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Abstract

We learn an interactive vision-based driving policy from
pre-recorded driving logs via a model-based approach. A
forward model of the world supervises a driving policy that
predicts the outcome of any potential driving trajectory. To
support learning from pre-recorded logs, we assume that the
world is on rails, meaning neither the agent nor its actions
influence the environment. This assumption greatly simplifies
the learning problem, factorizing the dynamics into a non-
reactive world model and a low-dimensional and compact
forward model of the ego-vehicle. Our approach computes
action-values for each training trajectory using a tabular
dynamic-programming evaluation of the Bellman equations;
these action-values in turn supervise the final vision-based
driving policy. Despite the world-on-rails assumption, the fi-
nal driving policy acts well in a dynamic and reactive world.
It outperforms imitation learning as well as model-based
and model-free reinforcement learning on the challenging
CARLA NoCrash benchmark. It is also an order of magni-
tude more sample-efficient than state-of-the-art model-free
reinforcement learning techniques on navigational tasks in
the ProcGen benchmark.

1. Introduction

Vision-based autonomous driving is hard. An agent needs
to perceive, understand, and interact with its environment
from incomplete and partial experiences. Most success-
ful driving approaches [5, 27, 33, 34] reduce autonomous
navigation to imitating an expert, usually a human actor.
Expert actions serve as a source of strong supervision, sen-
sory inputs of the expert trajectories explore the world, and
policy learning reduces to supervised learning backed by
powerful deep networks. However, expert trajectories are
often heavily biased, and safety-critical observations are rare.
After all, human operators drive hundreds of thousands of
miles before observing a traffic incident [39]. This spar-
sity of safety-critical training data makes it difficult for a
behavior-cloning agent to learn and recover from mistakes.
Model-free reinforcement learning [25, 40] offers a solution,

Figure 1: We learn a reactive visuomotor driving policy that
gets to explore the effects of its own actions at training time.
The policy simulates the effects of its own actions using a
forward model in pre-recorded driving logs. It then learns to
choose safe actions without explicitly experiencing unsafe
driving behavior. Picture selected from the Waymo open
dataset [37].

allowing an agent to actively explore its environment and
learn from it. However, this exploration is even less data-
efficient than behavior cloning, as it needs to experience
mistakes to avoid them. For reinforcement learning, the re-
quired sample complexity for safe driving is prohibitively
large, even in simulation [40].

In this paper, we present a method to learn a navigation
policy that recovers from mistakes without ever making
them, as illustrated in Figure 1. We first learn a world-model
on static pre-recorded trajectories. This world model is
able to simulate the agent’s actions without ever executing
them. Next, we estimate action-value functions for all pre-
recorded trajectories. Finally, we train a reactive visuomotor
policy that gets to observe the impact of all its actions as
predicted by the action-value function. The policy learns
to avoid costly mistakes, or recover from them. We use
driving logs, recorded lane maps and locations of traffic
participants, to train the world-model and compute the action-
value function. However, our visuomotor policy drives using
raw sensor inputs, namely RGB images and speed readings
alone. Figure 2 shows an overview.

The core challenge in our approach is to build a suffi-
ciently expressive and accurate world-model that allows the
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Figure 2: Overview of our approach. Given a dataset of offline driving trajectories of sensor readings, driving states, and actions,
we first learn a forward model of the ego-vehicle (a). Using the offline driving trajectories, we then compute action-values
under a pre-defined reward and learned forward model using dynamic programming and backward induction on the Bellman
equation (b). Finally, the action-values then supervise a reactive visuomotor driving policy through policy distillation (c). For
a single image, we supervise the policy for all vehicle speeds and actions for a richer supervisory signal.

agent to explore its environment and the impact of its actions.

For autonomous driving, this involves modeling the au-
tonomous vehicles and all other traffic participants, i.e. other
vehicles, pedestrians, traffic lights, etc. In its raw form,
the state space in which the agent operates is too high-
dimensional to effectively explore. We thus make a sim-
plifying assumption: The agent’s actions only affect its own
state, and cannot directly influence the environment around
it. In other words: the world is “on rails”. This naturally
factorizes the world-model into an agent-specific component
that reacts to the agent’s commands, and a passively moving
world. For the agent, we learn an action-conditional forward-
model. For the environment, we simply replay pre-recorded
trajectories from the training data.

