ))

= α − 2
n Va r W 2 ( N

( n )
i ( T ) |Λ i (w 1 ))

= τ i (w 1 )/ α n

≤ M 1 / α n ,

w hi c h  s h o ws t h at

Va r W 2 ( N
( n )
i ( T )/ α n − τ i (w 1 )|Λ i (w 1 )) ≤ M 1 / α n .

T h e  r e s ult  f oll o ws.
L e m m a  S. 3: S u p p o s e t h at (S 3 ) h ol d s. If t h er e  e xists M 1 <

∞ s u c h  t h at κ ≤ τ ≤ M 1 al m o st  s ur el y   wit h κ as  i n
ass u m pti o n (S 3 ) , t h e n

√
α n n − 1

n

i = 1

s i n ( x, h )
N

( n )
i ( T )

α n
− τ i = O p ((n h ) − 1 / 2 ) .

P r o of  of  L e m m a  S. 3: Fr o m  t h e  pr o of  of   L e m m a 2 i n
[ 2 9],   w e  h a v e s i n (x, h ) − s i (x, h ) = W 0 n K h (X i − x ) +
W 1 n K h (X i − x )(X i − x ), w h er e W 0 n = û 2 / σ̂ 2

0 − u 2 / σ 2
0 =

O p ((n h ) − 1 / 2 ) a n d W 1 n = û 1 / σ̂ 2
0 − u 1 / σ 2

0 = O p ((n h 3 ) − 1 / 2 ) .
T h u s

√
α n n − 1

n

i = 1

s i n ( x, h )
N

( n )
i ( T )

α n
− τ i

≤
√

α n n − 1
n

i = 1

( s i n ( x, h ) − s i (x, h ))
N

( n )
i ( T )

α n
− τ i

+
√

α n n − 1
n

i = 1

s i (x, h )
N

( n )
i ( T )

α n
− τ i

≤
√

α n W 0 n n − 1
n

i = 1

K h (X i − x )
N

( n )
i ( T )

α n
− τ i

+
√

α n W 1 n n − 1
n

i = 1

K h (X i − x )(X i − x )
N

( n )
i ( T )

α n
− τ i

+
√

α n n − 1
n

i = 1

s i (x, h )
N

( n )
i ( T )

α n
− τ i . ( 2 0)

D e fi ni n g Z j n : = n − 1 n
i = 1 K h (X i − x )(X i −

x ) j [N
( n )
i ( T )/ α n − τ i ], j = 0 , 1 ,  t h e n  b y  i n d e p e n d e n c e

a n d  a  c o n diti o ni n g  ar g u m e nt   w e  o bt ai n

E (Z 2
j n )

= E n − 2
n

i = 1

K 2
h (X i − x )(X i − x ) 2 j N

( n )
i ( T )

α n
− τ i

2

+ n − 2
n

i = 1 k = i

E K h (X i − x )(X i − x ) j N
( n )
i ( T )

α n
− τ i

E K h (X k − x )(X k − x ) j N
( n )
k ( T )

α n
− τ k

= E n − 2
n

i = 1

K 2
h (X i − x )(X i − x ) 2 j

E (N
( n )
i ( T )/ α n − τ i )

2 |Λ i , Xi

≤ (M 1 / α n )E n − 2
n

i = 1

K 2
h (X i − x )(X i − x ) 2 j

= M 1 h 2 j − 1 / (n α n )
1

− 1

u 2 j K 2 (u )f (x + u h )d u

= O (h 2 j − 1 / (n α n )),

w h er e  t h e  s e c o n d  e q u alit y  a n d  t hir d  i n e q u alit y  ar e  d u e

t o   L e m m a  S. 2  a b o v e  a n d  u si n g  t h at E ((N
( n )
i ( T )/ α n −

τ i )|Λ i , Xi ) = E ((N
( n )
i ( T )/ α n − τ i )|Λ i ) = 0 .   T his  i m pli es

Z 0 n = O p ((n h α n ) − 1 / 2 ) a n d Z 1 n = O p ((n α n / h ) − 1 / 2 ) .   T h u s

√
α n W 0 n n − 1

n

i = 1

K h (X i − x )
N

( n )
i ( T )

α n
− τ i

= O p ((n h ) − 1 ), ( 2 1)

√
α n W 1 n n − 1

n

i = 1

K h (X i − x )(X i − x )
N

( n )
i ( T )

α n
− τ i

= O p ((n h ) − 1 ). ( 2 2)
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Si mil arl y,  d u e t o s i (x, h ) = σ − 2
0 K h (X i − x )[u 2 − u 1 (X i −

x )],

√
α n n − 1

n

i = 1

s i (x, h )
N

( n )
i ( T )

α n
− τ i

= ( u 2 / σ 2
0 )

√
α n Z 0 n − (u 1 / σ 2

0 )
√

α n Z 1 n

= O p ((n h ) − 1 / 2 ) ,

w h er e t h e l ast  e q u alit y is  d u e t o u 2 / σ 2
0 = O ( 1 ) a n d u 1 / σ 2

0 =
O ( 1 ),   w hi c h   w er e  s h o w n  i n  t h e  pr o of  of  Pr o p o siti o n  1.   T hi s
al o n g   wit h  ( 2 0), ( 2 1)  a n d  ( 2 2) l e a d s t o t h e  r e s ult.

F or t h e f oll o wi n g, r e c all t h at ¯N (T ) : = n − 1 n
i = 1 N

( n )
i ( T ).

L e m m a  S. 4: S u p p o s e  t h at  t h e  s a m e  a ss u m pti o n s  a s  i n
L e m m a  S. 3  h ol d.  If α n → ∞ as n → ∞ , t h e n

√
n

¯N (T )

α n
− E (τ ) = O p ( 1 ). ( 2 3)

P r o of  of  L e m m a  S. 4: T h e  r es ult  f oll o ws  fr o m  a n  a p pli c ati o n
of  a  c e ntr al li mit t h e or e m f or tri a n g ul ar  arr a y s.  Fir st  c o n si d er

t h e  c as e   w h e n   Var(τ ) > 0 . L et a i = N
( n )
i ( T )/ α n , t h e n b y

c o n diti o ni n g  o n Λ i it  f oll o ws t h at E (a i ) = E (τ ) a n d

σ 2
i : = Va r (a i ) = Va r (τ ) + E (τ )/ α n .

S etti n g s 2
n =

n
i = 1 σ 2

i = n (Va r (τ ) + E (τ )/ α n ), w e s h o w
t h at

1

s n

n

i = 1

( a i − E (τ ))
L
→ N ( 0 , 1 ) , ( 2 4)

w h e n c e   w e   m a y i nf er

√
n

¯N (T )

α n
− E (τ ) / Va r (τ ) + E (τ )/ α n = O p ( 1 ),

a n d  f urt h er m or e  ( 2 3),  si n c e   Var (τ ) + E (τ )/ α n is  b o u n d e d
a b o v e  as τ is  u nif or ml y  b o u n d e d  a n d  t h e  p o siti v e  s e q u e n c e
α n s atis fi es 1 / α n → 0 as n → ∞ .   T h e   L y a p u n ov  c o n diti o n

li m
n → ∞

1

s 4
n

n

i = 1

E (N
( n )
i ( T )/ α n − E (τ )) 4 = 0 ( 2 5)

i m pli es  ( 2 4)  a n d   will  h ol d  if   w e  s h o w

li mn → ∞
1

n α 4
n

E (N
( n )
1 ( T ) − α n E (τ )) 4 = 0 .   N oti n g  t h at

N
( n )
1 ( T )|Λ 1 ∼ P (α n τ 1 ) a n d

(N
( n )
1 ( T ) − α n E (τ )) 4

= [ N
( n )
1 ( T )] 4 − 4[ N

( n )
1 ( T )] 3 α n E (τ )

