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Abstract

This paper leverages machine-learned predictions to design competitive algorithms
for online conversion problems with the goal of improving the competitive ratio
when predictions are accurate (i.e., consistency), while also guaranteeing a worst-
case competitive ratio regardless of the prediction quality (i.e., robustness). We
unify the algorithmic design of both integral and fractional conversion problems,
which are also known as the 1-max-search and one-way trading problems, into a
class of online threshold-based algorithms (OTA). By incorporating predictions
into design of OTA, we achieve the Pareto-optimal trade-off of consistency and
robustness, i.e., no online algorithm can achieve a better consistency guarantee
given for a robustness guarantee. We demonstrate the performance of OTA using
numerical experiments on Bitcoin conversion.

1 Introductions

An online conversion problem aims to convert one asset to another through a sequence of exchanges at
varying rates in order to maximize the terminal wealth in financial markets. With limited information
on possible future rates, the core challenge in an online conversion problem is how to balance the
return from waiting for possible high rates with the risk that high rates never show up. A high profile
example of this risk is cryptocurrency markets, e.g., Bitcoin, where high fluctuations up and down
make it challenging to optimize exchanges. Two well-known classical online conversion problems
are 1-max-search [7] and one-way trading [8], which can be considered as integral and fractional
versions of the online conversion problem that trade the asset as a whole or fraction-by-fraction (e.g.,
trading stock in lot or shares). Beyond these two problems, a number of extensions and variants of
online conversion problems have been studied with applications to lookback options [14], online
portfolio selection [13], online bidding [5], and beyond.

Most typically, conversion problems are studied through the lens of competitive ratios and the goal is
to design online algorithms that minimize the worst-case return ratio of the offline optimal to online
algorithm decisions. For example, EI-Yaniv et al. [8] have shown that optimal online algorithms can
be designed to achieve the minimal competitive ratios for both 1-max-search and one-way trading.
However, in real-world problems, predictions about future conversion rates are increasingly available
and the algorithms developed in the literature are not designed to take advantage of such information.
The challenge for using such predictions is that, in one extreme, the additional information is
an accurate prediction (advice) of future inputs. In this case, the algorithm can confidently use
the information to improve performance, e.g., [9]. However, most commonly, predictions have
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no guarantees on their accuracy, and if an online algorithm relies on an inaccurate prediction the
performance can be even worse than if it had ignored the prediction entirely.

This challenge is driving the emerging area of the learning-augmented online algorithm (LOA) design,
which seeks to design online algorithms that can incorporate untrusted machine-learned predictions
in a way that leads to near-optimal performance when predictions are accurate but maintains robust
performance when predictions are inaccurate. To measure this trade-off, two metrics have emerged,
introduced by [15] and [19]: consistency and robustness. Consistency is defined as the competitive
ratio when the prediction is accurate, i.e., CR(0), where CR(ε) is the competitive ratio when the
prediction error is ε. In contrast, robustness is the worst competitive ratio over any prediction errors,
i.e., maxε CR(ε). Thus, consistency and robustness provide a way to quantify the ability of an
algorithm to exploit accurate predictions while ensuring robustness to poor predictions.

In recent years, a stream of literature has sought to design robust and consistent LOA for a variety
of online problems, such as online caching [15], ski-rental [19], and others. The ultimate goal is
to develop algorithms that are Pareto-optimal across robustness and consistency, in the sense that
for any γ, the LOA achieves the minimal consistency guarantee among all online algorithms that are
γ-competitive. For the ski rental problem, recent works have derived Pareto-optimal algorithms, e.g.,
[4, 22], but in most cases the question of where the Pareto-boundary of LOA lies is yet to be answered.

In this paper, we focus on the design of LOA for online conversion problems and we seek to answer the
following question: Is it possible to design a Pareto-optimal LOA for the online conversion problem?

Contributions. We show that the answer to the above question is “yes”, by designing an online
threshold-based algorithm (OTA), and proving that it is Pareto-optimal. In particular, we introduce a
class of OTA that unifies the algorithmic design of both 1-max-search and one-way trading. We then
incorporate predictions into OTA by parameterizing the threshold functions based on the predictions.
This approach yields bounded consistency and robustness (see Theorem 4.5 and Theorem 4.6).
Further, we derive lower bounds for robustness-consistency trade-offs and show that our learning-
augmented OTA achieves those lower bounds, and is thus Pareto-optimal (see Theorem 5.1 and
Theorem 5.2). Finally, we demonstrate the improvement of the learning-augmented OTA over pure
online algorithms using numerical experiments based on real-world data tracking Bitcoin prices.

The technical contributions of this paper are twofold. First, we provide a sufficient condition for
design and analysis of the learning-augmented OTA with a guaranteed generalized competitive ratio.
This competitive ratio is general in the sense that it not only can yield robustness and consistency
guarantees, but can also potentially provide more fine-grained performance guarantees beyond
robustness and consistency. Second, we provide a novel way of deriving the lower bound on the
robustness-consistency trade-off, which may be of use beyond online conversion problems. The key
idea is to construct a function that can model all online algorithms under a special family of instances,
and the lower bound can be derived from combining the robustness and consistency requirements on
this function. This constructive approach to arriving at a lower bound is distinctive.

