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Cox Point Process Regression

Alvaro Gajardo

Abstract—Point processes in time have a wide range of
applications that include the claims arrival process in insurance
or the analysis of queues in operations research. Due to advances
in technology, such samples of point processes are increasingly
encountered. A key object of interest is the local intensity
function. It has a straightforward interpretation that allows
to understand and explore point process data. We consider
functional approaches for point processes, where one has a
sample of repeated realizations of the point process. This situation
is inherently connected with Cox processes, where the intensity
functions of the replications are modeled as random functions.
Here we study a situation where one records covariates for each
replication of the process, such as the daily temperature for bike
rentals. For modeling point processes as responses with vector
covariates as predictors we propose a novel regression approach
for the intensity function that is intrinsically nonparametric.
While the intensity function of a point process that is only
observed once on a fixed domain cannot be identified, we show
how covariates and repeated observations of the process can be
utilized to make consistent estimation possible, and we also derive
asymptotic rates of convergence without invoking parametric
assumptions.

Index Terms— Cox process, Fréchet regression, intensity func-
tion, nonparametric regression, Wasserstein metric.

I. INTRODUCTION

EMPORAL point processes are encountered in insurance

in the form of the claim arrival process, risk processes and
ruin theory which targets the solvency of the insurer [1]; queue
theory in operations research [2]; seismology; demand patterns
in bike sharing systems [3]; or bid arrivals in online auctions
[4], [5]. Single realizations of point processes have been well
studied in the literature [2], [6]-[9]. One important target is
the intensity function, due to its straightforward interpretation
as the rate of occurrence of points per unit time [2]. In the
context of seismology, one expects the intensity function of
the aftershock arrival process to depend on the size of the
earthquake that triggered the aftershocks. This exemplifies
point process data for which the intensity function depends
on covariates, and provides the motivation to develop flexible
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nonparametric methods for such data. Specifically, we propose
a nonparametric regression method for point processes as
responses, coupled with Euclidean predictors in RP.

Poisson processes are one of the most important point
processes as they have been shown to provide successful
models for a wide range of scientific applications involv-
ing random phenomena and allow the construction of more
complex processes [2] such as the Cox or doubly stochastic
Poisson process [6]. The estimation of the intensity function
of a non-homogeneous Poisson process (NHPP) has found
much interest in the literature. For a single realization of a
NHPP, [9] proposed an approach based on penalized projection
estimators but consistency towards the intensity function can
only be achieved when the expected number of observed
events diverges. A standard asymptotic framework has been
to assume that the intensity of the observed process A(t) can
be written as a scalar multiple of an underlying intensity of
interest A(¢), where the scalar is allowed to diverge and thus
enables to observe increasingly more points [10]-[12]. For
multiple realizations or replicated NHPP, [13] consider the
situation where the intensities are common across replications
but only differ in that they are time shifted at random i.i.d.
time points with a known density function. In [14] a replicated
NHPP framework with a common non-random underlying
intensity function is considered with results on consistent
estimation of the cumulative intensity function, while in [15]
convergence results towards the common intensity function
are obtained. These previous approaches do not incorporate
covariates and thus do not study a regression framework. The
study of second order summary statistics such as the pair
correlation function [16] in the context of replications of point
processes has also received interest [17].

In the context of stationary Cox processes [6], nonpara-
metric kernel estimation of the intensity function for just one
observed point process has been proposed [7], connecting this
problem to kernel density estimation. However, when one
has just one realization of the point process, no consistent
estimator of the intensity function exists [18], due to the
unavailability of a consistent estimator of the scale factor of
the intensity function, i.e. [ A(t)dt. In other work that explores
the interface of spatio-temporal point processes and functional
data analysis, [19] proposed a semi-parametric generalized
linear mixed model with a latent process component, and
established asymptotic properties under increasing domain
asymptotics, a design assumption that is commonly used
for spatial processes. We consider here a different scenario,
where replications of a temporal point process are available,
along with an Euclidean covariate X & RP. A previous
replicated point process regression approach [20] also dealt
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with repeatedly observed non-homogeneous Poisson processes
as responses; however this previous approach relied heavily
on parametric specifications, for which diagnostics is very
difficult, whereas we aim here at a flexible nonparametric
approach that applies much more generally.

In the context of Cox processes, where the intensity func-
tion A(t) is a positive locally integrable random function,
a common approach when dealing with repeatedly observed
point processes (but without a covariate X) has been to
combine likelihood methods and techniques from Functional
Data Analysis [3], [21]-[24]. For example, in [23] a Karhunen-
Loéve expansion [25], [26] was applied to the log intensity
random functions,

log(A(t)) = p(t) + > Urde(t), 0<t<T,

k=1

where 0 < T < oo and g € L?([0,T7) is the mean function,
the Up are uncorrelated random variables and o1, ¢o,...
form an orthonormal basis of L2?([0,T]). Then, by using
techniques such as Functional Principal Component Analysis
(FPCA), a truncated version of the expansion is considered
with only p components and thus the functional problem of
estimating p and the ¢y, is reduced to a multivariate approach,
modeling the functions in a finite dimensional function space
of basis functions like B-splines. Distributional assumptions
such as Gaussianity of the U}, are also introduced in order to
justify a likelihood approach to obtain estimates for the basis
coefficients. The previous transformation approach is extrinsic
since it does not target directly intensity functions, which are
subject to a positivity constraint. This constraint makes the
intensity space convex but not linear and thus functional data
analysis (FDA) methods and especially functional principal
components analysis (FPCA) directly applied to A(¢) are not
well suited [27].

Similarly, [28] proposed a functional approach that decom-
poses the intensity function into an intensity factor and a
shape function and then performed a Karhunen-Loéve expan-
sion for the shape function, borrowing strength across the
replications. These methods face constraints due to the non-
negative nature of the intensity function and cannot be directly
extended to establish regression models for point processes.
Since the random intensity functions are not observed, the
event arrival times are used in the estimation procedures.
For Cox processes, the key relation that allows this is that
conditional on n events occurring in an interval [0,7"] and
A = A, the unordered arrival times form an i.i.d. sample
with density A/ [ A; this is a well-known property for non-
homogeneous Poisson processes [2]. Furthermore, as noted
in [28], the intensity function A can be decomposed into a
shape function f = A/ [ A and an intensity factor 7 = [ A.
This decomposition is the key relationship that will enable
us to split the problem of estimating the intensity function
conditional on covariates into two parts: Estimating the condi-
tional shape function and estimating the conditional intensity
factor of the process. While this decomposition is defining
the structure of the problem, in order to achieve consistent
estimation of the shape function, 7 is assumed to diverge

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

so that increasingly more points are available. Therefore,
we observe a Cox process (N(™ A) such that, conditional
on A, N®)(T) has a Poisson distribution with rate a7 for
some positive sequence ay, — 00.

The proposed regression approach for the intensity function
of replicated temporal point processes on Euclidean predictors
utilizes conditional Fréchet means [29] for a suitable metric
on the space of intensity functions, where this metric can be
decomposed into two parts, one that quantifies differences
in shape and a second part that quantifies differences in
the intensity factors. As we need to estimate the density
function associated with the arrival times of the point process,
our asymptotic consistency results for the intensity function
also utilize tools that were developed in [30]. The common
assumption of letting the observation window 7" — oo is often
not applicable, including the data scenarios we consider below
to motivate our methods. Therefore, we consider an asymptotic
framework where T" remains fixed and the number of replicates
of the point process increases.

While in general the intensity function of a doubly stochas-
tic Poisson process cannot be consistently estimated as it is
random, we demonstrate here that the situation is different
for point processes conditional on a covariate, as we establish
asymptotic consistency with rates of convergence for condi-
tional intensity functions. We illustrate the implementation of
the proposed point process regression with simulations and
show that it leads to well interpretable results for the Chicago
Divvy bike trips and the New York yellow taxi trips data.
An application to the earthquake aftershock process in Chile
is presented in section VI-C.

The main innovations presented in this paper are: (1)
We develop the first fully nonparametric regression method
that features point processes as responses with Euclidean
predictors; (2) We obtain asymptotic rates of convergence
for conditional intensity functions, while such a result is not
achievable for intensity functions unconditionally; (3) Our
approach does not require functional principal components and
does not require distributional assumptions, as it is not utilizing
likelihoods; (4) The proposed approach is shown to work well
in relevant applications.

II. THE SPACE OF INTENSITY FUNCTIONS

Let {N(t), t > 0} be a temporal point process where N (t)
represents the number of events that occur in the time interval
[0,¢] and N(0) = 0. We suppose that N (¢) is observed on
the time window [0, T'] for some endpoint T’ > 0, and is such
that m(t) :== E(N(t)) < oo for 0 < t < T. In the context of
replicated point processes that we consider here, it is natural
to work within the framework of a doubly stochastic Poisson
process (N, A) where one assumes that there is an underlying
stochastic intensity process A(t) that generates non-negative
integrable functions on [0,7] such that conditional on a
realization A = A, N|A = X is a non-homogeneous Poisson
process with intensity function A [6]. A feature that greatly
facilitates analysis of such processes [3], [23], [28], [30] is the
fact that a Poisson process has the order statistics property,
i.e., conditional on m events being observed in [0,77], the
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successive event times are distributed as the order statistics

of m independent and identically distributed random variables

with a density that is proportional to the intensity function [2].
Denoting the space of intensity functions as

T
0= {A: [0,T] — R* such that / A(t)dt < oo} :
0

two key quantities for each A € () are the intensity factor, the

scalar
T
'r::/ A(t)dt,
0

which is the expected number of events in [0, 7], conditional
on A(-); and the shape function

A®)

T
50 =22, where [ s =1, 5020,
0

te[0,T],

which is a density function. Hence, A(-) = 7f(-) and since
there is a one-to-one correspondence between A and (7, f)
we may regard () as a product space 2 = Q7 x Qr where
Q7 = (0,0¢) and

Qr ={f:[0,T] — R such that f > 0 and /Tf(t)dt: 1}.
0

For our theoretical results, we focus on a subspace of Qr
consisting of densities that are well behaved and bounded away
from zero, see assumptions (S1) and (S2) in section IV. With
a slight abuse of notation, we will continue to refer to this
subspace as (r.

Furthermore, if we endow {27 and 2 x with metrics d7 and
dg, respectively, we may regard (£2,d) as a product metric
space (§27,d7) x (Qr,dF), where

d((1, 1), (72, £2)) = /& (71,72) + &5 1, fo)- (D)

In the context of metric geometry such product metric
spaces for which the distance arises as an [?-type norm
between the underlying metrics have been extensively stud-
ied. In particular, it is well known that 2 is a geodesic
space if and only if {27 and 2y are geodesic spaces [31].
This decomposition enables us to measure differences in
shape and magnitude separately. We choose the Euclidean
metric d7(71,72) := dg(71,72) and the 2-Wasserstein met-
ric dr(f1, f2) = dw(p1,p2), which for two probability
measures g1, on [0,T] with associated density functions
f1, f2 and quantile functions @1, Q2 is defined as [32]

1
&, (1, 12) = 22(Q1, Qa) = ]0 (@1(8) — Qa(t))? dt,

where we assume throughout that these quantities exist and
are well defined. The Wasserstein metric has been shown to
be a most useful metric in practical applications that involve
samples of distributions [33]. The 2-Wasserstein metric on
the space of density functions {2x has very rich geometrical
interpretations due to its connections with optimal transport
[34]. Although one could consider a metric based on the
vertical alignment such as the L? metric, these metrics are
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not well suited for densities due to their inherent constraints
f >0 and fDT f(t)dt = 1, which imply that the space Qr,
while convex, is not a linear space [27].

A basic notion for statistical modeling is the mean of a
random variable, where for random objects in a metric space
(Q,d, P) it has proved advantageous to adopt the barycenter
or Fréchet mean [35], defined as wg, := argmin E(d?(Y, w))

weN

where Y € Q is a random object. The Fréchet mean may
be regarded as an extension of the standard concept of mean
in Euclidean space to abstract metric spaces in the sense that
when () is a convex subset of the Euclidean space and d is
the Euclidean metric, then the ordinary mean and the Fréchet
mean coincide. The barycenter and its estimation has attracted
much interest for distribution spaces with the Wasserstein
metric [30], [34], [36]-[38]; we adopt these spaces here for
the shape part of the intensity function.

