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a b s t r a c t 

Early childhood is a period marked by rapid brain growth accompanied by cognitive and motor development. 

However, it remains unclear how early developmental skills relate to neuroanatomical growth across time with 

no growth quantile trajectories of typical brain development currently available to place and compare individual 

neuroanatomical development. Even though longitudinal neuroimaging data have become more common, they 

are often sparse, making dynamic analyses at subject level a challenging task. Using the Principal Analysis through 

Conditional Expectation (PACE) approach geared towards sparse longitudinal data, we investigate the evolution 

of gray matter, white matter and cerebrospinal fluid volumes in a cohort of 446 children between the ages of 

1 and 120 months. For each child, we calculate their dynamic age-varying association between the growing 

brain and scores that assess cognitive functioning, applying the functional varying coefficient model. Using local 

Fréchet regression, we construct age-varying growth percentiles to reveal the evolution of brain development 

across the population. To further demonstrate its utility, we apply PACE to predict individual trajectories of 

brain development. 
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. Introduction 

Infancy and early childhood are periods of rapid physical growth,

kill and brain development. Throughout the first year of life, the brain

rows from 25% to 75% of adult volume during healthy development,

nd reaches 95% of its peak size by age six ( Giedd and Rapoport, 2010 ).

his increase in brain volume reflects underlying macro- and micro-

tructure tissue maturation, including increasing myelination and white

atter volume, changing cortical morphometry, and increasing sub-

ortical gray matter volumes, synapse and neuronal density. 

By scanning and assessing children throughout early development,

ongitudinal studies are in theory able to characterize brain growth pat-

erns consistently with age, and investigate associations with current

nd future cognitive performance. In fact, efforts to translate devel-
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pmental trajectories into growth curves have been initiated for neu-

opsychiatric disorders, believed to show abnormal neurodevelopmen-

al origins and trajectories ( Di Martino et al., 2014; Dong et al., 2020;

ur et al., 2014; Kessler et al., 2016 ). However, in reality, longitu-

inal data are often sparse and collected at different time points, as

articipants miss scans or assessments because of illness or, more re-

ently, self-isolation. In addition, some study designs, such as hybrid or

ccelerated-longitudinal designs, intentionally scan children across dif-

erent age ranges in order to quickly collect data across a larger effec-

ive age range. The resulting sparse and unbalanced nature of the data

akes modeling the time-varying evolution of brain growth patterns

 challenge. By far the most commonly used approaches are built on

ixed effects modeling, which features fixed effects to account for av-

rage population trends, and random effects to characterize individual
.A. 
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Table 1 

Distribution of numbers of repeated scans per child. 

Number of repeats per child 1 2 3 4 5 6 8 

Girls 114 44 21 12 4 0 0 

Boys 149 54 24 14 6 4 1 
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eviations from the mean trajectory ( Bates et al., 2014; Bernal-Rusiel

t al., 2013a; 2013b; Lindstrom and Bates, 1990; Pinheiro and Bates,

020; Sanford et al., 2018 ). 

Growth patterns are typically studied in the form of population-

ased growth trajectories, making it easier to evaluate current and fu-

ure development across differing geographies and environmental set-

ings. For example, based on physical growth data, an estimated 165 mil-

ion children under 5 years of age are currently stunted and thus at risk

r are failing to achieve their developmental potential ( UNICEF et al.,

012 ). However, growth curves are mainly used to assess purely phys-

cal growth (i.e. length, height, weight), neglecting regions that have

een more closely linked to cognitive and motor development, such

s the brain ( Silbereis et al., 2016 ). Following World Health Organi-

ation (WHO) guidelines to monitor physical growth ( WHO, 2006 ),

ambda-Mu-Sigma (LMS) and Box-Cox Power Exponential (BCPE) meth-

ds ( Cole, 1988; 1994; Rigby and Stasinopoulos, 2004 ) are frequently

sed to create physical growth curves. LMS and BCPE assume that the

ge-specific Box-Cox transformation of the original measurements 𝑌 ( 𝑡 )
ollows Gaussian and power exponential distributions, where Gaussian

istributions are a special case of the latter. These distributional assump-

ions are restrictive and may not hold in practice. For example, the LMS

nd BCPE methods are restricted to unimodal distributions, while brain

evelopment can be characterized by multimodality in age-varying dis-

ributions. Foregoing such distributional assumptions, Cox and Jones

in separate contributions to the discussion of Cole, 1988 ) proposed a

onparametric model to estimate the 𝜏th conditional quantiles 𝑔 𝜏 ( ⋅) by

̂ 𝜏 = argmin 𝑔 
𝑛 ∑
𝑖 =1 
𝜌𝜏
(
𝑌 𝑖 − 𝑔 

(
𝑋 𝑖 

))
+ 𝜆∫ 𝑔 ′′( 𝑧 ) 2 d 𝑧, (1)

here 𝜌𝜏 ( 𝑧 ) = 𝜏 max { 𝑧, 0} + (1 − 𝜏) max {− 𝑧, 0} for 𝑧 ∈ ℝ . 

Cox’s model does not include the regularization, as it sets 𝜆 = 0 ,
hile Jones considers the model with general 𝜆 ≥ 0 . Koenker and Bas-
ett (1978) impose a linearity condition 𝑔( 𝑥 ) = 𝑥 ⊤𝛽. However, this

ethod suffers from quantile crossing, i.e. quantile lines ̂𝑔 𝜏 may (and of-

en do) cross each other for different values of 𝜏 ( He, 1997 ). This means

hat a lower-level quantile could be larger than a higher-level quantile,

.g., a median at certain time can be greater than the third quartile at

he same time, which is unrealistic. Various modifications have been

roposed to overcome this crossing problem, usually under linearity

onditions ( Koenker and Bassett, 1978 ); see also Bondell et al. (2010) ;

e (1997) . 

Such linearity assumptions may not be valid for real-world data.

tructural brain development follows a nonlinear trajectory at both

hole-brain and regional brain structure levels ( Bray et al., 2015; Gen-

atas et al., 2017; Giorgio et al., 2010; Gogtay and Thompson, 2010;

ebel and Beaulieu, 2011; Lebel et al., 2008; Tamnes et al., 2017; Yu

t al., 2020 ). Gray matter volume increases rapidly during infancy,

eaking within the first three years of life ( Matsuzawa et al., 2001 )

nd gradually decreases thereafter. In contrast, white matter volume

ncreases throughout childhood and early adolescence ( Barnea-Goraly

t al., 2005; Blakemore and Choudhury, 2006 ) before decreasing in

lder adulthood. Various studies have shown differences in these pat-

erns by biological sex, with boys showing a greater gray matter per-

entage overall and girls displaying a greater white matter percent-

ge ( Giedd and Rapoport, 2010 ). This leaves a need for methodolo-

ies that help characterize longitudinal patterns of brain development,

nd to develop population-based growth curves of brain development,

iming to investigate individual variability and benchmark potentially

berrant development. To capture and characterize these nonlinear pat-

erns of development, linear and linear mixed effects models previously

sed in cross-sectional and longitudinal studies are often suboptimal.

hile nonlinear parametric approaches that rely on the Gompertz func-

ion, power law and Weibull models have been used to obtain norma-

ive growth curves ( Peterson et al., 2018; Sadeghi et al., 2013 ), such

odels run the risk of being misspecified. There is therefore a need
2 
or more flexible nonparametric methods. Nonparametric methods for

onditional quantile estimation have been proposed based on kernel

moothing and splines (e.g., Hendricks and Koenker, 1992; Samanta,

989 ), as well as variants of model (1) with different penalties pro-

osed in Koenker et al. (1994) . However, these methods either suffer

rom boundary effects detracting from the global convergence of the es-

imators (e.g., Müller and Stadtmüller, 1999 ) or the crossing problem. 

