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ABSTRACT
Global Fréchet regression is an extension of linear regression to cover more general types of responses,
such as distributions, networks, and manifolds, which are becoming more prevalent. In such models,
predictors are Euclidean while responses are metric space valued. Predictor selection is of major relevance
for regression modeling in the presence of multiple predictors but has not yet been addressed for Fréchet
regression. Due to the metric space-valued nature of the responses, Fréchet regression models do not
featuremodel parameters, and this lack of parametersmakes it amajor challenge to extendexisting variable
selectionmethods for linear regression to global Fréchet regression. In this work, we address this challenge
and propose a novel variable selection method that overcomes it and has good practical performance.
We provide theoretical support and demonstrate that the proposed variable selection method achieves
selection consistency. We also explore the finite sample performance of the proposed method with
numerical examples and data illustrations.
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1. Introduction

1.1. Background andMotivation

Regression has been a central technique for analyzing data,
especially to study how a response variable depends on one
or more predictor variables. It is one of the most studied sta-
tistical methods. In classical regression, responses are limited
to be scalars. More general types of data, which are situated
in a generic metric space, are readily available in the new era
of big data. Recently, Petersen and Müller (2019) extended
classical regression to Fréchet regression, making it possible
to handle these more general types of responses, including
distributions, symmetric positive definite matrices and data
on Riemannian manifolds. Fréchet regression was formulated
as a weighted Fréchet mean, with weights depending on the
predictors. When one has multivariate predictors in a regres-
sion model, an important question is which of the predictors
are relevant for the response. This leads to the problem of
variable selection, which is a very active research direction for
regression, not least due to recent technological advances that
have made it feasible to collect and store large amounts of
data. The goal of variable selection for regression is to select
important predictors that explain the variation of the response
variable. For a review of variable selection methods, see Fan
and Lv (2010) and Desboulets (2018), among many others. For
more general regression models where responses are not in
a linear or linearizable space, the important issue of predic-
tor selection is difficult and has not been addressed yet. This
provides the motivation to develop a practically feasible and
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Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

theoretically supported method in the context of global Fréchet
regression.

Petersen andMüller (2019) introduced global Fréchet regres-
sion as an extension of classical linear regression. As the name
suggests, global Fréchet regression entails a global model, but
it does not involve any global model parameters, in contrast
to linear regression models. However, most, if not all, of the
existing variable selectionmethods for linear regression succeed
by using a sparsity-encouraging penalty on the regression coeffi-
cients. Since the global Fréchet regressionmodel is definedwith-
out relying on any model parameter, it is therefore a major chal-
lenge to enact variable selection for global Fréchet regression.
In this article, we propose a novel variable selection approach
that is shown to work for global Fréchet regression by extending
the ridge selection operator that was studied in Wu (2021) for
standard linear regression. We refer to this new method as
Fréchet ridge selection operator (FRiSO). As the name suggests,
it is based on a ridge version of global Fréchet regression and
constitutes the first approach for variable selection for metric-
space valued responses.

The remainder of this article is organized as follows: Sec-
tion 1.2 sets the stage and introduces the basic set-up for Fréchet
regression. A brief review of global Fréchet regression is given
in Section 2, followed by a review of the ridge selection oper-
ator for linear regression in Section 2.4. Section 3 introduces
individually penalized ridge Fréchet regression, which is the
basic building block of the proposed variable selection method
(FRiSO) for global Fréchet regression, with details in Section 4.
Selection consistency for FRiSO is derived in Section 4.2. A

© 2021 American Statistical Association
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refitting procedure is presented in Section 4.3 with the goal to
remedy the ridge bias. Simulation examples in Section 5 and
three real data examples in Section 6 are used to illustrate the
finite sample performance of FRiSO. In Section 7, we present
concluding remarks and opportunities for future work and
applications. All technical proofs are collected in the appendix.

1.2. Preliminaries

For a metric space denoted by (�, d), where d denotes the met-
ric, we consider a random process (X,Y) ∼ F on the product
space X × �, where X ⊂ Rp. Here X = (X1,X2, . . . ,Xp)T and
Y take values in X and �, respectively, and F denotes the joint
distribution of (X,Y) on X × �. Denote the marginal distri-
butions of X and Y by FX and FY , respectively. The conditional
distributions FX|Y and FY|X are assumed to exist and to be well
defined. This is the same scenario as in Petersen and Müller
(2019), where Y is referred to as a random object.

The conventional definitions of mean and variance for
Euclidean random variables are not applicable for random
objects inmetric spaces. Fréchet (1948) generalized the concepts
of mean and variance from Euclidean data to random objects
by defining the Fréchet mean and Fréchet variance of a random
object Y as

ω⊕ = argminω∈�E(d2(Y ,ω)) and V⊕ = E(d2(Y ,ω⊕)),

respectively.
To study the relationship between a random object and mul-

tivariate random variables, Petersen and Müller (2019) intro-
duced the general concept of a Fréchet regression function of
Y given X = x with x = (x1, x2, . . . , xp)T as

m⊕(x) = argminω∈�M⊕(ω, x),

whereM⊕(·, x) = E(d2(Y , ·)|X = x). Thus, Fréchet regression
can be interpreted as an implementation of the notion of condi-
tional Fréchet means.

2. Global Fréchet Regression

2.1. Linear Regression

As a special case of Fréchet regression, global Fréchet regression
was designed to extend the classical multiple linear regression
to cover responses that are randomobjects (Petersen andMüller
2019). We proceed to review pertinent features of linear regres-
sion. The classical linear regression model is given by

Z = β0 + XTβ + ε (1)

with a p-dimensional predictor vector X ∈ X ⊂ Rp and
random errors ε with mean zero and finite variance that are
independent of X. Of central interest is the estimation of the
unknown regression coefficients β0 and β based on a random
sample {(xi, zi) : i = 1, 2, . . . , n} from model (1) and to
make a prediction for a future observation at any x in the
domain of interest X . We write z = (z1, z2, . . . , zn)T , and X =
(x1, x2, . . . , xn)T , slightly abusing the notation X.

By incorporating the intercept term, we denote the aug-
mented data by x̃i = (1, xTi )T and X̃ = (̃x1, x̃2, . . . , x̃n)T ≡

(1n×1,X). Here 1n×1 denotes an n × 1 vector of ones. Writing
β̃ = (β0,βT)T , the ordinary least-square estimate is given by

̂̃
β = (

X̃TX̃
)−1 X̃Tz. (2)

Let x̄ = 1
n

∑n
i=1 xi and �̂ = 1

n
∑n

i=1(xi − x̄)(xi − x̄)T denote
the sample mean and sample covariancematrix, respectively. By
using the decomposition X = (X − 1n×1x̄T) + 1n×1x̄T and
noting that X̃ = (1n×1,X), we have

(
X̃TX̃

)−1 = 1
n

(
1 x̄T
x̄ �̂ + x̄x̄T

)−1

= 1
n

(
1 + x̄T�̂−1x̄ −x̄T�̂−1

−�̂−1x̄ �̂−1

)

and

(
X̃TX̃

)−1 X̃T = 1
n

(
1Tn×1 − x̄T�̂−1(XT − x̄1Tn×1)

�̂−1(XT − x̄1Tn×1)

)
.

Then the prediction for a future observation at the predictor
level x is given by

(1, xT)
(
X̃T X̃

)−1
X̃Tz = 1

n

(
1Tn×1 + (x − x̄)T�̂−1(XT − x̄1Tn×1)

)
z

= 1
n

n∑
i=1

[
1 + (x − x̄)T�̂−1(xi − x̄)

]
zi, (3)

which is nothing but a weighted average of the observed
responses zi by noting that the weights sums up to one since∑n

i=1(x − x̄)T�̂−1(xi − x̄) = 0 . The prediction (3) can be
equivalently interpreted as the minimizer of

min
z

n∑
i=1

[
1 + (x − x̄)T�̂−1(xi − x̄)

]
(zi − z)2. (4)

By replacing the squared difference with the squared metric
distance d2(zi, z), Petersen and Müller (2019) arrived at the
global Fréchet regression model.