+ 6[ N
( n )
1 ( T )] 2 α 2

n E (τ ) 2 − 4[ N
( n )
1 ( T )]α 3

n E (τ ) 3

+ α 4
n E (τ ) 4 , ( 2 6)

c o n diti o n al  o n Λ 1 ,  t h e  hi g h er  or d er   m o m e nts  of

N
( n )
1 ( T )|Λ 1 ar e  gi v e n  b y E ([N

( n )
1 ( T )] 4 |Λ 1 ) =

(α n τ 1 ) 4 + 6 ( α n τ 1 ) 3 + 7 ( α n τ 1 ) 2 + ( α n τ 1 ), E ([N
( n )
1 ( T )] 3 |Λ 1 ) =

(α n τ 1 ) 3 + 3 ( α n τ 1 ) 2 + ( α n τ 1 ) a n d E ([N
( n )
1 ( T )] 2 |Λ 1 ) =

(α n τ 1 ) 2 + ( α n τ 1 ).   T h u s,  b y  t a ki n g  e x p e ct ati o n  of  t h e
c o n diti o n al   m o m e nts  a n d  u si n g  t h e  f a ct  t h at τ 1 is
u nif or ml y  b o u n d e d  al o n g   wit h  e q u ati o n  ( 2 6)  l e a d s  t o

li mn → ∞
1

n α 4
n

E (N
( n )
1 ( T ) − α n E (τ )) 4 = 0 ,  c o m pl eti n g  t h e

pr o of  f or  t h e  c a s e   w h e n   Var (τ ) > 0 .   N e xt,  if   Var(τ ) = 0 ,

t h e n τ = τ 0 al m o st  s ur el y,  f or  s o m e τ 0 ∈ [κ,   M 1 ]. B y a
c o n diti o ni n g  ar g u m e nt   w e  o bt ai n

Va r ( ¯N (T ))   = n − 1 Va r (N
( n )
1 ( T ))

= n − 1 { E [ Va r (N
( n )
1 ( T )|Λ 1 )]

+ Va r (E [N
( n )
1 ( T )|Λ 1 ])}

= n − 1 α n τ 0 .

L etti n g υ n =
√

n [ ¯N (T )/ α n − E (τ )],  d u e  t o
E ( ¯N (T )/ α n ) = E (τ ) = τ 0 ,  it  f oll o ws t h at E (υ 2

n ) = τ 0 / α n .
T his i m pli es υ n = O p ( 1 ),   w hi c h  s h o ws t h e  r e s ult.

L e m m a  S. 5: S u p p o s e  t h at  t h e  s a m e  a ss u m pti o n s  a s  i n
L e m m a  S. 3  h ol d.  If ψ (α n ) = O (n 1 / 2 ) f or  s o m e  f u n cti o n
ψ : R + → R s u c h  t h at ψ (α n ) → ∞ as n → ∞ a n d
α n

l o g n
→ ∞ as n → ∞ , t h e n

ψ (α n )( ¯N (T )/ α n ) − 1 E (τ |X = x )

= ψ (α n )E (τ |X = x )/ E (τ ) + O p ( 1 ). ( 2 7)

P r o of  of  L e m m a  S. 5: Fr o m   L e m m a  S. 4   w e  h a v e ¯N (T )/ α n =
E (τ ) + O p (n − 1 / 2 ) ,  a n d  a   Ta yl or  e x p a n si o n l e a d s t o

( ¯N (T )/ α n ) − 1 =
1

E (τ )
−

1

E (τ ) 2

¯N (T )

α n
− E (τ )

+ o p (n − 1 / 2 ) .

Wit h m (x ) = E (τ |X = x ) o n e  o bt ai n s

ψ (α n )( ¯N (T )/ α n ) − 1 m (x )

=
ψ (α n )

E (τ )
m (x ) −

m (x )

E (τ ) 2

ψ (α n )
√

n

√
n

¯N (T )

α n
− E (τ )

+ o p ψ (α n )/
√

n .

T h e  r es ults  f oll o ws  si n c e ψ (α n ) = O (n 1 / 2 ) i m pli es
ψ (α n )/ n 1 / 2 = O ( 1 ) as n → ∞ a n d b y u si n g L e m m a S. 4.

P r o of  of  T h e o r e m  2: O b s er v e

ψ (α n )
n − 1 n

i = 1 s i n ( x, h )N
( n )
i ( T )

¯N (T )

= ψ (α n )( ¯N (T )/ α n ) − 1

n − 1
n

i = 1

s i n ( x, h )(N
( n )
i ( T )/ α n − τ i )

+ ψ (α n )( ¯N (T )/ α n ) − 1 n − 1
n

i = 1

s i n ( x, h )τ i

= ( ψ (α n )/
√

α n )( ¯N (T )/ α n ) − 1 O p ((n h ) − 1 / 2 )

+ ( ψ (α n )/ n h n )( ¯N (T )/ α n ) − 1 n h n E (τ |X = x )

+ O p ( 1 )

= O p (α − 1 / 2
n ) + ψ (α n )( ¯N (T )/ α n ) − 1 E (τ |X = x )

+ ( ψ (α n )/ n h n )( ¯N (T )/ α n ) − 1 O p ( 1 )

= ψ (α n )
E (τ |X = x )

E (τ )
+ O p ( 1 ),

w h er e  t h e  s e c o n d  e q u alit y  f oll o ws  fr o m   L e m m a  S. 3  a n d  b y
a p pl yi n g   L e m m a  S. 6  b el o w   wit h h = h n = c 0 n − 1 / 5 f or
s o m e  c o n st a nt c 0 > 0 ;  a n d  t h e  t hir d  a n d  l ast  e q u aliti es
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f oll o w s  fr o m   L e m m a  S. 5  a n d  si n c e ψ (α n ) = O (
√

n h n ) wit h
n h n = n 4 / 5 → ∞ as n → ∞ .   T h e  r es ult t h e n  f oll o ws  u si n g
t h at ψ (α n ) n 2 / 5 .

C.   C o n sist e n c y  of  L o c al  Li n e a r   E sti m at o r

I n  t his  s e cti o n   w e  i n cl u d e  f or  c o m pl et e n e ss  a   w ell  k n o w n
r es ult  r e g ar di n g  t h e  as y m pt oti c  n or m alit y  of  t h e  l o c al  li n e ar
r e gr e ssi o n e sti m at e f or t h e c o n diti o n al   m e a n f u n cti o n. S u p p o s e

t h at (X 1 , Y1 ), . . . , (X n , Yn )
ii d
∼ (X,  Y ) w h er e X a n d Y ar e

r e al  v al u e d.   L et m (x ) = E (Y |X = x ) b e  t h e  r e gr e ssi o n
f u n cti o n  a n d f (x ) > 0 b e  t h e  d esi g n  d e n sit y  f u n cti o n.   T h e n,
t h e l o c al li n e ar r e gr essi o n esti m at e [ 3 9] m̂ (x ) of m (x ) is gi v e n
b y