The factorization of the world model lends itself to a sim-
ple evaluation of the Bellman equations through dynamic
programming and backward induction. For each driving
trajectory, we compute a tabular approximation of the value
function over all potential agent states. We use this value
function and the agent’s forward model to compute action-
value functions, which then supervise the visuomotor policy.
Action values serve as denser supervisory signals. For a sin-
gle training example, we supervise the visuomotor policy on
all agent states, including variations of the camera viewpoint,
vehicle speed, or high level command.

We evaluate our method in the CARLA simulator [13].
On the CARLA leaderboard', we achieve a 25% higher
driving score than the prior top-ranking entry while using
40x less training data. Notably, our method uses camera-
only sensors, while some prior work relies on LiDAR. We
also outperform all prior methods on the NoCrash bench-
mark [10]. Finally, we show that our method generalizes
to other environments using the ProcGen platform [7]. Our
method successfully learns navigational policies in the Maze
and Heist environments with an order of magnitude fewer
observations than baseline algorithms. Code and data are
available.

'https://leaderboard.carla.org/leaderboard/
zhttps://dotchen.qithub.io/worldfonfrails

2. Related Work

Imitation learning is one of the earliest and most suc-
cessful approaches to vision-based driving and navigation.
Pomerleau [3 1] pioneered this direction with ALVINN. Re-
cent work extends imitation learning to challenging ur-
ban driving and navigation in complicated environments
[28, 30, 1,9, 10, 34, 25]. Imitation learning algorithms train
on trajectories collected by human experts [9, 13, 31], or
privileged experts constructed with rich sensory data [5, 30].
These approaches are limited to the expert’s observations
and actions. In contrast, our work learns to drive from pas-
sive driving logs and integrates mental exploration into the
learning process so as to imagine and learn from scenarios
that were not experienced when the logs were collected.

Model-based reinforcement learning builds a forward
model to help train the policy. Sutton [38], Gu et al.
[15], Kalweit and Boedecker [21], Kurutach et al. [22] use a
forward world model to generate imagined trajectories to im-
prove the sample complexity. World models [29, 16, 18, 35]
use the forward model to provide additional context to as-
sist the learning agents’ decision making. Feinberg et al.
[14], Buckman et al. [3] roll out the forward model for short
horizons to improve the fidelity of their Q or value function
approximation. In our work, we factorize the forward world
model into the controllable ego-agent and a passively mov-
ing environment. This factorization significantly simplifies
policy learning and allows for a tabular evaluation of the Q
and value functions. Our idea of factorizing the agent and the
environment is similar to the idea of exogenous events in pol-
icy learning [2]. Recently, Dietterich et al. [12], Chitnis and
Lozano-Pérez [6] considered finding a minimal factorized
MDP. In contrast, we explicitly factorize the environment
and focus on leveraging the factorization for planning and
supervision of a visuomotor policy.

Policy distillation remaps the outputs of a privileged
agent to a visuomotor agent [5, 24, 30, 23]. Levine et al.
[24] use optimal control methods to learn local controllers
for robotic manipulation tasks, and use them to supervise a
visuomotor policy. Pan et al. [30] train a visuomotor driving
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policy by imitating an MPC controller that has access to ex-
pensive sensors. Lee et al. [23] first learn a privileged policy
using model-free RL, then distill a visuomotor agent. Chen
et al. [5] distill a visuomotor agent from a policy learned by
imitation on privileged simulator states. Our approach uses
a similar privileged simulator state to infer an action-value
function to supervise the final visuomotor policy. While
prior work uses one policy to supervise another, in our work
a tabular action-value function supervised the policy. A
reactive driving policy only exists after distillation.