To help address these shortcomings, we are using the Principal Anal-

sis by Conditional Expectation (PACE) ( Yao et al., 2005 ), a functional

ata analysis approach, to model trajectories of proportional gray mat-

er (pGM), white matter (pWM) and cerebrospinal fluid (pCSF) volumes

rom data from 446 children from 1 to 120 months of age. This method is

pecifically geared towards sparse and irregularly observed longitudinal

ata ( Wang et al., 2016; Yao et al., 2005 ) and can be utilized to obtain

stimates of true trajectories at subject level, which is a difficult task

hen most of the subjects have only few repeats. Combining these data

nd the recently developed Fréchet regression approach ( Petersen and

üller, 2019 ) makes it possible to construct age dynamic growth per-

entiles at the population level. We use this novel approach to develop

ormative percentile “brain growth charts ” for proportions of GM, WM

nd CSF volumes from infancy to pre-adolescence. We then examine

ynamic associations between brain growth trajectories and cognitive

cores derived from the Mullen Scales of Early Learning ( Mullen, 1995 )

nd Wechsler Intelligence Scale for Children (WISC) Fourth Edition

 Wechsler, 2012 ) in early and late childhood. To eliminate confusion

egarding the usage of the term functional , which also appears in a dif-

erent context in neuroimaging, we note that the word “functional ” in

his paper refers to the statistical methods used for the analyses, which

re from the branch of statistics called functional data analysis (FDA)

hat deals with methodology for data samples that are generated by un-

erlying curves, and more general objects varying over a continuum. 

. Materials and methods 

.1. Subject details and demographics 

Data used in this study were drawn from the ongoing longitudinal

ESONANCE study of healthy and neurotypical brain and cognitive de-

elopment, based at Brown University in Providence, RI, USA. From the

ESONANCE cohort, 446 typically-developing children (195 girls) ages

ne to one hundred and twenty months were selected for analysis in this

tudy. General participant demographics are provided in Table 1 , with

hildren being representative of the RI population with ages ranging

rom 0 to 10 years. 

RESONANCE is an accelerated-longitudinal study of a large commu-

ity cohort of healthy children with approximately half of the cohort

nrolled between two and eight months of age; and the remainder be-

ween two and four years of age. Depending on child age, study visits

ccur every six (under age two) or twelve months (over age two), and

nclude multi-modal MRI, performance and parent-reported measures of

ognitive and behavioral functioning, anthropometry, and biospecimen

ollection. 

To focus on healthy and neurotypically developing children, those

ith known major risk factors for developmental abnormalities or cog-

itive impairments were excluded at enrollment. Specifically, children

orn preterm ( < 37 weeks) or small for gestation age ( < 1500 g), in utero
xposure to alcohol, cigarette smoke or illicit substances; fetal ultra-

ound abnormalities; complicated delivery resulting in 5-minute APGAR
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Fig. 1. Design plot displaying all pairs of ages for all included girls (left) and boys (right) from the RESONANCE cohort. 
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cores < 8 and/or NCU admission; neurological disorder in child (e.g.

ead injury resulting in loss of consciousness, epilepsy); and psychiatric

r learning disorder in the infant, parents or siblings (including mater-

al depression requiring medication in the year prior to pregnancy). In

ddition to screening at the time of enrollment, on-going screening for

orrisome behaviors using validated tools was performed to identify

t-risk children and remove them from subsequent analysis. 

.2. Ethics statement 

Research ethics oversight was provided by the host institutions, in-

luding the Brown University and Lifespan institutional review boards.

or all children, written informed consent was obtained from their par-

nts or legal guardians. 

.3. MRI acquisition & analysis 

For all MR acquisition, children under 4 years of age were scanned

uring natural and non-sedated sleep and older children were imaged

hilst watching a movie or other video. Our imaging protocol included

elaxometry, multi-shell diffusion, resting-state connectivity, and mag-

etic resonance spectroscopy acquisitions in addition to the anatomi-

al data. As a result, depending on child compliance (sleeping and/or

otion) high quality anatomical data were not collected or available

or every child at every scan time-point. Following data acquisition, all

cans were inspected for motion-related artifacts and image blurring or

hosting. 

The design plot in Fig. 1 illustrates all pairwise measurements with

ge differentiated by gender. For the RESONANCE cohort, this plot re-

eals the sparsity of the times when measurements were taken. Most of

he children had only one scan ( Table 1 ), and most of the measurements

ere taken at ages less than 5 years ( Fig. 2 ). 

T1-weighted anatomical data were acquired on a 3T Siemens Trio

canner with a 12-channel head RF array. T1-weighted magnetization-

repared rapid acquisition gradient echo anatomical data were acquired

ith an isotropic voxel volume of 1 . 2 × 1 . 2 × 1 . 2 mm 
3 , resampled to

 . 9 × 0 . 9 × 0 . 9 mm 
3 . Sequence specific parameters were: TE = 6.9 ms; TR

 16ms; inversion preparation time = 950 ms; flip angle = 15 degrees;
3 
W = 450 Hz/Pixel. The acquisition matrix and field of view were var-

ed according to child head size in order to maintain a constant voxel

olume and spatial resolution across all ages ( Dean et al., 2014 ). Us-

ng a multistep registration procedure ( O’Muircheartaigh et al., 2014 ),

 series of age-specific anatomical T1-weighted templates were created

orresponding to 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 60, 72, 84, 96

nd 108 month ages. At least 10 boys and 10 girls were included in each

emplate. An overall study template was then created from these age

emplates, which was aligned to the MNI152 template ( Lancaster et al.,

007 ). Each child’s anatomical T1-weighted image was transformed into

NI space by first aligning to their age-appropriate template and then

pplying the pre-computed transformation to MNI space, with the cal-

ulated individual forward and reverse transformations saved and used

or the volumetric analysis described below. All template creation and

mage alignment was performed using a 3D nonlinear approach (ANTS,

vants et al., 2014 ) with cross-correlation and mutual information cost

unctions. This step was done so that previously calculated brain masks

nd initial WM, GM, and CSF estimates could be aligned to each child’s

ndividual anatomical data and used as starting priors for the Atropos

oxel-wise WM, GM, and CSF segmentation method. The resultant tis-

ue partial volume maps were then thresholded at 0.2 and summed to

alculate total-brain, WM, GM, and CSF volumes and their proportional

raction (i.e., pWM = WM/(WM+GM+CSF)). Overall, pGM and pCSF

ecrease and pWM increase as children age ( Fig. 3 , and Figs. S.1–S.8 in

he Supplement). 

.4. Neurocognitive assessments 

Alongside neuroimaging data, each child’s cognitive development

as assessed using a combination of observed performance and parent-

eported measures. For overall cognitive functioning, children under 5

ears of age were assessed using the Mullen Scales of Early Learning

 Mullen, 1995 ), a standardized and population-normed tool for assess-

ng overall (Early Learning Composite, ELC), verbal (Verbal Develop-

ent Quotient, VDQ) and non-verbal abilities (Non-Verbal Development

uotient, NVDQ). To assess overall cognitive functioning in older chil-

ren, we used the full scale IQ (FSIQ) from the Wechsler Intelligence

cale for Children 4th Edition ( Wechsler, 2012 ), an individually admin-

stered standard intelligence test for children aged 6 to 16 years. 
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Fig. 2. Distributions of ages of observations for girls (left) and 

boys (right). 