m̂ (x ) = b T
1

1

n
X T W X

− 1
1

n
X T W Y , b1 = ( 1 0 ) T ,

w h er e W = di a g (K h (X i − x )), K h (·) = K (·)/ h wit h K (·)
a  k er n el  f u n cti o n, Y = ( Y 1 , . . . , Yn ) T , a n d t h e it h r o w  of X
is  gi v e n  b y ( 1 , Xi − x ), i = 1 , . . . , n. N o w, if w e l et û j : =
n − 1 n

i = 1 K h (X i − x )(X i − x ) j a n d σ̂ 2
0 : =  ̂u 0 û 2 − û 2

1 ,

1

n
X T W X

− 1

=

û 2

σ̂ 2
0

− û 1

σ̂ 2
0

− û 1

σ̂ 2
0

û 0

σ̂ 2
0

a n d

1

n
X T W Y =

n − 1 n
i = 1 K h (X i − x )Y i

n − 1 n
i = 1 K h (X i − x )(X i − x )Y i

,

w h e n c e

m̂ (x ) =
û 2

σ̂ 2
0

− û 1

σ̂ 2
0

n − 1 n
i = 1 K h (X i − x )Y i

n − 1 n
i = 1 K h (X i − x )(X i − x )Y i

.

( 2 8)

We   m a k e t h e  f oll o wi n g  ass u m pti o n s :

( A 1)   T h e  r e gr e ssi o n  f u n cti o n m (x ) = E (Y |X = x ), t h e
d e si g n  d e n sit y  f u n cti o n f (x ) > 0 a n d σ 2 (x ) =
E (e 2 |X = x ), w h er e e = Y − m (X ),  ar e  t wi c e
c o nti n u o u sl y  diff er e nti a bl e.

( A 2)   T h e  k er n el K (·) is  b o u n d e d  a n d  c orr e s p o n d s  t o  a
d e n sit y  f u n cti o n   w hi c h  is  s y m m etri c  ar o u n d  z er o  a n d
h a s  c o m p a ct  s u p p ort [− 1 , 1] .

( A 3)   As n → ∞ , n h 5 = O ( 1 ).
( A 4)   T h er e  e xists δ > 0 a n d σ̄ > 0 s u c h  t h at

E (|e i |
2 + δ |X i ) ≤ σ̄ , i = 1 , . . . , n, w h er e e i : = Y i −

m (X i ).

Ass u m pti o n (A 3 ) i m pli es  t h at  as n → ∞ w e  h a v e h → 0 ,
n h q → ∞ f or q ∈ { 0 , 1 , 2 , 3 , 4 } a n d n h p → 0 f or p ≥ 6 .

B y  a  s e c o n d  or d er   Ta yl or  e x p a n si o n  of m (·) ar o u n d x

Y i = m (X i ) + e i

= m (x ) + m (x )(X i − x ) +
m (x )

2
(X i − x ) 2

+
(m (ξ (X i , x)) − m (x ))

2
(X i − x ) 2 + e i ,

w h er e ξ (X i , x) li es  b et w e e n x a n d X i .   B y  r e pl a ci n g  t h e
pr e vi o u s  e x pr e ssi o n i n  ( 2 8)  a n d  aft er  s o m e  al g e br a   w e  o bt ai n

m̂ (x )

= m (x ) +
û 2

σ̂ 2
0

− û 1

σ̂ 2
0

û 2
m ( x )

2 + n − 1 n
i = 1 K h (X i − x )e i + R 1

û 3
m ( x )

2 + n − 1 n
i = 1 K h (X i − x )(X i − x )e i + R 2

,

( 2 9)

w h er e t h e  r e m ai n d er t er m s  ar e  gi v e n  b y

R 1 =
1

n

n

i = 1

K h (X i − x )
(m (ξ (X i , x)) − m (x ))

2
(X i − x ) 2 ,

R 2 =
1

n

n

i = 1

K h (X i − x )
(m (ξ (X i , x)) − m (x ))

2
(X i − x ) 3 .

We  n o w  st u d y  t h e  as y m pt oti c  distri b uti o n  of m̂ (x ) wit h
a  s uit a bl y  c h o s e n  s c ali n g  f a ct or.  F or  t his,   w e  i ntr o d u c e  t h e
f oll o wi n g  q u a ntiti es.   L et i, j b e  n o n- n e g ati v e  i nt e g er s  a n d
d e fi n e k i j : =

1

− 1 K (u ) i u j d u .   T h e  a u xili ar y  l e m m a  o n  t h e
as y m pt oti c  n or m alit y  of m̂ (x ) is list e d f or  c o m pl et e n ess  o nl y.
Its  pr o of  f oll o ws  b y  st a n d ar d  ar g u m e nts.  S e e  f or  e x a m pl e
T h e or e m  5. 2 i n  [ 3 9]  a n d t h e  r ef er e n c es t h er ei n.

L e m m a  S. 6: U n d er  ass u m pti o n s (A 1 ) − (A 4 ) ,

√
n h m̂ (x ) − m (x ) − h 2 m (x )

2
k 1 2

L
→ N 0 , k2 0

σ 2 (x )

f (x )
,

as n → ∞ .

D.   Pr o ofs  of   R es ults i n  S e cti o n  I V- D

We  n e e d t h e  f oll o wi n g  a u xili ar y l e m m a.
L e m m a  S. 7: S u p p o s e t h at t h e c o n diti o n s of   T h e or e m 3  h ol d.

T h e n

n − 1
n

i = 1

s i (x )
N

( n )
i ( T )

α n
− τ i = O p ((n α n ) − 1 / 2 ) ,

w h er e s i (x ) : = 1 + (X i − µ ) T Σ − 1 ( x − µ ), i = 1 , . . . , n.
P r o of  of  L e m m a  S. 7: L etti n g S n =

n − 1 n
i = 1 s i (x )(N

( n )
i ( T )/ α n − τ i ),  b y  i n d e p e n d e n c e

w e  h a v e

E (S 2
n ) = n − 2

n

i = 1

E (s 2
i (x )(N

( n )
i ( T )/ α n − τ i )

2 )

+ n − 2
n

i = 1 k = i

E (s i (x )(N
( n )
i ( T )/ α n − τ i ))

E (s k (x )(N
( n )
k ( T )/ α n − τ k ))

= n − 2
n

i = 1

E (s 2
i (x )(N

( n )
i ( T )/ α n − τ i )

2 )

= n − 1 E (s 2
1 (x )(N

( n )
1 ( T )/ α n − τ 1 ) 2 ),

w h er e  t h e  s e c o n d  e q u alit y  is  d u e  t o E (s i (x )(N
( n )
i ( T )/ α n −

τ i ))   = E [s i (x )E (N
( n )
i ( T )/ α n − τ i |Λ i X i )]   =  0 .   N e xt,  fr o m

L e m m a  S. 2  a n d  b y  a  c o n diti o ni n g  ar g u m e nt, it  f oll o ws t h at

E (s 2
1 (x )(N

( n )
1 ( T )/ α n − τ 1 ) 2 )
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= E (s 2
1 (x )E [(N

( n )
1 ( T )/ α n − τ 1 ) 2 |Λ 1 , X1 ])

≤ (M 1 / α n )E (s 2
1 (x ))

= ( M 1 / α n )( 1   + (x − µ ) T Σ − 1 ( x − µ )).

T his i m pli es E (S 2
n ) = O ((n α n ) − 1 ) a n d t h e  r es ult  f oll o ws.