2 Related Work

Online Conversion Problems. The online conversion problem is first introduced by El-Yaniv [7]
and analyzed under the competitive analysis framework. It aims to search for the maximum rate to
make conversions from a sequence of time-varying rates, which are chosen by an adversary in the
worst-case. The subsequent works [8, 14] have designed competitive algorithms for both integral and
continuous versions of the online conversion problem and achieved the minimal competitive ratios.
Many variants and extensions have also been studied, such as online conversion under interrelated
rates [20] or with inventory constraints [23, 12]. See [18] for a survey of other variants. In addition,
the design and analysis of competitive algorithms for the online conversion problem have been shown
to closely relate to those of the online knapsack problems, such as the online 0/1 knapsack with small
weights [24, 26] and online fractional knapsack [21]. Beyond the worst-case input model, another
line of research considers searching for the maximum value from the time-varying rates with some
form of prior knowledge. For example, the secretary problem [3] assumes that the rates arrive in a
uniformly random order and the prophet inequality [6] assumes that the rates arrive in the worst-case
order but with prior distributions. The prior information in these problems makes the design and
analysis of algorithms essentially different from those of online conversion problems.
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Learning-augmented algorithms. The learning-augmented algorithm (LOA) takes advantages of
machine learned predictions about the future input into the design of online algorithms and aims to
optimize for a better competitive performance with an improved quality of predictions. The concepts
of consistency and robustness are first introduced to study the online caching problem in [15]. Then
the follow-up work [19] formally shows that there exist trade-offs between consistency and robustness
in the ski-rental problem and its variants, and LOA needs to be designed to balance the two criteria
unlike the online algorithms just optimized for the competitive ratio. Furthermore, the works [4] and
[22] independently prove that the LOA designed in [19] is Pareto-optimal, i.e., given a robustness,
no online algorithms can achieve a smaller consistency. Also, in [11] and motivated by an energy
optimization scenario, the authors develop Pareto-optimal algorithms for an extended version of
the ski-rental problem. From the aspect of methodology, the work [4] provides a general approach
to incorporate the prediction into the online primal-dual algorithm and shows it can be applied to
solve multiple online problems. In terms of applications, LOA has been designed for a variety of
online problems, such as online caching [15], ski-rental [19, 22, 4, 1, 11], online set cover [4], online
scheduling [19, 10], secretary and online matching [3], metrical task systems [2], etc. However,
among those applications, the Pareto-optimality of LOA has only been rigorously shown for the
ski-rental problem.

3 Problem statement and a unified algorithm

The online conversion problem. An online conversion problem considers how to convert one
asset (e.g., dollars) to another (e.g., yens) over a trading period [N ] := {1, . . . , N}. At the beginning
of step n ∈ [N ], an exchange rate (or price), vn, is announced and a decision maker must immediately
determine the amount of dollars, xn, to convert and obtains vnxn yens. The conversion is unidirec-
tional, i.e., yens are not allowed to convert back to dollars. The trading horizon N is unknown to the
decision maker, and if there are any remaining dollars after N − 1 trading steps, all of them will be
compulsorily converted to yens at the last price vN . Without loss of generality, the initial asset can be
assumed to be 1 dollar, and the goal is to maximize the amount of yens acquired at the end of the
trading period. The offline version of the conversion problem can be cast as

maximize
xn

∑
n∈[N ]

vnxn, subject to
∑

n∈[N ]
xn ≤ 1. (1)

If the conversion is only allowed in a single transaction, the decision xn ∈ {0, 1} is a binary variable,
and this integral version is called 1-max-search [7]. If the asset is allowed to convert fraction-
by-fraction over multiple transactions, the decision xn ∈ [0, 1] is a continuous variable, and this
fractional version is refereed to as one-way trading [8]. Following the literature, we assume the
prices {vn}n∈[N ] are bounded, i.e., vn ∈ [L,U ], ∀n ∈ [N ], where L and U are known parameters,
and define θ = U/L as the price fluctuation.

Online threshold-based algorithms. Online threshold-based algorithms (OTA) belong to a class
of reserve-and-greedy algorithms where the idea is to use a threshold function to determine the
amount of resources that need to be reserved based on resource utilization, and then greedily allocate
resources respecting the reservation in each step.

OTA is known to be easy-to-use but hard-to-design due to the difficulties in developing the threshold
function. Prior work using OTA has often been problem specific. For example, an optimal design of
the threshold function in OTA is derived in [21] for one-way trading and in [25, 26] for the online
knapsack problem, which is closely related to one-way trading.