Fig. 3. Distributions of pGM (top), pWM (middle), and pCSF 

(bottom) observed within each year increment of ages for girls 

(left) and boys (right). 
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.5. Statistical methods 

Functional data analysis (FDA) provides a powerful toolkit for an-

lyzing longitudinal data. The idea is to view the measurements for

ach individual as values of a random trajectory, sometimes contami-

ated with measurement error. Similar to traditional principal compo-

ent analysis, functional principal component analysis (FPCA) is typi-

ally used for dimension reduction and to identify dominant modes of

ariation in functional data. Classical FPCA ( Hall et al., 2006; Wang

t al., 2016 ) has been devised for fully observed or densely observed

urves but challenges arise when applying this approach in longitudi-

al settings when one has only very few repeated measurements for

ach subject or the measurements are irregularly timed. While the mean

unction can be estimated by smoothing across neighborhoods even in

parse settings as depicted in Fig. 1 , the estimation of the covariance sur-

ace, which is the backbone of FPCA, is more complex in sparse settings
4 
 Wang et al., 2016; Yao et al., 2005 ). While this challenge has been ad-

ressed and forms the key to link functional and longitudinal data analy-

is, these developments are not widely known outside of nonparametric

tatistics and one of the main goals of this paper is to introduce this

ovel approach to researchers in child development, where longitudi-

al studies with very sparse and irregular measurements are paramount.

reviously, FPCA has been proposed for longitudinal neuroimaging data

 Hyun et al., 2016 ) where the authors use spatio-temporal Gaussian pro-

ess modeling, and in case of a sparse design, a linear random effects

odel to characterize deviations around the mean trajectory. 

Principal component analysis through conditional expectation

PACE) ( Yao et al., 2005 ) is specifically geared towards situations

here the study design is very sparse and irregular, which is often

ypical for longitudinal neuroimaging studies and is also the case for

he RESONANCE data. By pooling observations across subjects fol-

owed by smoothing steps, under minimal assumptions one can get es-
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t  
imates of mean and covariance functions at the population level. At

he subject level, one may then use the functional principal component

cores obtained from the PACE approach to reconstruct trajectories. In

ection 2.5.1 , we describe in detail how we obtained mean and covari-

nce functions, the eigenfunctions of the corresponding auto-covariance

perator, the corresponding modes of variation and the individual tra-

ectory fitting for the pGM, pWM and pCSF acquired in RESONANCE. 

The software to implement PACE modeling is available on

RAN as an R package titled fdapace at https://CRAN.R-

roject.org/package = fdapace ; see Carroll et al. (2020) . We use a

unctional concurrent regression (varying coefficient) model, as de-

cribed in Section 2.5.2 , to study the association of pGM, pWM and

CSF with cognitive scores. Various estimation techniques for these

odels are available ( Cai et al., 2000; Dai et al., 2019; Huang et al.,

004; Ş entürk and Müller, 2010; Wu et al., 2010 ). 

To derive and construct conventional quantile growth charts for

GM, pWM and pCSF, as described in Section 2.5.3 , we employ lo-

al Fréchet regression ( Petersen and Müller, 2019 ), which is a non-

arametric regression method for responses lying in metric spaces

hat are coupled with Euclidean predictors. We apply this approach

or the case where the responses are distributions to obtain estimates

or age-dependent quantile functions and hence age-varying dynamic

uantiles/percentiles. An R package frechet for the implementation

f local Fréchet regression is available on CRAN at https://CRAN.R-

roject.org/package = frechet ( Chen et al., 2020 ). 

.5.1. PACE modeling 

FPCA is a dimension reduction method that summarizes functional

ata in the form of scalar valued functional principal component (FPC)

cores. For a random function 𝑋( 𝑡 ) , 𝑡 ∈ , the mean function 𝜇( 𝑡 ) and the
utocovariance surface 𝐶( 𝑠, 𝑡 ) are given by 

𝜇( 𝑡 ) = 𝔼 ( 𝑋 ( 𝑡 ) ) and 

 ( 𝑠, 𝑡 ) = Cov ( 𝑋 ( 𝑠 ) , 𝑋 ( 𝑡 ) ) = 

∞∑
𝑘 =1 
𝜆𝑘 𝜙𝑘 ( 𝑠 ) 𝜙𝑘 ( 𝑡 ) , 

here 𝜆1 ≥ 𝜆2 ≥ … ≥ 0 are the eigenvalues and 𝜙𝑘 are the orthonor-
al eigenfunctions of the autocovariance operator given by  ∶ 𝐿 2 ( ) →
 2 ( ) , ( 𝑓 ) = ∫ 𝐶( 𝑠, 𝑡 ) 𝑓 ( 𝑠 ) 𝑑𝑠 . By the Karhunen–Loève expansion, one
an represent 𝑋( 𝑡 ) as 

( 𝑡 ) = 𝜇( 𝑡 ) + 

∞∑
𝑘 =1 
𝜉𝑘 𝜙𝑘 ( 𝑡 ) , 𝑡 ∈ , 

here 𝜉𝑘 = ∫ ( 𝑋( 𝑡 ) − 𝜇( 𝑡 )) 𝜙𝑘 ( 𝑡 ) 𝑑𝑡 are the functional principal compo-
ents. The 𝜉𝑘 are zero mean uncorrelated random variables, account-

ng for random fluctuations of the trajectory 𝑋( 𝑡 ) around the mean
urve 𝜇( 𝑡 ) . For the purpose of dimension reduction, the first 𝐾 eigen-

unctions are used so that 𝑋( 𝑡 ) ≈ 𝜇( 𝑡 ) + 

∑𝐾 
𝑘 =1 𝜉𝑘 𝜙𝑘 ( 𝑡 ) is represented using

PCs ( 𝜉1 , … , 𝜉𝐾 ) . We describe the details of the estimation steps for 𝜇( 𝑡 ) ,
( 𝑠, 𝑡 ) , 𝜆𝑘 and 𝜙𝑘 in Section 5.1 of the Supplement. To determine the
ecessary smoothing bandwidths in an automatic data-adaptive way,

or the RESONANCE data, we use the geometric mean of the bandwidth

btained using generalized cross validation and a data adaptive min-

mum cutoff (5% of the age domain for mean estimation and 10% of

he age domain for covariance estimation) as the bandwidth choices for

he mean and covariance smoothing steps. This automatic bandwidth

hoice is included as an option in the R package fdapace . 

For visualization in FDA, modes of variation plots provide an in-

ightful representation of variance decomposition for a given sample of

unctional or longitudinal data. The modes of variation capture the de-

iation around the mean function scaled by the shape of the dominant

igenfunctions. Formally, the 𝑘 th mode of variation is defined as the

amily of functions 

 𝑘,𝑠 ( 𝑡 ) = 𝜇( 𝑡 ) ± 𝑠 
√
𝜆𝑘 𝜙𝑘 ( 𝑡 ) , 𝑡 ∈ , 𝑠 ∈ ℝ , (2)

here the above population quantities are estimated using their sample

ounterparts, as described in Section 5.1 of the Supplement, and the
5 
odes of variation are typically visualized as functions in 𝑡 over a grid

f points 𝑠 ∈ [−2 , 2] . 