III. FRAMEWORK FOR INTENSITY FUNCTION REGRESSION
A. Preliminaries

Our goal is to model the regression relation between random
intensity functions Y in the above space (§2,d) as responses
and an Euclidean predictor X € R, for which we adopt
the recently developed framework of Fréchet regression [29],
which can be viewed as a generalization of Fréchet means to
the more general notion of conditional Fréchet means. For-
mally, define the regression or conditional intensity function
mg(z) as

mg(z) = aa‘tgué;'_lzin Mg(w, ),
Mg (w,z) == E(d&(Y,w)|X = z),

where w = (19, f0) € @ = Qr x Qr and Y = (7, f) €
Q7 x QF, so that by (1),

Mg (w,z) = E(d%(1,70)|X = z) + E(d% (£, fo)| X = z).

Hence, the optimization problem is separable with optimal
solution mg(z) = (7g(x), fe(z)), where
Te(z) = argmin E(d%(1,70)|X = x)
ToEQT
= max{E(7|X = z),0};
fe(x) = arg min E(d%(f, fo)l X = z).

Jo€QF

2
3

As we focus on a subspace of 2r consisting of densities
that are well behaved and bounded away from zero, the space
of corresponding quantile functions Q(€2r) is a closed and
convex subset of the Hilbert space L2([0, 1]) (see assumptions
(S51), (S2) and Lemma 1 in section IV-A). By equivalently
casting the optimization problem (3) in terms of quantile
functions, as per the definition of the 2-Wasserstein metric, and
employing properties of the L2-inner product, Lemma S.10
in the Appendix implies the existence and uniqueness of
the solution to this program. The solution admits a closed
form in terms of the quantile functions Qg (x) corresponding
to fg(x), and is given by Qg(z) = E(Q|X = x). This
shows that under regularity conditions mg,(x) exists and is
unique. Note that since we measure the differences in the
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intensity factor from the changes in shape separately, the
order of magnitude between the two metrics is not relevant.
More precisely, mg(z) remains the same for weighted metrics
d3 = ady + Bd with o, 8 > 0.

The local Fréchet regression function mg(x) operates
directly on the space of intensity functions so that the
regression is performed in the geometric space corresponding
to the optimal transport geometry that is induced by the
2-Wasserstein metric on the shape components. Thus mg(z)
provides a notion of conditional center that is shaped by the
underlying geometry of the data generating mechanism that
produces random intensities. We show through a simulation
example in section H in the Appendix that the standard
Euclidean conditional intensity F(A|X = z) can be severely
distorted, while mg,(x) captures the underlying geometry of
the problem and provides a better notion of center. As mg/(x)
is a valid intensity function, it still enjoys the usual interpre-
tation of rate of events per unit time, while representing the
(conditional) point process barycenter at predictor level z.

A basic difficulty is that the function A(-) is not observed.
If sufficiently many arrival times are observed for each replica-
tion of the point process, then it is well known that consistent
estimation of the density function f may be achieved by
classical density estimation techniques [7], [30], while some
work-arounds exist for sparsely observed point processes
[28]. However, the situation is much less benign regarding
estimation of the intensity parameter 7. It would be natural to
employ the total count N (T'), which is conditionally unbiased
for 7 in the sense that E(N(T')|A) = 7 but is not (con-
ditionally) consistent as Var(N(T")|A) = 7. When just one
replicate of a point process is observed, consistent estimation
of the intensity function is therefore not possible. Further
motivating conditional intensity function modeling, we show
in the following that the situation is different when considering
conditional intensity functions. We demonstrate that the counts
N;(T') can be used as initial estimates for the random intensity
factors 7;, from which consistent estimators can then be
derived. This phenomenon is analogous to classical linear
regression modeling, where one has errors in the responses
and yet consistent estimation of the conditional expectation
that corresponds to the true regression function is achieved.
This provides strong motivation for the proposed methods and
the study of conditional point processes.

B. Local Regression for Intensity Functions

Suppose that a sample of replicates (X;, N;, fi, 7:) is drawn
from the joint distribution of (X, N, f,7),i=1,...,n, where
N|A = f x 7 is a Poisson process with intensity function
A = f x 7. We employ empirical weights from local linear
regression [39] that are inherent to the local Fréchet regression
approach [29], and are given by

sin(z, h) = %Kh(xﬁ D) fa-a(Xi—2)], @

where 4; = n 'Y Knp(X; — z)(Xs — =) with j €
{0,1,2}, 62 = digtiy— 42 and Ky (-) = h~1K (-/h), the kernel
K is a continuous and symmetric density function with support
[-1,1], and h = h,, is a sequence of bandwidths.
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As we can factorize the response into a density function and
an intensity factor, one regression component is the conditional
mean FE(7|X = z). For estimating this quantity we employ
local linear regression. If the 7; were observed, then a naive
estimator for (2) would be given by

7o (z) = max{0,n~! Z Sin(z, h)Ti },
i=1

)

as local linear regression is a linear estimator, assigning
weights s;n(z,h) to the responses. However, this estimator
is based on the intensity factors 7;, which are not observed;
we only observe the counts of arrivals N;(T') for each replicate
of the point process. This difficulty can be resolved by
noting that the observed counts N;(T') satisfy the relationship
E(N;(T)|A;) = 7, which enables us to replace 7; by N;(T')
in (5) since E(N(T')|X) = E(E(N(T)|X,A)|X) = E(r|X)
is on target. Hence, under suitable regularity conditions one
readily obtains well known non-parametric convergence rates
for the corresponding locally weighted least squares estimator
of 1(z) (2) [39]. As we require an increasing asymptotic
intensity framework, our final empirical estimate for the inten-
sity factor part will be presented in section I'V-B.

If the densities f; associated with point processes N;
were completely observed, we could implement local Fréchet
regression on the space of densities for (3) [29],

n
fo(z) =argmin n™ " sin(z, B)d%(fi, fo).  (6)
fo€QF i=1

We however only observe the arrival times, from which
the densities f; must be estimated, and this will induce an
additional error that needs to be accounted for when analyzing
the final estimator. Existence and uniqueness of the solution to
the optimization program in (6) can be obtained by considering
corresponding quantile functions, which we discuss next.

As noted by [40], one of the main differences compared to
classical density estimation techniques is that in the context
of point processes we cannot let the number of observations
go to infinity as it is a random feature of the point process
itself. Instead it is useful to consider an asymptotic framework
where the intensity factors 7; diverge to infinity, while the
observation window [0,7] remains fixed; such frameworks
have been considered before in the literature and allow to add
information everywhere on [0,77] as opposed to the common
domain asymptotics 7' — oo, which are often not applicable,
see also [30] or [41]. This framework will be introduced in
section IV. From now on, 7 will denote a generic random
intensity factor such that r; = fOT Ai(s)ds Y oi=1,...,n

The minimization problem (6) is easily solved by con-
sidering quantile functions. If @; is the quantile function
corresponding to fi, i = 1,...,n and Qg(-,z) : [0,1] —
[0,T] is the quantile function corresponding to the density
Je(z) in (6),

n

Qe(z) = argmin ™'Y sin(x, h)[|Qi — ql[32(0,17)»

qeQ(Q2F) i=1

where Q(§2r) is the space of quantile functions corresponding
to densities in . Standard properties of the L2([0, 1]) inner
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product imply (Proposition 1 in [29])

n
Qo(-,z) = argmin |jg—n~" Z Sin(Z, h)QéH%,Z([o,m- )
qeQ(Q2F) i=1

Existence and uniqueness of the solution of (7) and therefore
of (6) is guaranteed as Qg (-, =) corresponds to the orthogonal
projection of n=13Y""  sin(z,h)Q; as an element of the
Hilbert space L2([0,1]) on the closed and convex set Q(Qx)
as shown in Lemma 1 under regularity conditions on the space
Qr.

To discuss estimation of the );, which are needed in (7)
but are not directly available, it is helpful to consider auxiliary
probability measures fi; on [0,T] that correspond to the
empirical measure of the arrival times when the total count
N;(T) = 1 and to the uniform measure on [0,7] otherwise
(see [30]). That is,

1 Ni(T)
) bz, if Ny(T)>1
i = Ni(T) =
T L, if N;(T) =0,

where Z;; are the arrival times of the point process N; and £
is the Lebesgue measure on [0, 7). For a probability measure
p on [0,T] with cdf F,, we consider its quantile function
Qu(t) := inf{z € [0,T]: F,(z) > t}. Let Q; := Qp,, then
replacing Q; by Q,; in (7) leads to the empirical estimate

n
Qeo(-,z) == argmin |lg—n"" _ sin(z, h)Qill 20,1 (8)
geQ(2F) i=1

IV. ASYMPTOTIC RESULTS
A. Convergence of the Shape Function Estimates

Let fg(z) be the density function corresponding to the
quantile function Qg(-,z). Thus, fg(z) corresponds to the
empirical estimate for (6). We require the following assump-
tions, which guarantee that Q(€2r) is a closed and convex
subset of the Hilbert space L2(]0,1]), yielding existence and
uniqueness of the naive and empirical estimators in (7) and (8),
respectively.

(S1) Suppose that there exists 0 < M < L < oo such that
Q€ Q) if

Mlz —y| < |Q(z) - Q(y)| < Llz —y|,

for all =,y € [0,1].
(S2) Suppose that for any Q@ € Q(2x) it holds that Q(0) =
Oand Q(1)=T.
These assumptions are needed to ensure that the quantile
functions do not increase too rapidly or too slowly, which is
equivalent to constraining the corresponding density functions
to be well behaved and bounded away from zero.

Lemma I: Under (S1) — (52), Q(§2x) is a closed and
convex set on the Hilbert space L2([0,1]).

Lemma 1 guarantees existence and uniqueness of the local
Fréchet regression function on shape space fg(x) defined
in (3). By employing the Hilbert space structure of L?([0,1])
and properties of the 2-Wasserstein metric, Lemma S.10 in
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the Appendix shows that fg(z) corresponds to the density
function with associated quantile function E(Q|X = z);
the latter can be shown to reside in Q(£2r). Regarding the
convergence of fg(z) towards fg(z) in the 2-Wasserstein
metric, by the triangle inequality

dr (fo(z), fo(r)) < dr(fo(z), fo(x)) + dr (fo(z), fo(z)),
©)

and for the term dr(fg (), fo(z)) we observe that properties
of the orthogonal projection on a closed and convex set in the
Hilbert space L2([0, 1]) imply that

dr (fo(2), fo(z)) = [1Qa(- 2) ~ Qa (- 2)llL2(o,1)
<Y Isin(, )] 11Qi — Qillz2(o,1)-
i=1
(10)

Therefore, convergence hinges on consistent estimation of
the quantile functions @;. For the asymptotic framework,
we consider a new sequence of Cox point processes N,;(“)
which have the same shape function f; but an increasing
intensity factor a,7; so that increasingly more points are
observed per point process as sample size increases [30]. The
asymptotic framework is then as follows:

1) A first random mechanism generates pairs of predictors
X, and intensity functions A,

(X1,A1),...,(Xn,Ay) E (X,A) which encapsulates
the dependency between these random quantities. While
the X, are observed, the A; are not observed.

2) Given the random intensity functions A;, a second inde-
pendent random mechanism then generates the observ-
able number of arrivals Ni(n)(T) and the arrival times
Zity .., Z, for the i-th point process N\™, i =
1,...,n.

3) Conditional on N,;(“) (T'), the (unordered) arrival times
Zity .o, Z¢N§“‘(T) X f,.

4) Given the random intensity function A;, Ni(n)(T) ~
P(an7;) for a positive sequence a,, — oo, where P(n)
denotes a Poisson random variable with rate 7.

N{(T)

We note that conditions 1-3 are standard in the context of
Cox processes while condition 4 allows for the observable
number of arrivals Ng.(“)(T) to diverge as n increases and
to avoid empty point processes [30], which is the key for
consistent estimation of ¢); by using the empirical measure
of the arrival times fi; with N,;(“)(T) in place of N;(T).
A similar fixed domain asymptotic point process framework
was considered in [30] but without covariates.

The following result shows that the second term on the right
hand side of (9) is Op(an 1 %) provided that the support of T
is bounded away from zero and o, grows fast enough.

(S3) There exists a scalar k > 0 such that 7 > « almost surely.

Proposition 1: Suppose that (S1), (52) and (S53) hold, the

marginal density fx of X satisfies fx(-) > 0 and is twice
(2

continuously differentiable, -
logn

— oo as n — oo, and the

Authonzed licensed use limited to: Univ of Calif Davis. Downloaded on May 04,2022 at 09:33:43 UTC from IEEE Xplore. Restrictions apply.