In the population perspective, Equation (4) becomes

argminzE(X,Z)

[
1 + (x − μ)T�−1(X − μ)

]
(Z − z)2

= E(X,Z)

[
1 + (x − μ)T�−1(X − μ)

]
Z,

where μ = E(X) and � = cov(X).
For the linear regression model (1), we have

E(X,Z)

[
1 + (x − μ)T�−1(X − μ)

]
Z = β0 + xTβ

= E(Z|X = x).

Consequently, the linear regression model (1) can be equiva-
lently formulated as follows:

E(X,Z)

[
1 + (x − μ)T�−1(X − μ)

]
Z

= E(Z|X = x) for any x ∈ X .

This alternative formulation for linear regression does not use
any regression parameter, and it is precisely this feature that
facilitates the extension from linear regression to global Fréchet
regression.
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2.2. Global Fréchet Regression

Motivated by the above alternative formulation of linear regres-
sion, Petersen and Müller (2019) introduced global Fréchet
regression as follows.

Definition 1. The global Fréchet regression model is character-
ized by

m⊕(x) = L⊕(x) for any x ∈ X , (5)

where

L⊕(x)
= argminω∈�E(X,Y)

{[
1 + (x − μ)T�−1(X − μ)

]
d2(Y ,ω)

}
is assumed to be well-defined.

Assume that {(xi,Yi) : i = 1, 2, . . . , n} is a random sample
from F. Let x̄ = 1

n
∑n

i=1 xi and �̂ = 1
n

∑n
i=1(xi − x̄)(xi −

x̄)T denote the sample mean and sample covariance matrix,
respectively, as in the above linear regression setting. For any x in
the domain of interestX , the global Fréchet regression estimator
ofm⊕(x) is defined as

L̂⊕(x) (6)

= argminω∈�

n∑
i=1

[
1 + (x − x̄)T�̂−1(xi − x̄)

]
d2(Yi,ω),

which can be interpreted as a weighted Fréchet mean.
Note that the global Fréchet regression estimator in Equation

(6) is a direct generalization of the fitted model and prediction
(3) and (4), corresponding to the ordinary least-square esti-
mator (2) for linear regression. Yet, in contrast to the linear
regression model (1), it does not involve regression coefficients.
This is a key feature of the global Fréchet regression model
that reflects the fact that random objects do not live in a linear
space and cannot be multiplied with parameters. This central
feature constitutes a major problem for applying parameter-
based methods to global Fréchet regression and specifically
for variable selection in global Fréchet regression, which is
the focus of the current article. While there are many vari-
able selection methods available for classical linear regression,
virtually all of these achieve variable selection by including a
sparsity-encouraging penalty in the estimating equation for the
regression coefficients. A typical example is the least absolute
shrinkage and selection operator (LASSO; Tibshirani 1996),
which achieves variable selection by placing an L1 penalty on the
regression coefficients. Since there is no parameter in the above
definition of the global Fréchet regression model, it is challeng-
ing to extend these existing sparsity-encouraging penalty-based
variable selection methods to global Fréchet regression.

The key to the above definition of global Fréchet regression
is the use of invidual weights for each observation in (6). Such
weights are not part of general sparsity-encouraging penalty-
based variable selection methods. Yet such weights are avail-
able in ridge regression. In a recent article (Wu 2021), a new
variable selection was proposed for linear regression based on
ridge regression. We show in this article that by adopting ridge
regression as a guiding principle, it is possible to overcome
the challenge of variable selection without model parameters

and to derive a well-supported variable selection method for
global Fréchet regression. We next review the recent variable
selection method of Wu (2021), where a new variable selection
method using individually penalized ridge regression was intro-
duced. Individually penalized ridge regression is a generalized
version of ordinary ridge regression (Hoerl and Kennard 1970),
where one uses different ridge regularization parameters for
each regression coefficient component.

2.3. Individually Penalized Ridge Regression

Based on a random sample {(xi, zi) : i = 1, 2, . . . , n} frommodel
(1), for individually penalized ridge regression one obtains the
unknown regression coefficients β0 and β by solving

min
β0,β

1
2n

n∑
i=1

(zi − β0 − xTi β)2 + 1
2

p∑
j=1

νjβ
2
j (7)

with ridge regularization parameters νj ≥ 0 for j = 1, 2, . . . , p.
The solution of Equation (7) is easily found to be

̂̃
βR =

[
1
n
X̃TX̃ + diag((0, νT)T)

]−1 (
1
n
X̃Tz

)
,

where ν = (ν1, ν2, . . . , νp)T and diag(ν) denotes a diagonal
matrix with elements of ν sitting on the diagonal.

2.4. Ridge Selection Operator

Following Wu (2021) when substituting λj = 1/νj, λ =
(λ1, λ2, . . . , λp)T , λ−1 = (1/λ1, 1/λ2, . . . , 1/λp)T and ν = λ−1,
the solution of (7) is given by

̂̃
βR =

[
1
n
X̃TX̃ + diag((0, (λ−1)T)T)

]−1 (
1
n
X̃Tz

)
and the corresponding hat matrix is

H(λ) = 1
n
X̃

[
1
n
X̃TX̃ + diag((0, (λ−1)T)T)

]−1
X̃T .

Variable selection for model (1) then proceeds by solving

min
λ

〈z − H(λ)z, z − H(λ)z〉 , (8)

subject to λj ≥ 0, j = 1, 2, . . . , p; (9)
p∑

j=1
λj ≤ τ , (10)

for a regularization parameter τ ≥ 0, where 〈·, ·〉 denotes
the inner product in Rn. Denote the optimizer by λ̂ =
(̂λ1, λ̂2, . . . , λ̂p)T . For an appropriately tuned τ , some compo-
nents of the corresponding optimizer will be exactly zero and
an estimate of the set of important predictors is given by {j :
λ̂j > 0}.

Based on the above derivation of Equation (3), the hat matrix
can be simplified as follows:

H(λ) = 1
n

{
1n×11Tn×1 + (X − 1n×1x̄T)

× [
�̂ + diag(λ−1)

]−1
(X − 1n×1x̄T)T

}
.
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Here it is possible that within the feasible domain specified
by constraints (9) and (10), some components of λ are exactly
zero, in which case the second term inside the hat matrix H(λ)

cannot be evaluated due to the division by 0. This issue can be
circumvented by noting that[

�̂ + diag(λ−1)
]−1 = diag(

√
λ)

×
[
diag(

√
λ)�̂diag(

√
λ) + I

]−1
diag(

√
λ), (11)

where
√

λ = (
√

λ1,
√

λ2, . . . ,
√

λp)T and I denotes the p × p
identity matrix.

It can be shown that in Equation (10) equality will be attained
at the optimal solution. Consequently, it is equivalent to replace
constraint (10) with the equality constraint

∑p
j=1 λj = τ . The

corresponding optimization problem with
∑p

j=1 λj = τ can
be efficiently solved by using the modified coordinate descent
algorithm introduced in Stefanski, Wu, and White (2014).

3. Individually Penalized Ridge Fréchet Regression

A key observation for the extension to global Fréchet regression
is that for individually penalized ridge regression, the corre-
sponding prediction of a future observation with covariates x
can be written as a weighted average as follows:

(1, xT)

(
1
n
X̃TX̃ + diag((0, νT)T)

)−1 1
n
X̃Tz

= 1
n

(
1Tn×1 + (x − x̄)T

[
�̂ + diag(ν)

]−1
(XT − x̄1Tn×1)

)
z

= 1
n

n∑
i=1

{
1 + (x − x̄)T

[
�̂ + diag(ν)

]−1
(xi − x̄)

}
zi,

which is equivalent to

argminz
n∑

i=1

{
1 + (x − x̄)T

[
�̂ + diag(ν)

]−1
(xi − x̄)

}
(zi−z)2,

where the weights sum up to one again since
∑n

i=1(x −
x̄)T

[
�̂ + 1

ndiag(ν)
]−1

(xi − x̄) = 0.
This equivalent optimization formulation makes it possible

to extend the above individually penalized ridge regression to
individually penalized ridge Fréchet regression with ridge regu-
larization parameters ν, where we introduce

R̂⊕(x; ν) (12)
= argminω∈�

∑n
i=1

{
1 + (x − x̄)T

[
�̂ + diag(ν)

]−1
(xi − x̄)

}
d2(Yi,ω)

for the prediction of the Fréchet regression function m⊕(x) at
any location x in the domain of interest X .