Here, we unify online algorithms for online conversion problems in an OTA framework in Algorithm 1.
Algorithm 1 takes a threshold function φ as its input, where φ(w) : [0, 1]→ [L,U ] is a function of
resource utilization (i.e., amount of traded dollar) w and φ(w) can be considered as the reservation
price when the utilization is w. The algorithm makes conversions only if the current price vn is
at least φ(w(n−1)), where w(n−1) =

∑
i∈[n−1] x̄i is the utilization after the previous n − 1 steps

of trading. More specifically, the conversion decision x̄n in each step is determined by solving an
optimization problem in Line 3 of Algorithm 1. The OTA framework transforms the algorithmic
design task in online conversion problems into the design of φ, and the challenge is to design φ such
that OTA can have theoretical performance guarantees. To provide two examples, in the following we
show how to recover the optimal online algorithms for 1-max-search and one-way trading.

3



Algorithm 1 Online threshold-based algorithm with threshold function φ (OTAφ)

1: input: threshold function φ(·), and initial resource utilization (i.e., traded dollar) w(0) = 0;
2: while price vn is revealed do
3: determine resource allocation x̄n = arg maxxn∈Xn vnxn −

∫ w(n−1)+xn
w(n−1) φ(u)du;

4: update the utilization w(n) = w(n−1) + x̄n.
5: end while

1-max-search. In this integral conversion problem, OTA sets the feasible space as Xn = {0, 1} and
the threshold function as a constant φ(w) = Φ, w ∈ [0, 1], where Φ is also called a reservation price.
Then the algorithm simply selects the first price that is at least Φ. When the reservation price is
designed as Φ =

√
LU , OTA is exactly the same algorithm as the reservation price policy in [8],

which achieves the optimal competitive ratio
√
θ.

One-way trading. OTA sets Xn = [0, 1 − w(n−1)] and φ as a continuous and strictly increasing
function. The conversion decisions fall into three cases based on the solution of the optimization in
Line 3: (i) if vn < φ(w(n−1)), make no conversions, i.e., x̄n = 0; (ii) if φ(w(n−1)) ≤ vn ≤ φ(1),
x̄n can be solved based on the first-order optimality condition, i.e., vn = φ(w(n−1) + x̄n); and (iii) if
vn > φ(1), x̄n = 1−w(n−1) converts all its remaining dollar at the price vn. By setting the threshold
function to φ(w) = L + (α∗L − L) exp(α∗w), w ∈ [0, 1], OTA achieves the optimal competitive
ratio α∗ = 1 +W ((θ − 1)/e), where W (·) is the Lambert-W function [21].

4 Robustness and consistency

This paper is focused on the design of learning-augmented online algorithms (LOA) where the online
algorithm is given a machine-learned prediction P ∈ [L,U ] of the maximum price V = maxn∈[N ] vn
over the price sequence. In the online conversion problem, suppose V is known a prior, waiting to
trade all assets at the price V achieves the maximum profit. Therefore, the maximum price is an
appropriate value to be predicted and incorporated into the design of the online algorithm. The
prediction P is not necessarily accurate and we define ε = |V − P | as the prediction error. Let CR(ε)
denote the competitive ratio of OTA when the prediction error is ε. Our goal is to design an algorithm
that is η-consistent and γ-robust, i.e., an algorithm where η ≥ CR(0) and γ ≥ maxε CR(ε). We first
focus on designing a learning-augmented OTA by incorporating predictions into the design of the
threshold function φ to achieve bounded robustness and consistency.

4.1 Warmup

To highlight the challenges of algorithm design in this setting, we start by showing that an intuitive use
of predictions can result in poor robustness-consistency guarantees. Thus, it is of essential importance
to take advantage of the problem structure in designing the learning-augmented OTA.

To illustrate this, we consider the design of the reservation price ΦP for 1-max-search as an example.
If we blindly use the prediction of the maximum price by setting ΦP = P , OTA is indeed offline
optimal when the prediction is accurate, and thus 1-consistent. However, its robustness is the worst
possible competitive ratio θ, which is achieved when the prediction is P = U and the actual maximum
price is V = U − ε, where ε→ 0. In fact, the robustness guarantee approaches θ with an arbitrarily
small prediction error.

Another intuitive design is to set the reservation price as a linear combination of P and the optimal
reservation price for pure online algorithms

√
LU , i.e., ΦP = λ

√
LU + (1− λ)P , where λ ∈ [0, 1]

is called the robustness parameter, indicating the distrust in the prediction. The robustness and
consistency of this algorithm is characterized by the following result.

Proposition 4.1. Given λ ∈ (0, 1], OTA with the reservation price ΦP = λ
√
LU + (1 − λ)P for

1-max-search is (λ
√
θ + (1− λ)θ)-robust and

√
θ-consistent.

Above consistency-robustness result is tight in the sense that for a given λ, we can construct an
instance, under which OTA with the reservation price ΦP can achieve the robustness and consistency
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in Proposition 4.1 with arbitrarily small gaps. This result highlights that, while the robustness is a
linear combination of the optimal competitive ratio

√
θ and θ, the consistency is

√
θ, which yields no

improvement over the optimal competitive ratio except for a special case when λ = 0.