Cost volume based planners [41, 33, 4] score and rank
select future ego-vehicle trajectories. In tabular form, they
closely resemble our action-value estimate. However, our
action-value estimate has two advantages. First, it super-
vises a policy at training time in an offline process, while
cost volumes need to be predicted for inference [41, 33, 4].
Second, we make use of ground-truth states, while cost vol-
umes use imitation [41] or affordances [33, 4] from partial
observations.

3. Method

We aim to learn a reactive visuomotor policy 7 () that
produces an action a € A for a sensory input /. At training
time, we are given a set of trajectories 7 € D. Each trajec-
tory 7 = {(I1, L1, 1), (I2, Lo, 3), ...} contains a stream
of sensor readings I, corresponding driving logs L, and
executed actions a;. The hat symbols denotes data from driv-
ing logs, regular symbols denote free or random variables.
The driving logs record the state (position, velocity, and ori-
entation) of the ego-vehicle and all other traffic participants,
as well as the environment state (lane information, traffic
light state, etc.). We use the driving logs to compute a for-
ward model 7 of the world and an action-value function )
from a scalar reward. The forward model T takes a driving
state L; and an agent’s action a; to predict the next state
Li4+1. We use a hybrid semi-parametric model to estimate
T, as described in Section 3.1. Specifically, we factorize
the forward model into a ego-vehicle component 7 “9° and a
world component 774, We approximate the ego-vehicle
forward model using a simple deep network, while the col-
lected trajectories are used non-parametrically for the world
forward model. This factorization allows us to estimate an
action-value function using a tabular approximation of the
Bellman equation, as described in Section 3.2. Finally, we
use the estimated action-values @) to distill a visuomotor
policy 7. This policy 7 maximizes the expected return under
our forward model and tabular action-value approximation.
At training time, our algorithm uses privileged information,
i.e. driving logs, to supervise policy learning, but the final
policy 7(1;) drives from sensor inputs alone. Algorithm |
and Figure 2 summarize the entire training process.

Algorithm 1: Learning in a world-on-rails

Data: Training trajectories D
Result: Policy w(I) € A
// Forward-model fitting §3.1
Function FitForward(D) — T9°:
Minimize Equation (1);
return ego-vehicle forward model 7 ¢9°;
end
// Action-value estimate §3.2
Function EstimateQ(D, 7°9°) — Q:
for € Ddo
Initialize Vj;|11(-) = 0;
fort =|r|...1do
Compute Q; an V; Equation (2);
Store Qy;

end
end
return stored (Q-values;

end
// Policy distillation §3.3
Function DistillPolicy (D, Q) —
Minimize Equation (3);
return visuomotor policy 7;
end
Learn forward-model ¢9° =FitForward(D);
Estimate Action-Values Q =EstimateQ(D, 79°);
Learn visuomotor policy 7 = DistillPolicy (D, Q);

3.1. A factorized forward model

In its raw form the forward model 7 is too com-
plex to efficiently predict and simulate. After all, entire
driving simulators are designed to forecast just one of
the many possible future driving states. We thus factor-
ize the driving state L; and forward model 7 into two
parts: A part considering just the vehicle being controlled
L7995 = Te9°(Ly?°, L°™" a;) and a part modeling the rest
of the world Lyld = Tworld(Lg9° [world q,). Here we
consider only deterministic transitions. We furthermore as-
sume that the world is on rails and cannot react to the agents’
commands a or the state of the ego-vehicle L®9°. Specifi-
cally, the transition of the world state only depends on the
prior world state itself: L2y'd = Twortd(Lworld) Thus the
initial state of the world L¥°"!? determines the entire trajec-
tory of the world: {Lwerld [wortd 1 This allows us to
model the world transition using the collected trajectories
7 directly. We thus only need to model the ego-vehicle’s
forward-model 79° for any ego-vehicle state L;?° and ac-
tion a;. We train 7 °9° on the collected trajectories using L1
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where we roll out the forward model for 7' = 10 steps to
obtain a more robust regression target. We use a simple
parametric bicycle model that easily generalizes beyond the
training states IAﬁg", as described in Section 4.

