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Abstract—A growing specter in the rise of machine learning is whether the decisionsmade bymachine learningmodels are fair. While

research is already underway to formalize amachine-learning concept of fairness and to design frameworks for building fair models with

sacrifice in accuracy, most are geared toward either supervised or unsupervised learning. Yet two observations inspired us to wonder

whether semi-supervised learningmight be useful to solve discrimination problems. First, previous study showed that increasing the size

of the training set may lead to a better trade-off between fairness and accuracy. Second, themost powerful models today require an

enormous of data to train which, in practical terms, is likely possible from a combination of labeled and unlabeled data. Hence, in this

paper, we present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels

for unlabeled data, a re-samplingmethod to obtainmultiple fair datasets and lastly, ensemble learning to improve accuracy and decrease

discrimination. A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the

impact they have on fairness in semi-supervised learning. A set of experiments on real-world and synthetic datasets show that our

method is able to use unlabeled data to achieve a better trade-off between accuracy and discrimination.

Index Terms—Fairness, discrimination, machine learning, semi-supervised learning

Ç

1 INTRODUCTION

MACHINE learning is now in wide use as a decision-
making tool in many areas, such as job employment,

risk assessment, loan approvals and many other basic pre-
cursors to equity. However, the popularity of machine learn-
ing has raised concerns about whether the decisions
algorithms make are fair to all individuals. For example,
Chouldechova found evidence of racial bias in recidivism
prediction tool where black defendants are more likely to be
assessed with high risk than white defendants [1]. Ober-
meyer et al. found prejudice in health care systems where
black patients assigned the same level of risk by the algo-
rithm are sicker than white patients [2]. These findings show
that unfair machine learning algorithms will affect legal jus-
tices, health care, and other aspects of human beings.

As we move forward in a world of machine-assisted pre-
dictions for human-beings, the fairness of machine learning
has become a very cardinal issue. In the future, our ability
to design machine learning algorithms that treat all groups
equally may be one of the most influential factors in who
will be the haves and who will be the have-nots. As the

influence and scope of these risk assessments increase, aca-
demics, policymakers, and journalists have raised concerns
that the statistical models from which they are derived
might inadvertently encode human biases

Over the past few years, much research has been devoted
to designing fairness metrics, such as statistical fairness [1],
[3], [4], [5], individual fairness [6], [7], [8] and causal fairness
[9], [10]. These approaches and algorithms can be roughly
divided into three categories: pre-processing methods, in-
processing methods and post-processing methods. Pre-proc-
essingmethods adjust data distribution [3], [11] or learn new
fair representations [12], [13], [14], to relieve some of the ten-
sion between accuracy and fairness. In-processing methods
add constraints or regularizers to restrict the correlation
between labels and sensitive/protected attributes, i.e., traits
that can be targets for discrimination [4], [15], [16]. Post-
process methods calibrate training results [5]. These studies
mainly focus on addressing the two most crucial fundamen-
tal issues in machine learning fairness: how to formalize the
concept of fairness in the context of machine learning tasks,
and how to design effective algorithms to achieve an ideal
compromise between accuracy and fairness.

However, almost all methods achieving fairness are
mostly for either supervised learning or unsupervised learn-
ing, and fair semi-supervised learning (SSL) has rarely been
considered. Realistically though, training data is often a com-
bination of labeled and unlabeled samples, so a semi-super-
vised solution has high practical value. Also, since “ideal” is
a lofty goal, the trade-off between accuracy and fairness is
still an ongoing pursuit. [17] showed that increasing the
amount of training data is likely to produce a better trade-off
between accuracy and fairness. This insight inspired us to
wonder whether using unlabeled data to augment the train-
ing set might give us a kind of control value with which to
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balance fairness and accuracy. Unlabeled data is abundant
and, if it could be used as training data, we could adjust the
size of the training set as required to meet accuracy versus
fairness thresholds. We may even be able to avoid the need
to make a compromise between fairness and accuracy
entirely. This leaves fair semi-supervised learning with two
challenges: 1) How to make use of unlabeled data to achieve
a better trade-off between accuracy and fairness; and 2) How
to alleviate the impact of noise, which is common to semi-
supervised learning.