.5.2. Varying coefficient modeling 

The functional concurrent regression model between functional re-

ponses 𝑌 ( 𝑡 ) and functional predictors 𝑋( 𝑡 ) is given by 

 ( 𝑌 ( 𝑡 ) |𝑋 ( 𝑡 ) ) = 𝛽0 ( 𝑡 ) + 𝛽( 𝑡 ) 𝑋 ( 𝑡 ) , 𝑡 ∈ , (3)

here 𝛽0 ( 𝑡 ) and 𝛽( 𝑡 ) are smooth coefficient functions. Various estimation
echniques are available for the intercept function 𝛽0 ( 𝑡 ) and the slope
unction 𝛽( 𝑡 ) for both dense and sparse functional data ( Cai et al., 2000;
uang et al., 2004; 2004; Ş entürk and Müller, 2008; 2010; Ş entürk and

guyen, 2011; Wu et al., 2010 ). To assess the strength of the association,

ne can use the time-varying 𝑅 2 function 

 
2 ( 𝑡 ) = 1 − 

Var ( 𝜖( 𝑡 )) 
Var ( 𝑌 ( 𝑡 )) 

. 

arger values of 𝑅 2 ( 𝑡 ) indicate that the model explains more of the vari-
bility in the response 𝑌 ( 𝑡 ) at time 𝑡 . The sign of the slope function 𝛽( 𝑡 )
t time 𝑡 indicates whether the association between 𝑌 ( 𝑡 ) and 𝑋( 𝑡 ) tends
o be positive or negative. 

.5.3. Dynamic quantile modeling using local Fréchet regression 

To obtain age-specific quantile curves for brain modalities such

s pGM, pWM, and pCSF, we essentially need to estimate their age-

ependent distributions. We address this by introducing an approach

hat utilizes local Fréchet regression with distributions as response and

ge as predictor, where we use the  
2 Wasserstein metric in the distri-

ution space. 

Given a closed interval 𝐷 ⊂ ℝ , which is the domain of the variable

f interest, we consider the Wasserstein space  = ( 𝐷) of probability
istributions on 𝐷 with finite second moments, endowed with the  

2 

asserstein distance 

 𝑊 

(
𝑞 1 , 𝑞 2 

)
= 

{ ∫ 1 
0 
[
𝐹 −1 1 ( 𝑢 ) − 𝐹 −1 2 ( 𝑢 ) 

]2 d 𝑢 } 1∕2 
, 

or 𝑞 1 , 𝑞 2 ∈  . 
ere, 𝐹 𝑙 and 𝐹 

−1 
𝑙 

are the cumulative distribution function (cdf) and

uantile function of the distribution 𝑞 𝑙 , for 𝑙 = 1 , 2 , where quantile func-
ions are considered to be the left continuous inverse of the correspond-

ng cdfs; specifically, given a cdf 𝐹 , 𝐹 −1 ( 𝑢 ) = inf { 𝑥 ∈ 𝐷 ∶ 𝐹 ( 𝑥 ) ≥ 𝑢 } , for
 ∈ (0 , 1) . 
Let ( 𝑇 , 𝑃 ) be a pair of random elements taking values in  × with

oint distribution  , where  ⊆ ( ℝ ) is the age domain. Specifically, 𝑇 
s the random age, and 𝑃 is the random distribution of the modality

f interest, e.g., pGM. Due to the compactness of 𝐷, 𝔼 [ 𝑑 2 
𝑊 
( 𝑃 , 𝑞) ∣ 𝑇 =

 ] < ∞, for all 𝑡 ∈  and distributions 𝑞 ∈  . Moreover, there exists

 unique minimizer of 𝔼 [ 𝑑 2 
𝑊 
( 𝑃 , ⋅) ∣ 𝑇 = 𝑡 ] =∶ 𝑀( ⋅, 𝑡 ) ( Kloeckner, 2010;

turm, 2003 ), which is the conditional Fréchet mean 𝜈⊕( 𝑡 ) of the ran-
om distribution 𝑃 given age 𝑇 = 𝑡 . Specifically, 

⊕( 𝑡 ) = argmin 𝑞∈ 
𝑀 ( 𝑞, 𝑡 ) . 

iven the distribution 𝜈⊕( 𝑡 ) , the 𝜏th conditional quantile of 𝑃 given
 = 𝑡 can be expressed as 𝑔 𝜏 ( 𝑡 ) = 𝐹 −1 

𝜈⊕( 𝑡 ) 
( 𝜏) , for 𝜏 ∈ (0 , 1) , where 𝐹 −1 

𝜈⊕( 𝑡 )
s the quantile function of 𝜈⊕( 𝑡 ) . Thus, in order to estimate the con-
itional quantiles, which then lead to the percentile curves across 𝑡 , it

uffices to estimate the conditional Fréchet means 𝜈⊕( 𝑡 ) for 𝑡 ∈ . To
his end, we employ the local Fréchet regression approach ( Petersen and

üller, 2019 ), as follows. 

Suppose {( 𝑇 𝑖 , 𝑃 𝑖 )} 𝑛 𝑖 =1 are independent realizations of ( 𝑇 , 𝑃 ) . In prac-
ice, the distributions 𝑃 𝑖 are however rarely fully observed; instead we

nly observe random samples of measurements generated from 𝑃 𝑖 . This

ssue can be addressed by estimating suitable representations of the

istributions 𝑃 𝑖 , which include cumulative distribution functions (cdf)

e.g., Aggarwal, 1955; Falk, 1983; Leblanc, 2012; Read, 1972 ), quan-

ile functions (e.g., Cheng and Parzen, 1997; Falk, 1984; Parzen, 1979;

https://CRAN.R-project.org/package=fdapace
https://CRAN.R-project.org/package=frechet
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Fig. 4. Population level mean functions (dark solid lines) for proportion of gray matter (left), white matter (middle) and CSF (right) evolution for children in the 

RESONANCE cohort. The light ribbons correspond to 95% pointwise confidence intervals and the background points and lines to the underlying data. 
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ang, 1985 ) or density functions (e.g., Panaretos and Zemel, 2016; Pe-

ersen and Müller, 2016 ) of the underlying distributions. For any distri-

ution 𝑞 ∈  , we denote the estimated distribution by 𝑞 = 𝑞( ̃𝐹 ) , where
̃
 is an estimate of the cdf that is based on a random sample generated

rom 𝑞. If employing quantile function or density estimation methods,

ne can obtain the cdf estimate by right continuous inversion or inte-

ration. Replacing 𝑃 𝑖 with the corresponding estimates 𝑃 𝑖 , a data-based

ocal Fréchet regression estimate is 

 ̃⊕( 𝑡 ) = argmin 𝑞∈ 
𝑛 −1 

𝑛 ∑
𝑖 =1 
�̂� 

(
𝑇 𝑖 , 𝑡, ℎ 

)
𝑑 2 
𝑊 

(
𝑃 𝑖 , 𝑞 

)
. 

ere, �̂� ( 𝑠, 𝑡, ℎ ) = �̂�−2 0 𝐻 ℎ ( 𝑠 − 𝑡 )[ ̂𝜅2 − ̂𝜅1 ( 𝑠 − 𝑡 )] , where 𝐻 ℎ ( ⋅) = 𝐻( ⋅∕ ℎ )∕ ℎ,
( ⋅) is a smoothing kernel, i.e., a density function symmetric around
ero, and ℎ = ℎ ( 𝑛 ) > 0 is a bandwidth sequence, 𝜅𝑧 = 𝑛 −1 

∑𝑛 
𝑖 =1 𝐻 ℎ ( 𝑇 𝑖 −

 )( 𝑇 𝑖 − 𝑡 ) 𝑧 , for 𝑧 = 0 , 1 , 2 , and ̂𝜎2 0 = ̂𝜅0 ̂𝜅2 − ̂𝜅2 1 . 

