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Abstract—Active probing is extensively used in high-speed
research networks for performance troubleshooting and transfer
optimization. For end-to-end (i.e., disk-to-disk) throughput mea-
surements, current active probing practice involves transferring
a set of files and measuring throughput upon the completion
of the transfer, which leads to long probing times. We present
FastProb that takes an adaptive approach to determine the
duration of probing transfers based on the stability behavior
of reported instantaneous throughput values. FastProb employs
a hybrid machine learning model which utilize binary classifiers
to determine the “predictability” of probing transfers and re-
gression models to actually predict the transfer throughput upon
convergence. Experimental results show that FastProb lowers
the duration of probing transfers by 48% while attaining up
to 61% higher measurement accuracy. We further incorporate
FastProb into an online file transfer optimization algorithm to
demonstrate that shortening the duration of probing transfers
results in 35% higher overall throughput for data transfers in
production high-speed networks.

Index Terms—End-to-end network measurement, Network
probing, Transfer modeling, Throughput optimization

I. INTRODUCTION

High-speed research networks (HSNs) with up to 400
Gbps bandwidth have been built to accommodate the growing
demands of distributed science application. However, network
and end system-related performance issues hinder the effective
utilization of these networks, necessitating comprehensive
monitoring solutions to identify and mitigate performance
anomalies in a timely manner. Active probing plays an im-
portant role in achieving this goal as it is used for various
purposes including anomaly detection [1], [2] and transfer
optimization [3]. Thus, more than 2, 000 research and edu-
cation institutions use PerfSonar to conduct periodic probes
between participating sites to monitor network metrics (e.g.,
packet loss, delay, etc.) and detect anomalies proactively [1].
Active probing is also widely used for transfer optimizations to
evaluate the performance of different transfer settings in real-
time. For example, congestion control algorithms run sample
transfers to evaluate the performance of different TCP sending
rates in terms of goodput and packet loss such that the optimal
sending rate can be discovered in real-time [4], [5].

Although most network metrics (e.g., delay, jitter, and
flow path) can be measured quickly with minimal impact to
the network, throughput measurements can adversely affect
production traffic by causing congestion. In particular, disk-
to-disk throughput measurements in HSNs require concurrent
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Fig. 1. Transfers converge at different pace in different networks, thus an
adaptive approach is necessary to conduct probing transfers.

file transfers to probe “true” end-to-end performance1, which
can have significant impact on production traffic if executed for
an extended period of time. Determining the optimal duration
for probing transfers in HSNs is a challenging task as small
values may lead to incorrect measurements while large values
will increase the impact on production flows.

Previous approaches to conduct probing transfers in HSNs
can be categorized into two groups as static and adaptive. In
the static method, a fixed data size [3] (e.g., 10GB dataset)
or duration [7] (e.g., 10 seconds) is used to execute probing
transfers. The static approaches requires fine tuning of data
size or time duration for each network as suboptimal values
can cause inaccurate measurements or long probing times.
To illustrate this, please refer to Figure 1 which presents
normalized throughput of end-to-end transfers from multiple
HSNs. It is clear that while transfer throughput stabilizes in
less than 5 seconds in one network (i.e, blue line), it takes up
to 20 seconds in another network. The slow convergence of
transfer throughput can be attributed many reasons including
but not limited to slow connection setup (especially when
using advanced security protocols such as GSI [8]), high
bandwidth delay product, and network congestion. One-time
optimization of the data size or probing duration may not
be sufficient as available network bandwidth may change
over time due to dynamic nature of resource interference.
Adaptive approaches, on the other hand, process instanta-
neous throughput values that are populated periodically (e.g.,
once a second) using statistical methods such as time-series
analysis [9] to terminate probing transfers as soon as the
instantaneous throughput values converge. Despite performing
better than static approaches, experimental analysis reveals that
existing adaptive approaches fall short to capture the intri-

1Although single network transfer can reach to more than 30 Gbps speed,
obtaining more than 10 Gbps I/O throughput in production parallel file
systems necessitates I/O parallelism [6]



cate relationship between instantaneous throughput values and
overall transfer throughput, and result in high measurement
errors.