4.2 A sufficient condition

Together, the two examples in the previous section highlight some of the challenges associated with
balancing robustness and consistency in OTA. Given the challenges, we now focus on developing a
general approach for the design and analysis of robust and consistent learning-augmented OTA. To do
so, we first generalize the competitive ratio from a scalar to a vector, where each element corresponds
to a competitive ratio over a subset of instances (see Definition 4.2). Since consistency and robustness
can be considered as the competitive ratios over the subsets of the predicted instances and the
other instances, the competitiveness of OTA can be transformed to robustness-consistency guarantees
(see Lemma 4.3). This transformation leads us to characterize a general sufficient condition (see
Theorem 4.4) on the threshold function of OTA that guarantees a generalized competitive ratio over a
given subsets of instances. Then, combining Theorem 4.4 and Lemma 4.3 gives a general approach for
analyzing the consistency and robustness of OTA, which we leverage in the analysis of 1-max-search
and one-way trading in the following sections in order to illustrate its applicability.

To begin, let OPT(I) and ALG(I) denote the returns of offline optimal and an online algorithm under
instance I, respectively. Let P := {P1, . . . ,PI} be a partition of the set Ω of all instances.
Definition 4.2 (Generalized competitive ratio). α := (α1, . . . , αI) is a generalized competitive ratio
over P if αi = maxI∈Pi OPT(I)/ALG(I) is the worst-case ratio over Pi for all i ∈ [I].

In online conversion problems, let Ωp ⊆ Ω be a subset, in which each instance has a maximum price
p. Thus, if we have a prediction P on the maximum price, it means the instance is predicted to belong
to ΩP . We can show the consistency and robustness of a learning-augmented OTA by proving its
generalized competitive ratio over a partition. In particular, given prediction P , OTA is η-consistent
and γ-robust if there exists a partition such that OTA is η-competitive over the subset that contains
ΩP and γ-competitive for the remaining subsets. Formally we have the following claim.
Lemma 4.3. Given a prediction P ∈ [L,U ], and parameters η and γ with η ≤ γ, OTA for online
conversion problems is η-consistent and γ-robust if there exists a partition P = {Pη,Pγ} with
Ω = Pη ∪ Pγ and ΩP ⊆ Pη , and OTA is (η, γ)-competitive over P .

Building on Lemma 4.3, we now focus on how to design the threshold function φ in OTA to ensure
a small generalized competitive ratio. To this end, divide the range of price [L,U ] into I price
segments [M0,M1), . . . , [MI−1,MI ] with L = M0 < M1 < ... < MI = U . We partition Ω based
on the price segments, i.e., Ω = {Ωp}p∈[M0,M1) ∪ · · · ∪ {Ωp}p∈[MI−1,MI ]. Hereafter, we use Pi
or [Mi−1,Mi) to denote the i-th instance subset {Ωp}p∈[Mi−1,Mi). To ensure different worst-case
ratios over different subsets of instances, we consider a piece-wise threshold function φ created
by concatenating a sequence of functions {φi}i∈[I], where each piece φi is designed to guarantee
αi-competitiveness over Pi. In particular, divide the feasible region [0, 1] into I resource segments
[β0, β1), . . . , [βI−1, βI ] with 0 = β0 ≤ β1 ≤ · · · ≤ βI = 1, and φi(w) ∈ [Mi−1,Mi), w ∈
[βi−1, βi). We say φi is absorbed if βi−1 = βi. The following theorem then provides a sufficient
condition for designing the threshold function φ in OTA to guarantee a generalized competitive ratio.
Theorem 4.4. OTA is α-competitive over {Pi}i∈[I] for online conversion problems if φ := {φi}i∈[I]

is a piece-wise and right-continuous function, φ(1) ∈ {Mi}i∈[I] is one of the partition boundaries,
and each threshold piece φi(w) : [βi−1, βi)→ [Mi−1,Mi) satisfies one of the following conditions:

Case I: if Mi ≤ φ(0), then Mi ≤ αiL and βi = 0;

Case II: if φ(0) < Mi ≤ φ(1), then φi is in the form of

φi(w) =

{
Mi−1 w ∈ [βi−1, β

′
i−1)

ϕi(w) w ∈ [β′i−1, βi)
, (2)

which consists of a flat segment in [βi−1, β
′
i−1) and a strictly increasing segment ϕi(w) that satisfies{

ϕi(w) ≤ αi
[∫ β′i−1

0
φ(u)du+

∫ w
β′i−1

ϕi(u)du+ (1− w)L
]
, ∀w ∈ [β′i−1, βi)

ϕi(βi) = Mi

; (3)
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Case III: if Mi > φ(1), then Mi ≤ αi
∫ 1

0
φ(u)du and βi = 1.

Theorem 4.4 is the key to the analysis that follows. In particular, it provides a sufficient condition
for analyzing the generalized competitive ratio of OTA, which in turn yields bounds on consistency
and robustness as highlighted in Lemma 4.3. We show its broad applicability in the subsections that
follow by applying it in the context of 1-max search and one-way trading.