To tackle these challenges, we propose a framework to
achieve fair SSL in the pre-processing phase. The solution to
the trade-off challenge is to use unlabeled data to reduce
representation discrimination. (Representation discrimina-
tion is due to certain parts of the input space under-
represented.) Therefore, the first two steps in our frame-
work are pseudo labeling and re-sampling. The first step is
to use pseudo labeling as a SSL method to predict labels for
unlabeled data. The second step involves dividing the data-
set into groups based on the protected attribute and the
label, and then obtain fair datasets by re-sampling the same
number of data points in each group. When unlabeled data
is used as training data, it is likely to obtain more under-
represented data points from unlabeled data to reduce
representation discrimination, and thus to make little com-
promise between fairness and accuracy. The issue of noise
induced by (incorrectly) predicting labels for unlabeled
data is addressed by the third step in the framework:
ensemble learning. Predicting unlabeled data will induce
some noise in the labels of unlabeled data. Ensemble learn-
ing helps to reduce label noise and the variance of the train-
ing model, and to produce more accurate final predictions.

In summary, the contributions of this paper are listed as
below.

� First, we use unlabeled data to reduce representation
discrimination, and thus achieve a better trade-off
between accuracy and discrimination.

� Second, we propose a fairness-enhanced sampling
(FS) framework that combines pseudo labeling, re-
sampling and ensemble learning for fair SSL in the
pre-processing phase.

� Third, we theoretically analyze the sources of dis-
crimination in SSL via bias, variance and noise
decomposition, and conduct experiments with both
real and synthetic data to validate the effectiveness
of our proposed FS framework.

The rest of this paper is organized as follows. The back-
ground is presented in Section 2, and the proposed FS
framework is given in Section 3. Section 4 presents the dis-
crimination analysis, and the experiments are set out in Sec-
tion 5. The related work appears in Section 6, with the
conclusion in Section 7.

2 BACKGROUND

2.1 Notations

For simplicity, let Dl ¼ fX;A; Ylg be a dataset with N1 data
points, where X ¼ ðX1; X2; . . . ; XdÞ denotes d unprotected
attributes; A denotes protected attributes, e.g., gender or
race; and Yl 2 f0; 1g is the label for the task. Let Du ¼

fX;A; Yug be an unlabeled dataset with N2 data points and
Yu 2 f0; 1g be the predicted labeled for the unlabeled dataset.
For ease, assume the protected attribute is binary valued. For
example, if the protected attribute is race, the value might be
either ‘white’ ðA ¼ 0Þ or ‘black’ ðA ¼ 1Þ.

Our objective is to learn a mapping fð�Þ over a discrimi-
natory dataset Dl and Du, in which the classification result
is independent of protected attributes. Performance is mea-
sured by both accuracy and the level of discrimination in
the results. The ideal classifier should have a high accuracy
without discrimination.

2.2 Fairness Metrics

Fairness is often evaluated with respect to protected/unpro-
tected groups of individuals defined by attributes, such as
gender or age. Here, we have opted for demographic parity
as the fairness metrics in this paper.

Definition 1 (Demographic parity). [3] Demographic parity
requires that the probability of a classifier’s prediction be inde-
pendent of any sensitive attributes, where the probability of the
predicted positive labels in group a 2 A is defined as follows:

g1ðŶ Þ ¼ PrðŶ ¼ 1jA ¼ 1Þ (1)

g0ðŶ Þ ¼ PrðŶ ¼ 1jA ¼ 0Þ: (2)

Definition 2 (Discrimination level). The discrimination level
g in terms of demographic parity can be evaluated by the differ-
ence between groups,

GðŶ Þ ¼ jg0ðŶ Þ � g1ðŶ Þj: (3)

2.3 Discrimination Sources

Discrimination can exist in every stage of machine learning.
Roughly, discrimination sources can be divided into two
lines: data discrimination and model discrimination [18].
Our proposed FS method is able to reduce the representa-
tion discrimination in the data.

2.3.1 Data Discrimination

Data discrimination includes historical discrimination, repre-
sentation discrimination, measurement discrimination. His-
torical discrimination occurs when there is a discrepancy
between the world itself and the values or goals in the model
to be encoded and propagated. It can stem from cultural ster-
eotypes among people, such as social class, race, nationality,
gender. Representation discrimination occurs when the data
used to train the algorithm does not accurately represent the
problem space. As a consequence, the model generalizes to fit
the majority groups much than minority groups. Measure-
ment discrimination comes from the way we choose, utilize,
andmeasure specific features. The selected set of features and
labels may miss important factors, or bring in group or input-
related noise that causes different performance.