In this paper, we first propose machine learning (ML)
regression models to process instantaneous throughput values
and estimate the throughput of end-to-end probing transfers
accurately. We find that although the ML regression models
outperform existing adaptive approaches, they require probing
duration to be determined by end users, thus fail to offer an
automated solution. To overcome this challenge, we introduce
FastProb which pairs the regression models with classifiers
to choose optimal probing duration in real-time. The results
as gathered in several production HSNs show that FastProb
reduces probing duration by up to 61% while achieving up to
54% higher measurement accuracy in comparison to state-of-
the-art end-to-end throughput probing techniques. In summary,
the contributions of this paper are as follows:

• We gather and analyze 38K file transfer logs from four
different HSNs and show that their throughput fluctuate
significantly, making it hard to use any naive solutions
to estimate transfer throughput by processing instatanous
throughput values (§ III).

• We propose a hybrid machine learning model, FastProb,
that combines classification and regression models to
achieve swift and precise estimation of throughput for
end-to-end transfers (§ IV).

• We run extensive evaluations both in production and ded-
icated networks to assess the performance of FastProb
and compare it against the state-of-the-art (§ V).

• Finally, we incorporate FastProb to a transfer optimiza-
tion algorithm to demonstrate the impact of optimized
probing transfers on the performance of transfer optimiza-
tion algorithms in three production HSNs (§ VI).

II. RELATED WORK

Active probing is widely used to measure network char-
acteristics (such as delay [10], bandwidth [11], [12], loss
rate [13], and topology [14]), and detect and localize perfor-
mance issues [15]. However, most previous work uses probing
to understand and optimize internet/web traffic, which has
different characteristics than traffic in high-speed research net-
works. For example, while web traffic consists of many short-
lived low-speed flows (1-100 Mbps), research network traffic
is dominated by large flows whose throughput is the order
of gigabits-per-second with up to 100Gbps [16]. Research
and internet traffic also differ in terms of the common root
causes of performance problems. While network anomalies
(e.g., routing instabilities) are common for internet traffic, end-
system issues (e.g., I/O limitations or interference) constitute
the majority of performance problems in research networks.
Therefore, network probing techniques that rely on memory-
to-memory transfers (e.g., Iperf) fall short of addressing the
needs of high-speed research networks.

Previous studies proposed fixed-size [1], [3], fixed-
duration [7], and time-series [9] models to conduct end-to-
end probes in HSNs. Fixed-size approaches transfer a dataset

consisting of one or more files and wait for its completion
to calculate the throughput. Despite its simplicity, it can cause
long transfer times when the dataset is not configured carefully.
Yildirim et al. proposed regression analysis to determine the
optimal dataset size based on network and dataset character-
istics [3]. The proposed model, however, does not consider
background traffic, which can change drastically, significantly
increasing the probing duration due to decreased throughput.
Fixed-duration approaches also have similar limitations as
there is no single probing duration that would work optimally
in all networks.

An alternative approach to optimize the duration of prob-
ing transfers involves collecting and processing instantaneous
throughput reports. Probing transfers can be scheduled with
large datasets and terminated as soon as it is sufficient to
make an estimation using measured instantaneous throughput
reports. Sapkota et al. applied time-series analysis and machine
learning model to process instantaneous throughput values and
predict the throughput of probing transfers as soon as possible
with high accuracy [9], [17]. Our experimental results however
show that time-series models are vulnerable to throughput
fluctuations, causing more than 30% error rate in predictions.
The proposed deep neural network-based machine learning
model, despite improving the accuracy over the time-series
models, requires long probing duration.

III. PROBLEM DEFINITION

Probing transfers are used to measure maximum achievable
file transfer throughput in HSNs. Although it is possible to
execute probing transfers long enough (e.g., 60 seconds) to
accurately measure the achievable throughput, shortening the
probing duration is desirable for many reasons including but
not limited to (i) reduced impact on production traffic when
probing transfers use dummy data to check the health of the
network, (ii) fast convergence time for online transfer opti-
mization algorithms that rely on probing transfers to evaluate
the performance of different transfer settings such as buffer
size and the number of parallel connections [3]. Yet, file trans-
fers exhibit distinct convergence time and stability patterns
in HSNs due to various static (e.g., file size, bandwidth, and
delay) and dynamic (e.g., file system and network congestion)
factors, making it hard to choose a probing duration that
would work in all networks. Even more challenging is the
fact that different transfers in the same network can have
completely different throughput patter due to difference in
dataset and background traffic. Hence, an adaptive approach
is necessary to dynamically determine how long to execute a
probing transfer to accurately measure achievable throughput.