P r o of  of  T h e o r e m  3: C o n si d er  t h e  a u xili ar y  q u a ntiti es
s i (x ) : = 1 + (X i − µ ) T Σ − 1 ( x − µ ), W 0 n (x ) : = ¯X T Σ̂ − 1 ( x −
¯X ) − µ T Σ − 1 ( x − µ ) a n d W 1 n (x ) : = Σ − 1 (x − µ ) − Σ̂ − 1 ( x − ¯X ).
T h e  ar g u m e nts i n  t h e  pr o of  of   T h e or e m  1  i n  [ 2 9]  s h o w  t h at
W 0 n = O p (n − 1 / 2 ) , W 1 n 2 = O p (n − 1 / 2 ) a n d s i n (x ) −
s i (x ) = − W 0 n − W T

1 n X i .   T h u s

n − 1
n

i = 1

s i n ( x )N
( n )
i ( T )/ α n

= − W 0 n
¯N (T )/ α n − n − 1

n

i = 1

X T
i (N

( n )
i ( T )/ α n )W 1 n

+ n − 1
n

i = 1

s i (x )N
( n )
i ( T )/ α n .

N e xt,  n ot e t h at

W 0 n
¯N (T )/ α n = W 0 n ( ¯N (T )/ α n − E (τ ))   + W 0 n E (τ )

= O p (n − 1 / 2 ) ,

b y   L e m m a  S. 4.  F urt h er, fr o m t h e  f a ct t h at

E X 1 2 N
( n )
1 ( T )/ α n ≤ E X 1

2
2 E (N

( n )
1 ( T )/ α n ) 2

1 / 2

= (tr( Σ) + µ 2
2 )(E (τ 2 ) + o ( 1 )) ,

i s  u nif or ml y  b o u n d e d  a n d  o bs er vi n g t h e i n e q u alit y

n − 1
n

i = 1

X T
i (N

( n )
i ( T )/ α n ) 2

≤ n − 1
n

i = 1

( N
( n )
i ( T )/ α n ) X i 2 ,

it f oll o ws t h at n − 1 n
i = 1 X T

i (N
( n )
i ( T )/ α n ) = O p ( 1 ) a n d t h u s

n − 1 n
i = 1 X T

i (N
( n )
i ( T )/ α n )W 1 n = O p (n − 1 / 2 ) .   T his  s h o ws

t h at

n − 1
n

i = 1

s i n ( x )N
( n )
i ( T )/ α n = n − 1

n

i = 1

s i (x )N
( n )
i ( T )/ α n

+ O p (n − 1 / 2 ) . ( 3 0)

N e xt,  n ot e t h at

n − 1
n

i = 1

s i (x )N
( n )
i ( T )/ α n

= n − 1
n

i = 1

s i (x )(N
( n )
i ( T )/ α n − τ i ) + n − 1

n

i = 1

s i (x )τ i

= n − 1
n

i = 1

s i (x )(N
( n )
i ( T )/ α n − τ i ) + E (s (X,  x )τ )

+ O p (n − 1 / 2 )

= E (s (X,  x )τ ) + O p (n − 1 / 2 ) ,

w h er e  t h e  s e c o n d  e q u alit y  f oll o ws  fr o m  t h e  c e ntr al  li mit
t h e or e m  a n d  t h e  t hir d  is  d u e  t o   L e m m a  S. 7  al o n g   wit h  t h e
f a ct t h at α n → ∞ as n → ∞ .   C o m bi ni n g t his   wit h  ( 3 0)  a n d
t h e  f a ct t h at ψ (α n ) n 1 / 2 l e a ds t o

ψ (α n ) n − 1
n

i = 1

s i n ( x )N
( n )
i ( T )/ α n = ψ (α n )E (s (X,  x )τ )

+ O p ( 1 ).

Fi n all y,  ar g u m e nts  si mil ar  t o  t h o s e i n  t h e  pr o of  of   L e m m a
S. 5 l e a d t o

ψ (α n )
n − 1 n

i = 1 s i n ( x )N
( n )
i ( T )

¯N (T )
= ψ (α n )

E (s (X,  x )τ )

E (τ )

+ O p ( 1 ),

w h e n c e t h e  r es ult  f oll o ws  si n c e ψ (α n ) n 1 / 2 .
P r o of of  T h e o r e m 4: T h e pr o of f oll o ws b y ar g u m e nts si mil ar

t o t h o s e i n t h e  pr o of  of  Pr o p o siti o n  1  a n d   T h e or e m  2 i n  [ 2 9]
a n d is t h er ef or e  o mitt e d.

E.   Pr o ofs  of   R es ults i n  S e cti o n   V- A

We  r e q uir e t h e  f oll o wi n g  a u xili ar y l e m m a.
L e m m a  S. 8: S u p p o s e t h at (S 1 ) a n d (S 2 ) h ol d.   L et ν b e  a

p o siti v e  i nt e g er  a n d r j , j = 1 , . . . , ν,  b e  a n  e q uis p a c e d  gri d
i n ( 0 , 1 ) , w h er e ∆ r ν = 1 / (ν + 1 ) is t h e  gri d  s p a ci n g.   T h e n

s u p
Q 1 , Q2 ∈ Q ( Ω F )

1

0

( Q 1 (t) − Q 2 (t)) 2 dt

−

ν

j = 1

( Q 1 (r j ) − Q 2 (r j )) 2 ∆ r ν

= o ( 1 ),

as ν → ∞ .
P r o of  of  L e m m a  S. 8: Si n c e r j = j / (ν + 1 ) a n d  d e n oti n g  b y

r 0 = 0 , w e h a v e

1

0

(Q 1 (t) − Q 2 (t)) 2 dt −

ν

j = 1

( Q 1 (r j ) − Q 2 (r j )) 2 ∆ r ν

=
ν

j = 1

r j

r j − 1

( Q 1 (t) − Q 2 (t)) 2 dt

− (Q 1 (r j ) − Q 2 (r j ))
2 ∆ r ν

+
1

r ν

( Q 1 (t) − Q 2 (t)) 2 dt

≤
T 2

ν + 1
+

ν

j = 1

r j

r j − 1

( Q 1 (t) − Q 2 (t)) 2 dt

− (Q 1 (r j ) − Q 2 (r j ))
2 ∆ r ν .

N e xt,  u si n g  t h at Q 1 , Q2 ∈ Q ( Ω F ) al o n g   wit h  si m pl e
c al c ul ati o ns  s h o ws t h at

r j

r j − 1

( Q 1 (t) − Q 2 (t)) 2 dt − (Q 1 (r j ) − Q 2 (r j )) 2 ∆ r ν

=
r j

r j − 1

( Q 1 (t) − Q 2 (t)) 2 − (Q 1 (r j ) − Q 2 (r j )) 2 dt
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≤ 2 T
r j

r j − 1

|Q 1 (t) − Q 1 (r j ) + Q 2 (r j ) − Q 2 (t)|dt

≤ 4 L T
r j

r j − 1

( r j − t)dt = 2 L T ∆ r 2
ν .