However, in the RESONANCE data, only one measurement is avail-

ble per distribution at most ages and therefore the above distribu-

ion estimation methods cannot be applied directly. To address this, we

ivide the age domain  into bins 𝑆 1 = [ 𝑎 0 , 𝑎 1 ) , 𝑆 2 = [ 𝑎 1 , 𝑎 2 ) , … , 𝑆 𝐵 =
 𝑎 𝐵−1 , 𝑎 𝐵 ] , with min ( ) = 𝑎 0 < 𝑎 1 < … < 𝑎 𝐵 = max ( ) . Pooling the ob-
ervations from all the subjects, denoting the paired observations by

 𝑡 𝑗 , 𝑌 𝑗 ) , where 𝑡 𝑗 is the time of the measurement and 𝑌 𝑗 is the associated
easurement generated from a random distribution 𝑃 ( 𝑡 𝑗 ) at age 𝑡 𝑗 , for

 = 1 , … , 𝑚 , we then obtain for the midpoint 𝑏 𝑘 = ( 𝑎 𝑘 −1 + 𝑎 𝑘 )∕2 of the
 th bin an estimate 𝑃 ( 𝑏 𝑘 ) of the distribution 𝑃 ( 𝑏 𝑘 ) that is based on the
bservations { 𝑌 𝑗 ∶ 𝑡 𝑗 ∈ 𝑆 𝑘 } using those data associated with ages 𝑡 𝑗 that
all into the bin 𝑆 𝑘 . Then the local Fréchet regression estimate of the

istribution 𝜈⊕( 𝑡 ) for the RESONANCE data becomes 

 ̂⊕( 𝑡 ) = argmin 𝑞∈ 

𝐵 ∑
𝑘 =1 
�̂� 

(
𝑏 𝑘 , 𝑡, ℎ 

)
𝑑 2 
𝑊 

(
𝑃 
(
𝑏 𝑘 
)
, 𝑞 
)
. (4) 

n a next step, for any 𝜏 ∈ (0 , 1) , an estimate for the 𝜏th conditional
uantile curve 𝑔 𝜏 ( ⋅) is obtained as 

̂ 𝜏 ( 𝑡 ) = 𝐹 −1 
𝓁 ⊕( 𝑡 ) 

( 𝜏) for all 𝑡 ∈ , (5) 

here 𝐹 −1 
𝓁 ⊕( 𝑡 ) 

is the quantile function of 𝓁 ⊕( 𝑡 ) . 

The choice of the number of bins, 𝐵 affects the balance between

ias and variance. To obtain reasonable preliminary estimates 𝑃 ( 𝑏 ) of
𝑘 

6 
he distributions 𝑃 ( 𝑏 𝑘 ) , we need a sufficient number of measurements
ithin each bin. However, when 𝐵 is too small, observations which are

ot very close to the midpoints 𝑏 𝑘 of each bin are involved in construct-

ng the preliminary estimates 𝑃 ( 𝑏 𝑘 ) , potentially incurring some bias for
he estimates 𝑃 ( 𝑏 𝑘 ) . On the other hand, the set of the midpoints of the
ins needs to be a relatively dense grid on the age domain so that local

réchet regression method can be applied. Balancing these considera-

ions, for the RESONANCE data, we set the number of bins at 𝐵 = 35 ,
here the bins are constructed such that each bin contains about 20

easurements. The bandwidth ℎ in (4) was chosen by 10-fold cross val-

dation simultaneously for pGM, pWM, and pCSF, with details described

n Section S.3 of the Supplement. Specifically, the bandwidth used for

he analysis of proportions of GM, WM, and CSF is 1.65. 

. Results 

.1. Population level analysis 

.1.1. Mean function 

Figure 4 illustrates the population level mean curves for the develop-

ent of the proportions of pGM, pWM and pCSF relative to total brain

olume in children from one year to nine years of age. We constructed

5% pointwise confidence intervals by resampling the subjects 5,000

imes to generate bootstrap replicates of the mean function and then

btained the pointwise cutoffs at the 95% level. No major differences

ere detected in the levels of the mean proportions between boys and

irls ( Fig. 4 ). However, there are significant differences in the mean raw

rain volume levels between boys and girls as illustrated in Fig. S.9 in

he Supplement. 

Figure 5 shows the first two dominant eigenfunctions and Fig. 6 the

orresponding first two modes of variation obtained using the PACE ap-

roach for the children in the RESONANCE cohort, differentiated by

ender. For girls, the first eigenfunction for proportions of gray matter

nd white matter is non-negative and increasing for most of the period

etween one to nine years. This indicates that the predominant source of

ariation in the trajectories of pGM and pWM arises from increasing de-

artures of these measurements from the mean value with progressing

ge. For pCSF in girls, the predominant variation is reflected in con-

rasting patterns of growth between early and later ages. These shapes

apture the nature of variation in the trajectories around the mean func-
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Fig. 5. The first two eigenfunctions for FPCA 

of proportion of gray matter (left), white mat- 

ter (middle) and CSF (right) for girls (top 

panel) and boys (bottom panel) in the RESO- 

NANCE cohort. The numbers corresponding to 

the curves indicate the fraction of variance ex- 

plained by each of the eigenfunctions. 

Fig. 6. First and second modes of variation 

plot for proportion of gray matter (top), pro- 

portion of white matter (middle) and propor- 

tion of CSF (bottom) for girls (left) and boys 

(right) in the RESONANCE cohort. The solid 

line corresponds to the mean function, the 

boundaries of the darker ribbon correspond 

to the 𝑘 th mode of variation 𝑀 𝑘,𝑠 ( 𝑡 ) with 𝑠 ∈
{−1 , 1} as per (2) and the boundary of the 
lighter ribbon corresponds to 𝑀 𝑘,𝑠 ( 𝑡 ) with 𝑠 ∈
{−2 , 2} as per (2) , where 𝑘 = 1 and 2 corre- 
spond to the first and second modes of vari- 

ation, respectively. 

7 
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Fig. 7. Eigenfunction stability across reduced samples for boys. 

Fig. 8. Eigenfunction stability across reduced samples for girls. 
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ion as reflected in the corresponding first mode of variation in Fig. 6 .

he contrasting shapes between different growth periods form the sec-

nd mode of variation for pGM and pWM in girls and also for pCSF in

oys. Figures S.10 and S.11 in the Supplement show the corresponding

ehavior for the raw volumes. 

For reliable interpretation of the shapes of the eigenfunctions, one

ust evaluate the in sample stability of the eigenfunction estimates.

or this purpose we take subsamples, leaving out 10% of the subjects

andomly every time. For each subsample, we estimate the covariance

urface and the corresponding eigenfunctions. In Figs. 7 and 8 we illus-

rate that the estimated eigenfunctions are quite stable across 10 random

ubsamples, both for boys and girls. We also observe that the larger the

raction of variance explained by an eigenfunction, the greater is its sta-
 d  

8 
ility. For example, the first eigenfunction of pWM for boys explains

bout 93% and the second explains about 3.6% in the actual data. In

ig. 7 we see that while the first eigenfunction for pWM is very stable,

he second is less stable across the subsamples. 