Most transfer applications (e.g., sftp, GridFTP, and rsync)
report instantaneous transfer throughput periodically for on-
going transfers, which can be used to estimate the throughput
of a transfer2 quickly. Assume that throughput of a transfer is
reported once in every i seconds, then n throughput reports

2Throughput is defined as average throughput when a transfer is executed
long enough such as 30 seconds or more.
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TABLE I
FILE SYSTEM AND NETWORK SPECIFICATIONS OF TEST NETWORKS. A

TOTAL OF 38K FILE TRANSFERS ARE CONDUCTED IN FOUR NETWORKS.

Network Storage Bandwidth RTT # of transfers
ESnet RAID-0 SSD 100G 88ms 6,831
HPCLab RAID-0 SSD 40G 0.2ms 10,136
XSEDE-1

Lustre 40G 38ms 10,927
(Stampede2-Expanse)
XSEDE-2

Lustre 10G 12ms 10,171
(OSG-Bridges2)
Total 38,065

will be availabled at t = n× i as follows {ti, t2i, t3i, . . . tni},
where ti is throughput of the transfer at t = i second. If
this transfer is executed long enough, we can calculate its
throughput as the average of all instantaneous throughput re-
ports, tavg =

∑︁n
j=1

ti×j

n . The goal of this work is then process
instantaneous throughput reports as they become available
predict the throughput of a transfer, tavg , quickly to terminate
probing transfers quickly.

To gain insights into the throughput of file transfers in
HSNs, we conducted 38K file transfers in four HSNs (as
given in Table I) between September and October 2021
using GridFTP and logged instantaneous throughput values
in one second intervals. HPCLab network consists of two data
transfer nodes that are located in the same local area network
and connected by a 40G switch. The nodes are equipped
with direct-attached SSD drives that are configured into a
RAID-0 array. In ESnet network, two data transfer nodes
(both located at Berkeley, CA) connected via 100G wide-area
network loop that spans between Berkeley,CA and Chicago,
IL to create a wide-area network connectivity. Both ESnet and
HPCLab networks are isolated, so transfers are not affected by
background traffic. XSEDE-1 and XSEDE-2 networks, on the
other hand, are shared production environments that connect
supercomputing centers Stampede2, Expanse, Bridges2, and
Open Science Grid (OSG) [18]. All of XSEDE sites use Lustre
as a parallel file system. Since file size affects transfer through-
put and convergence behavior [19], we transferred different
datasets with various file sizes (ranges between 512 KB and
1 GB) and counts (ranges between 30 and 180, 000). We also
tuned a few application-layer transfer configurations, such as
the number of concurrent file transfers and parallel network
connections, to capture their impact on transfer convergence
behavior. Consequently, the dataset contains transfer logs
representing a wide range of network conditions, workload
characteristics, and transfer settings. All transfers are executed
at least 60 seconds using GridFTP which reports transfer
throughput at one second intervals. Thus, each transfer log
consists of throughput reports as {t1, t2, t3, . . . tn} where ti
is the throughput of ith second and n is greater than 60. We
also calculated average throughput, tavg , by taking average of
all instantaneous throughput values, tavg = t1+t2...+tn

n and
appended it to instantaneous throughput logs.

Figure 2 shows Coefficient of Variance (CV) for trans-
fers, which is calculated by dividing standard deviation in
instantaneous throughput values to mean (tavg). CoV value is
calculated for each transfer independently, so large CoV values

HPCLab ESnet XSEDE-1 XSEDE-2
Network

0.0

0.3

0.6

0.9

>1.2

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n 
(

/
)

Fig. 2. End-to-End data transfers exhibit significant throughput fluctuations
in all networks.
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Fig. 3. A simple approach to detecting throughput convergence based on the
closeness of consecutive instantaneous throughput values results in more than
24% for XSEDE-1 transfers even with a 5% distance threshold.

indicate considerable fluctuations in instantaneous throughput.
As HPCLab is an isolated testbed, the throughput of transfers
fluctuates the least among others. ESnet transfers, on the other
hand, fluctuate despite running in an isolated environment.
This can be attributed to high bandwidth-delay characteristic
(i.e., 100G bandwidth and 89ms delay) of ESnet network
which results in lower convergence speed. Transfers in XSEDE
networks also exhibit high fluctuations mainly due to the
shared nature of network and I/O resources. These results indi-
cate that simple solutions to detect throughput convergence by
processing instantaneous throughput reports would fail to per-
form well. To validate this claim, we implemented closeness-
based throughput convergence detection method that processes
instantaneous throughput values to determine if throughput
has stabilized. For example, suppose instantaneous throughput
values of a transfer for the first six seconds are reported as
{100, 800, 1200, 1600, 1250, 1400}. Then, the convergence de-
tection algorithm with a 20% closeness threshold will mark the
transfer throughput as “converged” at the sixth second since
it is the first time that consecutive instantaneous throughput
values fall within the 20% range of each other. Once the
convergence decision is made, one can take the average of
the last two instantaneous throughput values (throughput of the
fifth and sixth second in the above example) as the throughput
of the transfer, tpred.