The population target of the above individually penalized
ridge Fréchet regression (12) is given by

R⊕(x; ν) = argminω∈�E(X,Y) (13){[
1 + (x − μ)T

[
� + diag(ν)

]−1
(X − μ)

]
d2(Y ,ω)

}
.

For the following asymptotic result, we assume thatX ⊂ Rp

is compact, and that there exists a constant B > 0 such that

sup
x∈X

‖x‖ ≤ B. (14)

Proposition 1. Assume that (U0)-(U2) of Theorem 2 in Petersen
and Müller (2019) hold with the constant B as in Equation (14).
Then

sup
x∈X

d(̂R⊕(x; ν),R⊕(x; ν)) = op(1)

for any ν ∈ R
p
+, whereR+ = [0,∞).

Note that Proposition 1 states the uniform consistency of
the ridge Fréchet regression estimate. The convergence rate is
found to be Op(n− 1

2(α−1) ) for a constant α > 1 that is connected
to assumptions (U0)–(U2); for details, we refer to Petersen
and Müller (2019). For variable selection consistency, which
is developed in Section 4.2, it is sufficient for the individually
penalized ridge Fréchet regression estimate in Equation (12) to
be uniformly consistent.

4. Variable Selection for Global Fréchet Regression

4.1. Proposed Selector

We are now ready to present the proposed variable selection
method for the global Fréchet regression based on the individu-
ally penalized ridge Fréchet regression (12). Using ν = λ−1 and
(11), we solve

min
ω∈�

n∑
i=1

{
1+(x − x̄)Tdiag(

√
λ)

[
diag(

√
λ)�̂diag(

√
λ)+I

]−1

diag(
√

λ)(xi − x̄)
}
d2(Yi,ω)

and denote the corresponding optimizer by R̂⊕(x;λ−1). Then
variable selection is implemented by solving

min
λ

1
n

n∑
i=1

d2(Yi, R̂⊕(xi;λ−1)) (15)

subject to λj ≥ 0, j = 1, 2, . . . , p; (16)
p∑

j=1
λj = τ (17)

for τ ≥ 0. Denote the solution by λ̂(τ ) = (λ̂1(τ ), λ̂2(τ ), . . . ,
λ̂p(τ ))T . For an appropriately tuned τ , some components of
the corresponding optimizer λ̂(τ ) will be exactly zero. Then an
estimate of the set of important predictors is given by Î(τ ) = {j :
λ̂j(τ ) > 0}, just as in the linear regression case. We refer to this
proposed variable selection method as Fréchet ridge selection
operator (FRiSO).

The proposed FRiSO involves a tuning parameter τ > 0.
If there are enough data, then it is recommended to use an
independent validation set to tune τ . Denote the independent
validation dataset by {(x̃i, Ỹi) : i = 1, 2, . . . , ñ}. Then τ may
be selected by minimizing

∑ñ
i=1 d2(Ỹi, R̂⊕(x̃i; (λ(τ ))−1)) with

respect to τ > 0. A grid search can be used to implement this
optimization. If the data are not rich enough for this approach,
another option is cross-validation. Details for both of these
tuning methods can be found in the supplementary materials
for this article.
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4.2. Selection Consistency

We establish here selection consistency for FRiSO, the proposed
variable selection method. A first step is to define the so-called
important predictor set for global Fréchet regression.

Definition 2. A set I ⊆ {1, 2, . . . , p} is called the important
predictor set for global Fréchet regression of random objects
Y on multivariate random vectors X, if I is the smallest set
satisfying Y ⊥ XIc |XI , that is, Y is conditionally independent
of XIc given XI .

For any set A ⊆ {1, 2, . . . , p}, xA denotes the subvector of x
with indices in A and �A,A denotes the submatrix of � with
row and column indices inA. Define

LA⊕ (x)

= argminω∈�E(XA,Y)

[
1 + (xA − μA)T�−1

A,A(XA − μA)
]

d2(Y ,ω).

Then L⊕(x) = L{1,2,...,p}
⊕ (x) by definition. While in the global

Fréchet regression model (5) m⊕(x) = LA⊕ (x) for any x ∈ X
withA = {1, 2, . . . , p}, the next result shows that this also holds
for anyA satisfying I ⊆ A ⊆ {1, 2, . . . , p}, under the following
technical condition.

Condition [A]: For any A satisfying I ⊆ A ⊆ {1, 2, . . . , p}, we
have {

E(�−1
A,A(XA − μA)|XI)

}
I

= �−1
I,I(XI − μI)

and {
E(�−1

A,A(XA − μA)|XI)
}
A\I = 0,

whereA \ I = {j : j ∈ A and j �∈ I}.
This condition holds for example if X follows a multivariate

ellipical distribution; see Theorem 2.18 of Fang, Kotz, and Ng
(1990).

Lemma 1. If the global Fréchet regression model (5) holds and
I ⊆ {1, 2, . . . , p} is the important predictor set for the global
Fréchet regression of random objects Y onmultivariate random
vectors X, then under Condition [A] we have

m⊕(x) = LA⊕ (x) for any x ∈ X as long asA satisfies I
⊆ A ⊆ {1, 2, . . . , p}.

Note that by definition the important predictor set I is the
smallest set satisfying Y ⊥ XIc |XI . It is reasonable to assume
the following additional condition to hold.

Condition [B]: EXd2(m⊕(X), LA⊕ (X)) ≡∫
X d2(m⊕(x), LA⊕ (x))FX(dx) > 0 for any set A satisfying I \
A �= ∅.

This condition asserts that global Fréchet regression will
change if any important predictor is removed from the predic-
tor set. This assumption is satisfied in the case of Euclidean
responses as verified in the next proposition and needs to be
verified on a case-by-case basis.

Proposition 2. Condition [B] is satisfied by the linear regression
modelY = β0+XTβ+ε withE(X) = μ, cov(X) = �,E(ε) = 0
and var(ε) < ∞.

The following technical conditions are additionally needed
to show that the proposed variable selectionmethod is selection
consistent. We also verify that they are satisfied in the case of
Euclidean responses.
Condition [C]: Assume that EXd2(L⊕(X),R⊕(X; ν)) > 0 for
any nonnegative vector ν satisfying ‖νI‖ > 0.
Condition [D]: Assume that the gradient ∂

∂νI
EXd2(L⊕(X),

R⊕(X; ν)) = 0 and the Hessian ∂2

∂νI∂νTI
EXd2(L⊕(X),R⊕(X; ν))

is strictly positive definite at any ν satisfying νj = 0 for any j ∈ I .
Condition [C] essentially means that for global Fréchet

regression, the model bias (quantified in terms of EXd2(L⊕(X),
R⊕(X; ν))) of the individually penalized ridge Fréchet regres-
sion is positive as long as the ridge parameters corresponding
to important predictors are nonzero. Further Condition [D]
refines the local behavioral of EXd2(L⊕(X),R⊕(X; ν)) at any ν

with νj = 0 for any j in I . It essentially means that for any
nonnegative vector νIc , EXd2(L⊕(X),R⊕(X; ν)) as a function of
νI has a zero gradient and a strictly positive-definite Hessian at
νI = 0. These are reasonable assumptions that hold for the case
of Euclidean responses, as verified by the next two propositions.