1138

bandwidth sequence h = h,, satisfies h, — 0 and nh, — oo
as n — oo. Then

dr(fa(z), fa()) = Op(a

The term d}"(f@(ﬂ?),f@(fﬂ)) on the right hand side of (9)
was shown to be Op(n~2/5) under the following regularity
condition [29]:

(L1) The marginal density fx of X, as well as the conditional
densities g, of X |}~’ — y, exist for Y € Q and are twice
continuously differentiable, the latter for all y € Q, and
sup, 4 |9y ()| < oco. Additionally, for any open U C Q,
Iy dFy x(z,y) is continuous as a function of z.

Summarizing these results, we obtain

Theorem 1: Suppose that (S1), (52), (SS) and (L1) hold,

the density function satisfies fx(-) > 0, In
logn

n— oo and h = hy ~ con=1/5 for some constant cg > 0.
Then

—1/4)

—r OO0 as

dr (fo(z), fo(2)) = Op(n™® + a'/*).

p(n

Accordingly, consistent estimation in the 2-Wasserstein met-
ric for the shape part of the conditional intensity function
can be achieved at the rate O,(n~%/®) as long as n%/°a;;!
is bounded above. If this assumption holds, the well-known
rate of convergence for local linear regression with real valued
responses is thus obtainable.

B. Convergence of the Intensity Factor Estimates

In the increasing asymptotics framework that was intro-
duced in the previous section, we assumed that there is a
common intensity factor multiplier o, such that o, — oo as
n — oo. This led to consistent estimation of the conditional
intensity functions for the shape function part of the intensity
function, where one works in the density space {2r. Since
intensity functions can be factorized into a shape part, which
corresponds to a density function, and an intensity factor,
it remains to construct an estimator for the intensity factor (2)
conditional on predictors X.

It turns out that this is a challenge, as an estimator for (5)
is not easily available. This is because in order to estimate the
shape functions consistently, it is necessary to assume that the
expected number of events increases without bound. We show
in the following how this challenge can be overcome and con-
sistent estimation of E(7|X) is nevertheless still possible up to
the constant E(7), so that relative intensities can be estimated
consistently. The key to achieve this is to utilize the average
observed number of arrivals N(T) = n=1 Y 1 1N (T)
We require the following regularity conditions.

(LL1) The regression function m(zx) = E(7|X = z), the
density function fx(r) > 0 of X and o?(z)
E(e?|X = z), where e = 7 — m(X), are twice
continuously differentiable in .

(LL2) For the bandwidth sequence h, nh®
Q.

(LL3) There exists § > 0 and & > 0 such that E(|e|?+%|X) <
@, for all predictors X.

We note that assumption (LL1) is a basic smoothness
assumption that is needed to expand the bias for local linear

=0(1),as n —
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smoothing, while (LL2) is also a common assumption and
implies that as n — oo and for ¢ € N, we have nh? — oo if
0 < g <4 and nh? — 0 for ¢ > 5. Assumption (LL3) will
be used for an application of the central limit theorem.

Our main result on conditional intensity estimation is as
follows. For two sequences (3, and -, denote by 3, = v, if
c1Bn < yn < c2f3, for some constants ¢y, cz2 > 0. Denote by
Tg(x) the empirical and standardized estimate of the intensity
factor part, which is given by

n 1y SinlT -(ﬂ')
zpu%ﬂmm @0. an

Theorem 2: Under (LL1) — (LL3) and (S53), suppose that
7 < M, almost surely for a constant M € [k, 00) with k as
in assumption (S3). If ¥ (ay) =< n2/® for some function ) :
Rt — R, h = hy, = cogn—1/° for some constant ¢y > 0 and

Cip
— oo as n — oo, then
logn

Tg(r) = max (0,

%@ (:E) E( )TG?(I) + Op(n—2/5)'

This means that 74(x) can still be consistently estimated
up to the constant E(7) by using the observable numbers
of arrivals N, (“)(T) of each replication of the point process
instead of the true intensity factors 7;, whlch are not observed.
Furthermore, as the observed counts N )(T) grow with ay,
as n — oo, we can stabilize the local linear estimator by
employing comparisons against the average number of arrivals
N(T). We remark that even though the quantity E(7) is
unknown, relative intensity factors at different covariate levels
can still be recovered consistently, which is a key result of
interest in our framework.

The assumptions require that /(e ) does not increase faster
than n2/®> for some function v» : R* — R. This is due to
the fact that local linear regression estimators with real valued
responses are employed. These have a well-known optimal rate
of convergence Op(n~2/%) under mild assumptions, which is
obtained under our assumptions for general growth rates of
o, For example, if a, = ¢1n” has a polynomial growth rate,
where ¢, p > 0, then our assumptions are satisfied by taking
W: t— t2/(50) ¢ > 0, leading to the optimal rate O,(n~%/%).
Similarly, if a,, = ¢; exp(n~y) has an exponential growth rate,
where c1,vy > 0, then the conditions are satisfied by taking
W:t— (log(t)/v)?/®, t > 0.

C. Convergence of the Conditional Infensity Function
Estimates

We are now in position to construct an estimate for the con-
ditional intensity function by combining our previous results.
Recall that the regression or conditional intensity function
satisfies mg(z) = 75(x)fe(z) where 74(z) and fg(z) are
defined in (2) and (3), respectively, and

nU Y sin(z, )N (T)
N(T) '

Tg(z) = max (0,

which corresponds to the estimate of 74 (), up to the constant
E(7), as per Theorem 2.
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Since Ag(z) = 7g(z)fge(xr), we obtain an estimate of
Ag(z) by plugging in the previously obtained estimates of
the intensity factor 74 (x) and of the shape function fg(x),
leading to

Ag(z) = 75 (z) fo (). (12)

Here fg(z) is the density corresponding to the quantile
function defined in (8). This estimator is consistent for the
conditional intensity function up to E(7), as per the following
result.

Corollary 1: Under the regularity conditions of Theorems 1
and 2, the estimate Ag(x) of the conditional intensity function
mg(x) is consistent up to the constant E(7) in the sense that

d(me(z), B(r)Ag (2)) = Op(n™® + az'/*),

where ay,/logn — oo as n — oo and ¥(ay,) =< n?/® for
some function ¢ : R — R.

This result follows directly from Theorems 1 and 2. If the
sequence «, has a polynomial growth rate a,/n? — C as
n — oo for some p > 0 and C > 0, then the convergence rate
in the Corollary is O,(n~?/%) if p € (0,8/5) while the well-
known non-parametric rate for local linear regression with real
valued responses Op(n~2/5) is achieved whenever p > 8/5.
The fastest convergence rate achievable is obtained when
p is at least 8/5 which leads to d(mg(z), E(t)Ag(z)) =
Op(n—2/5). In this case, both the estimation of the intensity
factor part, up to the constant E(7), and the shape part of
the conditional intensity function can be recovered at the rate
Op(n=2/5).

We remark that in the special case where Var(r) = 0 and
the distribution of the random density f corresponds to a point
mass in the Wasserstein space of probability distributions Qr
endowed with the 2-Wasserstein metric, one has that f = ¢
almost surely for some density g with corresponding quantile
function Q4 € Q(2r) and 7 = 7o almost surely for some
constant ng € [k, M;] with x,M; as in Theorem 2. This
setting corresponds to the situation when there is no regression
of the point process on X and is still covered by Corollary 1.
Moreover, in this special case our framework is equivalent to
that of replicated Poisson processes as the underlying intensity
functions are non-random and identical. Lemma S.12 in the
Appendix shows that 7g(z) = mp and fg(z) = g so that
mg(x) is equivalent to the underlying common intensity. Thus
the problem translates into one of consistent estimation of
the common underlying intensity function across independent
replications of a single Poisson process, which we obtain
up to a constant. In this direction, several works exist such
as [15] where a non-parametric estimate of the underlying
intensity function is considered and pointwise as well as MSE
convergence results are derived. Parametric approaches have
also been extensively studied; see [42]-[46] for further details.
Non-parametric approaches using wavelets have also been
explored in [47] and semiparametric approaches in [48]. When
replications of a non-homogeneous Poisson process with a
common and non-random underlying intensity function are
available [15], one can readily exploit this fact so that an
asymptotic infill framework is not required in this situation;
rather, one can pull observations together to estimate the

1139

common shape or intensity factor components, however the
situation is different in the regression framework that we study
here.

It is often of interest to study the association between
categorical predictors and point processes, for which the pre-
viously studied local regression approaches are not applicable
as continuity of the predictor X is required. The next section
is devoted to the construction of a second regression model
that hinges on a generalization of the classical parametric
multivariate linear regression model in the Euclidean case, and
allows to address this problem.

D. Global Regression Framework for Intensity Functions

We briefly demonstrate here a generalization of multi-
ple linear regression to the case where responses are point
processes that allows the inclusion of categorical predictors
while responses are objects residing in intensity space (2, d).
The key is a characterization of multiple linear regression as a
weighted sum of the responses, which can then be generalized
to the case of weighted Fréchet means [29].

Consider an Euclidean predictor X € RP and assume
that p = E(X) and ¥ := Var(X) exist, with X positive
definite. In particular, this allows to consider either contin-
uous or categorial predictors. The standard linear regression
setting for (X,Y) € RP x R is that the regression function
E(Y|X = z) = fy + T (z — p) is linear in =, where 3 and
/31 are the scalar intercept and slope vector, respectively. [29]
recharacterized the linear regression function as E(Y|X =
1) = argmin E(s(X,z)d%(Y,y)), where s(X,z) := 1+

yER
(X — p)TE"Y(z — p) are weights that vary with = and dg
is the Euclidean metric. This allows a direct generalization to
linear regression in intensity space (£, d) by simply replacing
Y by the object Y (2 and the standard Euclidean distance
dg by the metric d in intensity space, which inherits properties
of the standard linear regression setup as we show below.
The global regression function of Y € €2 on X is given by

mgg(z) == argmin E(s(X,z)d*(Y,w)).
wen

Although € is not a linear space due to the non-negative
nature of the intensity functions, the global regression curve
mgg(z) passes through the Fréchet mean of ¥V at z = p
since s(X,p) = 1, a feature inherent to linear regression
models. Moreover, the weights s(X, x) can be negative, do not
necessarily decay to zero away from x, and do not depend
on a tuning parameter like local methods do. Arguments
similar to those outlined in section III-A show that mgg(z) =
(768(), foe (), where

T6e(z) = argmin E(s(X, z)d>(r,70))
ToEQT

= max{E(s(X,z)7),0}; (13)
foe(x) = argmin B(s(X, 2)dr(f, fo))-  (14)

eQr

Lemma 1 guarantees existence and uniqueness of the global
Fréchet regression function on shape space fgg(z). Similarly
as in the local framework, Lemma S.11 in the Appendix shows
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that the Hilbert space structure allows to characterize the quan-
tile function corresponding to fgg(x) as the orthogonal projec-
tion of Q, = E(s(X, z)Q) as an element of L2([0, 1]) on the

closed and convex set Q({2r). Suppose that a sample of repli-

cates (X, Ni, fi, i) wd (X,N, f,7),where NJA = fxTisa

Poisson process with intensity function A = f x 7, is available
and consider the same asymptotic framework as outlined in
section IV-A. To obtain empirical estimates, define s;,(z) =
1+ (X; — — X)T8Y(z — X), where X :=n=1Y7 . X, and
Yi=n1Y" (X; — X)(X; — X)T. The next result shows
that the global regression function in 27 space, 76g(z), can
be consistently estimated up to the constant E(7).

Theorem 3: Suppose that (S3) holds and 7 < M; almost
surely for some constant M; € [k, co) with  as in assumption
(S3). If ¢(ay) =< n'/? for some function ¢/ : R* — R and
o/ logn — oo as n — oo, then

n YL sm(@NM(T) _ 1
max (0, NT) = E(T)TG@(I)
+ Op(”_llz)-

Theorem 3 shows that the parametric /n-convergence rate
can be obtained under mild conditions on the growth of .
Thus faster rates are obtained compared to the local setting.
For example, if a, = ¢in” has a polynomial growth rate,
where ¢y, p > 0, then the assumptions are satisfied by taking
W:t — tY/(2P) t > 0, which leads to the optimal /n-rate.
Similarly, if o, = €1 exp(n~y) has an exponential growth rate,
where c1,vy > 0, then the conditions are satisfied by taking
Wt — (log(t)/)/2, t > 0.

Similarly as in the local regression setup, the shape com-
ponents f; remain unobserved and must be estimated from
the arrival times across each replication. We consider the
same estimation scheme for the shape functions as outlined
in section III-B but replacing the local weights s;,(x, k) by
the global weights s;, (). This leads to the empirical estimate
fee(x) of fog(z). The following result shows consistency of

the estimated global regression function in {2x space.
Theorem 4: Suppose that (S1), (S2) and (53) hold, and

— oo as n — oo. Then

logn

dr (fee(z), foa () = Op(n™ /% +ay /).

p(n

Thus, if o, has a polynomial growth rate a,/n? — C
as n — oo for some p > 0 and C' > 0, we obtain the
/n-rate as long as p > 2. If p € (0,2), then the rate achieved
is Op(n—+/%). The following corollary summarizes the con-
sistency, up to the constant E(7), of the empirical estimate

_ n . {m) ~
- ‘Ei=1;'(v;£)f)Ni (T)) fee(x) of the

global regression function megg ().