We evaluated the closeness based throughout convergence
detection using transfer logs gathered in XSEDE-1 network.
The error rate is calculated as the percentage of the difference
between the predicted throughput, tpred, and the average
throughput of transfers, tavg. Please note that tavg is the
average of all instantaneous throughput reports captured dur-
ing data collection whereas tpred is the average last two
instantaneous throughput report when the closeness criteria is
met. Figure 3 presents the average prediction time and error
rate for XSEDE-1 transfers when the closeness threshold is
ranged between 5% and 30%. Clearly, the error rate is too
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(a) HPCLab
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(b) ESnet
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(c) XSEDE-1
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(d) XSEDE-2
Fig. 4. Performance comparison of regression models in different networks. Although Random Forest performs, Neural Network, and XGBoost models can
achieve good performance, optimal probing duration is not the same in all networks, necessitating an automated solution.
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Fig. 5. Time series and classification based convergence detection meth-
ods [9], [17] result in high error rate when transfer throughput stalls shortly
(49% prediction error for Transfer-1) and long probing times under high
throughput fluctuation scenarios (15s probing duration for Transfer-2).

high even when setting the closeness threshold to 5%. This is
because throughput stalls for 1− 2 seconds before starting to
increase again for a non-negligible portion of transfers due to
delayed connections and transient I/O and network resource
interference (please see Transfer 3 and 4 in Figure 1).

Previous studies proposed time-series analysis and classi-
fication methods to process instantaneous throughput values
and detect throughput convergence [9], [17]. Autoregressive
model processes instantaneous throughput reports to predict
throughput for the next second and terminates the transfer
when the prediction falls within a certain range (default is
5%) of actual throughput observation. Deep Neural Network
(DNN) classifier similarly processes instantaneous throughput
values to detect the convergence of throughput and uses the
average of the last four instantaneous throughput values to pre-
dict the throughput. Figure 5 presents an example where both
AR and DNN models fail to make accurate predictions. Since
throughput appears to have converged in the first few seconds
of Transfer-1, both model terminates the transfer at t = 5
and underestimates the actual average by 49%. On the other
hand, both models fail to detect a convergence for Transfer-2
until the maximum time limit (i.e., 15 second) thus cause long
probing duration. We therefore apply machine learning (ML)
regression models as they are better at capturing otherwise
intricate dynamics between input parameters (instantaneous
throughput values) and output (average throughput) to lower
prediction times and increase the prediction accuracy..

IV. MODELING THROUGHPUT OF FILE TRANSFERS

Regression models use instantaneous throughput values
t1, t2, ..., tn are used to predict the average throughput of a
transfer, tpred, as

tpred = α0 + α1t1 + α2t2 + ...+ αntn (1)

where α is the coefficient vector estimated in the model
fitting phase. Instead of using absolute throughput values as

inputs to regression models, we feed normalized values to
minimize the bias. As a normalization method, we adopted
standard normalization method (aka feature scaling), which
separately scales each data column. As linear regression-
based models suffer from multicollinearity, we also applied
principal component analysis (PCA) to transform features (i.e.,
instantaneous throughput values) so that they become linearly
uncorrelated. Note that PCA transformation is not applied to
the input of machine learning models that do not assume
feature independence, such as Random Forest and Extreme
Gradient Boosting (aka XGBoost) Regression models.

Next, we use the gathered 38K transfer logs to train Linear
Regression (LR), Support Vector Regression (SVR), Neural
Network (NN), XGBoost (XGB), and Random Forest (RF)
Regression models to predict average transfer throughput,
tavg , using instantaneous throughput values. Since we envision
using the prediction models in real-time to determine the
stopping condition of probing transfers, the number of avail-
able instantaneous throughput reports will start from zero and
increase one by one as time passes. For instance, if we measure
the throughout of probing transfers at one-second intervals,
we will have one instantaneous throughput value at t = 1s,
two instantaneous throughout values at t = 2s, and so on.
Hence, n in Equation 1 depends on how long a probing transfer
is executed. Since the optimal probing duration is different
for each network, we first trained a separate model for each
possible probing duration (i.e., one second, two seconds, three
seconds, etc.) as the number of input features is dependent on
probing duration. For example, evaluating the Random Forest
Regressor at t = 3s and t = 4s requires two models; one
takes 3 inputs and the other takes 4 inputs. Although it is
possible to the 3-input model to process t = 4s data by
taking its last 3 reported instantaneous throughput values, we
instead chose to derive a separate model to take advantage
of all available reported values for improved performance. As
probing transfers are expected to execute for a short period,
we limit the maximum probing duration to 30 seconds and
train 30 separate models for each ML model type.