2.3.2 Model Discrimination

Model discrimination includes aggregation discrimina-
tion, evaluation discrimination, deployment discrimina-
tion. Aggregation discrimination can arise during model
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construction when different populations are improperly
grouped together. In many applications, the groups of inter-
est are heterogeneous, so a single model is unlikely to fit all
subgroups. Evaluation discrimination occurs during model
iteration and evaluation. This can happen when a test or
external benchmark unequally represents each group in the
population. Evaluation discriminationmay also occur due to
the use of performance metrics that are not appropriate for
the way the model is used. Deployment discrimination
occurs after the model is deployed when the system is used
or interpreted in an inappropriate way.

2.4 Bias, Variance and Noise

Following [17], our analysis of discrimination is based on
bias, variance and noise decomposition. First, we present
the definition of main prediction. The main prediction for a
loss function L and set of training sets D is defined as,
ymðx; aÞ ¼ argminy0ED½LðY; y0ÞjX ¼ x;A ¼ a�, where Y is
the true value; y0 is the predicted label with the minimum
average loss relative to all the predictions. The expectation
is taken with respect to the training sets inD.

Definition 3. (Bias,variance and noise) Following [19], the bias
B, variance V and noise N at a point ðx; aÞ with a model f are
defined as,

Bðf; x; aÞ ¼ Lðy�ðx; aÞ; ymðx; aÞÞ (4)

V ðf; x; aÞ ¼ ED½Lðymðx; aÞ; ŷDðx; aÞ� (5)

Nðf; x; aÞ ¼ EY ½Lðy�ðx; aÞ; Y Þ�; (6)

where y� is the optimal prediction that achieves the
smallest expected error. Bias is the loss between the main
prediction and the optimal prediction. Variance is the aver-
age loss incurred by predictions relative to the main predic-
tion from different datasets D. Noise is the unavoidable
component of the loss, which is independent of the learning
model.

Bias, variance and noise decomposition are appropriate
tools for analyzing discrimination because loss function
relates to the misclassification rate. For example, when
using zero-one loss function, the misclassification rate is
denoted as

E½Lðy; ŷÞ� ¼ E½ŷ 6¼ yja ¼ 0� þ E½ŷ 6¼ yja ¼ 1�
¼ E½ŷ ¼ 1jy ¼ 0; a ¼ 0� þ E½ŷ ¼ 0jy ¼ 1; a ¼ 1�; (7)

where ŷ is the predicted label of a classifier. Note that loss
function can be decomposited into false positive rate and
false negative rate. And, once false positive rate and false
negative rate are obtained, true positive rate and true nega-
tive rate can be obtained. As such, many fairness metrics,
such as demographic parity and equal opportunity, can be
explained by bias, variance and noise decomposition.

3 THE PROPOSED METHOD

3.1 Overview of the Fairness-Enhanced Sampling
Framework

Fig. 1 shows the general description of the fairness-enhanced
sampling framework in the pre-precessing phase. The frame-
work consists of three steps: 1) pseudo labeling, 2) re-
sampling and 3) fair ensemble learning. The first step is to
predict labels for unlabeled data as more data points in the
protected group are likely to be found in unlabeled data. The
second step is to construct new datasets that is able to
represent all groups equally when the datasets are used for
training. In this way, representation discrimination can be
removed from training datasets. The third step is to train
multiple base models based on multiple fair datasets and
final predicted results are obtained frommultiple base mod-
els. Ensemble learning is able to reduce the label noise that is
induced via pseudo labeling, and the model variance. Each
of these steps is discussed inmore detail in the following.

3.2 Where to Sample

The goal of this step is to use a labeled dataset and part of an
unlabeled dataset to construct a new training dataset, as
shown in Fig. 1. Suppose we have a labeled dataset Dl and a
large unlabeled dataset Du. First, we use the labeled dataset
and part of the unlabeled dataset to generate a new training
dataset. With a sample ratio of r, we take random samples
from the unlabeled dataset Du and form sampled unlabeled
datasets Dsu. Then we use pseudo labeling to predict the
labels for unlabeled data as if they were true labels. Pseudo
labeling is a simple and efficient method to implement SSL
[20]. The procedure, as shown in Algorithm 1, is as follows.