Proposition 3. Conditions [C] and [D] are satisfied by the linear
regression model Y = β0 +XTβ + ε with E(X) = μ, cov(X) =
�, E(ε) = 0 and var(ε) < ∞.

In the following proposition, we verify that Conditions [B–
D] are satisfied for the case when� is the set of one-dimensional
probability distribution functions and d is the 2-Wasserstein
metric distance between two distributions with cumulative
distribution functions H(·) and G(·), which is defined as
W2(H,G) =

√∫ 1
0 (H−1(t) − G−1(t))2dt.

Proposition 4. Conditions [B–D] are satisfied when � is the set
of one-dimensional probability distribution functions such that
for any ω1,ω2 ∈ �,

∫ 1
0

∣∣(ω−1
1 (t) − ω−1

2 (t))2
∣∣ dt < ∞, and the

space of such distributions is equipped with the 2-Wasserstein
metric distance (d = W2).

Under these technical conditions, the next theorem estab-
lishes the selection consistency of the proposed FRiSO.

Theorem 1. Assume that (U0)–(U2) of Theorem 2 in Petersen
and Müller (2019) hold for the constant B in Equation (14).
Under Conditions [A-D], when τ = τn → ∞ as n → ∞, the
solution λ̂(τn) of Equation (15) satisfies λ̂j(τn)

p→ ∞ for j ∈ I
and λ̂j′(τn)

p→ 0 for j′ �∈ I as n → ∞.

Remark: Theorem 1 only provides a weak conclusion that
λ̂j′(τn)

p→ 0 for j′ �∈ I as n → ∞ since the objective function
(15) is a highly complex function ofλ. To obtain a stronger result
such as attaining zero almost surely would require to character-
ize the gradient of the objective function, which is very chal-
lenging for Frechet regression due to the general non-Euclidean
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setting. However, in our numerical studies, we observe that zero
is actually attained as discussed in Section 4.1.

4.3. Refitting

The result in Theorem 1 that λ̂j(τn)
p→ ∞ for j ∈ I implies that

the corresponding ridge penalty parameter νj = 1/λ̂j(τn)
p→ 0

in (12) for j ∈ I . Thus, the ridge term corresponding to any
important predictor in the individually penalized ridge Fréchet
regression disappears asymptotically. Yet, in the finite sample
case with a finite n, λ̂j(τn) is always finite, λ̂j(τn) < ∞, and
consequently, νj = 1/λ̂j(τn) > 0. In this case, the correspond-
ing ridge term does not disappear, causing finite-sample ridge
bias. This issue was also discussed in Wu (2021) for the linear
regression case, where a refitting step was proposed to mitigate
the finite-sample ridge bias. This refitting step can be extended
as follows.

For every τ with optimal solution λ̂(τ ) of Equation (15), we
obtain Î(τ ) = {j : λ̂j(τ ) > 0}. Then the refitted estimate of the
Fréchet regression functionm⊕(x) is given by

m̂refit⊕ (x; τ) = argminω∈�

n∑
i=1

[
1 + (xÎ(τ ) − x̄Î(τ ))

T

×�̂−1
Î(τ ),Î(τ )

(xi,Î(τ ) − x̄Î(τ ))
]
d2(Yi,ω).

5. Simulation Studies

5.1. Overview

In the following, we discuss three types of Fréchet regression
examples to demonstrate the finite-sample performance of the
proposed FRiSO variable selection method for global Fréchet
regression. Fréchet regression is an abstract concept as also has
been pointed out by reviewers. The level of abstractness is neces-
sitated by the lack of linearity in the response space because of
which regression a much more difficult concept than it is in lin-
ear spaces. Regardless of the level of abstractness, Fréchet regres-
sion is immediately applicable in practice. How one solves the
optimization problems of global Fréchet regression (6) and ridge
Fréchet regression (12) is specific for each space and the selected
metric in the space. To facilitate the readers’ understanding,
we provide further explanatory details in the supplementary
material, specifically for the following three implementation
examples. We also provide complete implementation codes in
the supplement.

Three relevant examples for responses for which Fréchet
regression is applicable are one-dimensional probability dis-
tributions with the 2-Wasserstein metric, symmetric positive
definitive matrices such as covariances matrices or graph repre-
sentations, and data on the sphere such as directional data. We
will explore these special cases in both the following simulations
and the data illustrations below.

5.2. Fréchet Regression for Probability DistributionsWith
theWassersteinMetric

The 2-Wasserstein metric distance between two distributions
with cumulative distribution functionsH(·) and G(·) is defined
asW2(H,G) =

√∫ 1
0 (H−1(t) − G−1(t))2dt.

Data were generated by adapting the simulation example
in Petersen and Müller (2019) and correlated scalar predictors
Xj ∼ U(−1, 1), j = 1, 2, . . . , p, generated in two steps: (1)
Z = (Z1,Z2, . . . ,Zp)T multivariate Gaussian with E(Zj) = 0
and cov(Zj,Zj′) = ρ|j−j′|; (2) Xj = 2(Zj) − 1 for j = 1, . . . , p,
where  is the standard normal distribution function. We set
p = 10 and ρ = 0.5.

Example 5.2.1. The Fréchet regression function is given by

m⊕(x) = E(Y(·)|X = x) = μ0 + βx4 + (σ0 + γ x4)−1(·).
Conditional on X, the random response Y is generated by
adding noise as follows: Y = μ + σ−1 with μ|X ∼ N(μ0 +
βX4, ν1) and σ |X ∼ Gamma((σ0 + γX4)

2/ν2, ν2/(σ0 + γX4))
being independently sampled. It is then obvious that only X4 is
important. The additional parameters were chosen as μ0 = 0,
σ0 = 3, β = 3, γ = 0.5, ν1 = 1, and ν2 = 2.

Example 5.2.2. The Fréchet regression function is given by

m⊕(x) = E(Y(·)|X = x) = μ0+β(x4+x8)+(σ0+γ x1)−1(·).
Conditional on X, the random response Y is generated by
adding noise as follows: Y = μ + σ−1 with μ|X ∼ N(μ0 +
β(X4 +X8), ν1) and σ |X ∼ Gamma((σ0 + γX1)

2/ν2, ν2/(σ0 +
γX1)) being independently sampled. For this example, impor-
tant predictors areX1,X4, andX8. The additional parameters are
set as μ0 = 0, σ0 = 3, β = 3/4, γ = 1, ν1 = 1, and ν2 = 0.5.

Training samples of size n = 200 were used for both exam-
ples, and an independent validation set of the same size and
generated in the same way was used to tune the regularization
parameter τ via minimizing the squared prediction error over
the independent validation set as discussed in Section 4.1. The
selection frequencies obtained over 100 repetitions are reported
for each predictor in Table 1, where we also report the fre-
quency of consistent solution paths (Yuan and Lin 2007). In
our implementation, we obtain the optimal solution λ̂(τ ) over
a prespecified grid for τ , say {τ1 < τ2 < · · · < τK}. A solution
path is considered to be consistent if the optimal solution λ̂(τk)
leads to the same sparsity pattern as the truth for some k ∈
{1, 2, . . . ,K}.

An independent test set of size ñ = 100n, denoted by
{(X̃i, Ỹi) : i = 1, 2, . . . , ñ}, was generated in the same
way to evaluate the performance of the estimated Fréchet
regression function. The Wasserstein discrepancy D1 =
1
ñ

∑ñ
i=1[W2(m⊕(X̃i), Ỹi)]2 can be interpreted as model error

due to randomness; it cannot be predicted. For every sam-
ple {(Xi,Yi) : i = 1, 2, . . . , n}, we denote the corre-
sponding estimated Fréchet regression function by m̂⊕(·),
corresponding to R̂⊕(·; λ̂(τ̂ )−1), using the above notation.
Here τ̂ denotes the tuned optimal tuning parameter τ .
Defining D2 = 1

ñ
∑ñ

i=1[W2(m⊕(X̃i), m̂⊕(X̃i))]2, D3 =
1
ñ

∑ñ
i=1[W2(m̂⊕(X̃i), Ỹi)]2, D4 = 1

ñ
∑ñ

i=1[W2(m⊕(X̃i), m̂∗)]2
and D5 = 1

ñ
∑ñ

i=1[W2(m̂∗, Ỹi)]2, where m̂∗ = argminω∑n
i=1[W2(ω,Yi)]2 denotes the sample Fréchet mean, D2 cal-

ibrates how well the proposed method behaves in terms of
estimating the true Fréchet regression function, D3 evaluates
the prediction performance of the estimated Fréchet regression
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Table 1. Simulation results for variable selection with FRiSO for global Fréchet regression when the random objects are probability distributions.