To train an n-input model, we take the first n instanta-
neous throughput values of each transfer log and feed them
to the model along with actual average throughput of the
transfer, tavg as a label. For example, for a transfer log
with following instantaneous and average throughput values <
100, 800, 900, 1100, · · · >,< 1320 >, we pass < 100, 800 >
as an input to 2-second regression models with a label <
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Fig. 6. Illustration of training (a) and inference (b) phases of FastProb. It trains classifier-regression model pairs. The classifiers are used to determine if
reported instantaneous throughput values are sufficient to accurately predict the average throughput of a transfer using corresponding regression models.

1320 >, < 100, 800, 900 > as an input to 3-second regression
models with a label < 1320 >, and so on. To separate transfer
logs as training and test, we use timestamp-based partitioning,
which sorts all transfer logs based on their start time and places
first 80% into the training and last 20% into the test category.
This is intended to capture data shift problem which can
adversely affect the performance of ML models when system
conditions change over time. We conducted 5 cross-validation,
for which we first split the transfer logs into 6 groups using
time-based partitioning. Then, we train the models using the
transfer logs in the first group and test against the transfers in
the second group; retrain models using the logs in the first two
groups and test against the transfers in the third data group,
and so on. We use Mean Absolute Percentage Error (MAPE)
to calculate the error rate of models.

We use Gaussian process-based Bayesian optimization (us-
ing scikit-optimize library) to discover the optimal hyper-
paratemers for the models, such as kernel and regularization
values for SVR, number of trees and maximum depth for RF
and XGB. We used AutoKeras [20] to tune the hyperparame-
ters of NN models, which performs Neural Architecture Search
(NAS) to find out the best performing architecture for given
dataset. Since we derive 30 models for each network, a total
120 architecture search is required, which incurs more training
cost compared to all other ML algorithms combined. So,
we randomly performed 20 search and realized that selected
architectures are mostly composed of 5 − 8 layers of Dense,
ReLU, and Dropout, thus we create NN models with 7 layers
using Normalizer, Dense, ReLU, Dense, Dropout, ReLU, Dense
architecture.

The results, as presented in Figure 4 show that the error
rate of most ML models decreases as the number of inputs
(i.e., probing duration) increases. The error rates of SVR and
LR models are significantly higher compared to other models.
In particular, they cause over 30% error rate in XSEDE-1
and XSEDE-2 networks due to failing to capture an accurate
relationship between instantaneous and average throughput
when instantaneous throughput fluctuates significantly. NN,
XGBoost, and RF models all have competitive results as they
attain less than 6% error with 6 inputs (i.e., 6-second probing)
for HPCLab and ESnet networks. Although their error rates
increase for XSEDE transfers due to higher throughput fluctu-

ations, they can keep the error rate less than 12% for 6-second
probing and less than 10% for 10-second probing intervals.

Although ML regression models can achieve less than 10%
prediction error rate in all networks, the minimum duration
to achieve it is not the same for all networks. For instance,
one can use 3-input RF regression model to achieve less than
10% error rate in HPCLab and ESnet, but require 10-input RF
regression model to achieve the same error rate in XSEDE-
1. Even more challenging is the fact that different transfers
in shared, production networks (i.e., XSEDE-1 and XSEDE-
2) can converge at different times as some transfers fluctuate
more than others in the same network due to difference in
background traffic, dataset characteristics, and transfer set-
tings. Therefore, it is important to determine the duration of
each probing transfer in real-time based on its behavior, then
use the corresponding regression model to make the prediction
for average throughput.