Further, this approach is general and provides opportunities to derive more fine-grained performance
metrics for the learning-augmented OTA beyond consistency and robustness. For example, instead
of just focusing on the improved competitive ratio when predictions are accurate, we can redefine
the consistency as a prediction-error dependent metric κ(ξ) := maxε≤ξ CR(ε). κ(ξ) characterizes
the improved competitive ratio if the actual value is within the neighbourhood of the prediction
[P − ξ, P + ξ]. Thus, κ(ξ) is a more general and fine-grained metric, and η and γ are two extreme
points of κ(ξ), i.e., η = κ(0) and γ = κ(∞). Given ξ, we can leverage the competitive ratio to design
κ(ξ)-consistent and γ-robust OTA. In particular, given P , OTA is κ(ξ)-consistent and γ-robust if there
exists a partition P = {Pκ(ξ),Pγ} with Ωp∈[P−ξ,P+ξ] ⊆ Pκ(ξ), and OTA is (κ(ξ), γ)-competitive
over P .

4.3 1-max search

We now apply the sufficient condition in Theorem 4.4 to the setting of 1-max search. Our goal is to
design the reservation price ΦP given a prediction P . To do this, we set η := η(λ) and γ := γ(λ) as

γ(λ) = [
√

(1− λ)2 + 4λθ − (1− λ)]/(2λ), and η(λ) = θ/γ(λ), (4)

where λ ∈ [0, 1] is the robustness parameter, and η and γ are predetermined parameters for designing
ΦP that represent the consistency and robustness that we target to achieve. In particular, η and γ are
designed as the solution of

η(λ) = θ/γ(λ), and η(λ) = λγ(λ) + 1− λ. (5)

The first equation is the desired trade-off between robustness and consistency, which will be shown
to match the lower bound in Section 5, and thus represents a Pareto-optimal trade-off. The second
equation sets η as a linear combination of 1 and γ. In this way, as λ increases from 0 to 1 , η increases
from the best possible ratio 1 to the optimal competitive ratio

√
θ, and γ decreases from the worst

possible ratio θ to
√
θ. Taking η and γ as inputs, we design the reservation price ΦP as follows:

when P ∈ [L,Lη), ΦP = Lη; (6a)
when P ∈ [Lη, Lγ), ΦP = λLγ + (1− λ)P/η; (6b)
when P ∈ [Lγ,U ], ΦP = Lγ. (6c)

The following theorem provides robustness and consistency bounds for this algorithm. The result
follows from the general sufficient condition for the class of OTA in Section 4.2. Given each reservation
price ΦP , the key step of analysis is to determine a proper partition of instances and then analyze
the competitive ratio over each subset, in which ΦP can satisfy the sufficient condition in one of
the cases in Theorem 4.4. Take ΦP in (6a) for an example. We partition [L,U ] into [L,Lη) and
[Lη,U ] by letting M1 = Lη. Since φ(0) = φ(1) = ΦP = Lη, ΦP satisfies Case I and Case III for
[L,Lη) and [Lη,U ], respectively, and the corresponding competitive ratios are α1 = ΦP /L = η and
α2 = U/ΦP = θ/η = γ. Thus, OTA is (η, γ)-competitive over [L,Lη) and [Lη,U ]. Additionally, the
predicted instance ΩP ⊆ Ωp∈[L,Lη), and thus OTA is η-consistent and γ-robust based on Lemma 4.3.

Theorem 4.5. Given λ ∈ [0, 1], OTA with the reservation price in Equation (6) for 1-max-search is
γ(λ)-robust and η(λ)-consistent, where γ(λ) and η(λ) are given in Equation (4).

Before moving to the proof it is important to give insights into the form of the reservation price (6).
It consists of three segments for predictions that are in boundary regions [L,Lη) and [Lγ,U ] close to
price lower and upper bounds, and in intermediate region [Lη, Lγ). Figure 1 illustrates the form and
compares it with two intuitive designs ΦP = P and ΦP = λ

√
LU +(1−λ)P , which we have shown

providing poor robustness and consistency guarantees. Given any reservation price Φ ∈ [L,U ], the
robustness of OTA is max{Φ/L,U/Φ}, where Φ/L and U/Φ are the worst-case ratios over subsets
[L,Φ) and [Φ, U ]. To ensure a good robustness, (6a) and (6c) are designed to balance Φ/L and U/Φ
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Figure 1: Reservation price and threshold function for 1-max-
search (left) and one-way trading (right) with L = 2 and U = 10
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by just ensuring η-competitiveness over the boundary region that contains the prediction. The intuitive
design ΦP = P neglects this structure, and thus its robustness approaches the worst possible ratio θ.
Given an accurate prediction P , the consistency of OTA is max{Φ/L, P/Φ}. To guarantee a good
consistency, we must avoid the case that P < Φ, leading to the ratio Φ/L that cannot be properly
bounded. (6b) is designed by enforcing P ≥ ΦP . In this way, OTA always makes conversions in the
intermediate region and the consistency is P/ΦP , which can be designed to be upper bounded by
η. The intuitive design ΦP = λ

√
LU + (1 − λ)P fails to improve the consistency over

√
θ since

it cannot always guarantee P ≥ ΦP in the intermediate region, and thus may make no conversions
even with an accurate prediction. A full proof of Theorem 4.5 is in Appendix A.4.