The world-on-rails assumption clearly does not hold, nei-
ther in a simulator nor in the real world. Other agents in
the world will react to the ego-vehicle and its actions. How-
ever, this does not imply that a world-on-rails cannot provide
strong and useful supervision to the agent. Our experiments
show that an agent trained in a world-on-rails significantly
outperforms agents trained with a full forward model of the
world. The world-on-rails assumption significantly simpli-
fies the estimation of an action-value function in Section 3.2
and subsequent policy learning in Section 3.3.

3.2. A factorized Bellman equation

Our goal is to estimate an action-value function Q(f/t, a)
for each state L, of the training trajectory and action a.
We use the Bellman equation and a tabular discretization
of the value function here. Recall the v-discounted Bell-
man equation: V(L;) = max, Q(L¢,a) and Q(Ls,a) =
YV (T (Lt,a)) + r(L¢, a) for any state L, action a, and re-
ward r. Ordinarily, one would need to resort to Bellman
iterations to estimate V' and (). However, our factorized
forward-model simplifies this:

V(L:.l]o7 i/;uorld) _ InaaX Q(ngo7 i/;uorlc{ a)

Q(Lfgo, i/;uorld’ at) :,,n<L§go7 i/;uorld’ at)"‘
,YV(Tego(Lfgo’ [A/;uorld’ a)7 t;ﬂ_ﬁ){ld).

The action-value function is needed for all ego-vehicle
state L°9°, but only recorded world states I:;”O”d. It
is sufficient to evaluate the action-value function on just
recorded world states for all ego-vehicle states: V; (L) =
V(L:go, i’éuorld)7 Qt (Lf‘qo, at) — V(Lfgo, fj;uorld’ at)~ Fur-
thermore, the world states are strictly ordered in time, hence
the Bellman equations simplifies to

Vi(Li?) = max Qi(L;", a) &)
Qu(L§*, ap) =r(L{", Ly, ag)+
Wea (T(L,a))
Here the value and action-value functions only consider
recorded world states, but all possible ego-vehicle states.
The model is thus able to “imagine” driving behaviors and

their reward without ever executing them. In order to collect
rewards from these “imagined” states, we require an explicit

reward function r, and not just a scalar reward signal pro-
vided by the environment. For a detailed discussion of the
reward see Section 4.

We solve Equation (2) using backward induction and dy-
namic programming. The state of the ego-vehicles L¢9° is
compact (position, orientation, and velocity). This allows
us to compute a tabular approximation of the value function
V3 (Lg9°), evaluated in batch operations efficiently. Specifi-
cally, we discretize V;(L;??) into bins corresponding to the
position, orientation, and velocity of the ego-vehicle. When
evaluating, we use linear interpolation if the requested value
falls between bins. Furthermore, the action space is also
small, allowing for a discretization of the max operator in
the value update. During backward induction, we implic-
itly represent the action-value function ), using V;,, and
the forward model 7¢9°. We only discretize Q;(L°,-) to
supervise the visuomotor policy at timestep ¢. Algorithm 1
summarizes our backward induction. More details are pro-
vided in the supplementary material for reference.

3.3. Policy Distillation

We use the action-value functions for the ego-vehicle
state Q; (L9, ) to supervise a visuomotor policy (I;).
The action-value Q;(L7°, ) represents the expected return
of an optimal policy each vehicle state. We directly optimize
this expected return in our policy:

Epporta oo, | 3 (0l 1) Qu(L§*, a) + aH (W(.ﬁt))] .
’ 3)

Since the action-value functions are computed densely, only
the environment needs to be recorded, not the ego state. We
can therefore supervise with augmented I, representing ar-
bitrary L;7°. We additionally add an entropy regularizer
H [17] to encourage a more diverse output policy, where
« is the temperature hyperparameter. In practice, we dis-
cretize both the action-values and the visuomotor policy as
described in Section 4.

4. Implementation

We implement our approach in the CARLA simula-
tor [13] in a strictly offline manner. We first collect a
static dataset by rolling out a behavior agent m,; we use
the CARLA autopilot unless specified otherwise. We use
the noisy driving actions of the autopilot to learn a forward
model, but do not otherwise use the autopilot as supervision.