Adaptive Regression with FastProb: To achieve this goal,
we introduce FastProb that pairs the regression models with a
classifier which to determine whether or not a given regression
model would be able to make high accuracy prediction for a
probing transfer using its available instantaneous throughput
values. As an example, if we want to find out whether or not
we can use a 3-input regression model to make a prediction
for a probing transfer at t = 3s, we can train a binary classifier
which will process populated instantaneous throughput values.
< t1, t2, t3 >, to determine if the 3-input regression model
will be able to make accurate prediction for this transfer. If the
classifier returns “yes”, then we can use the 3-input regression
model to predict the average throughput and terminate the
probing transfer. Otherwise, we let the transfer continue for
another second and use 4-input classifier to determine if 4-
input regression model would be able to predict the transfer
throughput accurately using < t1, t2, t3, t4 >. Hence, each
regression model is paired with a classification model to
estimate if the regression model is likely to return an accurate
predictions for a given transfer as shown in Figure 6(b). We
kept the maximum runtime for probing transfers to 15 seconds
in FastProb as we noticed that the performance of the RF
regressors does not improve significantly after 15 seconds (i.e.,
15-input regressor) in Figure 4.

To train the prediction models, we first split the training
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(c) XSEDE-1
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Fig. 7. Performance comparison of different probing algorithms. FastProb offers more than 50% improvement in error rate and transfer duration compared
to the state-of-the-art solutions.

TABLE II
COMPARISON OF FastProb AGAINST RF REGRESSION MODEL.

Network RF Regressor FastProb

Error (%) - 3 Sec Error (%) - 10 Sec Error (%) Time (sec)
HPCLab 2.8 2.1 2.8 3.2

ESnet 6.6 5.1 5.6 5.2

XSEDE-1 18.9 10.1 9.9 7.7

XSEDE-2 12.1 7.3 8.4 6.7

set into two categories as Subset1 (70%) and Subset2 (30%),
then train a regression model using the Subset1. The regression
model is evaluate for transfers in Subset2 and error rates are
calculated for each transfer. Next, the transfers with less than a
certain error rate, P , are marked with label 1 and others with
a label 0. Finally, the labeled transfers of Subset2 are used
to train a binary classifier. In the above example, we first use
Subset 1 to train a 3-input regression then test it on Subset2 to
label them based on the performance of the regression model.
Finally, 3-input binary classifier is trained to decide whether or
not a 3-input regression model can be used to make accurate
predictions for probing transfer at their third second.

We implemented various combinations of XGBoost (XGB),
Neural Network (NN), and Random Forest (RF) classifier-
regressor pairs to and evaluated them in terms of prediction
time and estimation accuracy. For instance, we combined an
NN classifier with a XGB regressor to test the performance
of using NN as binary classifier XGB as regression model.
Although we omitted the full results due to space limitations,
the best performance is achieved when RF classification mod-
els are paired with RF binary classifiers. Hence, FastProb is
composed of 14 RF Classifier-RF Regressor pairs. We again
tuned the hyperparameters of the classifiers (as described in
Section IV) to maximize the performance. As FastProb uses
confidence threshold (P ) to determine the label of transfer in
Subset2 as illustrated in Figure 6(a), we compared the model
performance using different P values between 1 − 20% for
XSEDE-1 transfers. While higher P values (e.g., 20%) result
in significantly high error rates in exchange of lower probing
times, lower P values (e.g., 1%) leads to long probing times
in exchange of higher accuracy. Thus. we used P = 5% as
it strikes a good balance between prediction accuracy and
probing duration.

V. EXPERIMENTAL EVALUATIONS

We first compare the performance of FastProb against the
Random Forest regression model (as presented in Figure 4) in
Table II. Since the regression models require probing duration

to be specified by the user, we picked two fixed values as
3 and 10 seconds and used 3- and 10-inputs RF regression
models as we observe that the models are able to achieve less
than 10% error rate in 3− 10 seconds for different networks.
We observe that while 10−inputs can keep the error rate less
than 10%, it is unnecessarily long probing duration for some
networks such as HPCLab and ESnet. 3− inputs regression
model, on the other hand causes up to 18% average error
rate and more than 50% for 8.4% of transfers. FastProb can
strike a balance between probing time and error rate as it
can attain very similar error rate compared to the 10− input
regressor model while requiring less than 7.7 seconds in all
networks and less than 5.2 seconds in ESnet and HPCLab. This
is mainly due to its ability to distinguish stable/predictable
transfers from others such that they can be terminated quickly.
While one can possibly choose a different probing duration for
each network after analyzing the performance of the regression
models (e.g, 3 seconds for ESnet and 10 seconds for XSEDE-
1), FastProb eliminates this step and automatically detects
the optimal duration for each network with the help of its
binary classifiers.