Corollary 2: Under the regularity conditions of Theorems 3
and 4, the estimate Agg(z) of the conditional intensity
function meg(z) is consistent up to the constant E(7) in
the sense that

d(mce (z), E(r)Ace(z)) = Op(n

where ay,/logn — oo as n — oo and ¥(ay,) =< n'/2 for
some function ¢ : R — R.

Acg(z) := max (0,

—1/2 +a—1/4)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 2, FEBRUARY 2022

Thus, when «,, has a polynomial growth rate oy, /n? — C
as n — oo for some p > 0 and C' > 0, the parametric
\/n-rate is achieved whenever p > 2 and otherwise the rate is
Op(n=P/*) if p € (0,2), which is attained by the estimation
of the corresponding shape component part.

Similarly as in section IV-C, the special case of no regres-
sion on X when 7 = 75y almost surely for some positive
constant 79 € [x,M;] and f = g almost surely for some
density g with corresponding quantile function @, € Q(f2r)
is still covered by Corollary 2. Lemma S.13 in the Appendix
shows that in this case 76g(z) = no and feg(z) = g. Thus
the global Fréchet regression function coincides with the local
version and is equivalent to the common underlying intensity
function across independent replications of a single Poisson
process. Here convergence towards meag(z) = nog, up to a
constant, can be achieved at the parametric rate if o, grows
faster than n?.

V. SIMULATIONS

A. Numerical Approximation for the Shape Component
Estimates

The minimization problem for the local Fréchet regression
on the shape component as in (8) is solved numerically
and similar to the quadratic optimization problem considered
in [29]. Recall that

Qe(,x) = argmin ||g —n 123111@3 R)Qil 13 2(p0.1))-
qeQ(2F) i=1

Let 5, 7 = 1,...,v, be an equispaced grid in (0,1),
where Ar, = 1/(v + 1) is the grid spacing and v is a
positive integer. Denote the objective function by M(q) =
lla— W“LZ([ul where W(-) = n' 30, sz, h)Qi(")
and ¢ € Q({2r). We employ Riemann sum approxima-
tions to numerically solve (8) as follows. Letting w; :=
W(r;) = n Y1, sin(z, h)Q,,(rj.) j =1,...,v, the Rie-
ma.nn sum approximation of M(q) is given by My(q) =

Y7 _i(g; — w;)?Ary, where g; = g(r;). Replacing M(q) by
J\/[j (g) in (8) leads to an intermediate discretized optimization
problem

Sy = argmin M, (g).
9€Q(2F)

Here S, is the set of all such optimal solutions in Q(€2r).
This set is non-empty, which can be seen by considering an
auxiliary quadratic convex optimization program

(15)

¢} = argmin ||},
Gerv

subject to the constraints 0 < ¢; < ---
Gj+1— @ <LAr,. j=1,...,v =1, MAr, < G < LAr,,
and MAr, <1 - g, < LAr,, where w = (wy,... ,w,,)T.
Therefore any function ¢ € Q(€2r) that interpolates the values
g, at the grid points 71,...,7, belongs to S,. The next
proposition shows that Qg(-, z) can be well recovered in the
L?-norm by choosing a sufficiently fine grid. Let Qg, be
any (fixed) element in S,,, which can be selected by the axiom
of choice.

S§u<TaMATUS

Authonzed licensed use limited to: Univ of Calif Davis. Downloaded on May 04,2022 at 09:33:43 UTC from IEEE Xplore. Restrictions apply.



GAJARDO AND MULLER: COX POINT PROCESS REGRESSION

Proposition 2: Suppose that (S1) and (S2) hold. Then

1Qe (-, ) — Qawl|z2(o.1)) = o(1),

as v — oQ.

A natural element in S, corresponds to the standard linear
interpolation function constructed from g, which is given by
Q) =gy ;+ (t—15)(a) ;11 — a5 ;)/Ary for t € [r5,7541),
j = 0,...,v, where q;,j is the jth coordinate of g, 7 =
L...,v,and 5o =0,70 =0,¢q5,,; =T and rpy1 = 1.
By continuity, we define Q}(1) = lim; ;- @Q}(t) = T
as the left-limit. Lemma S.9 in the Appendix shows that
Q; € Q(2r) and thus @} lies in S,. In practice, M, L are
taken as very small/large constants, M = 10719 and LL = 10'°.
This choice works very well in practice. The optimization
problem (15) is a quadratic convex program (QP) with linear
constraints similar to the one considered in [29] but slightly
modifying the constraint matrix associated with the QP, and
can be solved using state of the art optimization routines.
The linear interpolation ()}, of the optimal discrete solution
q; corresponds to a discretized version of Qg(-,z) which
is then mapped back to density space to obtain a discrete
approximation of the corresponding density function f'@(-, x).
The latter step is performed by first constructing the cdf
associated with g, and then utilizing local linear smoothing
methods [49]. The implementation of the global regression is
similar.

B. Simulations for Local Fréchet Regression

To assess the finite sample performance of the proposed
conditional intensity function estimates, we constructed a
generative model that produces simulated random intensity
functions A(-) = f(-)r along with an Euclidean predictor
X € R. First, to generate a random density function f we
consider the transformation to a Hilbert space approach using
the log quantile density transformation (LQD) [27], where
a Karhunen-Loéve (KL) decomposition is employed for the
transformed density, which is an element of L2, and the latter
curve is mapped back to density space. Specifically, denoting
by ¥ : f — —log[f(Q(-))] the LQD transform of f, where
Q@ is the quantile function corresponding to the density f,
we consider a truncated KL. decomposition [50] conditionally
on X =z

K
V() = pCx)+ ) &(x)de (), (16)

k=1

where p(-,z) is the (conditional) mean function of the
L? process i, which we assume Gaussian, the £i(z) are
independent across k such that {g(z) ~ N(0,vg(x)), where
the eigenvalues v;y(r) and vk (x) are strictly positive for
all = in the support of Fx, and the eigenfunctions ¢, are
orthonormal in L2. Thus the mean function and the scores
are allowed to vary with = while the eigenfunctions are
independent of x, which provides better interpretability of
the dependency of #(f) on X = =z. Performing the KL
decomposition in the transformed Hilbert space rather than
in density space is well suited due to the former being a
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linear vector space whereas the latter lacks linearity structure,
and therefore a truncated KL. expansion applied directly to the
density process may not reside in density space [27].

The data generation mechanism for the shape part of the
intensity function is as follows: First generate the covariate
X ~ U(0,1). Then a random element X(s), s € (0,1),
in L? is generated from (16) by sampling the Functional
Principal Component (FPC) scores £. The random density
function f with support [0, 7], where T = 1, is obtained by
mapping back A'(-) to density space using the inverse LQD
transform, ie. Q(t) = 63" [, exp(X(s))ds, where fx =
fol exp(X(s))ds and f is the density corresponding to the
quantile function Q.

For the intensity factor 7, we consider a linear regression
setting E(7|X = z) = a1 + biz such that the values on
the right hand side are all positive. The conditional intensity
factors 7 for covariate level X were obtained through a linear
regression model T = a1 + b1 X + ¢, where ¢ is independent
of X and has a truncated normal distribution with mean zero,
variance o7 and support [c, d;]. The choice of the constants
above are such that a; 4+ byz 4 ¢ > 0 for all = in the support
of F X

Next, random samples of data (X;,7;,@:), i = 1,...,n,
were generated following the above procedure, where a; = 1,
bl = 0.2, c1 = —0.2, d] = 0.2, ay = 1.5, K = 2,
p(s,z) = exp(l.5z) + exp(1.5s), @1(s) = —V2cos(ws),
$2(s) = V2sin(ws), s € [0,1], v}(z) = 3 + 2z and
v2(r) = (2 — z)2. A triangular array of point processes

was then obtained as follows: Conditional on (X, 7;, @),
the observable number of arrivals for the :-th point process
Ng.(“)(T) was sampled from a Poisson distribution with rate
anTi, Where a,, = 40n*/%. Then, conditional on N,;(n) (T') and
@i, the arrival times were generated as an i.i.d. sample of size
Ng.(“)(T) from @;. For this step, we utilize inverse sampling
method by generating Ni(n)(T) i.i.d. uniform in (0, 1) random
variables uj,...,u N Ty independent of all other random
quantities, and then the arrival times are obtained from the
Qur), E=1,..., N,;(n)(T). We generate (); over a dense grid
on (0,1) and used the bandwidth sequence h = h,, = n—1/°
for the local Fréchet regression step.

Figure 1 shows the “oracle” regression function with inten-
sity factors F(7|X = x) and shape (density) function defined
through the corresponding quantile function E(Q(-)|X = z),
where we consider a grid of 50 equispaced predictor values in
(0,1). Here E(Q(-)|X = z) is approximated through a Monte
Carlo approach where we average across random quantiles Q);
generated at predictor level .

We ran 1000 simulations for sample sizes n = 100, 200 and
500. For the 7" simulation, we measure the performance
of the method by comparing against the “oracle” conditional
intensity function as defined before. Denoting by fz(x) and
Tg(z) the empirical estimates for the shape function and
intensity factor parts of the conditional intensity function in the
r-th simulation, respectively, we measured the quality of the
estimation by integrated squared errors similar to [29], using
the metric as in (1). Since 7g(x) can be consistently estimated
up to the constant F(7), we expect the estimates and 74(x) to
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Fig. 1. Conditional intensity functions in the simulation setting over a dense
grid of predictor levels x, displayed in blue when = 0 to red when = =
1 in the online version (dark grey and light grey in the print version, resp.).
The upper panel shows the approximation of Ag(x) through a Monte Carlo
approach while the bottom panel shows the estimate A (z) adjusted by the
constant E(T) using n = 2000.

differ by a positive constant and the estimates 7z, (z) of 7¢(x)
as in Theorem 2 by E(7). This leads to

1
ISE, — /D {#2(@a=), BQUIX =x))
+ d%(B(r)7 (x), B(r|1X = z))}dz
— ISEF + ISET.

The previous integrals are obtained numerically over a
dense grid of predictor values consisting of 200 equidistant
points in (0,1), where E(Q(-)|X = z) is obtained through
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Fig. 2. Boxplots of the errors for the conditional shape function estimates
ISET (upper panels) and the conditional intensity factors TSET (bottom
panels), in the simulation setting for n = 100 (left), n = 200 (middle) and
n = 500 (right). Here four and three outliers were removed for the shape
and intensity factor boxplots when . = 100, respectively.

a Monte Carlo approach for each z in the dense grid as
explained before. The boxplots of ISEZ and ISET are
presented in Figure 2. As sample size increases, these error
estimates are seen to decrease towards 0. This indicates that
the estimated conditional intensity functions converge to their
true counterparts, up to the constant E().

C. Simulations for Global Fréchet Regression

In this section we assess the finite sample performance of
the global Fréchet regression estimates. The data generation
mechanism is as follows. First generate the covariate X ~
U(0,1). Then the random density f corresponds to a truncated
normal random variable with support [0,7], T = 1, mean
p(r) = aa + baxr + €1 and standard deviation o(z) = ag +
bsz+e2, where e, k = 1, 2, is independent of all other random
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quantities and has a truncated normal distribution with mean
zero, standard deviation oy, and support [eg, fz] such that o(z)
is positive for all = in the support of Fx. Thus both the mean
and standard deviation change linearly with =. We choose
as = 0.3, bz = 0.4, az — 0.1, b3 = —0.01, €1 = —0.1, f] =
0.1, ex = —0.01, f = 0.01 and o1 = o2 = 0.5. These settings
reflect a situation where the shape components are Gaussian
and pushed to the right as z increases while the intensity
factor becomes larger. Figure 3 shows the “oracle” global
Fréchet regression function over a dense grid of predictor
values and the estimated counterpart adjusted by the constant
E(7). Lemma S.11 in the appendix shows that Q(feg(x)) is
the orthogonal projection of Q¢ (-, z) = E(s(X, z)Q(-)) onto
Q(Qr), where @ is the quantile function corresponding to the
generic random density f. We obtain Q¢(-, x) at each value of
z in the grid by employing a Monte Carlo approach similarly
as in section V-B by averaging across random trajectories
s(X, 2)Q;.