T h u s
ν

j = 1

r j

r j − 1

( Q 1 (t) − Q 2 (t)) 2 dt − (Q 1 (r j ) − Q 2 (r j )) 2 ∆ r ν

≤ 2 L T ∆ r ν ,

w h e n c e t h e  r es ult  f oll o ws.
P r o of  of   P r o p ositi o n  2: We   will  s h o w  c o n v er g e n c e  al o n g

s u bs e q u e n c es,   w hi c h  is  a  si mil ar  i d e a  as  i n  Pr o p ositi o n
4. 1  i n  [ 5 4]  or  [ 5 5].   R e c all  t h at Q ⊕ ν i s  a n y  ( fi x e d)  el e m e nt
i n S ν ,   w hi c h  c a n  b e  s el e ct e d  b y  t h e  a xi o m  of  c h oi c e.   N ot e
t h at a n y s e q u e n c e q n ∈ Q ( Ω F ) is  u nif or ml y b o u n d e d a n d  u ni-
f or ml y  e q ui c o nti n u o u s.  Si n c e t h e q n ar e  c o nti n u o u s f u n cti o n s
d e fi n e d  o n [ 0, 1] ,  a n  a p pli c ati o n  of t h e   Arz el a- As c oli t h e or e m
s h o ws t h at Q ( Ω F ) is  a  c o m p a ct  s et i n L 2 ([ 0 , 1]) .   C o n si d er  a
s e q u e n c e  of  p o siti v e i nt e g er s ν = ν m s u c h  t h at ν m → ∞ as
m → ∞ .   N ot e t h at

| M(q ) − M ν m ( q )| = o ( 1 ),

as m → ∞ . Si n c e Q ( Ω F ) is  c o m p a ct,  t h er e  e xists  a  s u b-
s e q u e n c e (Q ⊕ ν m k

) k ∈ N of (Q ⊕ ν m ) m ∈ N w hi c h  c o n v er g es  t o
a n  el e m e nt Q ∗ ∈ Q ( Ω F ) as k → ∞ ,  i. e., Q ⊕ ν m k

−
Q ∗

L 2 ([ 0 ,1] ) → 0 as k → ∞ . N e xt, as k → ∞ w e  h a v e

M ( Q̃ ⊕ ( ·, x))   = M ν m k
( Q̃ ⊕ ( ·, x))   + o ( 1 )

≥ M ν m k
( Q ⊕ ν m k

) + o ( 1 ),

w h er e  t h e  i n e q u alit y  is  d u e  t o  t h e  f a ct  t h at Q ⊕ ν m k
∈ S ν m k

mi ni mi z e s M ν m k
( ·) o v er t h e  cl ass Q ( Ω F ) a n d Q̃ ⊕ ( ·, x) is  a n

el e m e nt  of t h e l att er  s p a c e.   N ot e t h at

M ν m k
( Q ⊕ ν m k

)

=

ν m k

j = 1

( Q ⊕ ν m k
( r j ) − w j )

2 ∆ r ν m k

=

ν m k

j = 1

( Q ⊕ ν m k
( r j ) − Q ∗ (r j )) 2 ∆ r ν m k

+

ν m k

j = 1

( Q ∗ (r j ) − w j ) 2 ∆ r ν m k

+ 2

ν m k

j = 1

( Q ⊕ ν m k
( r j ) − Q ∗ (r j ))(Q ∗ (r j ) − w j ) ∆r ν m k

= Q ⊕ ν m k
− Q ∗

L 2 ([ 0 ,1] ) + M (Q ∗ ) + o ( 1 )

+ O (M (Q ∗ ) Q ⊕ ν m k
− Q ∗

L 2 ([ 0 ,1] ) )

= M (Q ∗ ) + o ( 1 ),

as k → ∞ ,   w h er e t h e t hir d  e q u alit y f oll o ws  b y  u si n g t h e  u ni-
f or m   Ri e m a n n  s u m i nt e gr a bilit y  o v er t h e  cl ass Q ( Ω F ) s h o w n
i n   L e m m a  S. 8  a b o v e al o n g   wit h t h e   C a u c h y- S c h w ar z i n e q u al-
it y,  a n d  t h e l ast  e q u alit y is  d u e t o Q ⊕ ν m k

− Q ∗
L 2 ([ 0 ,1] ) →

0 as k → ∞ .   T his  s h o ws t h at

M ( Q̃ ⊕ ( ·, x)) ≥ M (Q ∗ ) + o ( 1 ),

a n d  t a ki n g k → ∞ l e a ds  t o M ( Q̃ ⊕ ( ·, x)) ≥ M (Q ∗ ). Si n c e
Q̃ ⊕ ( ·, x) is t h e u ni q u e s ol uti o n t o t h e  o pti mi z ati o n pr o bl e m ( 8)
i n v ol vi n g M , t h e n Q ∗ (·) = Q̃ ⊕ ( ·, x).   T h e  pr e vi o u s ar g u m e nts
s h o w  t h at  all  c o n v er g e nt  s u b s e q u e n c e s  of (Q ⊕ ν m ) m ∈ N c o n-
v er g e t o  t h e  s a m e  li mit Q̃ ⊕ ( ·, x). Si n c e Q ⊕ ν m ∈ Q ( Ω F ) f or
all m ≥ 1 a n d Q ( Ω F ) is  c o m p a ct,  t his  i m pli es  t h at Q ⊕ ν m

c o n v er g e s t o Q̃ ⊕ ( ·, x) i n t h e L 2 n or m.   T h e  r e s ult f oll o ws.
R e c all t h at Q ∗

ν (t) = q ∗
ν, j + ( t − r j )(q ∗

ν, j + 1 − q ∗
ν, j ) / ∆ r ν f or

t ∈ [r j , rj + 1 ) , j = 0 , . . . , ν, w h er e q ∗
ν, j i s t h e j t h c o or di n at e of

q ∗
ν , j = 1 , . . . , ν, q ∗

ν, 0 = 0 , r 0 = 0 , q ∗
ν, ν + 1 = T a n d r ν + 1 = 1 .

B y  c o nti n uit y   w e  d e fi n e Q ∗
ν ( 1 )  : =  li m t → 1 − Q ∗

ν ( t) = T .
L e m m a  S. 9  b el o w  s h o ws  t h at Q ∗

ν i s  i n  t h e  q u a ntil e  s p a c e
Q ( Ω F ).

L e m m a  S. 9: S u p p o s e  t h at (S 1 ) a n d (S 2 ) h ol d.   T h e  li n e ar
i nt er p ol ati o n f u n cti o n Q ∗

ν s atis fi es Q ∗
ν ∈ Q ( Ω F ).

P r o of  of  L e m m a  S. 9: L et I j = [ r j , rj + 1 ) , j = 0 , . . . , ν,
a n d t1 , t2 ∈ ( 0 , 1 ) . If t1 , t2 ∈ I j , t h e n |Q ∗

ν (t2 ) − Q ∗
ν (t1 )| =

(q ∗
ν, j + 1 − q ∗

ν, j ) |t2 − t1 |/ ∆ r ν a n d t h e c o n str ai nts of t h e o pti mi z a-
ti o n  pr o bl e m  ( 1 5)  i m pl y M |t2 − t1 | ≤ |Q ∗

ν (t2 ) − Q ∗
ν (t1 )| ≤

L |t2 − t1 |.   N e xt,  c o n si d er t h e  c as e   w h e n t1 ∈ I j a n d t2 ∈ I k

f or j < k .   N ot e t h at Q ∗
ν (r j + 1 ) − Q ∗

ν (t1 ) = q ∗
ν, j + 1 − q ∗

ν, j − (t1 −
r j )(q

∗
ν, j + 1 − q ∗

ν, j ) / ∆ r ν = ( q ∗
ν, j + 1 − q ∗

ν, j ) ( 1 − (t1 − r j )/ ∆ r ν ),
w hi c h i m pli es M (r j + 1 − t1 ) ≤ Q ∗

ν (r j + 1 ) − Q ∗
ν (t1 ) ≤ L (r j + 1 −

t1 ). Als o

Q ∗
ν (t2 ) − Q ∗

ν (t1 ) = Q ∗
ν (t2 ) − Q ∗

ν (r k ) +

k

l= j + 2

( q ∗
ν,l − q ∗

ν,l − 1 )