Example Selection frequency Path

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 consistency

5.2.1 11 16 26 100 31 26 15 16 18 17 100
5.2.2 100 17 21 100 26 22 20 100 20 12 96

5.2.1 0 4 0 100 0 1 0 7 2 3
with refitting5.2.2 100 0 0 100 4 1 0 100 0 0

Table 2. Simulation results (prediction) of Fréchet regression for probability distributions with the Wasserstein metric.

Example Mean (standard error) over 100 repetitions D1
D2 D3 D4 D5

5.2.1 0.1416(0.0050) 2.5332(0.0051) 2.9360(0.0022) 5.3292(0.0022) 2.3912
5.2.2 0.1215(0.0028) 1.4330(0.0027) 0.6164(7e-04) 1.9290(8e-04) 1.3111

5.2.1 0.0259(0.0023) 2.4177(0.0023)
with refitting5.2.2 0.0266(0.0018) 1.3379(0.0018)

Figure 1. Solution path for a random repetition of Example 5.2.2, where X1, X4, and X8 are important predictors.

function, andD4 andD5 are the counterparts ofD2 andD3 if we
do not use the predictors to perform Fréchet regression.

In Table 2, we report D1 and the means of D2,D3,D4,D5
over 100 repetitions with standard error in parentheses. One
finds that D2 is much smaller than D1, indicating that the
estimated Fréchet regression function estimates the true Fréchet
regression function quite well. For one random repetition in
Example 5.2.2, we plot the corresponding solution path in Fig-
ure 1. In this example, X1, X4, and X8 are important predictors.
We find that as the regularization parameter τ increases, the
optimal λ̂j corresponding to the important predictors increase

far above those of the unimportant predictors, and the solution
path is seen to be path consistent.

We introduced a refitting step in Section 4.3 to mitigate the
ridge bias. The corresponding results with a refitting step are
shown in the bottom halves of Tables 1 and 2 and indicate
significant improvements in terms of both variable selection and
Fréchet regression function estimation.

Upon the suggestion of a reviewer, we provide an additional
simulation example for a casewhere all predictors are important.
We set p = 6 and the predictors are generated in the same way
as described above.
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Example 5.2.3. The Fréchet regression function is given by

m⊕(x) = E(Y(·)|X = x) = μ0 + β(x1 + x3 + x4 + x6)
+ (σ0 + γ (x2 + x5))−1(·).

Conditional on X, the random response Y is generated by
adding noise as follows: Y = μ + σ−1 with μ|X ∼ N(μ0 +
β(X1 + X3 + X4 + X6), ν1) and σ |X ∼ Gamma((σ0 + γ (X2 +
X5))

2/ν2, ν2/(σ0 +γ (X2 +X5))) being independently sampled.
For this example, all six predictors are important predictors.

The additional parameters are set as μ0 = 0, σ0 = 3, β =
3/4, γ = 1, ν1 = 1, and ν2 = 0.5.

The remaining procedure is exactly the same with training
sets of size 200, an independent tuning set of size 200, and
an independent test set of size 20,000. Corresponding results
are reported in Tables 3 and 4. An equally good performance
is observed. In particular, the results show that all predictors
are selected over all 100 repetitions and the proposed FRiSO
selection is seen to work very well when the responses are
distributions.

The reviewer also suggested to consider the other extreme
case with all predictors being unimportant. In response, we add
Example 5.2.4, in which all the simulation settings are the same
as those of Example 5.2.3 except β = 0 and γ = 0. It can be
easily verified that β = 0 and γ = 0 imply that none of the

Table 3. Simulation results for variable selection in Example 5.2.3.

Selection frequency Path

X1 X2 X3 X4 X5 X6 consistency

100 100 100 100 100 100 100

100 100 100 100 100 100 with refitting

Table 4. Simulation results for prediction in Example 5.2.3.

Mean (standard error) over 100 repetitions D1
D2 D3 D4 D5

0.3711(0.0045) 1.6723(0.0044) 1.6911(0.0017) 2.9784(0.0017) 1.307068

0.0484(0.0023) 1.3561(0.0023) with refitting

Table 5. Additional simulation results (variable selection) of Fréchet regression for
probability distributions as random objects (Example 5.2.4).

n selection frequency Path

X1 X2 X3 X4 X5 X6 consistency

200
15 14 8 10 13 11 100
13 21 11 11 16 19 with refitting

800
15 13 14 12 9 14 100
7 9 6 7 4 6 with refitting

predictors has prediction power in explaining the variability in
the response variable. The corresponding simulation results are
reported in the first half of Tables 5 and 6 exactly in the same
way. As expected, all predictors are selected at a low frequency,
D2 is essentially zero, andD3 is roughlyD1. For this example, we
also consider a larger sample size n = 800. The corresponding
results are summarized in the second half of Tables 5 and 6,
indicating that FRiSO’s performance improves with increasing
sample size, especially for the version with refitting.

Example 5.2.4. Same as Example 5.2.3 except for β = 0 and
γ = 0.

5.3. Fréchet Regression for Symmetric Positive-Definite
MatricesWith a Cholesky DecompositionMetric

Consider � to be the set of symmetric, positive definite (SPD)
matrices. Let P1 and P2 be two SPD matrices. Then, under the
Cholesky decomposition, we can write P1 = (P1/21 )TP1/21 and
P2 = (P1/22 )TP1/22 , where P1/21 and P1/22 are upper triangle
matrices with positive diagonal components. Then we define
the Cholesky decomposition distance between P1 and P2 as
||P1/21 − P1/22 ||F , where || · ||F is the Frobenius norm. That is,
the Cholesky decomposition metric between two SPDmatrices,
P1 and P2, is given by

dC(P1,P2) =
√
trace

(
(P1/21 − P1/22 )T(P1/21 − P1/22 )

)
.

We note that this distance is the same as the square root distance
that has been considered in various statistical applications and
is a special case of the Box–Cox class of matrix distances (Pigoli
et al. 2014; Petersen and Müller 2016; Tavakoli et al. 2019).

For the following examples, data were generated as correlated
scalar predictors Xj ∼ U(0, 2), j = 1, 2, . . . , p, in two steps: (1)
Z = (Z1,Z2, . . . ,Zp)T multivariate Gaussian with E(Zj) = 0
and cov(Zj,Zj′) = ρ|j−j′|; (2) Xj = 2(Zj) for j = 1, . . . , p,
where  is the standard normal distribution function. We set
p = 10 and ρ = 0.5. Y , the random object of interest, is an
M × M SPD matrix, I denotes an M × M identity matrix and
U = (Ui,j) denotes anM × M matrix where Ui,j = I{i<j}.