We ran 1000 simulations for sample sizes n = 100, 200 and
500. For the 7*" simulation, we measure the performance of
the method by comparing against the “oracle” global intensity
function as defined before and using integrated squared errors
analogous to the ones outlined in section V-B. The boxplots of
the error metrics against the “oracle” global intensity function
are presented in Figure 4 and are clearly seen to converge to
zero as sample size increases.

VI. DATA APPLICATIONS AND EXTENSIONS
A. Chicago’s Divvy Bike System

We illustrate our approach for the bike trips records of
the Chicago Divvy bike system, which are publicly avail-
able at https://www.divvybikes.com/system-data. The bike trip
records contain information such as the bike pickup and drop-
off location, date and time, between more than 600 bike
rental stations in Chicago. In the context of replicated tem-
poral Poisson processes, [3] analyzed this dataset by adapting
an additive principal component model to the log-intensity
functions of daily pickups and estimating model parameters
through a likelihood based approach, and such bike sharing
systems have been extensively studied [51]. We considered the
point process of daily pickups of bikes in a cluster consisting
of 6 stations not far from each other in the Chicago Divvy
system during weekdays of 2017, consisting of a station on
East South Water street and the five nearest bike rental stations
south of the Chicago river.

To study the effect of the temperature on the demand of
bikes, we obtained the daily observed temperature in Chicago
as recorded at the weather station ‘Northerly island’ from
https://www.ncdc.noaa.gov and fitted a local Fréchet regres-
sion model to obtain the conditional intensity functions of the
bike rentals, using estimates Ag(z) as in (12), where we used
a bandwidth of 1.5°C. The results are presented in Figure 5.

A clear difference emerges between days with temperature
above 10°C which have a uniformly higher intensity function
compared to days with lower temperature. In both cases, the
shape of the intensity function appears to be bimodal with
peaks at 9am and 5pm, which are likely due to bike rentals
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Conditional intensity

Conditional intensity

Fig. 3. Conditional global intensity functions mgg(x) in the simulation
setting over a dense grid of predictor levels z, displayed in blue when z = O to
red when = = 1 in the online version (dark grey and light grey in the print
version, resp.). The upper panel shows the approximation of mgg, (z) through
a Monte Carlo approach while the bottom panel shows the estimate ;\GEB (z)
adjusted by the constant E'(7) using n = 2000.

for the purpose of commuting to the workplace. Moreover, the
conditional intensity function estimate is higher around 5pm
compared to the early peak at 9am, which may be explained
by the fact that it is warmer and easier to bike in the afternoon
than early in the morning, so perhaps commuters use public
or shared transport in the morning and a bike in the afternoon.

There appears to be a “shoulder” or minor peak of bike
rental demand at around 12pm on warm days only, which
is likely related to more or less optional lunch break related
bicycle travel, for leisure or to catch some food. Overall,
we find that increasing temperature boosts the bike rental
demand in this region of Chicago. Figure 5 (b) shows the
quotient between the estimated conditional intensity function
at z = 2°C and = = 18°C. We observe that the ratio is
much higher around noon compared to the ratios at 9am
and 5pm; moreover, this ratio is higher for the morning
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Fig. 4. Boxplots of the errors for the conditional shape function estimates
ISEY (upper panels) and the conditional intensity factors TSET (bottom
panels), in the simulation setting for n = 100 (left), n = 200 (middle) and
n = 500 (right). Five outliers were removed for both the shape and intensity
factor boxplots when . = 100, respectively.

commute compared to the evening commute, indicating that
the afternoon demand is not just a reflection of the morning
demand. This ratio can be characterized as the degree to
which bike travel is optional, where the obvious alternatives
to making a trip by bike are not making a trip or making the
trip by other means of transportation.

B. New York Yellow Taxi System

The New York yellow taxi trip records is a rich and large
scale database that contains information such as the taxi pickup
and drop-off latitude and longitude locations as well as the date
and time, among several other variables. The data is avail-
able from the NYC Taxi and Limousine Commission (TLC)
at https://www1.nyc.gov/site/tlc/about/data.page. Using point
processes, this data has been studied by several authors in an
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Fig. 5. (a) Estimated conditional intensity functions in dependence on

temperature values between —2°C (blue) and 24°C (red) in the online
version (dark grey and light grey in the print version, resp.), using bandwidth
h = 1.5°C, with highlighted conditional intensity functions at temperatures
2°C and 18°C. (b) Ratio between the estimated conditional intensity functions
at temperature 18°C to that at 2°C.

applied setting; see for example [52] and the references therein
for a review and comparison of different intensity models. The
Poisson process as a working model for the taxi pickups at a
fixed location is well justified theoretically as a superposition
of many independent and sufficiently sparse point processes,
similar to the case of call arrivals at a telephone exchange [6].
It is of interest to study how the demand of taxis is associated
with the day of the week and for this we employ a regression
approach.
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We consider the point process of daily pickups of yellow
taxis that occurred at Penn station in Manhattan during 2017.
Penn station is a major train station located in Midtown
Manhattan that serves commuters from New York City, New
Jersey and Long Island, and connects NYC with several
other cities. We view these data as a sample of replicated
point processes, as each day produces a replication of the
underlying data generation mechanism. To study the effect
of weekdays and weekends on the demand of taxis at Penn
station, we consider a categorical predictor X that indicates
whether the day corresponds to a Monday-Thursday, Friday,
Saturday or Sunday. Since local smoothing does not apply
to indicator type predictors, we instead consider the global
regression framework that was introduced in section IV-D and
is well suited for categorical predictors.

Fitting a global regression model for the intensity function
on the day of week X by using the estimates Acg () defined
after Theorem 4 leads to the results as presented in Figure 6.
For Sundays, the intensity function is highest late in the
day and after 4pm is higher than on all other days, likely
due to people returning to New York City from an out of
town trip. The weekday (Monday through Thursday) intensity
function is bimodal with a higher first mode. These modes
likely correspond to the commuter traffic, where the 8am mode
would be due to commuters who live outside New York City
and arrive for work in the City in the morning, while the
evening mode likely corresponds to people who return from
out of town at Penn Station and hail a taxi there. On Fridays,
the same modes are present but with a reversal of their height,
as the second mode is now higher than the first mode, likely
corresponding to reverse commuters who live in New York
City and return from outside, perhaps having a work place
away from the City.

The patterns for Saturday are also bimodal but with different
locations and levels of the modes, indicating that relative large
numbers of people arrive at Penn Station around noon and at
8pm, perhaps indicating leisure and shopping trips.

C. Aftershock Earthquake Process in Chile

The proposed Cox process regression also has applications
in seismology, where the times earthquakes strike naturally
forms a point processes. So it is not surprising that earthquake
activity has met with major interest in the point process liter-
ature [2]. Chile is widely known for its strong seismic activity
in both frequency and intensity. Our goal is to study the
aftershock process that follows a major earthquake occurring
at time ¢ = 0, where the major earthquake that may trigger
aftershocks is referred to as the mainshock. We focus on the
arrival of aftershocks that occur in a time window of 2 months
after the mainshock so that the aftershock process N (t) is
observed in [0,T] for T = 2 months.

To demonstrate the proposed regression methods, we con-
sidered the mainshocks that occurred between 1980 and
2017 in Chile. These include some strong earthquakes
such as the magnitude 8.8 earthquake on the moment
magnitude scale in February 2010, 8.2 in April 2014,
8.0 in March 1985, and other strong earthquakes. The
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Fig. 6. Estimated intensity functions using global regression with type of day
as predictors. The fitted response functions are shown for Monday-Thursday
(green dot-dashed), Friday (magenta solid), Saturday (red dashed) and Sunda

(black dotted) in the online version. The Y-axis is scaled by a factor of 107°.

TABLE I
DISTRIBUTION OF EARTHQUAKES IN CHILE BETWEEN 1980 AND 2017

Magnitude | Number of Earthquakes
5.0,5.5) 1,679
5.5,6.0) 476
[6,6.5) 160
6.5,7.0) 53
7.0,9.0) 25

data was obtained from the U.S. Geological Survey web
page https://earthquake.usgs.gov/earthquakes/search/ which
provides information concerning the location, magnitude and
date of the earthquakes. We classified each earthquake in
terms of its magnitude category and selected 15 mainshocks
at random from each category in the order strongest to
weakest. This enables us to consider the strongest earthquakes
above magnitude 7; see Table I. Table II shows some of the
strongest aftershocks along with their arrival time after the
2010 earthquake.

In order to avoid including an aftershock that could corre-
spond to more than one mainshock, we adopted the following
selection scheme: If we select an earthquake that occurs at
calendar time #p as mainshock, then we cannot choose any
earthquake that occurs in the interval (tg — T,¢o + T') as
mainshock. Furthermore, we consider an earthquake to be a
mainshock if the sequence of earthquakes that occur during the
following 2 months after its arrival time have strictly smaller
magnitudes.

We implemented conditional intensity function estimation
using the magnitude of the mainshock as a one-dimensional
predictor. Figure 7 shows the estimated conditional intensity
functions (12) for different levels of magnitudes between 5 and
8.5, along with the conditional intensity for the mean magni-
tude level £ = 6.3 and for a strong earthquake at magnitude
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TABLE II

SOME OF THE STRONGEST AFTERSHOCKS WITHIN 4 HOURS FROM THE
MAGNITUDE 8.8 EARTHQUAKE ON 27 FEBRUARY, 2010, CHILE

Magnitude 6.2 | 60 [60]74]61]60]6.0
Aftershock Time [hours] | 0.3 | 06 | 1.1 | 1.5 | 1.9 | 3.9 | 3.9

r = 8.0. We observe that the conditional intensity function
for the strong earthquake has an exponential decay, suggesting
that most aftershocks occur closer to the mainshock. The shape
of the regression curve agrees with the traditional model for
aftershock sequences that correspond to large earthquakes,
with intensity function declining as a power law, which is
known as the modified Omori law [2], [53].

The regression curve for a magnitude 6.3 earthquake is
mostly flat but presents a slow decay towards the end of the
time window of observation. This could be due to the fact that
medium or low magnitude earthquakes do not tend to produce
substantially more aftershocks compared to the natural seismic
background activity in Chile. In fact, the conditional intensity
function for the strong earthquake is uniformly higher than the
one for the magnitude 6.3 mainshock. Finally, the conditional
intensity functions for earthquakes below magnitude 6 are
mostly flat, which indicates that those earthquakes tend to
produce aftershocks that are more uniformly scattered and at
least partly correspond to the background seismic activity in
Chile.

VII. CONCLUSION

We develop here a novel fully non-parametric regression
method that features point processes as responses coupled with
Euclidean predictors X & RP by establishing a connection
to conditional barycenters. Crucially, our model is based on
the availability of repeated realizations of the same point
process. The random objects for which we construct condi-
tional barycenters are the intensity functions of Cox processes,
which we can represent as taking values in a product metric
space. A novelty in point processes is that the regression
setting makes it possible to achieve consistent estimation
of intensity functions (up to a constant scale factor for the
intensity that is common to all observed realizations of the
point process).

Obtaining such consistency has been an elusive goal and in
fact is not possible when one has one realization of the point
process over a fixed domain. What we show here is that this
lack of consistency can be overcome in a regression setting
where one can harness concepts of conditional barycenters
that have been developed for Fréchet regression. For each
point process, one may have a continuous one-dimensional or
general vector predictor that is a random variable associated
with the point process. In the former case we can use a
nonparametric smoothing method under minimal assumptions,
while in the latter case we target a global model that is akin
to multiple linear regression and makes it possible to include
indicators as predictors.

Our approach relies on straightforward computations and
does not require the use of functional principal components,
a tool that is not well suited for intensity functions as they do
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not reside in a linear space due to their non-negative nature.
We show that the proposed regression model is applicable
to many data situations where one is interested to study
the behavior of point processes in dependence on covariates,
including applications in transportation and seismology.