+ Q ∗
ν (r j + 1 ) − Q ∗

ν (t1 ),

w h er e k
l= j + 2 ( q ∗

ν,l − q ∗
ν,l − 1 ) i s  d e fi n e d  as  z er o   w h e n e v er j =

k − 1 , a n d M ∆ r ν ≤ q ∗
ν,l − q ∗

ν,l − 1 ≤ L ∆ r ν ,   w hi c h  is  d u e t o
t h e  c o n str ai nts i n  ( 1 5).   C o m bi ni n g t his   wit h

M (t2 − r k ) ≤ Q ∗
ν (t2 ) − Q ∗

ν (r k ) ≤ L (t2 − r k ),

w hi c h is  d u e t o t2 , rk ∈ I k , l e a d s t o

M (t2 − t1 ) ≤ Q ∗
ν (t2 ) − Q ∗

ν (t1 ) ≤ L (t2 − t1 ).

I nt er c h a n gi n g  t h e  r ol e  of t1 a n d t2 s h o ws  t h at
M |t2 − t1 | ≤ |Q ∗

ν (t2 ) − Q ∗
ν (t1 )| ≤ L |t2 − t1 | f or  a n y

t1 , t2 ∈ ( 0 , 1 ) .  Fi n all y,  b y  c o n str u cti o n  it  is  cl e ar  t h at
Q ∗

ν ( 0 )   =  0 a n d Q ∗
ν ( 1 )   =  li m t → 1 − Q ∗

ν ( t) = T .   T h u s
Q ∗

ν ∈ Q ( Ω F ) a n d t h e  r es ult  f oll o ws.

F.   A d diti o n al  T h e o r eti c al   R e s ults

L e m m a  S. 1 0  a n d  S. 1 1  b el o w  pr es e nt  t h e  e x pli cit  s ol uti o n
f or  t h e  l o c al  Fr é c h et  r e gr e ssi o n  s h a p e  c o m p o n e nt f ⊕ (x ) a n d
t h e  c orr e s p o n di n g  gl o b al r e gr e ssi o n, r e s p e cti v el y.

L e m m a S. 1 0: S u p p o s e t h at (S 1 ) a n d (S 2 ) h ol d.   T h e s ol uti o n
f ⊕ (x ) t o  t h e  l o c al  Fr é c h et  r e gr e ssi o n  pr o bl e m  o n  t h e  s h a p e
c o m p o n e nt

f ⊕ (x ) = a r g mi n
f 0 ∈ Ω F

E (d 2
F (f, f 0 )|X = x ),

i s  gi v e n  b y  t h e  d e nsit y  f u n cti o n   wit h  c orr es p o n di n g  q u a ntil e
f u n cti o n E (Q |X = x ).

P r o of  of  L e m m a  S. 1 0: D e n oti n g  b y Q a n d Q 0 t h e  q u a n-
til e  f u n cti o ns  c orr es p o n di n g  t o f a n d f 0 ,  r es p e cti v el y,  a n d
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Q x : = E (Q |X = x ),  t h e n  si mil arl y  as  i n  t h e  pr o of  of
Pr o p ositi o n 1 i n  [ 2 9] it  f oll o ws t h at

E (d 2
F (f, f 0 )|X = x )

= E ( Q − Q 0
2
L 2 ([ 0 ,1] ) |X = x )

= E ( Q − Q x
2
L 2 ([ 0 ,1] ) |X = x ) + Q x − Q 0

2
L 2 ([ 0 ,1] )

+ 2 E ( Q − Q x , Qx − Q 0 L 2 ([ 0 ,1] ) |X = x )

= E ( Q − Q x
2
L 2 ([ 0 ,1] ) |X = x ) + Q x − Q 0

2
L 2 ([ 0 ,1] ) ,

a n d t h u s t h e  o pti m al s ol uti o n Q 0 i s  a c hi e v e d  b y  s etti n g Q 0 =
Q x ,  pr o vi d e d  t h at   w e  c a n  s h o w  t h at Q x li es  i n  t h e  s p a c e
Q ( Ω F ).  I n d e e d,  si n c e Q ∈ Q ( Ω F ) w e  h a v e M |t − s | ≤
|Q (t) − Q (s )| ≤ L |t − s |, t, s ∈ ( 0 , 1 ) .  It  is  t h e n  e as y  t o
s h o w  t h at M |t − s | ≤ |Q x (t) − Q x (s )| ≤ L |t − s |. It is als o
cl e ar t h at Q x ( 0 )   =  0 a n d Q x ( 1 )   = T ,  a n d t h e  r e s ult  f oll o ws.

L e m m a S. 1 1: S u p p o s e t h at (S 1 ) a n d (S 2 ) h ol d.   T h e s ol uti o n
f G ⊕ (x ) t o t h e  gl o b al  Fr é c h et r e gr e ssi o n  pr o bl e m  o n t h e s h a p e
c o m p o n e nt

f G ⊕ (x ) = a r g mi n
f 0 ∈ Ω F

E (s (X,  x )d 2
F (f, f 0 ))

is  gi v e n  b y  t h e  d e n sit y  f u n cti o n   w h o s e  c orr e s p o n di n g  q u a n-
til e  f u n cti o n  is  e q u al  t o  t h e L 2 - ort h o g o n al  pr oj e cti o n  of
E (s (X,  x )Q ) o n Q ( Ω F ).

P r o of  of  L e m m a  S. 1 1: D e n oti n g  b y Q a n d Q 0 t h e  q u a ntil e
f u n cti o n s  c orr e s p o n di n g t o f a n d f 0 ,  r es p e cti v el y,  a n d Q x : =
E (s (X,  x )Q ),  t h e n  si mil arl y  as  i n  t h e  pr o of  of   L e m m a  S. 1 0
or  Pr o p ositi o n 1 i n  [ 2 9]   w e  h a v e

E (s (X,  x )d 2
F (f, f 0 ))

= E (s (X,  x ) Q − Q x
2
L 2 ([ 0 ,1] ) ) + Q x − Q 0

2
L 2 ([ 0 ,1] ) .

Si n c e Q ( Ω F ) i s  cl o s e d  a n d  c o n v e x  i n L 2 ([ 0 , 1]) d u e  t o
L e m m a  1,  it  f oll o ws  t h at  t h e  o pti m al  s ol uti o n Q 0 e xists  a n d
is  u ni q u e, a n d  c orr e s p o n d s t o t h e  ort h o g o n al  pr oj e cti o n  of Q x

o n Q ( Ω F ),  a n d t h e  r e s ult  f oll o ws.
T h e f oll o wi n g l e m m a  pr es e nts e x pli cit s ol uti o n s  of t h e l o c al

Fr é c h et  r e gr essi o n  f u n cti o n  f or  t h e  s p e ci al  c as e   w h er e  t h e
distri b uti o n s  a ss o ci at e d  t o  t h e  r a n d o m  i nt e n sit y  f a ct or  a n d
s h a p e  f u n cti o n s  ar e  p oi nt   m a ss es.