Example 5.3.1. The Fréchet regression function is given by

m⊕(x) = E(Y|X = x) = E(A)TE(A)

where E(A) = {μ0 + β(x1 + x4) + σ0 + γ x4}I+ {σ0 + γ x4}U.
Conditional on X, the random response Y is generated by

adding noise as follows: Y = ATA, where A = (μ + σ)I +
σU and with μ|X ∼ N(μ0 + β(X1 + X4), ν1) and σ |X ∼
Gamma((σ0 + γX4)

2/ν2, ν2/(σ0 + γX4)) being independently

Table 6. Additional simulation results (prediction) of Fréchet regression for probability distribution (Example 5.2.4).

n Mean (standard error) over 100 repetitions D1
D2 D3 D4 D5

200
0.0086(6e-04) 1.3165(7e-04) 0.0057(5e-04) 1.3133(5e-04) 1.3075
0.0141(0.0016) 1.3223(0.0017) with refitting

800
0.0020(2e-04) 1.3080(2e-04) 0.0017(1e-04) 1.3076(2e-04) 1.3059
0.0024(2e-04) 1.3084(2e-04) with refitting
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sampled. Thus, X1 and X4 are the only important predictors
in this example. The additional parameters are set as M = 3,
μ0 = 3, σ0 = 3, β = 3, γ = 2, ν1 = 1, and ν2 = 2.

In the following two examples, we consider the effect of the
parameter M, the dimension of the SPD matrices. For these
examples, the Fréchet regression function is given by

m⊕(x) = E(Y|X = x) = E(A)TE(A),

where E(A) = {μ0 + β(x1 + x3) + σ0 + γ (x5 + x7 + x9)} I +
{σ0 + γ (x5 + x7 + x9)}U.

Conditional on X, the random response Y is generated by
adding noise as follows: Y = ATA where A = (μ + σ)I +
σU and with μ|X ∼ N(μ0 + β(X1 + X3), ν1) and σ |X ∼
Gamma((σ0+γ (X5+X7+X9))2/ν2, ν2/(σ0+γ (X5+X7+X9)))
being independently sampled. Thus, X1,X3,X5,X7 and X9 are
important predictors. We set μ0 = 3, σ0 = 3, β = 2, γ = 3,
ν1 = 1, and ν2 = 2 and choose the dimension of Y as follows.

Example 5.3.2. M = 3.

Example 5.3.3. M = 5.

We fixed n = 200 and used an independent validation
dataset of size n to tune the regularization parameter, as well as
an independent test set of size 100n to evaluate the performance
of the final Fréchet regression function estimates. Results for
100 repetitions are reported in Tables 7 and 8 in the same way
as for the previous simulation. The results suggest that FRiSO
with refitting is an effective variable selection technique when
the output is an SPD matrix.

However, the prediction performance as quantified by D2 is
less compelling when comparing D2 with D1. This is likely due
to the fact that themodel biasEd2(L⊕(X),m⊕(X)) for the global
Fréchet regression model could be big in this example because
the data generation does not imply any “linear” dependence on
the predictors.

For one random repetition in Example 5.3.3, we plot the
corresponding solution path in Figure 2. Recall that in this
example,X1,X3,X5,X7 andX9 are important predictors.Wefind

that as the regularization parameter τ increases, the optimal λ̂j
estimates corresponding to the important predictors increase far
above those of the unimportant predictors, and the solution path
is seen to be path consistent. Also, we note that predictorsX5,X7,
and X9 are chosen before X1 and X3. This seems reasonable, as
the simulation setup for Example 5.3.3 creates different patterns
of dependency for these two sets of predictors.

5.4. Fréchet Regression for Spherical Data

In this example, we consider � = S2, the unit sphere in R3,
with the geodesic distance d(y, y′) = arccos(yTy′) for any y, y′ ∈
S2. Correlated scalar predictors were generated in the same
way as in the previous examples by first generating multivariate
Gaussian vectors Z = (Z1,Z2, . . . ,Zp)T with E(Zj) = 0 and
cov(Zj,Zj′) = ρ|j−j′| and then applying the transformationXj =
(Zj) for j = 1, . . . , p. The true Fréchet regression function was
chosen as

m⊕(x) =
(√

1 − x23 cos(π(x5 + x7)),
√
1 − x23 sin(π(x5 + x7)), x3

)
,

which implies that important predictors are X3, X5 and X7.
Adopting an approach of Petersen andMüller (2019) to gen-

erate the responses, we obtained random observations (Xi,Yi)
by first generating a predictor vector Xi as above and a bivariate
normal random vector Ui on the tangent space Tm⊕(Xi)� and
then a random response Yi by

Yi = expm⊕(Xi)(Ui) = cos(‖Ui‖E)m⊕(Xi)+ sin(‖Ui‖E) Ui
‖Ui‖E ,

where ‖Ui‖E denotes the Euclidean norm of Ui and Expp the
exponential map on the manifold for the tangent plane at point
p ∈ S2. The components of Ui were generated as independent
random variables with standard deviation σU , for which we
considered two different levels, as follows.

Example 5.4.1. σU = 0.2.

Example 5.4.2. σU = 0.35.

Table 7. Simulation results (variable selection) of Fréchet regression for SPD matrix data

Example selection frequency Path

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 consistency

5.3.1 100 0 0 100 0 0 0 0 0 0 100
5.3.2 100 1 100 0 100 1 100 0 100 0 100
5.3.3 100 1 100 0 100 1 100 0 100 0 100

5.3.1 100 0 0 100 0 0 0 0 0 0
5.3.2 100 1 99 0 100 1 100 0 100 0 with refitting
5.3.3 100 0 99 0 100 1 100 0 100 0

Table 8. Simulation results on prediction for Fréchet regression for SPD matrix data

Example Mean (standard error) over 100 repetitions D1
D2 D3 D4 D5

5.3.1 16.748 (1.648) 23.623 (1.575) 52.819 (1.701) 70.620 (1.605) 3.789
5.3.2 25.243 (1.746) 31.385 (1.760) 101.398 (1.764) 115.735 (1.753) 4.287
5.3.3 60.177 (4.336) 73.128 (4.373) 241.451 (4.332) 267.346 (4.331) 8.135

5.3.1 14.614 (1.598) 13.164 (1.535)
5.3.2 15.060 (1.707) 14.132 (1.738) with refitting
5.3.3 35.312 (4.267) 35.160 (4.338)
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Figure 2. Solution path for a random repetition of Example 5.3.3, where X1, X3, X5, X7, and X9 are important predictors.

Table 9. Simulation results (variable selection) for Fréchet regression for spherical data

Example selection frequency Path

X1 X2 X3 X4 X5 X6 X7 X8 consistency

5.4.1 11 10 100 12 100 4 100 18 96
5.4.2 16 17 99 16 100 14 100 20 90

5.4.1 7 9 100 3 100 4 100 6
with refitting5.4.2 6 12 95 6 100 11 100 8

Table 10. Simulation results on prediction for Fréchet regression for spherical data

Example Mean (standard error) over 100 repetitions D1
D2 D3 D4 D5

5.4.1 0.5000 (0.0390) 0.5727 (0.0400) 1.0796 (0.0196) 1.1712 (0.0188) 0.0798
5.4.2 0.5050 (0.0456) 0.7290 (0.0465) 1.0817 (0.0215) 1.3231 (0.0194) 0.2444

5.4.1 0.4847 (0.0417) 0.5540 (0.0420)
with refitting5.4.2 0.4881 (0.0509) 0.7079 (0.0503)

We fixed n = 100 and p = 8, and used an independent
validation dataset of size n to tune the regularization parameter,
as well as an independent test set of size 100n to evaluate the
performance of the final Fréchet regression function estimates.
Results for 100 repetitions are reported in Tables 9 and 10 in the
same way as for the previous two simulations.

We find that the proposed variable selection method
again shows very good performance and the refitting step
is seen to improve the variable selection performance. Sim-
ilar to Examples 5.3.1–5.3.3, the prediction performance as
quantified by D2 is less compelling when comparing D2
with D1, which may be due to the fact that the data
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Figure 3. FRiSO solution path for the bike rental data.

generation does not imply a globally linear dependence on the
predictors.