1) Set a split rate s 2 ð0; 1Þ and split the labeled dataset
into training and test dataset, denoted as the original train-
ing dataset and test dataset. 2) Select a learning model and,
train the model on the original training dataset to produce a
trained model. 3) Use the trained model on Dsu to predict
the output (or pseudo label), and the pseudo labeled dataset
is obtained. We do not know if these predictions are correct,

Fig. 1. The three phases of the fairness-enhanced sampling framework: 1) where to sample, 2) how to sample and 3) how to train the model. Step 1 is
to generate a new training dataset which consists of the original dataset and the pseudo labeled dataset. Step 2 is to construct multiple fair datasets
through re-sampling. Step 3 is to train a model with each of the fair datasets through ensemble learning to produce the final predictions.
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but we now have predicted labels, which is our goal in this
step. 4) Concatenate the original training dataset and
pseudo labeled dataset to form a new training dataset Dnew.

Algorithm 1. Pseudo Labeling

Input: Labled dataset Dl, unlabeled dataset Du, split rate s,
sample ratio r

Output:New training dataset Dnew

1: Split Dl into the training dataset and the test dataset;
2: Sample Dsu from Du;
3: Select a learning model and train the model on the training

dataset;
4: Obtain the trained model;
5: Use the trained model to predict labels forDsu;
6: Combine the original training dataset and the pseudo

labeled dataset to create Dnew;

Pseudo-labeling is an easy-to-implement and efficient
semi-supervised learningmethod and, by the abovemethod,
can take advantage of unlabeled data to both: a) increase the
size of the training set; and b) create more data samples rep-
resenting minority groups to produce fairer training sets.
Moreover, the learning model can be any models, such as
logistic regression, neural networks, etc.

3.3 How to Sample

In this step, the goal is to sample multiple fair datasets from
the new training datasets to ensure fair learning. The ratio-
nale for this method is that, since the classifier is trained on
non-discriminatory data, its prediction may also be non-dis-
criminatory [11]. For simplicity, this analysis covers a binary
classification task with one protected attribute, and applies
demographic parity as the fairness metric. Our method can
certainly be applied to cases with multiple sensitive attrib-
utes, subjected to the fairness metrics.

Based on this setup, the dataset is divided into four
groups according to the protected attribute and labeled-
values: 1) Protected group with positive labels (GPP ), 2)
Unprotected group with positive labels (GUP ), 3) Protected
group with negative labels (GPN ), and 4) Unprotected group
with negative labels (GUN ). These divided groups can be
denoted as follows,

GPP ¼ fX 2 DjA ¼ 1; Y ¼ 1g (8)

GUP ¼ fX 2 DjA ¼ 0; Y ¼ 1g (9)

GPN ¼ fX 2 DjA ¼ 1; Y ¼ 0g (10)

GUN ¼ fX 2 DjA ¼ 0; Y ¼ 0g; (11)

where Y ¼ 1 denotes the positive class and Y ¼ 0 denotes the
negative class.A ¼ 1 denotes that the data point is in the pro-
tected group and A ¼ 0 denotes that the data point is in the
unprotected group. To ensure fair learning in the pre-process-
ing phase, the number of data points in the training set for
each group should be the same, otherwise the model will fall
prey to data discrimination. In the case of discrimination, the
size of each group is different. Our aim is to adjust the data
points by sampling to reach the same size in each group.

Algorithm 2 describes the process of how to obtain multi-
ple fair datasets, and the procedure is as follows: First, we

compute the size of the groups GPP , GUP , GPN , GUN . The
sample size is denoted as ns, which means that the number
of ns data points will be sampled from each group. Here,
there are two cases: 1) When ni � ns, ns data points are sam-
ple randomly from the group Gi. 2) When ni < ns, ns data
points are oversampled from the group Gi. Then we can
obtain the fair dataset Dsf which consists of the number of
data points equally for each of the four groups. Repeating
this procedure K times produces K fair datasets with some
commonalities and some differences due to the random
sampling, which is desirable for ensemble learning. The
next step is to learn from these multiple fair datasets to
achieve more accurate and less discriminatory results.