APPENDIX

A. Proofs of Results in Section IV-A

Proof of Lemma 1: Let Q1,Q2 € Q(r), A € [0,1]
and Qx = AQ1 + (1 — A\)Q2 and z,y € [0,1]. It is clear
that @,(0) = 0, @Q(1) = T, and by the triangle inequality
Qx(z) — Qa(¥)| < Llz — y|. Suppose now that = < y,
then since @, is non-decreasing we have |Qx(z) — Qi (y)| =
Qx(y) — Qx(z). Furthermore, for M as in (S1),

Qx(y) — Qa(z)

= AMQ1(y) — Qi(z)) + (1 — A)(Q2(y) — Q2(z))
ZAM(y—z)+(1-A)M(y —x)

=M(y — z),

which implies |Q»(z)—Qx(y)| > M|z—y]| forall z,y € [0, 1].
Hence, Q(Q ) is convex and it is clearly a subset of L2([0, 1])
since the quantile functions are bounded. Next, let Q1,Qa, . ..
be a sequence in Q(Qx) such that Q, L Q € L%([0,1]) as
n — oo. We show that @) € Q(€2r). In fact, since the family
{Qn}52 ; has a common Lipschitz constant L, it follows that it
is uniformly equicontinuous. Moreover, since [0, 1] is compact
and Q, L Q € L?([0,1]) then @, — Q uniformly as n —
oo. This implies @Q(0) = 0 and Q(1) = T'. Next, for any
z,y € [0,1] and € > 0 we have that ||Qn — Q||ec < €/2 for
n large enough and

1Q(z) — Q(y)|

<1Q(z) — Qu(z)] + [Qn(z) — Qu(y)| + |Qn(y) — Q)|
< 2(|Qn — Qlleo + Llz — y]

<e+Llz—yl,

for large enough n(e), using that @, € Q({2r) by assumption
and the functions in this space satisfy the Lipschitz condition
with constant L. Taking ¢ | 0 we obtain that @ is also
Lipschitz with constant L. Similarly, for n large enough

M|z —y| < |Qn(z) — Qn(y)]
<2(|@Qn — Qllo +Q(z) — Q¥
< e+(Q(z) — Qy)l,

so that @ satisfies condition (S1). Therefore, Q(£2r) is closed.

The following lemma shows that there are no empty point
processes and follows by adopting analogous arguments as the
ones outlined in the proof of Lemma 3 in [30]. We present it
here only for completeness and without proof. In what follows,
we introduce auxiliary quantities s;(z,h) = og *Kn(X; —
z)|ug —ui1(X; — )|, i =1,...,n, where u; = E(Kn(X; —
z)(X1 —z)7), j € {0,1,2} and 0% = upuy — u?.
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Fig. 7. Estimated conditional intensity functions for the aftershock process
for different levels of magnitude between 5.0 (blue) and 8.5 (red) in the online
version, with specific conditional intensity functions at magnitudes 6.3 and
8.0, and bandwidth 0.8 in magnitude. The Y-axis is scaled by a factor of
1073

Lemma S.1: Suppose that 7 > « > 0 almost surely with &
as in assumption (S3) and a,/logn — oo as n — oo. Then

min; <s<n N;™(T) L (A—eNs
an - 2

a.s..

lim inf
n—oo

Proof of Proposition 1: From (10) we have

dr (fo(x), fo (@) <n™'Y |sin(z, h)] [1Qi — Qillz2qo,1)-
i=1
(17)

From the proof of Lemma 2 in [29], we have s;,(z, h) —
Si(I, h) = WgnKh(Xg'—I)-I—Wanh(Xi—I)(Xi—I), where
Won = ti /62 —ug /02 = Op((nh)_lfz) and Wy, = i1 /62 —
uy/og = Op((nh®)~1/2). Thus

nY " |sin(x, )| 1Q: — Qillz2(o,1))
i=1
<n’! Z|Sm(ﬁfu h) — si(z, h)| [|Q: — Qsllr2(o,1)
i=1

+n7 1Y Jsi(z, B)| [1Qi — Qillzaqo,1p
i=1

< Won n™' ) Kn(X; — )|Q: — Qillz2(o,1))

i=1
+Win 7Y Kn(Xi — 2)| Xi — 2] |Qs — Qsl|r2o,1)
i=1
+luz/og| n Y Kn(Xi — 2)]|Qs — Qsl|2(0,1))
i=1

+lur/og| n 7t Kn(Xi — )| X: — =] ||Q: — Qillz2(0,1))-

i=1
(18)
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Let p; be the probability measure on [0, 7] with correspond-
ing quantile function );. Note that

1Q: — Qillz2(o,1))
= dw (i )L (o 7y50) T AW (s 1)L (v () o)
< dw (s )L v (ry>0) T T (v )=o)
< dw (Ai, 1)1 (e (1)50)0
almost surely and for large enough n, where the last inequality

is due to Lemma S.1 above using the condition ay,/logn —
oo as n — oo. This along with the fact that

E(dW (ﬁ‘i: P"i)l(Ng“}(T)}OﬂAi: Xw')
= E(dw (A, 1)1 () (7)50) A1)
< (T/(2k)*)az 4,

for large enough n, which follows by similar arguments as the
ones outlined in the proof of Theorem 2 in [30], shows that

E(||Qi — Qillz2(o,1|As, Xi) = O(ay /%),

for large enough n, where the O(an 1/ 4) term is uniform in 7.
Thus, for j € {0,1} and by a conditioning argument, we have

E (n_l Z Kn(Xi — )| X; — = ||Qs — QiHLZ([osll))
i=1
=Y B (Kn(Xi - 2)|X; - af
i=1

E(IQi = QillzzqomplAs, Xa))

=O0(ay /") ™'Y E (Kn(X; — 2)|X; — =)
i=1
=O0(Waz'/Y),

which implies
n~t Z Kn(X; — 2)|X: — 2 [|Qs — Qillz2(o,17)
i=1

= Op(hayl*). (19)

Define auxiliary quantities v = fil u*K (u)du, k =
0, 1i2. By Taylor expansion it is easy to see that ug = f(z)+
B2 uK @) f (Gou)du, wr = B(f2 K (u)f' (€u)du),
uy = Kyf(z) + b3 1 wPK(u)f (€2u)du, where &y,
&y, and &5, are between z and x + wuh. Since ap =
L K (0) f (Gpu)du, k= 0,1,2, satisfies |ax| <
SUPscir—1,2+1)f'(8)| < oo for large enough n, it follows
that

|uz /)|
= (72f(z) + haz)/(72f*(2) + h(azf (2) + aoy2f(z))
+ h*(agaz —af)) = O(),
|u1 /3]
= a1/(12f*(z) + h(azf(z) + aoy2f(z)) + h*(aoaz — a))
=0(1),
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as n — oo. Combining with (18), (19) and the fact that Wy,, =
O, ((nh)~1/2) and W1, = Op((nh®)~1/2) leads to

mn
7y [sin(x, B |Q: — Qillz2(o,1)) = Oplen /4,
i=1
and the result then follows from (17).
Proof of Theorem 1: Under the assumptions (K0), (L1)
and fx > 0 with unbounded support and the choice of hy,
we have from Corollary 1 in [29] that

dr (fo(z), fo(z)) = O

p(n—Z/s)'

Next, from Proposition 1 we obtain dr(fg(z), fo(z)) =
Op(an 1/ %). Combining with the triangle inequality (9) leads
o

dr(fa(z), fo()) < dr(fo(z), fo(2)) + dr(fo(2), fo(z))
= 0p(n™/* + 0!/,

which shows the result.

B. Proofs of Results in Section IV-B

We begin by establishing four auxiliary lemmas.

Lemma S.2: Suppose that there exists M; < oo such
that 7 < M; almost surely and let i € {1,...,n}. Then,
conditionally on a realization of A;, N,;(n) (T')/an —7; is mean
zero with (conditional) variance bounded above by M;/ay,.

Proof of Lemma S§.2: Since N,;(n) is a Cox process, it is
generated by two independent random mechanisms: First the
generation of the intensity functlon A;, and then, conditional
on A;, of the realizations of N correspondlng to those of a
Poisson process Nﬁ(n)( |A;) with intensity function a,A; [2].
Thus, we may regard the probability space associated with the
generation of the intensity function and the Poisson process as
a product probability space W; x W, such that A; = A;(wq),
where w; € Wj leads to a realization of the intensity function
and then N{™(-) = N{™(-,w3), where wy € Wy leads to a
realization of a Poisson process with intensity function anA;.
For 7; = fg A;(s)ds, we have that given A;(w;), N{™(T) ~
P(an7i(wr)), with (conditional) variance ay7i(wi). Thus
Ew, (N{™(T)/an — 73(w1))|Ai(w1)) = 0 and

Ew, (N (T)/an — 7i(w1))?|As(w1))
= a;, 2Varyy, (N (T) |Ai(w1))
=T1i(w1)/an
< Ml/an:
which shows that
Varyy, (N\"(T) /an — 7i(w1)[Ai(w1)) < My /an.

The result follows.

Lemma S.3: Suppose that (53) holds. If there exists M <
oo such that k < 7 < M; almost surely with x as in
assumption (S3), then

n (n)
o n' Y sin(, ) (L"af’ —ﬁ) = Op((nh)™/%).

i=1
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Proof of Lemma S.3: From the proof of Lemma 2 in
[29], we have sjn(z,h) — si(z,h) = Woo Kn(X; — ) +
W]nKh(Xi — I)(X@ — I)., where Wgn = ﬁg/&% — UQ/JZ =
Op((nh)~1/?) and Win, = i1/63 — u1 /0§ = Op((nh®)~1/2).
Thus

‘\/a n! i Sin(z, k) (M — 'r,;) |

&
i=1

| o n IZ(S“‘(J; h) — si(z, k) ( (n}(T) ﬁ)
(N(ﬂ')(T) 'r,;)

+ |van n- 12 sile, h)

< |V/@nWon n- ZKh(X—I)( NUT) )|
)(Ni(n)(T) _ ’n;)

i1}

+ |\gan”1nn

+ | o n ! i si(z, h) (*Ni(:?fT) — 'r,;) .

-1 Z Kn(Xi—z)(Xs —
i=1

(20)

Defining Z;, = n 'Y Ku(Xi — 2)(Xi —
2 [N™(T)/am — 7], 7 = 0,1, then by independence
and a conditioning argument we obtain

E(an)
_ E(n—zifﬁi(x@ - 0)(Xi - 2)¥ (% =)

n

D DF2 ORI A LY

i=1 k#i

E[Kh(Xk —z) (X —z) (@ - T")]

i1}

- E(n_2 zn: K2(X; — 2)(X; — )%

i=1

E ((N,;(“) (T)/an — 7)2|As, Xg-) )

< (Mi/an)E (n—2 3 KX - z)(Xi - I)%‘)
i=1

1
= (Mlhzf—l /(nan)) / 1u23'K2(u) F(z + uh)du
=O0(h*7!/(nay)),

where the second equality and third inequality are due
to Lemma S.2 above and using that E((N(n)(T)/an —
m)|Ai, Xi) = E(N"™(T)/an — 7)|A;) = 0. This implies
Zon = Op((nhan)~'/?) and Z1n, = Op((nan/h)~*/?). Thus

VanWon IZKh(X—z) (QCAR
b(nh)~ ) @1

VWi n Y KXo — 2)(Xi - )(%—ﬁ)
(). @)

Authonzed licensed use limited to: Univ of Calif Davis. Downloaded on May 04,2022 at 09:33:43 UTC from IEEE Xplore. Restrictions apply.



GAJARDO AND MULLER: COX POINT PROCESS REGRESSION

Similarly, due to s;(z, k) = g 2Kn(X; — z)[uz —uy (X; —
z)],

n (n)

an n! Z si(z, h) (w _ ,ri)
i=1 n

= (u2/93)v/anZon — (u1/o8)V/anZ1n

= Op((nh)™1/?),

where the last equality is due to uz /0% = O(1) and u, /03 =
O(1), which were shown in the proof of Proposition 1. This
along with (20), (21) and (22) leads to the result.
For the following, recall that N(T') :==n=13"" | N™(T).
Lemma S.4: Suppose that the same assumptions as in
Lemma S.3 hold. If a,, — o as n — oo, then

Ja (@ ~E() = 0,(0).

Proof of Lemma S.4: The result follows from an application
of a central limit theorem for triangular arrays. First consider
the case when Var(r) > 0. Let a; = N(™(T)/ay, then by
conditioning on A; it follows that E(a;) = E(7) and

(23)

o2 := Var(a;) = Var(r) + E(1) /an.