.1.2. Dynamic percentiles 

We constructed percentile growth charts of age-based dynamic quan-

iles by local Fréchet regression as per (5) for pGM, pWM and pCSF, as

hown in Fig. 9 (see Fig. S.12 in the Supplement for a version with

aw data overlaid). The resulting dynamic percentiles for girls and boys

ostly evolve in similar patterns. The dynamic percentiles of pGM and

CSF in general decrease while the curves for pWM increase as chil-

ren age, in line with the crude summary of age-dependent distribu-
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Fig. 9. Age-based dynamic percentiles of proportions of GM (pGM, left), WM (pWM, middle) and CSF (pCSF, right) estimated by local Fréchet regression as per 

(5) for the RESONANCE data. 
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ions in Fig. 3 . Fluctuation in the dynamic percentile curves of pCSF

long with age for boys reduces dramatically around age 6, while such

hange seems to occur later for girls. For pWM, the augmentation of

he dynamic percentiles is relatively fast before age 4 and subsequently

lows down. The percentiles of pGM show similar temporal dynamics

etween genders overall, yet a difference can be seen in the 0.95 per-

entiles for higher ages. The results for volumes of GM, WM, and CSF

re shown in Fig. S.13 and total brain volumes (TBV) in Fig. S.14 in

he Supplement. As a cautionary note we remark that the brain-for-age

urves in this paper may not represent the brain development in early

hildhood of for the entire population of typically developing children

n the US, or even in Providence, RI, due to the limited number of chil-

ren involved in this study. Our main goal here is rather to provide and

llustrate a useful method to construct brain-for-age curves for neurode-

elopmental studies. 

.1.3. Dynamic association with cognitive development scores 

Brain structure and tissue development are known to be associated

ith cognitive skills. In the following, we fit a linear varying coefficient

odel, as described in equation (3) of Section 2.5.2 under statistical

ethods, with the time-varying ELC, VDQ, NVDQ and FSIQ scores as

he response and pGM, pWM and pCSF as predictors. Since ELC, VDQ

nd NVDQ scores are early learning indicators ( Mullen, 1995 ), they are

vailable only for infants, and therefore we study these scores in the age

nterval 2 to 5.5 years. FSIQ scores, on the other hand, are indicating

ognitive development in later ages, so we study the association of FSIQ

cores with brain development in the age interval 6 to 10 years. Since

he cognitive scores in early and late childhood are very different from

ach other, we did not put the association across all ages in one plot in

ig. 10 . Another reason is that the observations used to obtain the plots

or the age interval 2 to 5.5 years are disjoint from the observations used

n the plot for the age interval 6 to 10 years. Due to the extreme sparsity,

e do not differentiate this analysis across genders. 

Figure 10 illustrates that the early age cognitive score NVDQ is sig-

ificantly negatively correlated with pCSF between three and a half to

our and a half years of age. Around the same period, NVDQ also shows

ignificant positive associations with pWM. ELC is also positively associ-

ted with pWM right before four years of age and negatively associated

ith pCSF starting from four years to slightly after four years. For later

ears, the FSIQ score is significantly negatively associated with pCSF

round seven years of age and after nine years and positively associated

ith pWM after nine years. We note that these inferences are based on

ointwise not uniform confidence bands and thus are not adjusted for
9 
ultiple comparisons, and therefore should be viewed as exploratory

nd more indicative than conclusive. 

.2. Subject level analysis 

.2.1. Individual trajectory modeling 

Using PACE, as described in Section 2.5.1 of the supplement, one can

econstruct the individual smooth underlying trajectories at the subject

evel. Trajectory predictions can be obtained using the function fitted
n the R package fdapace ( Carroll et al., 2020 ). We illustrate this ap-

roach for predicting the longitudinal evolution of pGM, pWM and pCSF

or three randomly selected boys in Fig. 11 and three randomly selected

irls in Fig. 12 . The plots show that the fitted trajectories align well with

he measurements. The corresponding fits for the raw volumes of GM,

M, CSF, and TBV are illustrated in Figs. S.15 and S.16 in the Supple-

ent. 

For validation of our approach, we selected one male and one female

hild with high scan frequency (5 and 8 respectively) and only used the

rst 50% of their measurements for fitting the trajectories. Once the

tted trajectories are obtained, the remaining measurements are com-

ared to the predicted ones. Fig. 13 demonstrates the results. The fu-

ure measurements for these subjects are mostly contained within the

niform confidence band of the fitted trajectories, constructed under

he Gaussian assumption, in most of the cases, even though they clearly

arry additional random aberrations from their target values; these are

eflected in our model as random errors. This shows that the proposed

pproach does quite well in predicting individual trajectories even with

parse observations per child. The corresponding validation results on

he absolute values of GM, WM, CSF and total brain volumes are illus-

rated in Fig. S.17 in the Supplement. For the randomly selected boys,

uture measurements for the raw volumes are found to lie outside of the

onfidence bands, yet overall quite close to the fitted trajectory. For a

uantitative check, we consider only the first two scans for all subjects

aving 3 or more scans and obtain their fitted trajectories. Table 2 il-

ustrates that the fits obtained using PACE have a lower mean squared

rror compared to using just the group mean. 

To further illustrate the utility of the PACE approach, we compared

ur findings with those of the LME models and the NLME models, which

e implemented using the R package nlme ( Pinheiro et al., 2020 ).

pecifically, for a sample of observations from subjects 𝑖 = 1 , … , 𝑛 ,
( 𝑡 𝑖𝑗 , 𝑋 𝑖𝑗 ) ∶ 𝑗 = 1 , … , 𝑛 𝑖 } 𝑛 𝑖 =1 , we consider two LME models as follows: 

 𝑖𝑗 = 𝛽0 + 𝛽1 𝑡 𝑖𝑗 + 𝛼0 𝑖 + 𝜖𝑖𝑗 , (6) 
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Fig. 10. The regression slope function (black 

solid line) along with 95% pointwise confi- 

dence intervals (the grey ribbon) for vary- 

ing coefficient model in equation (3) of 

Section 2.5.2 with ELC, VDQ, NVDQ and FSIQ 

as response (top to bottom) and pGM (left), 

pWM (middle) and pCSF (right) as predictors. 

The orange portions of the ribbon indicate in- 

tervals where the slope function is significantly 

away from zero, based on pointwise unadjusted 

analysis. (For interpretation of the references to 

color in this figure legend, the reader is referred 

to the web version of this article.) 

Table 2 

MSE ∕ 10 −5 for fitted individuals’ trajectories by using PACE 
with only first two scans for individuals comprising of more 

than 2 scans (with the minimum numbers of FPCs with at 

least 95% FVE) as compared to the group mean trajectory. 

Girls Boys 

pGM pWM pCSF pGM pWM pCSF 

PACE 0.74 3.45 2.09 0.98 1.75 2.22 

Mean 1.41 3.51 2.29 2.01 3.75 2.59 
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 𝑖𝑗 = 𝛽0 + 𝛼0 𝑖 + ( 𝛽1 + 𝛼1 𝑖 ) 𝑡 𝑖𝑗 + 𝜖𝑖𝑗 , (7) 

here 𝛽0 and 𝛽1 are fixed effects, and 𝛼0 𝑖 and 𝛼1 𝑖 are random intercepts

nd random slopes, respectively. For NLME modeling, inspired by the

hape of the population level mean functions estimated by the PACE

pproach, we fitted the following NLME models: 

 𝑖𝑗 = 𝛽0 + 𝛽1 exp ( 𝛽2 𝑡 𝑖𝑗 ) + 𝛼0 𝑖 + 𝜖𝑖𝑗 , (8) 

 𝑖𝑗 = 𝛽0 + 𝛼0 𝑖 + ( 𝛽1 + 𝛼1 𝑖 ) exp (( 𝛽2 + 𝛼2 𝑖 ) 𝑡 𝑖𝑗 ) + 𝜖𝑖𝑗 , (9) 

here { 𝛽𝑙 } 2 𝑙=0 are fixed effects, and { 𝛼𝑙𝑖 } 
2 
𝑙=0 are random effects, respec-

ively. We found that the algorithm failed to fit model (9) for the RES-
10 
NANCE data. The estimates of the population level mean functions

i.e., the fixed effects for LME and NLME models) for girls and boys ob-

ained by the LME and NLME models and the PACE approach are shown

n Figs. S.18 and S.19 in the Supplement, respectively, where the raw

bservations are overlaid. 