Algorithm 2. Fair Re-sampling

Input: New training datase Dnew, sensitive attribute A, sample
timesK, sample size ns, sample ratio r

Output: Fair datasets Dsf

1: Divide the dataset into four groups GPP , GPN , GUP , GUN

2: Calculate the size of all groups ni

3: for k 2 K do
4: if ni � ns then
5: Sample randomly the number of ns data points from

the group i
6: end
7: if ni � ns then
8: Oversample the number of ns data points from the

group i
9: else
10: end
11: Obtain fair datasets Dsf;i

12: end
13: Obtain multiple fair datasets Dsf;1;Dsf;2; . . . ;Dsf;K

3.4 How to Train the Model

In this step, the goal is to achieve more accurate and less dis-
criminatory training results on multiple fair datasets Dsf .
After obtaining multiple Dsf , we choose a learning model to
train multiple Dsf and apply ensemble learning to combine
the learning results. Ensemble learning in machine learning
exploits the independence between base models to improve
the overall performance. In this case, we use Bagging [21] to
combine the decisions from multiple base models learned
on multiple fair datasets to improve the accuracy and
decrease the discrimination.

Algorithm 3 describes the fair ensemble learning. With
the new training dataset Dnew from Algorithm 1 and fair
datasets Dsf;1;Dsf;2; . . . ;Dsf;K from Algorithm 2, train each
fair dataset on its own model fkðDsf;kÞ in parallel. The final
model will average the outputs based on the aggregation of
predictions from all base models. The predictions obtained
from most base models are predicted as final predictions,
which is presented as,

fð�Þ ¼ argmaxy2Y
XK

k¼1

Iðy ¼ fkðDsf;kÞÞ; (12)

where Ið�Þ is the indicator function, and K is the ensemble
size, i.e., the number of fair datasets.
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Having some diversity across the datasets is crucial for
ensemble learning. In our approach, the randomness of the
fair datasets reflects in two places: 1) randomly sampling
the unlabeled dataset Du, and subsequently, the pseudo
labeled dataset process in Algorithm 1; and 2) randomly
sampling ns data points for all groups from Dnew when con-
structing each fair dataset.

With ensemble learning, the discrimination level is deter-
mined by final predictions. We redefine the discrimination
level in ensemble learning as gEn ¼ jPrðfð�Þ ¼ 1jA ¼ 1Þ�
Prðfð�Þ ¼ 1jA ¼ 0Þj. Overall, a combination of multiple base
models helps to decrease discrimination resulting from var-
iance and noise, and is able to give a more reliable predic-
tion than a single model.

Algorithm 3. Fair Ensemble Learning

Input: Dataset, sample times K, sample size ns, split rate s,
sample ratio r

Output: Accuracy Acc, Discrimination g

1: Execute Algorithm 1 to obtain the new training dataset Dnew;
2: for k 2 K do
3: Execute Algorithm 2 to obtain the fair dataset Dsf;k;
4: Train the selected model on the fair dataset Dsf;k and

obtain the base model fkð�Þ
5: end
6: Make predictions using the final model with ensemble size

K in Eq. (12);

3.5 Discussion

In reviewing the complete framework, there are several ben-
efits to this approach, which are worth highlighting.

� Many semi-supervised learning methods can be used
to predict labels for unlabeled data, such as graph-
based learning and transductive support vector
machines [22]. We choose pseudo labeling because it
is a commonly used semi-supervised learning tech-
nique, which is efficient and easy to implement.

� The proposed FS framework only removes represen-
tation discrimination. However, it is likely that many
types of discrimination exist in machine learning,
such as historical discrimination, measurement dis-
crimination. Other discrimination can be removed
by in-processing or post-processing methods, based
on our proposed FS framework.

4 DISCRIMINATION ANALYSIS

Following [17], we analyze the fairness of the predictive
model via bias, variance, and noise decomposition. The
source of discrimination can be decoupled as discrimination
in bias BaðfÞ, discrimination in variance VaðfÞ and discrimi-
nation in noise Na. The expected discrimination level GðfÞ
of a classifier f learned from a set of training setD is defined
as, �GðfÞ ¼ jED½G0ðfÞ � G1ðfÞ�j.
Lemma 1. The discrimination with regard to group a 2 A is

defined as,

gaðfÞ ¼ �BaðfÞ þ �VaðfÞ þ �Na: (13)

Given two groups, the discrimination level is denoted as,

�G ¼ jð �B0ðfÞ � �B1ðfÞÞ þ ð �V0ðfÞ � �V1ðfÞÞ þ ð �N0 � �N1Þj:

And, in more detail, the discrimination components of
Eq.(13), i.e., bias, variance and noise are as follows:

�BaðfÞ ¼ ED½Bðym; x; aÞjA ¼ a� (14)

�VaðfÞ ¼ ED½cvðx; aÞV ðym; x; aÞjA ¼ a� (15)

�Na ¼ ED½cnðx; aÞLðy�ðx; aÞ; Y ÞjA ¼ a�; (16)

where cvðx; aÞ and cnðx; aÞ are parameters related to the loss
function. For more details, see the proof in [17].