6. IllustrationsWith Real Data

6.1. Bike Rental Distribution Regression

We first demonstrate the performance of FRiSO applied to real
bike rental data originally collected by Capital Bikeshare in
Washington, DC. This dataset spans the years 2011 and 2012
for a total of 731 days. For each day, there are 24 observations of
bike rental counts as well as the following 8 predictors (Fanaee-T
and Gama 2013):

• BW: Indicator of bad weather (misty and/or cloudy), stan-
dardized

• RBW: Indicator of really bad weather (snowy and/or rainy),
standardized

• Holiday: Indicator of a public holiday celebrated inWashing-
ton D.C., standardized

• Work: Indicator of neither the weekend nor a holiday, stan-
dardized

• 2012: Indicator of the year 2012 , standardized
• Humid: Daily mean humidity, standardized
• Temp: Daily mean temperature, standardized
• Wind: Daily mean windspeed, standardized

We construct the response for each day to be the 24 observed
quantiles for an underlying distribution of bike rental counts.

To show the variable selection accuracy of FRiSO, we create 6
additional noise variables in the following way: X1 ∼ N(0, 1),
X2 ∼ �(α = 1,β = 2), X3 ∼ �(2, 2), X4 ∼ �(15, 1),
X5 ∼ �(15, 2) and X6 ∼ N(0, 1) + √

�(35, 2). All 14 predictors
are standardized to have mean zero and variance one before
applying FRiSO.

The FRiSO solution path is shown in Figure 3. To tune
the regularization parameter τ , we use 10-fold cross-validation.
After appropriate rescaling, the 10-fold cross-validation error
is shown as the black dotted line, while the 10-fold cross-
validation error with refitting is shown as the black solid line in
Figure 3. Thus, without refitting, we select all original predictors
as well as two noise predictors. However, with refitting, we select
only the 2012 indicator, temperature, workday indicator, really
bad weather indicator, windspeed, and bad weather indicator
variables.

Wenote that the variable selection result with refitting is quite
reasonable. Capital Bikeshare was launched in 2010. From 2011
to 2012, the company experienced a detectable shift in mean
bike rentals per day (see Figure 4). This could explain why the
year is an important variable to include in the predictor set.
Furthermore, temperature, windspeed, and bad or really bad
weather likely all determine whether individuals are comfort-
able to be outside on a bicycle; workdays will have an impact on
bike rentals. The exclusion of the holiday variable may be due to
the workday variable capturing enough of this information, and
the exclusion of the humidity variable is likely due to the other
weather variables capturing closely related information.
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Figure 4. Average daily bike rentals from January 1, 2011 to December 31, 2012.

Figure 5. Generalized R2 values for the bike rental data across τ for without refitting (left) and with refitting (right).

Finally, the generalized R2 (for details see Petersen and
Müller 2019) for global Fréchet regression with the predictors
selected after 10-fold cross-validation with refitting was found
to be a very respectable R2 = 0.708. (The generalized R2 with
the predictors selected after 10-fold cross-validation without
refitting was found to be R2 = 0.713). Figure 5 depicts the path
of R2 as τ increases.

6.2. New York Taxi Network Regression

The New York City Taxi and Limousine Commission pro-
vides records on pick-up and drop-off dates and times, pick-
up and drop-off locations, trip distances, itemized fares, and
driver-reported passenger counts for yellow taxis. The data
are available from https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page. We transform these data into network or

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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graph data, where neighborhoods are nodes and edges are
weighted by the number of taxi rides which picked up in one
neighborhood and dropped off in another within a single hour.
After proper transformation, these graphs can lie in a metric
space of SPD matrices equipped with the Choleksy decompo-
sition distance, as in Section 5.3.

To engineer SPD matrices from the taxi data, we specifically
do the following:

1. We filter the data on the month of January 2016 due to
resource restrictions.

2. We further filter on observationswith both pick-up anddrop-
off occuring in Manhattan.

3. We then label the corresponding neighborhood for each pick-
up and drop-off in the same manner as Dubey and Müller
(2020). For specific details, see Section 3.2.4 in the supple-
mentary materials.

4. For each hour, we collect the number of pairwise connections
between nodes based on taxi pick-ups and drop-offs. These
correspond to weights between nodes on a graph.

This yields 723 weighted adjacency matrices of dimension 10×
10 for these data (removing a small handful of observations due
to their sparsity). To ensure that these outputs are truly SPD
matrices, we further square them.

From the taxi data, we also collect the following nine poten-
tial predictors, with values averaged over each hour:

• Ave. Distance: Mean distance traveled, standardized
• Ave. Fare: Mean fare, standardized
• Ave. Passengers: Mean number of passengers, standardized

• Ave. Tip: Mean tip, standardized
• Cash: Sum of cash indicators for type of payment,

standardized
• Credit: Sum of credit indicators for type of payment, stan-

dardized
• Dispute: Sum of dispute indicators for type of payment,

standardized
• Free: Sumof free indicators for type of payment, standardized
• Late Hour: Indicator for the hour being between 11pm and

5am, standardized
• Vendor: Sum of the vendor indicators, standardized (in the

original data, the vendors for the recording devices installed
in each taxi are coded as 0 = Creative Mobile Technologies,
LLC; 1 = VeriFone Inc.)

From https://www.wunderground.com/history/daily/us/ny/
new-york-city/KLGA/date, we further collect New York City
weather history for January 2016. The following six weather
variables were included as potential predictors:

• Day’s Ave. Humid.: Daily mean humidity, standardized
• Day’s Ave. Press.: Daily mean barometric pressure,

standardized
• Day’s Ave. Temp.: Daily mean temperature, standardized
• Day’s Ave. Wind: Daily mean windspeed, standardized
• Day’s Total Precip.: Daily total precipitation, standardized

This then leads to a total of 15 potential predictors.
To tune the regularization parameter, we randomly split the

data into a training set of size 361 and a validation set of size
362. In Figure 6, we plot the FRiSO solution path applied to the

Figure 6. FRiSO solution path for the taxi network data.

https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date
https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date
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Figure 7. FRiSO solution path for the vectorcardiogram data.

training data across τ = {0.5, 1, . . . , 24.5, 25}. After appropriate
rescaling, the validation error is shown as the black dotted line,
while the validation error with refitting is shown as the black
solid line in Figure 6. Thus, with refitting, we select Credit, Cash,
Late Hour, Ave. Distance, Day’s Ave. Humidity, and Day’s Ave.
Temp.

This variable selection seems reasonable. Excluding Day’s
Ave Wind and Day’s Total Precip. could be due to the fact that
windspeed and precipitation change rapidly. Therefore, daily
measurements of these features may be too smooth to explain
hourly fluctuations in the taxi networks. Excluding Day’s Ave.
Press. is intuitive, as barometric pressure likely has less impact
than humidity and precipitation. Next, disputed and free rides
occur very infrequently in the raw data and thus may not have a
strong impact on a large taxi network, explaining the exclusion
of Dispute and Free. Not selecting Ave. Fare, Ave. Passengers,
and Ave. Tip could be because Ave. Distance captures much
of the information these variables provide. Also, the variation
in Ave. Passengers is very low. Leaving Vendor out seems rea-
sonable, as the choice of installed recording device may be
mostly random and may not capture underlying differences
in driver behavior. Finally, including Late Hour is intuitive, as
the neighborhoods connected between 11 p.m. and 5 a.m. may
differ quite a bit from the neighborhoods connected between
5am and 11pm.

If we analyze the dotted error curve which is computed with-
out refitting, then we see that it does not perform any variable
selection as desired. Recall that in the bike rental example, the
error without refitting selected all of the authentic predictors as

well and did not begin to increase until noise variables were
included. This is likely due to inherent ridge bias introduced
when we do not refit as well as the very strong correlations
that exist between the potential predictors in both datasets.
Thus, we further emphasize our recommendation to apply the
proposed FRiSOmethod for variable selection with the refitting
option.

Finally, the generalized R2 for the global Fréchet regression
with the predictors selected after validation with refitting was
found to be a respectable R2 = 0.492. (The generalized R2
with all predictors selected after validation without refitting was
found to be R2 = 0.499.)