Forward model. We train the ego-vehicle forward model
7¢9° on a small subset of trajectories. We collect the subset
of trajectories to span the entire action space of the ego-
vehicle: steering s € [—1,1] and throttle ¢ € [0, 1] are
uniformly sampled, with brake b € {0, 1} sampled from a
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Bernoulli distribution. The forward model 7°9° takes as
inputs the current ego-vehicle state as 2D location x¢, y¢,
orientation #;, speed v;, and predicts the next ego-vehicle
state Ty11, Yi+1, 041, Ver1- We use a parameterized bicycle
model as the structural prior for 7°9°. In particular, we
only learn the vehicle wheelbases fj, 15, the mapping from
user steering s to wheel steering ¢, and the mapping from
throttle and braking to acceleration a. The kinematics of the
bicycle model are described in the supplementary material
for reference. We train 7°9° in an auto-regressive manner
using L1 loss and stochastic gradient descent.

Bellman equation evaluation. For each time-step ¢, we
represent the value function V; as a 4D tensor discretized
into Nz X Ny position bins, NV, velocity bins, and Ny orien-
tation bins. We use Ny = Ny = 96, N, = 4, and Ny = 5.
Each bin has a physical size of % X %mz and corresponds
to a 2m/s velocity range and a 38° orientation range. The
ego-vehicle state L9 = (x4, y¢, v, 0) is always centered in
this discretization. The position of the ego-vehicle (¢, y;)
is at the center of the spatial discretization. We only rep-
resent orientations in the range [—95°,95°] relative to the
ego-vehicle. When computing the action value function, any
value V; that does not lie in the center of a bin is interpolated
among its 2* neighboring bins using linear interpolation.
The linear interpolation is computed over all states at once
and is factorized over ego state dimensions (location, speed
and orientation), thus it is efficient. Values that fall outside
the discretization are 0. We discretize actions into Mg x M;
bins for steering and throttle respectively, and one additional
bin for braking. We do not steer or throttle while braking.
We use My = 9and M; = 3foratotalof 9-3+ 1 = 28

discrete actions.

Policy network. The policy network uses a ResNet34 [19]
backbone to parse the RGB inputs. We use global average
pooling to flatten the ResNet features, before concatenating
them with the ego-vehicle speed and feeding this to a fully-
connected network. The network produces a categorical
distribution over the discretized action space.

In CARLA, the agent receives a high-level navigation
command c¢; for each time-step. We supervise the visuomo-
tor agent simultaneously on all the high-level commands [5].
Additionally, we task the agent to predict semantic segmen-
tation as an auxiliary loss. This consistently improves the
agent’s driving performance, especially when generalizing
to new environments.

Reward design. The reward function
r(L9°, Lyortd a, cy) considers ego-vehicle state, world
state, action, and high-level command, and is computed
from the driving log at each timestep. We use the lane
information of the world and high-level command to first

compute the target lane of the ego-vehicle. The agent
receives a reward of 41 for staying in the target lane at the
desired position, orientation and speed, and is smoothly
penalized for deviating from the lane down to a value of 0.
If the agent is located at a “zero-speed” region (e.g. red light,
or close to other traffic participants), it is rewarded for zero
velocity regardless of orientation, and penalized otherwise
except for red light zones. All “zero speed” rewards are
scaled by ryop = 0.01, in order to avoid agents disregarding
the target lane. The agents receives a greedy reward of
Torake = 0 if it brakes in the zero-speed zone. To avoid
agents chasing braking region, the braking reward cannot
be accumulated. All rewards are additive. We found that
with zero-speed zones and brake rewards, there is no need to
explicitly penalize collisions. We compute the action-values
over all high-level commands for each timestep, and use
multi-branch supervision [5] when distilling the visuomotor
agent.

5. Experiments

Dataset. We evaluate our approach on the open-source
CARLA simulator [13]. We train our ego-vehicle forward
model on a small subset of trajectories consisting of 2400
collected frames. It learns from random actions. The bulk
of our training set uses just passive sensor information [
and training logs L. We refer readers to the supplement for
additional details.