4.4 One-way trading

Next, we apply the sufficient condition in Theorem 4.4 to one-way trading. We also aim to design the
threshold function based on the prediction P . Here, we set γ := γ(λ) and η := η(λ) as

η(λ) = θ/

[
θ

γ(λ)
+ (θ − 1)

(
1− 1

γ(λ)
ln

θ − 1

γ(λ)− 1

)]
, and γ(λ) = α∗ + (1− λ)(θ − α∗), (7)

where λ ∈ [0, 1] is the robustness parameter and α∗ is the optimal competitive ratio of one-way
trading. Similarly to the design in 1-max-search, the two equations in (7) determine the desired
trade-off between η and γ, and their desired relationship with λ. Again, we derive a lower bound in
Section 5 showing that this relationship is tight and provides a Pareto-optimal trade-off.

Taking η and γ as inputs, we design the threshold function as follows:

when P ∈ [L,M), φP (w) =

{
L+ (ηL− L) exp(ηw) w ∈ [0, β)

L+ (U − L) exp(γ(w − 1)) w ∈ [β, 1]
, (8a)

when P ∈ [M,U ], φP (w) =


L+ (γL− L) exp(γw) w ∈ [0, β1)

M1 w ∈ [β1, β
′
1)

L+ (M1 − L) exp(η(w − β′1)) w ∈ [β′1, β2]

L+ (U − L) exp(γ(w − 1)) w ∈ (β2, 1]

, (8b)

where β and M are solutions of{
M = L+ (ηL− L) exp(ηβ),

Mγ/η = L+ (U − L) exp(γ(β − 1));
(9)

and M1, β1, β′1, and β2 are all functions of P and are determined by
β1 = 1

γ ln max{M1/L,γ}−1
γ−1 ,

M1

η =
∫ β1

0
φ(u)du+ (β′1 − β1)M1 + (1− β′1)L,

P = L+ (M1 − L) exp(η(β2 − β′1)),

β2 = 1 + 1
γ ln min{Pγ/η,U}−L

U−L .

(10)

The following theorem provides robustness and consistency bounds for this algorithm. Again, the
result follows from the general sufficient condition for the class of OTA that we introduce in Section 4.2.
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Compared to 1-max-search, the additional difficulty of one-way trading lies in the analysis of the
competitive ratios over the subsets belonging to Case II of the sufficient condition since the threshold
function φP ranging in these subsets needs to satisfy a set of differential equations (3). φP in (8) is in
fact designed as the solution of the differential equation (3) with binding inequalities and properly
designed boundary conditions (by setting the length of the flat segment of each threshold piece).
Theorem 4.6. Given λ ∈ [0, 1], OTA with the threshold function (8) for one-way trading is γ(λ)-
robust and η(λ)-consistent, where γ(λ) and η(λ) are given in Equation (7).

Figure 1 illustrates the function given different predictions. The basic idea behind the design of the
threshold function (8) is similar to that of 1-max-search. When the prediction is in the boundary region
P ∈ [L,M), the threshold function (8a) (i.e., red curve) is designed to ensure η-competitiveness
over [L,M), and additionally guarantee γ-competitiveness over [M,U ]. In the other extreme when
P = U , the threshold function (8b) becomes φP (w) = L + (Lγ − L) exp(γw), w ∈ [0, β1) and
φP (w) = U,w ∈ [β1, 1] (i.e., green curve) since β2 = β′1 = 1 and M1 = U by solving equation (10)
with P = U . This threshold is (η, γ)-competitive over [U ] and [L,U). When the prediction is in
the intermediate region P ∈ [M,U), the threshold function consists of at most four segments. The
first and the forth segments when w ∈ [0, β1) and w ∈ (β2, 1] are exponential functions with rate γ,
aiming to ensure γ-competitiveness over [L,M1) and (P,U ]. These two segments may be absorbed
when the prediction is small (M1 ≤ Lγ) or large (Pγ/η ≥ U ), corresponding to β1 = 0 and β2 = 1.
To guarantee a good consistency, a flat segment in w ∈ [β1, β

′
1) is designed to convert enough

dollar before reaching the price P by enforcing P ≥M1, and an exponential segment with rate η in
w ∈ [β′1, β2] to ensure η-competitiveness over [M1, P ]. A full proof can be found in Appendix A.5.