We next compare FastProb against state-of-the-art static
(i.e., fixed-size, fixed-duration), and adaptive (i.e., Autoregres-
sive [9] and DNN [17]) probing methods. Fixed-size approach
transfers a fixed dataset and calculates the transfer throughput
based on transfer duration. Yildirim et al. developed regression
models to estimate optimal size for probing transfers and found
that using 10 − 23% of original dataset size result in best
trade off between accuracy and duration [3]. We therefore we
used 2 − 60 GiB data depending on network settings (larger
data in high delay, bandwidth networks) to match with data
size used in [3]. Fixed-duration method runs probing transfers
for a predetermined amount of time and calculates throughput
based on the amount of data transferred [7]. Although earlier
work set the probing duration to as much as 120 seconds [7],
we kept it at 5 seconds for HPCLab and ESnet networks and
8 seconds for XSEDE networks to present its results in a
similar time scale as other approaches. Autoregressive (AR)
time-series model processes instantaneous throughput report to
derive a regression model and uses it to predict the throughput
of the following second. It terminates the transfer when the
prediction falls within a certain range (default is 5%) of actual
throughput. Deep Neural Network (DNN) Classifier trains a
model that can determine when to stop a probing transfer based
the convergence pattern of instantaneous throughput values.
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Fig. 8. Incremental training can be used to mitigate the need for exhaustive
data collection as well as to adopt changing network conditions. (+) indicates
retraining of the model due to degrading model performance.

Once the convergence is detected, it uses an average of the
last four throughput values to predict the average throughput.

Comparison to state-of-the-art: Figure 7 demonstrates the
performance comparison of the models. Probing duration takes
more than 14 seconds when using the fixed-size approach
in all networks. In return, it achieves a lower error rate
compared to Autoregressive and DNN Classifier models. In
contrast, fixed-duration yields shorter execution times while
causing relatively higher error rates in most networks. The
Autoregressive model keeps its execution time less than 10
seconds for all networks but returns a 1.5− 3.5 times higher
error rate than FastProb, which can be attributed to its
termination condition. It stops the probing transfers when the
prediction made by the model is close to actual observation
in the next interval. However, this comparison is susceptible
to immature terminations when the predictions fall within a
close range of observed throughput not because of throughput
convergence but merely due to throughput fluctuations. DNN
Classifier yields a better error rate and probing duration than
the Autoregressive and static approaches (i.e., fixed-size and
fixed-time) in most networks as it can adapt its execution time
based on instantaneous reports. On the other hand, FastProb
outperforms DNN Classifier in terms of error rate and probing
duration. The improvement ratio ranges between 17−61% for
error rate and 12 − 48% for the probing period. The highest
performance gain occurs in HPCLab, where it yields a 61%
lower error rate and 48% lower probing time compared to the
DNN classifier.

Incremental training: Gathering rich and diverse training
datasets may not be possible in every network. Thus, an
ability to train an initial model with limited data and update
later as more data becomes available is critical to enable the
adoption of supervised learning models. Even in networks with
sufficient training datasets, evolving nature of networks and
end systems in terms of configurations (e.g., network band-
width and file system settings) and usage behavior demands
model retraining based on new observations. Therefore, we
implemented incremental training for FastProb as follows:
We first train an initial model using transfer logs of XSEDE-1
network that are collected in the first day of data collection
phase, which contains around 500 transfer logs. We then
evaluated the model against transfer logs of following days
in batches (30 transfer logs in each batch). If the error rate
of a batch of transfers exceeds a certain threshold (by default
20%), we retrain FastProb using all previous transfer logs;
otherwise keep using the same model. We repeat this process
around 300 times (nearly 9, 000 transfers in total with each

batch containing 30 transfers) for the data collected in three
weeks time-frame.

Figure 8 presents the error rate for each interval along with
timestamps in which we retrained FastProb due to increased
error rate. It is clear that we retrain FastProb more often
in the first few days compared to last ones as initial model
fails to perform well due to limited training data. In total,
the model is retrained only 9 times out of 300 evaluations.
Average prediction error rate is 11.93% with average duration
of 7.65 seconds. Although the performance of FastProb with
incremental training algorithm is similar to the cross-validation
results (Figure 7), its standard deviation is noticeably higher
in cross validated experiments. This can be attributed to
having larger training and test data in cross-validated ex-
periments. One drawback of incremental training when used
with Random Forest models is that it requires a complete
retraining of the models using full historical data as decision
tree-based models do not support incremental learning. We
believe that this is not a significant limitation as it takes
only around 2 minutes to train FastProb with all XSEDE-1
data that contains 10, 000 transfers logs using a server with
16GB RAM and Intel i7-7700 CPU @ 3.60GHz processor.
Moreover, the frequency of retraining decreases rapidly as the
model performance improves over time. Alternatively, one can
replace RF in FastProb with models that support incremental
training such as Neural Network. However, we observe that
NN models takes significantly longer to train/update compared
to training RF models from scratch. Specifically, it took 8
seconds to traing the RF model with the first 500 transfer logs
whereas it took 138 seconds for NN. Similarly, retraining the
RF model with when its error rate increases takes around 30
seconds whereas updating the NN model with only new data
takes more than 200 seconds. Thus, RF model does not only
offer advantage over NN model in terms of model performance
but also in terms of training cost.