Experimental setup. We evaluate our approach on both
the CARLA leaderboard and the NoCrash benchmark. For
both benchmarks, at each frame, the agent receives RGB
camera reading I, speed reading v, and a high-level com-
mand c¢ to compute steering s, throttle ¢, and brake b.
NoCrash benchmark consists of three driving condition;
each driving condition contains 50 predefined routes: 25
for the training town (TownO1) and 25 for the testing town
(Town02). We refer readers to the supplement for additional
details.

Comparison to the state-of-art. Table 1 compares the
performance of the presented approach on the CARLA
leaderboard. We list the three key metrics from the leader-
board: driving score (primary summary measure used for
ranking entries on the leaderboard), route completion, and
infraction score. We compare to CILRS [10], LBC [5],
Transfuser [32] and TA [40]. LBC is the state of the art on
the NoCrash benchmark, and Transfuser is a very recent
method utilizing sensor fusion. Both LBC and Transfuser
are based on imitation learning. IA is the winning entry
in the 2020 CARLA Challenge, and the prior leading en-
try on the CARLA leaderboard. IA is based on model-free
reinforcement learning with Rainbow [20] and IQN [ 1].
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Figure 3: Visualization of the computed value function and action-value function for the current frame. The RGB camera
image (a) and bird-eye’s view maps (b) show the ego-vehicle location in the world. The value-maps (c) show the discretized
tabular value estimate for 4 speed bins x 5 orientation bins. The orientation bins are —95° to 95° from left to right, and the
speed bins are 0 m/s to 8 m/s from top to bottom. Each map has a resolution of 96 x 96 corresponding to a 24m? area around
the vehicle. We crop areas behind the ego-vehicle for visualization. The value-maps use 5 bellman updates and see 1.25s into
the future. (d) shows the action-values based on the current ego-vehicle state. Actions with highest values are highlighted with
red boxes. These action-values supervise the visuomotor policy that takes as input camera RGB images. More visualizations

provided in the supplement.

Method | DSt RC?t IS? | Data LiDAR
CILRS [10] 5.37 1440 0.55 - X
LBC [5] 894 1754 0.73 | — X
Transfuser [32] | 16.93 51.82 0.42 | 150K v
IA [40] 24.98 46.97 0.52 | 40M  x
Ours | 31.37 57.65 056 | IM X

Table 1: Comparison of the driving score (DS, main met-
ric), route completion (RC), and infraction score (IS) on the
CARLA leaderboard. For all three metrics, higher is better.
Our method improves the driving score by 25% relative to
the prior state of the art [40] while using 40x less data.

Table 2 compares the performance on the CARLA
NoCrash benchmark. We retrain LBC (the prior state of the
art on NoCrash) on CARLA 0.9.10 using the same training
data with augmented camera views as in our approach. To
help LBC generalize, we found it important to train with ad-
ditional semantic segmentation supervision. CARLA 0.9.10
features more complex visuals, and generalization to new
weather conditions is harder. IA features two models, a
published model trained on CARLA 0.9.6 Town1 alone,
and a much stronger CARLA Challenge model (trained on
CARLA 0.9.10). We compare to the stronger challenge

model. However, this model was trained on many more
towns, and under both training and testing weather condi-
tions. It thus does not have held-out testing weathers. Our
method outperforms LBC and IA on all 12 tasks and con-
ditions. Furthermore, our method does not require expert
actions anywhere in the training pipeline, unlike LBC. We
outperform IA on all traffic scenarios in both towns, even
though we train only on Townl.