5 Pareto-optimal consistency-robustness trade-off

To this point, we have focused on upper bounds for robustness and consistency. This section provides
lower bounds on the robustness-consistency trade-offs for both 1-max-search and one-way trading
and shows the Pareto-optimality of our proposed learning-augmented algorithms. Note that, obtaining
lower bounds on the trade-off between robustness and consistency for online algorithms has proven
difficult. The only existing tight lower bounds we are aware of are in the case of deterministic [1] and
randomized [4, 22] algorithms for the ski-rental problem.
Theorem 5.1. Any γ-robust deterministic LOA for 1-max-search must have consistency η ≥ θ/γ.
Thus, OTA with the reservation price (6) is Pareto-optimal.

Theorem 5.2. If a deterministic LOA for one-way trading is γ-robust, its consistency is at least
η ≥ θ/[ θγ + (θ − 1)(1− 1

γ ln θ−1
γ−1 )]. Thus, OTA with the threshold function (8) is Pareto-optimal.

We illustrate the Pareto-optimal trade-offs of robustness and consistency for 1-max-search and one-
way trading in Figure 2. Notice that the Pareto-boundary of one-way trading dominates that of
1-max-search since the fractional conversion leaves more flexibility to online decisions in one-way
trading, leading to a better lower bound. For both problems, with the improvement of consistency
from the optimal competitive ratio (i.e.,

√
θ or α∗) to the best possible ratio 1, the robustness degrades

from the optimal competitive ratio to the worst possible ratio θ. This means there is no free lunch in
online conversion problems; to achieve a good consistency, robustness must be sacrificed.

We end the section by proving Theorem 5.2 for one-way trading. A proof of Theorem 5.1 is included
in Appendix A.6.

Proof of Theorem 5.2. To show a lower bound result, we first construct a special family of
instances, and then show that for any γ-robust LOA (not necessarily being OTA), their consistency η is
lower bounded under the special instances.

We focus on a collection of p-instances {Ip}p∈[L,U ] where p ranges from L to U , where a p-instance
is defined as follows.
Definition 5.3 (p-instance). Given p ∈ [L,U ] and a large N , an instance Ip := {v1, . . . , vN} is
called a p-instance if vn = L+ (n− 1)δ, n ∈ [N − 1] with δ = p−L

N−2 and vN = L.

Notice that, when N → ∞, the sequence of prices in Ip continuously increases from L to p, and
drops to L in the last step.
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Let g(p) : [L,U ]→ [0, 1] denote a conversion function of a deterministic LOA for one-way trading,
where g(p) is its total amount of converted dollar under the instance Ip before the compulsory
conversion in the last step. A key observation is that for a large N , executing the instance Ip+δ is
equivalent to first executing Ip (excluding the last step) and then processing p+ δ and L. Since the
conversion decision is unidirectional and deterministic, we must have g(p+ δ) ≥ g(p), i.e., g(p) is
non-decreasing in [L,U ]. In addition, the whole dollar must be converted once the maximum price U
is observed, i.e., g(U) = 1.

Under the instance Ip, the offline optimal profit is OPT(Ip) = p and the profit of an online algorithm
with conversion function g is ALG(Ip) = g(L)L+

∫ p
L
udg(u) + L(1− g(p)), where udg(u) is the

profit of converting dg(u) dollar at the price u. The first two terms are the cumulative profit before
the last step and the last term is from the compulsory conversion.

For any γ-robust online algorithm, the corresponding conversion function must satisfy
ALG(Ip) ≥ OPT(Ip)/γ = p/γ, ∀p ∈ [L,U ]. If, additionally, given prediction P ≥ γL, no dollar
needs to be converted under instances {Ip}p∈[L,γL), i.e., g(p) = 0, ∀p ∈ [L, γL). This is because
if a γ-robust online algorithm converts any dollar below the price γL, we can always design a
new algorithm by letting it convert the dollar at the price γL instead. The new online algorithm
is still γ-robust and achieves a smaller consistency when the prediction is accurate. Thus, given
P = U ≥ Lγ, the conversion function of any γ-robust online algorithm must satisfy

ALG(Ip) = g(γL)γL+

∫ p

γL

udg(u) + L(1− g(p)) ≥ p

γ
, ∀p ∈ [γL,U ]. (11)

By integral by parts, a necessary condition for above robustness constraint (11) to hold is g(p) ≥
p/γ−L
p−L + 1

p−L
∫ p
γL
g(u)du. Based on Gronwall’s Inequality (see Theorem 1, p.356, [17]), we have

g(p) ≥ p/γ − L
p− L

+
1

γ

∫ p

γL

u− γL
(u− L)2

du =
1

γ
ln

p− L
γL− L

, ∀p ∈ [γL,U ]. (12)

In addition, to ensure η-consistency when the prediction is P = U , we must ensure
ALG(IU ) ≥ OPT(IU )/η. Combining this constraint with g(U) = 1 gives∫ U

γL

g(u)du ≤ (η − 1)U/η. (13)

By combining equations (12) and (13), the conversion function g(p) of any γ-robust and η-consistent
online algorithm given P = U must satisfy

∫ U
γL

1
γ ln u−L

γL−Ldu ≤
∫ U
γL
g(u)du ≤ (η − 1)U/η, which

equivalently gives η ≥ θ/[ θγ + (θ − 1)(1− 1
γ ln θ−1

γ−1 )].