6.3. Vectorcardiogram Spherical Regression

We finally demonstrate the effectiveness of FRiSO applied
to a dataset derived from vectorcardiogram measurements.
The vectorcardiogram is a method used to record the mag-
nitude and direction of the electrical forces generated during
heartbeats. It connects three leads to the torso to generate a
time-dependent vector that traces three-dimensional approxi-
mately closed curves, each representing a heartbeat cycle. As
a summary to aid clinical diagnosis, a unit vector defined
as the directional components of the vector at a particular
extremum across the cycle is often used (Paine et al. 2020).
The vectorcardiogram data consist of such defined unit vec-
tors or directional components using two different lead place-
ment systems, the Frank system and the McFee system, and
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have been obtained from vectorcardiogram measurements of
the cardiac electrical activity of 98 children of different age
and gender (Paine et al. 2020). This dataset has been previ-
ously analyzed by Chang (1986) and Paine et al. (2020). We
consider here responses that are the unit vectors obtained
with the Frank system and view these unit vector summaries
that are reported for each subject as spherical data on the
sphere S2.

When applying the proposed FRiSO approach, the spherical
response vector derived from the Frank system is related to the
predictors that were recorded in the dataset and include age,
gender, and X3,X4,X5, which are the three components of the
unit vector obtained with the McFee system. While X3,X4,X5
are continuous predictors, X1 and X2 are coded as binary vari-
ables, with X1 = 1 indicating membership in the age groups
11–19 and X1 = 0 indicating membership in the age groups
2–10. Males and females are coded as X2 = 1 and X2 = 0,
respectively. The predictors are then standardized to have mean
zero and variance one before applying FRiSO.

The FRiSO solution path is shown in Figure 7. To tune
the regularization parameter τ , we use leave-one-out cross-
validation. After appropriate rescaling, the leave-one-out cross-
validation error is shown as the black dotted line in Figure 7
and thus the leave-one-out cross-validation selects a final model
with predictors X1,X3,X4, and X5. The generalized R2 (for
details see Petersen and Müller 2019) for the global Fréchet
regression with the selected predictors X1,X3,X4, and X5 was
found to be a sizableR2 = .462. This indicates that all predictors
except gender are relevant for the response.

7. Concluding Remarks

In this work, we have proposed a novel variable selection
method for global Fréchet regression and have demonstrated
that it achieves selection consistency, affirming its effectiveness.
We have further provided simulation and real data examples
to demonstrate its competitive finite sample performance. The
inference capability of thismethod as gleaned from the resulting
selection paths as well as the generalized R2 for random object
responses was found to be reasonable. We note that there is
great potential to develop further inference, such as a general-
ized variable importance measures or post-selection inference
(Berk et al. 2013). Finally, we emphasize that FRiSO extends the
capability of global Fréchet regression to be applied not only
to complex data, but also to complex data coupled with high-
dimensional predictors where p is large. Such data are becoming
increasingly common.

Acknowledgments

The authors thank to two anonymous referees, an Associate Editor, and
coeditor Prof. Marina Vannucci for their constructive comments, leading
to substantial improvements in the article.We thank to Prof. Simon Preston
for sharing the vectorcardiogram data.

Funding

The research of D.C.T. was partially supported by National Institute of
Mental Health grant RF1MH125928 and NSF grant DMS-1821171. The
research of Y.W. was partially supported by NIH grant National Institute
of Mental Health grant RF1MH125928 and NSF grants DMS-1821171 and
CCF-1934915. The research of H.G.M. was supported in part by NSF grant
DMS-2014626.

SupplementaryMaterials

Online supplementary materials contains the technical proofs and imple-
mentation details of the proposed FRiSO as well as implementation codes
in R and Matlab.

References

Berk, R., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013), “Valid Post-
Selection Inference,” Annals of Statistics, 41, 802–837. [15]

Chang, T. (1986), “Spherical Regression,” The Annals of Statistics, 14, 907–
924. [15]

Desboulets, L. D. D. (2018), “A Review on Variable Selection in Regression
Analysis,” Econometrics 6(4), 1–27. [1]

Dubey, P., and H.-G. Müller (2020), “Functional Models for Time-Varying
Random Objects,” Journal of Royal Statistical Society, Series B, 82, 1–35.
[13]

Fan, J., and Lv, J. (2010), “A Selective Overview of Variable Selection in
High Dimensional Feature Space,” Statistica Sinica, 20, 101–148. [1]

Fanaee-T, H., and J. Gama (2013), “Event Labeling Combining Ensemble
Detectors andBackgroundKnowledge,” Progress inArtificial Intelligence,
1–15. [11]

Fang, K., Kotz, S., and Ng, K. (1990), Symmetric Multivariate and Related
Distributions, Monographs on Statistics and Applied Probability, Lon-
don: Chapman & Hall. [5]

Fréchet, M. (1948), “Les Éléments Aléatoires de Nature Quelconque dans
un Espace Distancié,” Annales de l’institut Henri Poincaré 10(4), 215–
310. [2]

Hoerl, A. E., and Kennard, R. W. (1970), “Ridge Regression: Biased
Estimation for Nonorthogonal Problems,” Technometrics, 12, 55–67. [3]

Paine, P. J., Preston, S. P., Tsagris, M., andWood, A. T. A. (2020), “Spherical
Regression Models With General Covariates and Anisotropic Errors,”
Statistics and Computing, 30, 153–165. [14,15]

Petersen, A., and H.-G. Müller (2016), “Fréchet Integration and Adaptive
Metric Selection for Interpretable Covariances of Multivariate Func-
tional Data,” Biometrika, 103, 103–120. [8]

Petersen, A., and Müller, H.-G. (2019), “Fréchet Regression for Random
Objects With Euclidean Predictors,” The Annals of Statistics, 47, 691–
719. [1,2,3,4,5,6,9,12,15]

Pigoli, D., Aston, J. A. D., Dryden, I. L., and Secchi, P. (2014), “Distances
and Inference for Covariance Operators,” Biometrika, 101, 409–422. [8]

Stefanski, L. A., Wu, Y., and White, K. R. (2014), “Variable Selection in
Nonparametric Classification Via Measurement Error Model Selection
Likelihoods,” Journal of the American Statistical Association, 109, 574–
589. [4]

Tavakoli, S., Pigoli, D., Aston, J. A. D., and Coleman, J. S. (2019), “A Spa-
tial Modeling Approach for Linguistic Object Data: Analyzing Dialect
Sound Variations Across Great Britain,” Journal of the American Statis-
tical Association, 114, 1081–1096. [8]

Tibshirani, R. (1996), “Regression Shrinkage and Selection Via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267–288. [3]

Wu, Y. (2021), “Can’t Ridge Regression Perform Variable Selection?”
Technometrics, 63, 263–271. [1,3,6]

Yuan, M., and Y. Lin (2007), “On the Non-Negative Garrotte Estimator,”
Journal of the Royal Statistical Society, Series B, 69, 143–161. [6]


	Abstract
	1.  Introduction
	1.1.  Background and Motivation
	1.2.  Preliminaries

	2.  Global Fréchet Regression
	2.1.  Linear Regression
	2.2.  Global Fréchet Regression
	2.3.  Individually Penalized Ridge Regression
	2.4.  Ridge Selection Operator

	3.  Individually Penalized Ridge Fréchet Regression
	4.  Variable Selection for Global Fréchet Regression
	4.1.  Proposed Selector
	4.2.  Selection Consistency
	4.3.  Refitting

	5.  Simulation Studies
	5.1.  Overview
	5.2.  Fréchet Regression for Probability Distributions With the Wasserstein Metric
	5.3.  Fréchet Regression for Symmetric Positive-Definite Matrices With a Cholesky Decomposition Metric
	5.4.  Fréchet Regression for Spherical Data

	6.  Illustrations With Real Data
	6.1.  Bike Rental Distribution Regression
	6.2.  New York Taxi Network Regression
	6.3.  Vectorcardiogram Spherical Regression

	7.  Concluding Remarks
	Acknowledgments
	Funding
	Supplementary Materials
	References