L e m m a  S. 1 2: S u p p o s e t h at (S 1 ) -(S 3 ) h ol d  a n d t h er e  e xists
M 1 < ∞ s u c h  t h at κ ≤ τ ≤ M 1 al m o st  s ur el y   wit h
κ as  i n  ass u m pti o n (S 3 ) .   Als o,  s u p p o s e  t h at   Var(τ ) = 0
a n d  t h e  distri b uti o n  of  t h e  r a n d o m  d e n sit y f c orr e s p o n d s  t o
a  p oi nt   m ass  i n  t h e  s p a c e  of  pr o b a bilit y  distri b uti o n s Ω F

e n d o w e d   wit h  t h e 2 - Wass er st ei n   m etri c.   T h e n f = g al m ost
s ur el y f or s o m e d e n sit y g wit h c orr es p o n di n g q u a ntil e f u n cti o n
Q g ∈ Q ( Ω F ), τ = η 0 al m o st  s ur el y  f or  s o m e  p o siti v e
c o n st a nt η 0 ∈ [κ,   M 1 ] a n d t h e l o c al  Fr é c h et r e gr essi o n f u n cti o n
s atis fi es

f̃ ⊕ ( x ) = g, τ̃ ⊕ ( x ) = η 0 .

P r o of  of  L e m m a  S. 1 2: Si n c e  t h e  pr o b a bilit y  distri b uti o n  of
t h e  r a n d o m  d e n sit y f is  a  p oi nt   m a ss  i n Ω F ,  t h er e  e xists
a  d e n sit y  f u n cti o n g wit h  c orr es p o n di n g  q u a ntil e  f u n cti o n
Q g ∈ Q ( Ω F ) s u c h  t h at f = g al m o st  s ur el y.  Si mil arl y,
τ = η 0 a. s.  f or  s o m e η 0 ∈ [κ,   M 1 ]. L et f 0 b e  a  d e n sit y   wit h

Fi g.  8.   B o x pl ots  of  t h e  err ors  f or  t h e c o n diti o n al  s h a p e  f u n cti o n  esti m at es
I S E F

r i n  t h e  si m ul ati o n  s etti n g  f or  l o c al  Fr é c h et  r e gr essi o n  i n  s e cti o n   V- B
usi n g  fi x e d α n = 1 ,   w hi c h  d o es  n ot  gr o w   wit h n , f or n = 1 0 0 0 (l eft),
n =  2 0 0 0 ( mi d dl e)  a n d n = 5 0 0 0 (ri g ht).

c orr e s p o n di n g  q u a ntil e  f u n cti o n Q 0 ∈ Q ( Ω F ) a n d  l et Q b e
t h e  q u a ntil e  f u n cti o n  ass o ci at e d   wit h f . T h e n

E (d 2
F (f, f 0 )|X = x ) = E (||Q − Q 0 ||2L 2 ([ 0 ,1] ) )

= ||Q g − Q 0 ||2L 2 ([ 0 ,1] ) .

T h u s,  fr o m  ( 3) t h e   mi ni mi z er  h as Q 0 = Q g w hi c h i m pli es
f̃ ⊕ ( x ) = g ,  a n d  t h e  fir st  r e s ult  f oll o ws.   N e xt,  fr o m  ( 1 3)   w e
h a v e τ ⊕ (x ) = m a x { E (τ |X = x ), 0 } = η 0 ,  i m pl yi n g  t h e
s e c o n d r e s ult.

T h e  f oll o wi n g  l e m m a  s h o ws  t h e  c orr e s p o n di n g  e x pli cit
s ol uti o n s   w h e n  c o n si d eri n g  t h e  gl o b al  Fr é c h et  r e gr e ssi o n
fr a m e w or k  a n d  t h e  p oi nt   m ass  pr o b a bilit y  distri b uti o n  o n t h e
c o m p o n e nts τ a n d f .

L e m m a  S. 1 3: S u p p os e  t h at  t h e  s a m e  r e g ul arit y  c o n diti o ns
a s  i n   L e m m a  S. 1 2  h ol d.   T h e n f = g al m o st  s ur el y  f or
s o m e  d e n sit y g wit h  c orr es p o n di n g  q u a ntil e  f u n cti o n Q g ∈
Q ( Ω F ), τ = η 0 al m o st  s ur el y  f or  s o m e  p o siti v e  c o n st a nt
η 0 ∈ [κ,   M 1 ] a n d  t h e  f oll o wi n g  r el ati o n s  h ol d  f or  t h e  gl o b al
Fr é c h et r e gr e ssi o n f u n cti o n:

f G ⊕ (x ) = g,  τ G ⊕ (x ) = η 0 .

P r o of  of  L e m m a  S. 1 3: A n al o g o u sl y  a s  i n  t h e  pr o of  of
L e m m a  S. 1 2   w e  h a v e f = g al m o st  s ur el y  f or  s o m e  d e n sit y
g wit h  c orr es p o n di n g  q u a ntil e  f u n cti o n Q g ∈ Q ( Ω F ) a n d
τ = η 0 al m o st s ur el y f or s o m e  p o siti v e  c o n st a nt η 0 ∈ [κ,   M 1 ].
D e n ot e  b y Q t h e  q u a ntil e  f u n cti o n  ass o ci at e d   wit h f a n d  l et
f 0 b e  a  d e nsit y  f u n cti o n   wit h  c orr es p o n di n g  q u a ntil e Q 0 ∈
Q ( Ω F ). Si n c e

E (s (X,  x )d 2
F (f, f 0 ) = E (s (X,  x )||Q − Q 0 ||2L 2 ([ 0 ,1] ) )

= E (s (X,  x ))||Q g − Q 0 ||2L 2 ([ 0 ,1] )

= ||Q g − Q 0 ||2L 2 ([ 0 ,1] ) ,
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Fi g.  9.   C o n diti o n al i nt e nsit y  f u n cti o ns i n t h e  si m ul ati o n  s etti n g  o v er  a  d e ns e
gri d  of  pr e di ct or l e v els x ,  dis pl a y e d i n  bl u e   w h e n x = 0 t o r e d   w h e n x = 1 i n
t h e  o nli n e  v ersi o n  ( d ar k  gr e y  a n d  li g ht  gr e y  i n  t h e  pri nt  v ersi o n,  r es p.).   T h e
u p p er  p a n el  ill ustr at es  t h e  r es ults  f or  cl assi c al   E u cli d e a n  i nt e nsit y  r e gr essi o n
f u n cti o n E ( Λ |X = x ) w hil e  t h e   mi d dl e  p a n el  ill ustr at es  t h e  r es ults  f or  t h e
c o n diti o n al  i nt e nsit y Λ ⊕ ( x ) t h at  c orr es p o n ds  t o  t h e  pr o p os e d  p oi nt  pr o c ess
r e gr essi o n.   T h e  b ott o m  p a n el s h o ws t h e tr u e i nt e nsit y  si g n al Λ x w h e n t h er e is
n o  n ois e i n  eit h er t h e i nt e nsit y f a ct or  or t h e   m e a n  of t h e si m ul at e d  c o n diti o n al
s h a p e  c o m p o n e nt.

w hi c h  is  d u e  t o E (s (X,  x ))   =  1 ,  t h e n  t h e   mi ni mi z er
is  att ai n e d   w h e n Q 0 = Q g ∈ Q ( Ω F ).  Fr o m  ( 1 4)  it
t h e n  f oll o ws  t h at f G ⊕ (x ) = g .   N e xt,  fr o m  ( 1 3)   w e  h a v e
τ G ⊕ (x ) = m a x { E (s (X,  x )τ ), 0 } = η 0 b y  a g ai n  u si n g  t h at
E (s (X,  x ))   =  1 .   T h e  r es ult  f oll o ws.