Finally, since Theorem 4.6 has shown that OTA with the threshold function (8) can achieve the lower
bound in Theorem 5.2, it is Pareto-optimal.

6 Numerical results

We end with a case study on the exchange of Bitcoin (BTC) to USD. This case study is timely since
the rapid growth of cryptocurrency has left many traders eager to profit from rising and falling of
exchange rates in average-case scenarios, while the uncertainty and volatility of cryptocurrency have
made many traders cautious of unforeseeable crashes in worst-case scenarios. Our results answer
two questions: (Q1) How does the learning-augmented OTA compare to pure online algorithms with
different prediction qualities and drastic exchange rate crashes? (Q2) How should the OTA select the
robustness parameter λ, and especially, would an online learning algorithm work in practice?

Setup. We use historical BTC prices in USD of 5 years from 2015 to 2020, with exchange rates
collected every 5 minutes from the Gemini exchange. We assume one BTC is available for trading
during 250 instances of length one week. Since BTC is traded in the unit of satoshi (i.e., 0.00000001
BTC), this problem fits the fractional conversion setting and we apply the LOA for the one-way trading
problem in the following experiments. We set L and U as the historical minimum and maximum
prices over the entire 5 years.1 To generate a prediction P , we simply use the observed maximum

1The focus of this paper is not on the impact of L and U , and thus we simply set them as historical values. In
practical trading problems, L and U can be considered as predetermined parameters that represent the stop-loss
and take-profit prices in the exit strategy of the trading process.
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Figure 3: Profit ratios of different algorithms with (a) different prediction errors and (b) different
crash probabilities. The evolution of (c) the average cumulative profit and (d) regret of Alg(λalf)

exchange rate of the previous week. To evaluate the impact of prediction quality, we adjust the
error level between 0.0 to 1.0, where 0.0 indicates perfect predictions and 1.0 indicates unadjusted
predictions. To evaluate the performance in worst-case settings, we also introduce a crash probability
q, where the exchange rate of BTC at the last slot will crash to L with probability q.

We compare the empirical profit ratio of four different algorithms: (i) Alg(λw), the worst-case
optimized online algorithm that does not take into account predictions, but, guarantees the optimal
competitive ratio; (ii) Alg(λoff), an algorithm that finds the best possible distrust parameter λ in an
offline manner; this algorithm is not practical since it is fed with the optimal parameter; however, it
illustrates the largest possible improvement from predictions under our algorithm; (iii) Alg(λalf),
an online learning algorithm from [16] which selects the parameter using the adversarial Lipschitz
algorithm in a full-information setting; and (iv) Alg(λstc), an online algorithm that uses the best
static λ and serves as the baseline for Alg(λalf). Additional details are in the supplementary material.

Experimental results. We answer Q1 in Figures 3(a) and 3(b), and Q2 in Figures 3(c) and 3(d).
Figure 3(a) compare the profit ratios of several algorithms at different error levels. First, it shows
that Alg(λoff) and Alg(λalf) noticeably improve the performance of Alg(λw). The upper boxplot
whisker of Alg(λw) is 1.35, while Alg(λalf) at 1.0 error level has an upper boxplot whisker around
1.25. Second, it shows that the gap between Alg(λoff) and Alg(λalf) is quite small, as the upper
boxplot whisker of Alg(λoff) is slightly lower. Comparing the profit ratios of different algorithms
with different crash probability values at 1.0 error level in Figure 3(b), we see that the performance of
Alg(λw) drastically degrades at crash probability 0.45. However, both Alg(λalf) and Alg(λoff) are
stable at high crash probability. Figure 3(c) compares the average normalized profit of Alg(λalf) and
Alg(λstc) and shows the reward of Alg(λalf) converges toward that of Alg(λstc) as the learning
process moves forward. Figure 3(d) indicates that the regret of Alg(λalf) stabilizes.

7 Concluding remarks

To improve upon the performance of algorithms for online conversion problems that are designed
with worst-case guarantees in mind, this paper has incorporated machined-learned predictions into
the design of a class of OTA and shown that the learning-augmented OTA can achieve Pareto-optimal
robustness-consistency trade-offs. This result represents only the second tight lower bound result in
the robustness and consistency analysis of LOA, with the first being for ski rental problem [1, 4, 22]. We
expect that our method of deriving lower bounds can be extended to more general online optimization
problems with capacity constraints. A limitation of this work is that consistency and robustness only
measure the competitive performance in two extreme cases, i.e., the predictions are perfectly accurate
or completely wrong. Although our approach for design and analysis of OTA provides opportunities
to design OTA in ways that guarantee more fine-grained performance metrics, this is left for the
future work. Another limitation is that this work provides only empirical evaluation of the algorithm
Alg(λalf) that selects the robustness parameter in an online manner. Deriving theoretical bounds
remains open. Last, we cannot see any negative societal impacts of our work.
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