Lemma 2. The discrimination learning curve �Gðf; nÞ :¼
j �g0ðf; nÞ � �g1ðf; nÞj is asymptotic and behaves as inverse
power law curve, where n is the size of the training data [17].

Theorem 1. Unlabeled data is able to reduce discrimination
with the proposed FS framework, if ðj �VaðfÞslj � j �VaðfÞssljÞ�
�Na;p � 0.

Proof. To prove the above theorem, we shall prove that the
discrimination level in SSL �Gssl is lower than the discrimi-
nation level in supervised learning �Gsl. In the following,
we will analyze the discrimination in SSL in terms
of discrimination in bias �BaðfÞssl, discrimination in
variance �VaðfÞssl, and discrimination in noise �Na;ssl.

Discrimination in Bias: Bias measures the fitting abil-
ity of the algorithm itself, and describe accuracy of the
model. Hence, bias in discrimination �BaðfÞ ¼ ED½Bðym;
x; aÞjA ¼ a� only depends on the model. When the same
model is trained on the original training dataset and new
training dataset, discrimination in bias is the same in
supervised learning and SSL, which can be expressed as
j �BðfÞslj � j �BðfÞsslj ¼ 0.

Discrimination in Variance: Discrimination in vari-
ance �VaðfÞ can be reduced with extra unlabeled data in
the training dataset. Lemma 2 states that the discrimina-
tion level �Gðf; nÞ decreases with the increasing size of
training data n. In our proposed FS framework, unlabeled
data is pseudo-labeled, and the new training dataset con-
sists of the original training dataset and the pseudo
labeled dataset. The size of the new training dataset can
be guaranteed to be larger than the size of the original
training by adjusting the sampling size. Also, using Bag-
ging to combine all the basemodels to obtain the final pre-
dictions helps to construct the aggregate model with a
lower variance, thus reducing the discrimination in vari-
ance �Ba. Hence, we conclude that j �VaðfÞsslj� j �VaðfÞslj � 0.

Discrimination in Noise: Unlabeled data introduces
more discrimination in noise because pseudo labeling
contains discrimination from the trained model. Thus,
noisy labels from pseudo labeling in the unprotected
group is more than that in the protected group. We
divide the discrimination in noise in SSL into discrimina-
tion in noise in labeled data �Na;l and discrimination in
noise in pseudo labeled data �Na;p, which is expressed as,

�Na;ssl ¼ �Na;l þ �Na;p: (17)
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Discrimination in noise in labeled data �Na;l is the same
as the discrimination in noise in supervised learning
�Na;sl. Then we analyze the discrimination in noise due
to pseudo labeled data �Na;p, including four mislabeled
cases,

�Ny¼0;a¼0 ¼ EDun ½ŷ�p ¼ 1jy ¼ 0; a ¼ 0� (18)

�Ny¼0;a¼1 ¼ EDun ½ŷ�p ¼ 1jy ¼ 0; a ¼ 1� (19)

�Ny¼1;a¼0 ¼ EDun ½ŷ�p ¼ 0jy ¼ 1; a ¼ 0� (20)

�Ny¼1;a¼1 ¼ EDun ½ŷ�p ¼ 0jy ¼ 1; a ¼ 1�; (21)

where ŷ�p is the optimal predicted label of unlabeled data
via pseudo labeling. The noise in the protected group is
�N1;p ¼ �Ny¼0;a¼1 þ �Ny¼1;a¼1 and the noise in the unpro-
tected group is �N0;p ¼ �Ny¼0;a¼0 þ �Ny¼1;a¼0. The model
contains discrimination because the model is trained on
a dataset without any fairness guarantees, and thus the
model will bring discrimination in pseudo labeling. In
this way, discrimination in noise in pseudo labeled data
�Na;p can be measured as,

�Na;p ¼ j �N1;p � �N0;pj: (22)

To relieve the noise from pseudo labeling, we use
Bagging—a robust model that is resilient to class label
noise since the errors incurred by the noise can be
compensated by the combined predictions of other
learners.