Ablation study. Table 3 compares our visuomotor agent
with other model-based approaches. All baselines optimize
the same reward function described in Section 4. Dreamer
(DM) [18] trains a full-fledged embedding-based world
model, and uses it to backpropagate analytic gradients to the
policy during rollouts. Building a full forward model of our
driving scenarios can be challenging. To help this baseline,
we give it access to driving logs both during training and
testing. We additionally construct a variant, F-DM, which
utilizes our factorized world model. F-DM replaces full
embedding-based world model with our ego forward model
T¢9°. Equivalent to our method it observes the pre-recorded
world states and thus cannot backpropagate through a for-
ward model of the world. F-DM still trains the policy the
same way as DM, using imaginary differentiable rollouts.
Since Dreamer is off-policy, we implement both DM and
F-DM in an offline RL manner, and train both on the same
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Task Town Weather IA LBC Owurs

Empty 8 89 98
Regular train train 85 87 100
Dense 63 75 96
Empty 77 86 @ 94
Regular test train 66 79 89
Dense 33 53 T4
Empty - 60 90
Regular train  test - 60 90
Dense - o4 84
Empty - 36 78
Regular  test test — 36 82
Dense - 12 66

Table 2: Comparison of the success rate of the presented
approach (Ours) to the state of the art on NoCrash (LBC),
and the winning entry of the 2020 CARLA Challenge (IA).
All three methods are trained and evaluated on CARLA
0.9.10. TA uses all towns and all weathers to train. It thus
does not have test weathers. Ifalic numbers indicate that
the policy was trained on the test town. Additional numbers
on route completion and random seeds are provided in the
supplement.

Factorized world | X v v v
Task Town DM F-DM CEM | Ours
Straight . 37 44 100 100
Tum "™ | 9 9 88 | 100
Straight test 44 52 100 100
Turn 0 0 97 100
Empty 0 0 88 98
Regular train 0 0 86 100
Dense 0 0 72 96
Empty 0 0 97 94
Regular test 0 0 84 89
Dense 0 0 47 74

Table 3: Comparison of the success rate on the CoRL17
and NoCrash benchmark under training weathers. We com-
pare our full visuomotor agent with model-based baselines.
Dreamer (DM) [ 18] trains the full world model, whereas the
rest follow our factorization and use the same forward model
T¢9° as our approach. Numbers in ifalic indicate agents that
use privileged information (such as driving logs) at test time.
Our approach uses sensor readings alone. Nevertheless, our
approach outperforms all baselines.

dataset with which we supervise our visuomotor agent. CEM

is an MPC baseline that factorizes the world and uses the
cross-entropy method [26] to search for the best actions. It
uses our forward model, but cannot simulate the environ-
ment forward at the test time. It assumes a static world. Like
Dreamer, CEM has access to the driving log at test time of
the current timestep. It replans at every timestep over the
most recent driving log. All the baselines use privileged
information (driving logs), whereas our method takes sensor
inputs alone.

We evaluate with the training weather for our method, as
driving logs for baselines are weather-agnostic’. We found
that the NoCrash benchmark is too hard for the Dreamer
baseline, and thus additionally test on the much easier
CoRL17 benchmark [13]. Akin to NoCrash, each task in the
CoRL17 benchmark contains 50 predefined routes: 25 for
the training town and 25 for an unseen test town. It runs on
empty roads with simpler routes compared to NoCrash. Our
method outperforms all other model-based baselines by a
margin, despite using sensor inputs instead of driving logs.
Dreamer with a factorized world model outperforms the
full world model but still fails to generalize beyond straight
driving. One reason for the poor performance of Dreamer
may be a bias in the training set. Cars mostly drive straight.
Dreamer may simply see too few turning scenarios compared
to the endless stream of straight driving.

Traffic light infraction analysis. We additionally analyze
traffic light infractions on the NoCrash benchmark. Table 4
compares the average number of traffic light violations per
hour on all trials in the NoCrash benchmark. Our method has
fewer traffic light infractions than the reinforcement learning
baseline (IA) on all six tasks under the training weathers.

Visualization. Figure 3 shows a visualization of the com-
puted value and action-value functions for various driving
scenarios. Each of these action-value functions densely su-
pervises policy for the displayed image.