G.  L o c al   Fr é c h et   R e gr essi o n   W h e n α n D o es   N ot   Gr o w   Wit h
S a m pl e  Siz e n

Fi g ur e  8  s h o ws  t h e  i nt e gr at e d  err or   m etri c  f or  t h e  s h a p e
p art i n  t h e  si m ul ati o n  s etti n g s f or l o c al  Fr é c h et  r e gr essi o n  as
o utli n e d i n  s e cti o n   V- B   w h e n  fi xi n g α n = 1 , s o t h at α n d o e s
n ot gr o w   wit h n , a n d t h u s vi ol at e s a  b a si c a ss u m pti o n.   We  fi n d
t h at  c o n sist e nt  r e c o v er y  of  t h e  c o n diti o n al  i nt e n sit y  f u n cti o n
is  n ot  p o ssi bl e if α n i s  n ot  all o w e d t o i n cr e as e   wit h n as t h e
i nt e gr at e d  err or  b o x  pl ots  f or  t h e  s h a p e  c o m p o n e nt  s h o w  n o
d e cli n e  i n  bi as  a n d  st a y   w ell  b o u n d e d  a w a y  fr o m  z er o  f or
i n cr e asi n g  s a m pl e  si z e.

H.   C o m p a ris o n   B et w e e n  St a n d a r d   E u cli d e a n I nt e n sit y
R e g r e ssi o n   F u n cti o n  a n d  L o c al   Fr é c h et   R e g r e ssi o n

I n  t his  s e cti o n   w e  c o m p ar e  t hr o u g h  a  si m ul ati o n  e x a m pl e
t h e  st a n d ar d   E u cli d e a n  i nt e n sit y  r e gr essi o n  f u n cti o n  a n d  t h e
l o c al  Fr é c h et  r e gr e ssi o n  c o u nt er p art.   We  c o n si d er  t h e  s a m e
G a u ssi a n d at a  g e n er ati o n   m e c h a nis m as t h e  o n e o utli n e d i n t h e
gl o b al fr a m e w or k i n  s e cti o n   V- C  b ut   m o dif yi n g t h e f oll o wi n g
p o p ul ati o n  p ar a m et er s: a 2 = b 2 = 1 / 3 , a 3 = 0 .0 5 , b 3 =
0 , e 1 = − 0 .1 5 , f 1 = 0 .1 5 , σ 1 = 3 , σ 2 = 0 . H er e w e d o
n ot  c o n si d er  t h e  err or ε 2 o n  t h e  st a n d ar d  d e vi ati o n σ (x ) of
t h e  g e n er at e d  r a n d o m  d e nsiti es,  b ut  r at h er  k e e p  it  c o nst a nt
at σ (x ) = a 3 f or  all x .   T his  r e fl e cts  a  si mil ar  sit u ati o n  of
h ori z o nt al tr a n sl ati o n  of  a   G a u ssi a n  r a n d o m  v ari a bl e  a s  h er e
o nl y  t h e   m e a n  i n cr e as es   wit h x w hil e  t h e  st a n d ar d  d e vi ati o n
r e m ai n s s m all a n d c o n st a nt. It is e a s y t o s h o w t h at t h e st a n d ar d
E u cli d e a n i nt e n sit y  r e gr essi o n f u n cti o n

g x (·) = E ( Λ (·)|X = x ),

is  gi v e n  b y g x (·) = E (f (·)|X = x )E (τ |X = x ).   We  a p pr o x-
i m at e E (f (·)|X = x ) t hr o u g h  a   M o nt e   C arl o  a p pr o a c h   w h er e
w e  a v er a g e  a cr oss  r a n d o m  d e nsiti es f i g e n er at e d  at  pr e di ct or
l e v el x .  Si mil arl y,  f or  t h e  l o c al  Fr é c h et  r e gr essi o n   w e  o bt ai n
E (Q (·)|X = x ) b y  a v er a gi n g  t h e  c orr e s p o n di n g  r a n d o m
q u a ntil es Q i .   T o  c o m p ar e  b ot h  q u a ntiti es,  d e n ot e  b y f x (·) t h e
d e n sit y f u n cti o n   w hi c h  c orr e s p o n d s t o t h e tr u n c at e d   G a u ssi a n
m o d el c o n si d er e d b ef or e b ut disr e g ar di n g t h e err or ε 1 aff e cti n g
its   m e a n.   T h u s f x (·) is  t h e  tr u e  d e n sit y  ( wit h o ut  n ois e)  at
l e v el X = x .   T h e  i nt e n sit y  si g n al Λ x (·) is  t h e n  c o n str u ct e d
as Λ x = f x E (τ |X = x ) a n d  c orr e s p o n d s  t o  t h e  u n d erl yi n g
i nt e n sit y  f u n cti o n i n  d e p e n d e n c e  o n x aft er  r e m o vi n g  n ois e.

Fi g ur e  9  pr e s e nts g x i n  t h e  u p p er l eft  p a n el  o v er  a  gri d  of
v al u es  f or x w hil e  t h e  u p p er  ri g ht  p a n el  dis pl a y s  t h e  l o c al
Fr é c h et  r e gr e ssi o n  f u n cti o n Λ ⊕ (x ).   T h e  tr u e  i nt e n sit y  si g n al
Λ x is i n t h e  b ott o m  p a n el.   O n e  fi n d s t h at t h e s h a p e c o m p o n e nt
of  t h e  st a n d ar d  r e gr e ssi o n  f u n cti o n g x is  dist ort e d  a n d  d o e s
n ot  li e  i n  t h e   G a ussi a n  cl ass   w h er e  t h e  r a n d o m  d e nsiti es
ar e  sit u at e d.   T his  is  d u e  t o  t h e  n ois e  i n  t h e   m e a n  f u n cti o n
µ (x ) w hi c h  pr o d u c es   G a u ssi a n  d e n siti es  t h at  ar e  c e nt er e d  at
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t h e  tr u e  si g n al f x ,  a n d  t h u s E (f |X = x ) c orr e s p o n d s  t o  a
mi xt ur e  distri b uti o n   w hi c h r e si d e s  o utsi d e t h e   G a u ssi a n  cl a ss.
T h e  c o n diti o n al  Fr é c h et  r e gr e ssi o n  f u n cti o n  d e fi n e d  t hr o u g h
t h e 2 - Wass er st ei n  b ar y c e nt er  is  a bl e  t o  c orr e ctl y  c a pt ur e  t h e
u n d erl yi n g  g e o m etr y  of  t h e i nt e n sit y  s p a c e  a s its  s h a p e  c o m-
p o n e nts r e m ai n i n t h e   G a u ssi a n e n s e m bl e   w h er e t h e tr u e si g n al
w as  g e n er at e d fr o m,  a n d t h us  pr o vi d es  a r e as o n a bl e  n oti o n  of
c e nt er  or   m e a n i n i nt e nsit y  s p a c e. If t h e  v ari a n c e  of t h e  n ois e
ε 1 is  v er y l o w, t h e n  b ot h  q u a ntiti es  ar e  si mil ar.

A C K N O W L E D G M E N T

T h e  a ut h or s t h a n k t h e  r e vi e w er s f or  h el pf ul  c o m m e nts t h at
l e d t o  n u m er o u s i m pr o v e m e nts.
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