Based on the analysis above, we conclude that when
j �VaðŶ Þssl � D �VaðŶ Þslj � �Na;p � 0, unlabeled data is able to
reduce discrimination with the proposed FS framework.
Unlabeled data do not change discrimination in bias.
However, they do reduce discrimination in variance, and
they increase discrimination in noise, but bagging reduces
discrimination both in variance and discrimination in
noise. tu

5 EXPERIMENT

In this section, we demonstrate our framework by perform-
ing experiments on real-world and synthetic datasets. The
goal of our experiments is three folds. The first is to show
how the framework makes use of unlabeled data to achieve
a better trade-off between accuracy and discrimination. The
second is to explore the impact of factors, such as ensemble
times and sampling size, on the training results. And, third,
we show the distinct difference in discrimination level
when the model is tested with discrimination test dataset
and fair test dataset.

5.1 Experiments on Real Data

The aim of real-world datasets is to assess the effectiveness
of our method to achieve a better trade-off between accu-
racy and discrimination with unlabeled data. We also show
the benefit of ensemble learning, the impact of the sampling
size, and the comparison with other methods.

5.1.1 Experimental Setup

Dataset. The experiments involve three real-world
datasets: the Health dataset,1 the Bank dataset,2 the Adult
dataset.3

� The target of Health dataset is to predict whether
people will spend any day in the hospital. In order
to convert the problem into the binary classification
task, we simply predict whether people will spend
any day in the hospital or not. Here, ‘Age’ is the pro-
tected attribute and two groups are divided at �65
years. After data pre-processing, the dataset contains
10,000 records with 132 features.

� The Bank dataset contains a total of 31,208 records
with 20 attributes and a binary label, which indicates
whether the client has subscribed to a term deposit
or not. Again, ‘Age’ is the protected attribute.

� The target of Adult dataset is to predict whether peo-
ple’s income is larger than 50K dollars or not, and we
consider “Gender” as the protected attribute. After
data pre-processing, the dataset contains 48,842
recordswith 18 features.

Parameters. The protected attribute is excluded from
the prediction model during the training to ensure equity
across groups. The protected attribute is only used to evalu-
ate the discrimination measurement in the testing phrase. In
the above of three real-world datasets, data are all labeled.
First, we split the whole dataset randomly into two halves:
one half is used as labeled dataset, and we remove the labels
from the other half to served as the unlabeled dataset. In the
labeled data, we set the split rate s ¼ 0:8, which means 80
percent of the data are used for training and 20 percent of the
data are used for testing. The sample size ns equals the mini-
mum size of four groups in three datasets.

The final result is an average of 50 results run in the new
training datasets. For each run, we generate K ¼ 200 fair
datasets and construct with K ¼ 200 base models to make
the final predictions. We use 5-fold cross-validation on the
original training dataset and test dataset.

Baseline. Given our method is a pre-processing
method, we compare it to two other pre-processing meth-
ods and the method without any fairness process.

� Original (ORI): The original dataset is used for train-
ing without fairness guarantees.

� Uniform Sampling (US) [11]: The number of data
points in each groups is equalized through oversam-
pling and/ undersampling.

� Preferential Sampling (PS) [11]: The number of data
points in each groups is equalized by taking samples
near the borderline data points.

5.1.2 Trade-Off Between Accuracy and Discrimination

Fig. 2 shows the accuracy and discrimination level varies
given different sample ratio r with logistic regression (LR)

1. https://foreverdata.org/1015/index.html
2. https://archive.ics.uci.edu/ml/datasets/bank+marketing
3. http://archive.ics.uci.edu/ml/datasets/Adult
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and support vector machine (SVM) on three datasets. As
shown, accuracy generally increases with a growing size of
unlabeled data. For example, LR has an accuracy of around
0.728 when r ¼ 0:1 with the Adult dataset, which increases
to 0.745 when r ¼ 1. This indicates that the unlabeled data
helps to improve the accuracy to some extent. Also, we note
that accuracy relates to the training models and the choice
of training models relates to the datasets. The discrimina-
tion level has different performances in different training
models. For example, with the Adult dataset, the discrimi-
nation level initially increases and then steadily decreases
till the end in LR. The discrimination level is steady and has
a slight increase in SVM. This observation indicates that
unlabeled data can help to reduce the discrimination for
some models, like LR. Similar to accuracy, the discrimina-
tion level relates to the training models and our experiments
show that LR is more friendly in discrimination than SVM.
The choice of sample ratio depends on the quality of the
dataset itself as well as the requirement of the learning task.
Accuracy could be improved with unlabeled data, while
discrimination level depends on the reduction of discrimi-
nation in variance and increase of discrimination in noise
that unlabeled data could bring in the training.