Setting s2 = "7, 02 = n(Var(t) + E(7)/an), we show
that

=3 (@ B() £ N, 24)
=1

whence we may infer

\/H (%‘n’r) — E(’r)) /\/Var('r) + E(T)/an = O}U(]—):

and furthermore (23), since Var(7) + E(7)/c, is bounded
above as 7 is uniformly bounded and the positive sequence
oy, satisfies 1/a, — 0 as n — oo. The Lyapunov condition

N n
Jim — Y EWN™(T)/an - E(r)*=0  (25)
n =1
implies (24) and will hold if we  show
limg o L E(N{(T) — a,E(r))* = 0. Noting that
N™(T)|Ay ~ P(an7i) and
(N{"(T) - anE(r))*
= [N (D)]* — 4[N{™(T)Pan E(r)
+6[N{"(T)2a2E(r)? — 4[N{"(T)]a} E()*
+anE(r)t,

conditional on Ay, the higher order moments of
N(T)Ar are given by E(N;"(T)A) =
(an1)* +6(anT1)*+7(anm1)?+(anm), E(N{™ (T)F|Ar) =
(anm1)* + 3(anm)? + (anm) and E(IN;”(T)P|Ay) =
(an71)? + (an71). Thus, by taking expectation of the
conditional moments and wusing the fact that = is
uniformly bounded along with equation (26) leads to
lim, 00 —Lr E(N{™(T) — anE(r))* = 0, completing the

nag,

proof for the case when Var(r) > 0. Next, if Var(r) = 0,

(26)
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then 7 = 7y almost surely, for some 79 € [k, M;]. By a
conditioning argument we obtain

Var(N(T)) = n™" Var(N;™(T))
= n~ Y E[Var(N{™(T)|A,)]

+ Var(E[N{™ (T)| A1)}
= n_lan'rg.

Letting v, = /n[N(T)/an — E(r)], due to
E(N(T)/an) = E(t) = 70, it follows that E(v2) = 10/an.
This implies v, = Op(1), which shows the result.

Lemma S.5: Suppose that the same assumptions as in
Lemma S.3 hold. If ¥(a,) = O(n'/?) for some function

1 : Rt — R such that ¢¥(a,) — oo as n — oo and
Cip

— oo as n — oo, then
logn

Y(an)(N(T)/an) ' E(r|X = z)
= Y(an)E(7|X = z)/E(1) + Op(1). @7

Proof of Lemma S.5: From Lemma S.4 we have N(T)/ay, =
E(7) + Op(n~%/2), and a Taylor expansion leads to

. L_ 11 (ND)
W@/ = 55~ g7 (o~ E0)
—|—op(n_1/2).

With m(z) = E(7|X = z) one obtains

Y(an)(N(T)/an) 'm(z)

dew) o m() daw) (NT)

~ e~ ey (o, )
+0p (¥(an)/Vn) .

The results follows since ¥(a,) = O(n'/?) implies

W(an)/n'/? = O(1) as n — oo and by using Lemma S.4.
Proof of Theorem 2: Observe
nI | sin(z, IN(T)
T;D(O:n) . N(T)
= Y(an)(N(T)/an) ™"
w1ty sin(e, B)(N{™(T)/an — 73)

i=1

+9(an)(N(T)/an) 'n™' Y sin(z, )7

i=1
= (¥(an)/Van)(N(T)/an) " Op((nh)~*/?)

+ (blan)/ V) (N (T) )™ (VB B(r|X = 1)
+0,(1)

= Op(a;'/?) +¥(an)(N(T) /an) ' B(r|X = z)

+ (¥(an)/V/nha)(N(T) /an) "1 Op(1)

E(1|1X =)
= ————+0p(1
T!{J(an) E(T) + P( ):
where the second equality follows from Lemma S.3 and by
applying Lemma S.6 below with h = h, = con~'/® for
some constant c¢g > 0; and the third and last equalities
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follows from Lemma S.5 and since 1(ay) = O(y/nhy) with
nhy, = n*/5% — 0o as n — oco. The result then follows using
that ¢(ay) =< n?/5.

C. Consistency of Local Linear Estimator

In this section we include for completeness a well known
result regarding the asymptotic normality of the local linear
regression estimate for the conditional mean function. Suppose
that (X1,Y1),...,(Xn,Yn) E (X,Y) where X and Y are
real valued. Let m(z) = E(Y|X = z) be the regression
function and f(z) > 0 be the design density function. Then,
the local linear regression estimate [39] /(z) of m(z) is given
by

-1
i(z) = bT (1XTWX) (EXTWY) , bi=(10T,
) n

where W = diag(Kn(X; — z)), Kn(-) = K(-)/h with K(-)
a kernel function, Y = (Y1,...,Y,)T, and the i*® row of X
is given by (1,X; — z), i = 1,...,n. Now, if we let 4; :=
n-1 Z?:l Kh(Xg'_ — I)(Xg'_ — :E)j and &(2) = ﬁuﬂz — ﬁ%,

1 -1 i, -4
(3x7wx) - [ %, ﬁ?]
n - %
and
lorew [ S Ku(X - 2)Ys
SX WY = |:n_1 S K (X, — 2)(Xi — 2)Yi
whence

'YL Kn(Xi — 2)Ys
n Y Kn(Xi — 2)(Xi — 2)Y3|

(28)

We make the following assumptions:

(Al) The regression function m(zr) = E(Y|X = z), the
design density function f(x) > 0 and o%(z) =
E(e?|X = z), where e = Y — m(X), are twice
continuously differentiable.

(A2) The kernel K(-) is bounded and corresponds to a
density function which is symmetric around zero and
has compact support [—1,1].

(A3) As n — oo, nh® = O(1).

(Ad) There exists § > 0 and & > 0 such that
E(|le;|*t|X;) < 7,i = 1,...,n, where ¢; :== Y; —
m(X;).

Assumption (A3) implies that as n — oo we have h — 0,

nh? — o for g € {0,1,2, 3,4} and nh? — 0 for p > 6.

By a second order Taylor expansion of m(-) around x

Y = m(X) + e

= m(z) + m'(z)(X; — ) +
L (! EK D)~ m

m' (z)
2 (X~ ay?

”(I)) (Xi _ I)2 + e,
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where £(X;,z) lies between = and X;. By replacing the
previous expression in (28) and after some algebra we obtain

m(z)

gy

=m(z) + [E% —&
ﬁ2mT(I) +n Y Kn(Xi — z)es + Ry
g™ 2(1) +n7 Y Ka(Xs — 2)(Xi — )i + Ry
(29

where the remainder terms are given by

ZKh(X (m”(g(XhI))

ZK(X

We now study the asymptotic distribution of m(x) with
a suitably chosen scaling factor. For this, we introduce the
following quantmes Let ¢,7 be non-negative integers and
define k;; := f K(u)*u?du. The auxiliary lemma on the
asymptotic normahty of m(x) is listed for completeness only.
Its proof follows by standard arguments. See for example
Theorem 5.2 in [39] and the references therein.

Lemma S.6: Under assumptions (Al) — (A4),

\/E(ﬁz(z)—m(z)— ”(“’) ) N(o k2o

as n — oQ.

”(:E)) (X'S _ I)2,

) E ) = @)

o?(z)
f(z) )

D. Proofs of Results in Section IV-D

We need the following auxiliary lemma.
Lemma S.7: Suppose that the conditions of Theorem 3 hold.
Then

(n)
‘IZ (z)(N @ _ )=0p((nan)—1/2),

where s;(z) =1+ (X; —p) TS Yz —p),i=1,...,n
Sn =

Proof of Lemma  S8.7:@  Letting
n 1Y si(2) (N (T)/an — 7), by independence
we have

E(S2) =n"2Y" B(s}(z)(N™(T)/an — 7:)?)

i=1
n2Y" 3 E(si(@)(N(T)/an — 7))
i=1 ki
E(sk(x)(N{”(T) /an — 7))
=n 23" B(s}(@)(N™(T)/an — 7))
i=1
= n ' B(s} () (N{"(T)/an — 71)?),
where the second equality is due to E(sé(z)(Ni(n)(T) Jon —
7)) = E[si(z)E(N™"(T) /o — 7:|A:X;)] = 0. Next, from
Lemma S.2 and by a conditioning argument, it follows that
E(s3(z)(N{"(T)/an —11)?)
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= E(s{(@)E[(N{" (T)/an — m)°|A1, X))
< (My/an)E(si())
= (Mi/an)(1+ (z — p)TE" (z — ).
This implies E(S2) = O((nay)™!) and the result follows.
Proof of Theorem 3: Consider the auxiliary quantities
si(z) =14+ (X; — ,u)TE_l(ﬂ: —p), Won(z) := XTE_I(I —
X)—pTE Y z—p) and Wiy (z) := Y (z—p) X (z—X).
The arguments in the proof of Theorem 1 in [29] show that
Won = Op(n='72), |Win|l2 = Op(n"/?) and sin(z) —
Si(I) = —Wgn — le;ng'. Thus

0y sin(@)N(T) fon
i=1

= —WUHN(T)/an—n_l iX?(N‘-(n)(T)/an)Wln

i=1

+n71Y si(2)N™(T) /.

i=1
Next, note that

WonN(T)/an = Won(N(T)/an — E(t)) + WonE(7)
= O}U(n_lzz):

by Lemma S.4. Further, from the fact that
n n 1/2
E (I1X1]2N{"(T)/en) < (EIX1l} BNV (T)/an)?)

= \/(H(E)+II#II%)(E(T2) +o(1)),
is uniformly bounded and observing the inequality

In=2 3" XF(N(T) fam) |2

i=1

<nt Z(Né“)(T)/an)anuz,

i=1

it follows that n=2 37, X7 (N™(T)/an) = O,(1) and thus
Y X‘ST(Nw'(n)(T)/an)Wln = Op(n~1/2). This shows
that

n! Z_; sin(©)N(T)/an = n? Z_; si(z)N™(T) Jan

+Op(n~17?). (30)

Next, note that

Y si(@)N™(T)/an
=171 Y s@)(N(T) e — ) + 07y sifa)
P i=1

=n! Z Si(fﬂ)(N‘.(“)(T)/an —7i)+ E(s(X, z)1)
i=1
-I—Op(n_l/z)
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where the second equality follows from the central limit
theorem and the third is due to Lemma S.7 along with the
fact that v, — oo as n — oo. Combining this with (30) and
the fact that ¥(ay,) < n'/? leads to

Y(an) 171" sin(@)NT(T) /an = d(an) E(s(X, 2)7)

i=1

+0,(1).

Finally, arguments similar to those in the proof of Lemma
S.5 lead to

n YT sin(@)N(T)
N(T)

E(s(X,z)T)
E(7)

P(an) =Y(an)

+ OP(]'):

whence the result follows since (ay,) =< n'/2.

Proof of Theorem 4: The proof follows by arguments similar
to those in the proof of Proposition 1 and Theorem 2 in [29]
and is therefore omitted.

E. Proofs of Results in Section V-A

We require the following auxiliary lemma.

Lemma S.8: Suppose that (S1) and (S2) hold. Let v be a
positive integer and r;, 7 = 1,...,v, be an equispaced grid
in (0,1), where Ar, =1/(v + 1) is the grid spacing. Then

sup
Q1,Q2€Q(2F)

| [ @ -axwra

=) (Q1(ry) — Qa(ry))*Ar,

j=1
= o(1),

as v — oQ.
Proof of Lemma S.8: Since r; = j /(v +1) and denoting by
o = 0, we have

1 v
| [ (@0 - @a2at - Y (@ilry) - Qalr)?ar,
j=1

- ‘i [/Tj (Q1(t) — Q2(t))%dt
j=1 Tj—1
—(Q1(r5) — Q‘Z(Tj))zArv]

+ (@) - Qu(e)

T2 Y
<
_r/+l+jg1

[ @)~ quoya

Ti—1

— (Q1(rj) — Qa(ry))*Ary

Next, using that Q1,Q2 € Q(Q2r) along with simple
calculations shows that

[ @)~ @ut)dt — Qu(ry) ~ Qutry)?ar,

| [ @~ Q) - @itry) — Qatr)’e

Ti—1
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T

" 1Q1(8) — Qu(ry) + Qalry) — Qa(b))de

Ti—1

<ALT / " (r; — t)dt = 2LTAr2.

<2T

Thus
S| [ (@0 - Qa0 - @) - Qulry)ar,
j=1 Jrim1

< 2LTAr,,

whence the result follows.