To compare the performances of these different approaches, we com-

uted the average subject-specific mean squared errors ( ASMSE s), 

SMSE = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

1 
𝑛 𝑖 

𝑛 𝑖 ∑
𝑗=1 

( ̂𝑋 𝑖𝑗 − 𝑋 𝑖𝑗 ) 2 . (10) 

he results are summarized in Table 3 , where for the PACE approach,

he fits are obtained based on the minimum numbers of FPCs with at

east 95% FVE, i.e., 𝑋 𝑖𝑗 = �̂�( 𝑡 𝑖𝑗 ) + 

∑𝐾 
𝑘 =1 𝜉𝑖𝑘 ̂𝜙𝑘 ( 𝑡 𝑖𝑗 ) with 𝐾 = 2 for pGM for

irls and pWM for boys and 𝐾 = 3 for the others, and 𝜉𝑖𝑘 as per (11).
he results clearly demonstrate that the PACE approach yields consid-

rably better fits to the data in all six cases considered ( { pGM, pWM,
CSF } × { girls, boys } ) than all the LME and NLME models. This is ow-
ng to the flexibility of the PACE approach as a nonparametric method,

here no constraint is imposed on the shape of the mean and the covari-

nce structure, as opposed to parametric methods like LME and NLME

odels. 
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Fig. 11. Individual predicted trajectories for 

three randomly selected boys in the RESO- 

NANCE data. The black solid curves corre- 

spond to the fitted trajectory and grey rib- 

bon to the 95% simultaneous confidence band 

around it. The red curve represents the popu- 

lation mean curve and solid points correspond 

to the observations that were used in the fit- 

ting step. (For interpretation of the references 

to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

Table 3 

ASMSE ∕10 −5 as per (10) for the fitted trajectories by the LME and 
NLME models and the PACE approach, choosing the minimum num- 

bers of FPCs that explain at least 95% FVE. 

Girls Boys 

pGM pWM pCSF pGM pWM pCSF 

LME model (6) 0.38 2.67 3.52 0.49 2.02 3.59 

LME model (7) 0.35 1.66 2.02 0.50 1.39 2.10 

NLME model (8) 0.37 1.32 2.06 0.48 0.84 1.88 

PACE 0.11 0.18 0.26 0.13 0.32 0.47 
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. Discussion 

.1. Population-based longitudinal brain development with age 

One of the most commonly used models to define paediatric well-

eing and development are growth charts. Unfortunately, they only in-

estigate outer physical features such as length and weight for age, fea-

ures mediated in their association with cognitive functioning by brain

ize ( Vuoksimaa et al., 2018 ). Healthy brain development has been iden-

ified as a key predictor of current and future cognitive development (for

 review, see Gilmore et al., 2018 ), but population-based childhood de-
11 
elopmental brain-for-age growth charts are still missing. One of the

easons could be that contrary to outer physical features, which are eas-

er to record, paediatric longitudinal MRI data are difficult to obtain and

ence most often are observed sparsely in time. These also happens in

cenarios where scan data are missing or obtained at a later time point

i.e. there is no concurrent acquisition), which then may lead to a par-

icipant’s exclusion from the analysis. 

In order to compare longitudinal modeling outputs from the most

rominent modeling approaches, we first investigated average brain de-

elopment with age at 95% point-wise confidence intervals ( Fig. 4 ),

igenfunctions ( Fig. 5 ), and modes of variation ( Fig. 6 ) estimated us-

ng the PACE method, differentiaed by gender. As expected, raw vol-

me measures increased in total brain volumes (TBV) as well as GM,

M and CSF with age (Figs. S.9–S.11 in the Supplement). Investigating

roportional brain volumes, we demonstrated an initial pGM and pCSF

ecrease coupled with a pWM increase. The observed pGM decline cou-

led with a pWM increase reflects previous MR findings ( Brain Devel-

pment Cooperative Group, 2012; Giedd et al., 1999; Toga et al., 2006 )

nd parallels cellular processes of pruning following prenatal neuroge-

esis, neural migration and synaptogenesis in the brain (for a review,

ilbereis et al., 2016 ). While trends were similar across methods, bio-

ogical sex differences in proportional brain volume development with

ge were consistent too. Specifically, differences in later pCSF develop-
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Fig. 12. Individual predicted trajectories for 

three randomly selected girls in the RESO- 

NANCE data. The plotting convention is same 

as in Fig. 11 . 
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ent seem to diverge between girls and boys, with stonger decreases

hat flatten around age 6 for boys, and less pronounced decreases with

 later flattening at 7.5 years for girls. 

However, while population based mean function models help de-

cribe overall development, they are unable to detect whether a child is

ell developing or struggling for their age. Like physical growth charts,

opulation-derived brain percentile growth curves allow investigations

f brain development across differing geographies and environmental

ettings. We used Fréchet regression to create percentile growth charts

f age-based dynamic quantiles for pGM, pWM and pCSF ( Fig. 9 ). The

esulting dynamic percentiles for boys and girls mostly evolve in similar

atterns. Differences within development that were not detectable pre-

iously are now more apparent. For example, the earlier flattening of the

CSF curve in boys appears to happen earlier in the lower percentiles

han the upper percentiles (75th and above), and children in the 95th

ercentile experience a steeper second increase in pGM between ages

.5 and 6.5 when compared to children in lower percentiles ( Fig. 9 ).

hus, using percentiles helps to place individual brain development tra-

ectories, informing about “where on the curve ” a child is relative to

he population. This aids to flag outliers and is expected to be useful for

onitoring early brain development of individual children. For exam-

le, early brain overgrowth is a characteristic finding in autism disor-

er; and abnormalities in ventricle size may be indicative of inflamma-

ory and other neurological disorders. Further, mapping of early brain
12 
evelopmental growth curves could be useful for identifying sensitive

indows of changing dynamics that, for example, occur alongside ma-

or developmental milestones or the acquisition of new functional skills

nd abilities (e.g., crawling, walking, and talking). Recently, normative

ercentile values (or “nomograms ”) of total gray matter volume as a

unction of age have been used as a potential reference application in

linical and research settings for elderly adults ( Nobis et al., 2019 ). 

.2. Dynamic association of brain development with cognitive development 

rowth percentiles 

While percentiles can help describe and put in perspective individual

rain development, the cognitive impact of for example, being placed

n the lowest 5th percentile remains unknown. As children develop and

ttain more skills, their brain structure (e.g., Marrus et al., 2018 ) and

etwork functional connectivity at rest changes (e.g., Bruchhage et al.,

020 ). In order to link brain tissue volumes to cognitive development,

e used a linear varying coefficient model with scores of overall cogni-

ive functioning as the response and pGM, pWM and pCSF as predictors.

ecause of the broad age range of our sample, we had to use two differ-

nt assessments for overall cognitive function. For ages two to six, we

sed the early learning coefficient, as well as the verbal and nonverbal

evelopmental quotients from the Mullen Scale of Learning, while for

hildren aged six and up, we used the full scale IQ of the WISC ( Fig. 10 ).
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Fig. 13. The black curves correspond to the fit- 

ted trajectory and the grey ribbon to the 95% 

simultaneous confidence band for one selected 

boy (top) and one selected girl (bottom). The 

black round points were used in the fitting step 

and the red triangular points are the future 

measurements of the same child. 
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e then identified intervals where the slopes of the varying coefficient

odels were found to be significantly away from zero, based on point-

ise bootstrap based confidence intervals, thus suggesting time zones

f significant positive and negative association of brain matter propor-

ions with cognitive development. In the younger group, higher ELC and

VDQ were associated with higher pWM between three and a half and

ver four years, and lower pCSF from ages three and a half to four and

 half. While time windows differ between the ELC and NVDQ with the

atter being broader, it seems likely that the effect on ELC was driven

y the effect of NVDQ as ELC is a summary measure that combines VDQ

nd NVDQ. When investigating the influence of the FSIQ as a measure

f overall function, we again found increases in pWM to be associated

ith increases in FSIQ between ages nine to ten, while increases in FSIQ

re associated with decreases in pCSF around age seven and ages nine to

en. Thus, increases in overall and nonverbal cognitive functioning are

ssociated with the strength of dynamics that is the opposite for pWM

nd pCSF ( Fig. 10 ). Investigating the impact of brain development on

ognitive overall functioning may then allow for more appropriate neu-

odevelopmental burden estimates and also help to identify primary risk

actors in addition to objective and quantitative measures for assessing

ossible age-specific intervention impact at the individual and popula-

ion levels. 