ProcGen navigation. To demonstrate the broad applicabil-
ity of our approach, we additionally evaluate on the naviga-
tional tasks (Maze and Heist) in the ProcGen benchmark [7].
In both environments, the agent is rewarded for navigating to
the desired locations. Maze features a plain navigation task
through a complex environment. Heist additionally requires
the agent to collect keys and unlock the doors before navi-
gating to the goal. In ProcGen, the action space is discrete,
hence we only discretize the ego-agent’s states. We ignore
velocity. The agent’s forward dynamics model in ProcGen is
not location agnostic as in CARLA. To address this, we use
a small ConvNet to extract the environment context around

3The physics in CARLA does not vary with weather. Only sensor
readings change with different weather conditions
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Test Maze (num_levels=2000) Test Maze (num_levels=10000)
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num_frames

(a) Maze 2000 training levels (b) Maze 10000 training levels

(c) Heist 2000 training levels

Test Heist (num_levels=2000) Test Heist (num_levels=10000)

— PPG — PPO — PPOW/priv. — = PPG = PPO

— PPO W/ pri -
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(d) Heist 10000 training levels

Figure 4: Comparison of our method to state-of-the-art model-free reinforcement learning on the navigational tasks of the
ProcGen benchmark. All plots measure the average episode returns on the testing levels. PPO w/ priv is a customized PPO
implementation that during training additionally takes as input the same privileged information that our approach uses to
compute rewards and train the agent forward model. The presented approach is an order of magnitude more sample-efficient.

the ego-agent forward model 7°9°. In order to evaluate
sample efficiency, we implement our method on ProcGen
in an off-policy reinforcement learning manner. We alter-
nate between training or fine-tuning a policy and forward
model, and rolling out new trajectories under the current
policy. Compared to model-free baselines, our approach
needs access to a dense reward function, instead of just the
scalar reward signal of the environment. We compute this
reward function using semantic labels obtained via the Proc-
Gen renderer. For Maze, the reward function awards +1 for
goal location regardless of orientation. For Heist, the reward
function awards +1 for key and unlockable door locations
regardless of orientation. In addition, we mask all unachiev-
able ego-state values to 0 during the Bellman equation evalu-
ation. We use this privileged information in the action-value

Oracle actions X v X

Task Town Weather 1A LBC Ours
Empty 334 135 0.00
Regular  train train 6.71 189 043
Dense 1541 3.27 2.61
Empty 62.18 8.45 10.68
Regular  test train 53.28 822 6.95
Dense 54.94 T7.26 12.90
Empty — 0.36  0.00
Regular  train test — 0.81 0.00
Dense — 0.52 4.29
Empty — 817 14.46
Regular  test test — 8.61 11.30
Dense — 4.87 13.28

Table 4: Comparison of the average number of traffic light
violations per hour of trials on the NoCrash benchmark.
We compare our approach to LBC (prior state of the art on
NoCrash) and IA (the winning entry of the 2020 CARLA
challenge). LBC trains from oracle trajectories, whereas IA
and ours do not.

computation only, and in no other place in our algorithm.
Figure 4 compares the performance and sample-efficiency
of our method with model-free reinforcement learning base-
lines PPO [36] and PPG [8]. PPG is the current state of the
art on the ProcGen benchmark. In addition, we compare to a
customized PPO implementation which during training also
takes as input the same privileged information used in our
method. Our method converges within 3M frames, while
model-free baselines take up to 26M frames. For both Maze
and Heist environments, we train all agents on two differ-
ent conditions: 2000 and 10000 (procedurally generated)
training levels. For both environments, agents are tested on
completely randomized procedurally-generated levels. The
comparison of average episode returns on the training levels
is in the supplement for reference. Our method is an order
of magnitude more sample-efficient than all the model-free
RL baselines even when those methods are given the same
privileged information used by our reward computation.

6. Conclusion

We show that assuming independence between the agent
and the environment, which we refer to as a world on
rails, significantly simplifies modern reinforcement learning.
While true independence rarely holds, the gains in training
efficacy outweigh the modeling constraints. Even with a
simple reward function, an agent trained in a world-on-rails
learns to drive better than state-of-the-art imitation learning
agents on standard benchmarks. In addition, the presented
policy learning framework is an order of magnitude more
sample-efficient than state-of-the-art reinforcement learning
on challenging ProcGen navigation tasks.
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