Proof of Proposition 2: We will show convergence along
subsequences, which is a similar idea as in Proposition
4.1 in [54] or [55]. Recall that Qg is any (fixed) element
in S,, which can be selected by the axiom of choice. Note
that any sequence g, € Q({2r) is uniformly bounded and uni-
formly equicontinuous. Since the g, are continuous functions
defined on [0, 1], an application of the Arzela-Ascoli theorem
shows that Q(Q2x) is a compact set in L2([0,1]). Consider a
sequence of positive integers v = vy, such that v, — oo as
m — oo. Note that

IM(q) — My, ()] = o(1),

as m — oo. Since Q(f2x) is compact, there exists a sub-
sequence (Qeov,,, Jken Of (Qgv,,)men Which converges to
an element Q* € Q(r) as k — oo, ie, [|Qav,,, —
Q" ||z2(jo,1)) — 0 as k — oo. Next, as k — oo we have

M(Qe(-,2)) = My, (Qa(-, ) +0(1)
= Mvmk (Q@um,c) + 0(1):

where the inequality is due to the fact that Qgy,,, € Su,,,
minimizes M,,, (-) over the class Q(€2r) and Qg (-, z) is an
element of the latter space. Note that

Mumk (Qﬂ)umk)
= (Qavm, (rj) —w;)*Ary,,,
i=1
= (Qavn, (r5) — Q*(ry))*Ary,,
i=1
+ ) (Q*(ry) — w;)*Ary,,,
j=1
+2) Qg (15) — Q*(r;))(Q*(r5) — wj)Ar,,,

j=1

= |Qavm, — QllL2(j0,17) + M(Q) +0(1)

+ OM(Q)Qevm, — Q%llL2(0,17))

= M(Q") +o(1),
as k — oo, where the third equality follows by using the uni-
form Riemann sum integrability over the class Q(€2r) shown
in Lemma S.8 above along with the Cauchy-Schwarz inequal-
ity, and the last equality is due to ||Qgw,,, — Q" ||lL2(j0,1)) —
0 as k — oo. This shows that

M(Qs (-, 7)) = M(Q*) +o(1),
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and taking k — oo leads to M(Qe(-,x)) = M(Q*). Since
Qg (-, z) is the unique solution to the optimization problem (8)
involving M, then Q*(-) = Qg (-, z). The previous arguments
show that all convergent subsequences of (Qgy,, Jmen con-
verge to the same limit Qg (-, ). Since Qg,,, € Q(Qr) for
all m > 1 and Q(€2r) is compact, this implies that Qg,,,
converges to Qg (-, z) in the L2 norm. The result follows.

Recall that Q;(t) = q; ; + (t — 75)(q) j41 — @1,;)/Ary for
t € [rj,7541), 3 =0,...,v, where g; ; is the jth coordinate of
q;,_? =1,...,v, Q;,D =0,m70=0, qsr,u-l—l =T and Tv41 = 1.
By continuity we define @} (1) := lim; ;- @Q;(f) = T.
Lemma S.9 below shows that @)}, is in the quantile space
Q(S2r).

Lemma S.9: Suppose that (S1) and (52) hold. The linear
interpolation function Q;; satisfies Q} € Q(£2x).

Proof of Lemma S.9: Let I; = [rj,rj41), j = 0,...,v,
and t;,t2 € (0,1) If 1,12 € Ij, then |Q;(t2) — Q;(tl) =
(@5, j+1—,;)|t2—t1|/ Ar,, and the constraints of the optimiza-
tion problem (15) imply M |t2 — ¢1| < |@}(t2) — Q5 (t1)] <
L|ta — t1|. Next, consider the case when ¢, € I; and t3 € I}
for j < k. Note that Q;,(rj41) — Q) (f1) = @y j 11 —ap,; — (81—
Tj)(q;,j+1 - q;,j)/A""v = (q;,j+1 - q;,j)(l —(t1—15)/Ar),
which implies M (141 —t1) < Q) (rj+1)—Q(t1) < L(rjpa1—
t1). Also

k
Q5 (t2) — Q5 (t1) = Qb (t2) — Qi) + Y (@i — Gy1)

1=j+2
+Qy(rj41) — Qy(t),

where 35 j+2(ap; —a ;) is defined as zero whenever j =
k—1, and MAr, < ‘1;,1 — q;,I_l < LAr,, which is due to
the constraints in (15). Combining this with

Mtz — i) < Qy(t2) — Qy(rx) < L(t2 — 1),

which is due to tg, % € I, leads to
M(tz —t1) < Q,(t2) — Qp(t1) < L(t2 — t1).

Interchanging the role of ¢; and ¢y shows that
Mtz — t1] < |Qy(t2) — Q;(t1)] < L|ta — t1] for any
t1,ta € (0,1). Finally, by construction it is clear that
Q:0) = 0 and Q;(1) = lim; ;- Q}(t) = T. Thus
@} € Q(Q2r) and the result follows.

F. Additional Theoretical Results

Lemma S.10 and S.11 below present the explicit solution
for the local Fréchet regression shape component fg(z) and
the corresponding global regression, respectively.

Lemma S.10: Suppose that (51) and (.52) hold. The solution
fe(x) to the local Fréchet regression problem on the shape
component

fo(x) = argmin E(d%(f, fo)| X = z),
fo€QF
is given by the density function with corresponding quantile
function E(Q|X = z).

Proof of Lemma S.10: Denoting by @ and )y the quan-

tile functions corresponding to f and fy, respectively, and
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Q. = E(Q|X = z), then similarly as in the proof of
Proposition 1 in [29] it follows that

E(d%(f, fo)| X = x)
=E(||lQ - Q0||i2([u,1])|X =)
=E(||lQ - Qm”%zqu,]]ﬂX =1)+ [|Qz — Q(}”%z([o,l])
+2E((Q — Qz,Qz — Qo) 2(jo,1)| X = )
=E(|Q— Qm||§,2([u,1])|X =z)+[Qz — Qo”iz([o,]]);

and thus the optimal solution )y is achieved by setting Qg =
Qz, provided that we can show that @), lies in the space
Q(2r). Indeed, since Q) € Q(Qr) we have M|t — s| <
[Q(t) — Q(s)| < L|t — s|, t,s € (0,1). It is then easy to
show that M |t — s| < |Qx(t) — Qz(s)| < L|t — s|. It is also
clear that @Q;(0) =0 and @Q;(1) =T, and the result follows.

Lemma S.11: Suppose that (51) and (.52) hold. The solution
feg(x) to the global Fréchet regression problem on the shape
component

fao(z) = argmin B(s(X, 2)d-(f, fo)
fo€QF

is given by the density function whose corresponding quan-

tile function is equal to the LZ2-orthogonal projection of

E(s(X,z)Q) on Q(Qr).

Proof of Lemma S.11: Denoting by @ and )¢ the quantile
functions corresponding to f and fp, respectively, and @, :=
E(s(X,)Q), then similarly as in the proof of Lemma S.10
or Proposition 1 in [29] we have

E(s(X, z)d%(f, fo))
= E(s(X,z)[|Q — Q::H%,Z([o,u)) + Q2 — QOH%E([D,I])‘

Since Q(Qx) is closed and convex in L%([0,1]) due to
Lemma 1, it follows that the optimal solution @y exists and
is unique, and corresponds to the orthogonal projection of Q)
on Q(§2x), and the result follows.

The following lemma presents explicit solutions of the local
Fréchet regression function for the special case where the
distributions associated to the random intensity factor and
shape functions are point masses.

Lemma S.12: Suppose that (S1)-(53) hold and there exists
M; < oo such that k < 7 < M; almost surely with
k as in assumption (S53). Also, suppose that Var(t) = 0
and the distribution of the random density f corresponds to
a point mass in the space of probability distributions Qr
endowed with the 2-Wasserstein metric. Then f = g almost
surely for some density g with corresponding quantile function
Qg € Q(Qr), 7 = mo almost surely for some positive
constant rg € [k, M1] and the local Fréchet regression function
satisfies

fo(z) =g, To(z)=no.

Proof of Lemma S.12: Since the probability distribution of
the random density f is a point mass in 2z, there exists
a density function g with corresponding quantile function
Qg € Q(2r) such that f = g almost surely. Similarly,
T =10 a.s. for some ny € [k, M1]. Let fo be a density with
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Fig. 8. Boxplots of the errors for the conditional shape function estimates

ISEY in the simulation setting for local Fréchet regression in section V-B
using fixed an = 1, which does not grow with n, for n = 1000 (left),
1 = 2000 (middle) and = = 5000 (right).

corresponding quantile function Qp € Q(€2r) and let Q@ be
the quantile function associated with f. Then

E(d%(f, fo)| X = z) = E(||Q — Qol|Z2(0,17))
= 11Qg — QollZ2(0,17)-

Thus, from (3) the minimizer has Qo = @4 which implies
f'@(z) = g, and the first result follows. Next, from (13) we
have 7¢(z) = max{E(r|X = z),0} = ng, implying the
second result.

The following lemma shows the corresponding explicit
solutions when considering the global Fréchet regression
framework and the point mass probability distribution on the
components 7 and f.

Lemma S.13: Suppose that the same regularity conditions
as in Lemma S.12 hold. Then f = ¢ almost surely for
some density g with corresponding quantile function Qg €
Q(Qr), 7 = mp almost surely for some positive constant
no € [k, M;] and the following relations hold for the global
Fréchet regression function:

fea(z) =9, Ta(z) =mno-

Proof of Lemma S.13: Analogously as in the proof of
Lemma S.12 we have f = g almost surely for some density
g with corresponding quantile function @, € Q(f2r) and
T = np almost surely for some positive constant ny € [k, M1].
Denote by @ the quantile function associated with f and let
fo be a density function with corresponding quantile (Jp €
Q(Qr). Since

E(s(X,z)d%(f, fo) = E(s(X, 2)||Q — Qol|72(p0,17))
= E(s(X,2))||Qq — QollZ2(0,1))
= ||Qg - QOH%Z([DJ]):
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Fig. 9. Conditional intensity functions in the simulation setting over a dense
grid of predictor levels z, displayed in blue when = = 0 to red when x = 1 in
the online version (dark grey and light grey in the print version, resp.). The
upper panel illustrates the results for classical Euclidean intensity regression
function E'(A|X = z) while the middle panel illustrates the results for the
conditional intensity Ag(z) that corresponds to the proposed point process
regression. The bottom panel shows the true intensity signal A when there is
no noise in either the intensity factor or the mean of the simulated conditional
shape component.
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which is due to E(s(X,r)) = 1, then the minimizer
is attained when Qo = Q4 € Q(Qr). From (14) it
then follows that fgg(z) = g¢. Next, from (13) we have
T6q(z) = max{E(s(X,z)r),0} = mp by again using that
E(s(X,z)) = 1. The result follows.

G. Local Fréchet Regression When oy, Does Not Grow With
Sample Size n

Figure 8 shows the integrated error metric for the shape
part in the simulation settings for local Fréchet regression as
outlined in section V-B when fixing a, = 1, so that a,, does
not grow with n, and thus violates a basic assumption. We find
that consistent recovery of the conditional intensity function
is not possible if «;, is not allowed to increase with n as the
integrated error box plots for the shape component show no

decline in bias and stay well bounded away from zero for
increasing sample size.

H. Comparison Between Standard Euclidean Intensity
Regression Function and Local Fréchet Regression

In this section we compare through a simulation example
the standard Euclidean intensity regression function and the
local Fréchet regression counterpart. We consider the same
Gaussian data generation mechanism as the one outlined in the
global framework in section V-C but modifying the following
population parameters: az = by = 1/3, ag = 0.05, by =
0, eg = —0.15, f; = 0.15, o1 = 3, o9 = 0. Here we do
not consider the error €2 on the standard deviation o(z) of
the generated random densities, but rather keep it constant
at o(z) = ag for all x. This reflects a similar situation of
horizontal translation of a Gaussian random variable as here
only the mean increases with = while the standard deviation
remains small and constant. It is easy to show that the standard
Euclidean intensity regression function

9=(-) = E(A()|X = x),

is given by gz(-) = E(f(-)|X = z)E(7|X = z). We approx-
imate E'(f(-)|X = x) through a Monte Carlo approach where
we average across random densities f; generated at predictor
level z. Similarly, for the local Fréchet regression we obtain
E(Q()|X = z) by averaging the corresponding random
quantiles @);. To compare both quantities, denote by f(-) the
density function which corresponds to the truncated Gaussian
model considered before but disregarding the error £; affecting
its mean. Thus f(-) is the true density (without noise) at
level X = z. The intensity signal A(-) is then constructed
as Ay = fE(7|X = ) and corresponds to the underlying
intensity function in dependence on z after removing noise.
Figure 9 presents g, in the upper left panel over a grid of
values for = while the upper right panel displays the local
Fréchet regression function Ag(z). The true intensity signal
A, is in the bottom panel. One finds that the shape component
of the standard regression function g, is distorted and does
not lie in the Gaussian class where the random densities
are situated. This is due to the noise in the mean function
p(z) which produces Gaussian densities that are centered at
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the

true signal f;, and thus E(f|X = x) corresponds to a

mixture distribution which resides outside the Gaussian class.
The conditional Fréchet regression function defined through

the

2-Wasserstein barycenter is able to correctly capture the

underlying geometry of the intensity space as its shape com-
ponents remain in the Gaussian ensemble where the true signal
was generated from, and thus provides a reasonable notion of
center or mean in intensity space. If the variance of the noise
€1 is very low, then both quantities are similar.
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