.3. Individual trajectory modeling 

Taking our approach one step further, we decided to reconstruct the

ndividual smooth underlying trajectories at the subject level using the

ACE approach, which we illustrated for three randomly selected boys

nd girls ( Figs. 11 –12 respectively; Figs. S.15–S.16 in the Supplement for

aw volumes). Even when longitudinal time points are extremely sparse,

he fitted trajectories align well with the measurements. When using

elatively highly sampled longitudinal data for one boy and girl (5 and 8

cans respectively), then using only the first 50% of their measurements

or fitting the trajectories, future measurements were reasonably close

o the confidence band of the fitted trajectories ( Fig. 13 ; Fig. S.17 in

he Supplement for raw volumes). We note that although some of the

uture measurements of the raw volumes for the boys lie outside of the
13 
onfidence bands, it is not indicative of a lack of fit. It is important to

ote here that the bands are for the unobservable latent trajectories, not

he measurements themselves, which are contaminated by noise. 

It is of interest to compare the proposed nonparametric methodol-

gy as implemented by PACE with traditional approaches for modeling

nd recovering individual trajectory fits for longitudinally sampled data.

he most established and ubiquitous approach for the statistical analy-

is of data from longitudinal studies is the class of mixed effects mod-

ls. Linear mixed effects (LME) models ( Laird and Ware, 1982 ) are the

ost popular subclass but carry the obvious risk that they are incorrect

n situations where the underlying trajectories have nonlinear shapes.

his is certainly the case for the RESONANCE data where the average

rowth trajectories exhibit strong nonlinearity. The more general class

f nonlinear mixed effects (NLME) models ( Lindstrom and Bates, 1990 )

s handicapped by the requirement that the nonlinear function class that

onstitutes the fixed effects curves has to be pre-specified by the user.

hen the sampling design is very sparse, this is fraught with difficul-

ies. The application of PACE completely circumvents these problems

y nonparametrically recovering the mean function and the eigenfunc-

ions, which provide an optimal function class which is then populated

ith random effects that correspond to the functional principal compo-

ent scores. Secondly, the mean and eigenfunctions uncovered by PACE

an subsequently be used to inform the construction of a nonlinear or

inear random effects model for those cases where traditional users are

ntent to use such a parametric model class (see Section 2, Wang et al.,

016 ) so that even when one intends to fit a mixed effects model even-

ually it is advantageous to first apply PACE to determine which mixed

odels might be compatible with the data. 

Predicting individual growth curves from the data available for in-

ividual participants data can also inform about both typical and atyp-

cal development, including early detection of early neurodevelopmen-

al disorders or later developmental problems, which in turn can make

chool entry more difficult, leading to more academic struggles in the

uture. Especially the percentile growth curves can aid in flagging po-

ential problems. If for example a subject’s data would place this child

nto the 5th percentile of pWM during a time window that has been

dentified as sensitive for the establishment of overall cognitive func-
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ioning, follow up tests and if needed early interventions could help to

revent future problems. The prediction of neurocognive development

sing percentiles as a population-based reference has the potential to

nform whether a child might “fall off the curve ”. 

.4. Limitations 

The PACE method proposed for the reconstruction of smooth tra-

ectories from sparsely observed longitudinal data relies on individual

easurements being taken at random times with pairs of times from

ll individuals filling out the square of the domain. The success of the

ethod depends on this assumption, which can be empirically checked

y practitioners by evaluating the design plot, which is a routine output

f the fdapace R package and is illustrated in Fig. 1 for the RESO-

ANCE cohort. If the design plot indicates that there are major holes or

nippet features appear ( Lin and Wang, 2020 ), then covariance estima-

ion will not be stable and neither covariance surface nor eigenfunctions

an be reliably estimated. The estimated FPC scores using PACE are the

est linear unbiased predictors and best predictors in the Gaussian case

or the conditional expectations of the true scores, given the data ob-

erved for the subject. But they do not converge to the true scores even

or large samples. This is reflected in the simultaneous bands for pre-

icted trajectories as shown in Figs. 11 and 12 . We also note that these

niform confidence bands are valid only under the assumption of Gaus-

ianity of the true FPC scores. 

Another limitation is that all findings and conclusions obtained us-

ng PACE are to some extent dependent on the bandwidth choices for

moothing of the mean functions and the covariance surfaces. Different

andwidth choices could lead to undersmoothing or oversmoothing in

ean and covariance estimation, affecting the conclusions. To address

his, we have developed automatic bandwidth selectors that lead to re-

roducible results as they do not require additional input from the user.

e further note that the brain-for-age curves that we introduce in this

aper may not represent the brain development in early childhood for

he entire population of typically developing children in the US, or even

n Providence, RI, due to the limited number of children involved in

his study. Our main goal is rather to provide and illustrate a method to

onstruct brain-for-age curves for neurodevelopmental studies. 

Finally, the dynamic associations of the cognitive development

cores, ELC, NVDQ and FSIQ, with pGM, pWM and pCSF do not es-

ablish causality and have not been corrected for multiple comparisons

hich would require the construction of simultaneous confidence bands

ather than the pointwise bands illustrated in Fig. 10 . The estimated

oncurrent effects and pointwise significance are therefore merely sug-

estive. Constructing theoretically valid and practically simultaneous

onfidence bands for the estimated slope functions is beyond the scope

f the current paper and would be a topic for future research. 

In addition to methodological considerations, unique challenges due

o using MRI output data can arise. These can include differences in

canner make, Tesla strength and sequence as well as other factors

nfluencing consistent measures over time. While consistent phantom

easurements aimed to catch factors influencing scanning quality over

ime were applied following best practice procedure, the here proposed

ethod for creating brain growth curves were used for only one co-

ort, thus avoiding variation in scanner make, strength and acquisition

rotocol. However, we are planning to use the same approach on an-

ther cohort with a different scanner make and sequence in the future,

opefully allowing us to evaluate the consistency of our findings across

ifferent cohorts. 

.5. Conclusions 

We demonstrate that the PACE method is suitable to model and vi-

ualize trajectories of gray matter, white matter and cerebrospinal fluid

evelopment for children from very sparse longitudinal data obtained in

 large paediatric cohort spanning early infancy to late childhood. We
14 
lso propose a method for constructing dynamic percentiles for sparsely

easured brain tissue data ( Fig. 9 ). Our methods are useful to gain in-

ights at both the population ( Figs. 4–10 ) and the subject ( Figs. 11–

3 ) level. While we have applied this novel analysis method to model

euroanatomical development, it can be applied more broadly to other

inds of sparse longitudinal data, including diffusion tensor imaging,

unctional and other magnetic resonance imaging data outputs. 
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