VI. AN APPLICATION SCENARIO: TUNING TRANSFER
SETTINGS FOR BULK DATA TRANSFERS

To demonstrate the benefit of improved probing accuracy
and duration, we integrated FastProb into a simple real-time
transfer tuning algorithm. The transfer optimization algorithm
tries to find the optimal number of concurrent file transfers
since concurrency is an effective method to increase transfer
throughput in HSNs as it can improve both network and I/O
throughput when parallel file systems are used [6]. However,
its optimal value depends on several factors such as file system
configuration, network bandwidth, and background traffic. We
implemented a search algorithm to evaluate the performance of
different concurrency values using probing transfers and pick
the one that yields the maximum throughput to transfer the rest
of dataset. We tested this algorithm in HPCLab, Stampede2-
Expanse, and BlueWaters-Expanse3 networks using 106 GB,
60 GB, and 960 GB datasets consisting of 1GB files. While

3We used the FastProb model derived for Stampede2-Expanse for
BlueWaters-Expanse transfers as they have similar characteristics in terms
of high bandwidth between end points and shared system resources

7



TABLE III
PERFORMANCE OF REAL-TIME TRANSFER TUNING ALGORITHM USING

DIFFERENT PROBING TECHNIQUES.

Model HPCLab Stampede2-Expanse BlueWaters-Expanse
Average Transfer Throughput (Gbps)

Fixed-duration 15.1 3.2 31.7
DNN Classifier 17.1 3.2 33.9
AutoRegressive 17.2 3.4 37.0

FastProb 19.6 4.3 49.4
Average Probing Time (sec)

Fixed-duration 10.01 11.57 11.56
DNN Classifier 4.67 10.95 9.71
AutoRegressive 4.13 7.86 10.95

FastProb 2.11 4.52 2.62

achievable throughput is around 20 − 30Gbps in HPCLab
and Stampede2-Expanse networks, it is nearly 85Gbps in
BlueWaters-Expanse network. We chose total dataset size
proportional to average transfer throughput in each network to
give the optimization algorithm enough time to find the opti-
mal solution. We check the concurrency values between 1 and
n where n is defined as 5, 12, and 20 in HPCLab, Stampede2-
Expanse, and BlueWaters-Expanse transfers, respectively. We
repeated each experiment ten times and present average and
standard deviation results for transfer throughput and probing
time in Table III.

In overall, FastProb is able to keep probing time below
5 seconds in all three networks and achieves 2 − 5x shorter
probing times compared to the other solutions. Since HPCLab
servers are located in the same local area network, instanta-
neous throughput reports are more stable compared to others
networks. As a result, Autoregressive and DNN Classifier
models are able to keep the probing time less than 5 second
and yields only 10−15% less throughput than FastProb. On
the other hand, transfer throughput exhibits more fluctuations
in wide area networks, causing longer probing transfers when
using AutoRegressive and DNN Classifier models similar to
Transfer-2 in Figure 5. Consequently, FastProb can lower
search time for the online optimizations significantly and
lead to 25% to 35% higher overall throughput in Stampede2-
Expanse and BlueWaters-Expanse, respectively.

VII. CONCLUSION
This paper introduces FastProb to predict the throughput

of file transfers upon convergence by processing instantaneous
throughput values. FastProb leverages Random Forest-based
classification models to determine if the throughput of a
transfer can be predicted based on available instantaneous
throughput values. If the classification models return a pos-
itive response, then it uses a Random Forest-based regres-
sion model to process instantaneous throughput values to
estimate convergence throughput. The results from a wide
range of network, dataset, and configuration settings show
that FastProb outperforms the state-of-the-art solutions by
nearly 50% both in terms of probing time and measurement
accuracy. We integrated FastProb into a real-time transfer
optimization algorithm demonstrate the benefit of optimizing
probing transfers. The results from three different networks
show that FastProb can shorten the probing duration by

2 − 5x, thereby improving the transfer throughput by up to
35% for optimization algorithms.
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