5.1.3 The Impact of Ensemble Learning

Fig. 3 shows the impact of ensemble learning on accuracy
and discrimination level with LR and SVM on three datasets.

In ensemble learning, we sample percentage of r ¼ 1 unla-
beled data from the unlabeled dataset, and generate the new
training dataset. With LR, the accuracy typically increases
then steadies till the end, whereas, with SVM accuracy fluc-
tuates before steadying at some lower, equal or higher rate.
This is because the errors in variance and noise reduce as the
ensemble size increases.

In terms of discrimination levels, both methods show
fluctuations at first before stabilizing on all three datasets.
The changes in discrimination levels have no obvious corre-
lations to accuracy prior to convergence. This is reasonable
because training results having the same accuracy does not
mean the same discrimination level. Also, without a suffi-
cient ensemble size, training on fair datasets will introduce
some variance and noise to the final result. Overall, an
ample ensemble size helps to improve accuracy and
decrease discrimination. The appropriate ensemble size is
K ¼ 200 or so. This is because accuracy increases and dis-
crimination fluctuates before K ¼ 200, and broadly accu-
racy and discrimination become steady after K ¼ 200 for
three datasets.

5.1.4 The Impact of Sample Size

Fig. 4 shows the impact of sample size on accuracy and dis-
crimination level with LR and SVM on three datasets. Over-
all, it is observed that accuracy increases quickly in the

Fig. 2. The trade-off between accuracy (Red) and discrimination level
(Blue). (a) LR in Health dataset; (b) SVM in Health dataset; (c) LR in
Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM
in Adult dataset. The X-axis is the sample ratio r, which denotes that
the percentage of r unlabeled data are sampled from the unlabeled
dataset and then pseudo labeled for training.

Fig. 3. The impact of ensemble learning on the accuracy (Red) and dis-
crimination level (Blue) on (a) LR in Health dataset; (b) SVM in Health
dataset; (c) LR in Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult
dataset; (f) SVM in Adult dataset. Initially, there is not obvious link
between accuracy and discrimination level. However, as the ensemble
size grows, the accuracy and discrimination level begin to converge.
Each point is an average of 50 times.
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early stages and then becomes stable as the sample size
grows. This is because more data help to improve the gener-
alization ability, but extra data do not help when the
amount of data is enough to fit the model. Unlike accuracy,
discrimination level depends on the amount of label noise
that unlabeled data may bring when the sample size
increases. For example, discrimination decreases in the
Health dataset and increases a litter in the Bank dataset.
This means that, with an increasing of sample size, little
label noise is brought into the Health dataset, and conse-
quently discrimination level decreases. Also, it is note that
LR is more sensitive to sample size than SVM. The choice of
sample size depends on the quality of the dataset and the
training task requirement. Generally, a larger sample size
can improve accuracy, reduce discrimination in bias and
increase discrimination in noise.

5.1.5 Comparison With Other Methods

Fig. 5 shows the results from a comparison of our proposed
FS method with and the other three schemes in terms of the
accuracy and discrimination level on the three datasets. The
training dataset of other methods is the original training
dataset and the training dataset of our method is the new
training dataset that consists of the original training dataset
and pseudo labeled dataset (r = 1). The test dataset is the
same. The results show that our method is able to push the
discrimination to very low values while achieving a fairly

high accuracy comparing with other schemes. Specifically,
on the Adult dataset, the discrimination level under LR is
around 0.215 with the original method and around 0.022
with the preferential sampling method, and the proposed
FS method can decrease discrimination to 0.019 with a bet-
ter accuracy than the preferred sampling method. This indi-
cates that the proposed FS method is able to reduce the
discrimination better than other methods.

5.2 Experiments on Synthetic Data

We first describe how to generate synthetic datasets and the
goal of synthetic datasets is to show the effectiveness of our
method in the discriminatory test dataset and fair test data-
set. Here, the discriminatory test dataset refers to the test
dataset whose data points are not equally presented in each
group, and the fair test dataset refers to the test dataset
whose data points are equally presented in each group. We
show the distinct difference of discriminatory on two types
of test datasets.

5.2.1 Synthetic Data Setup

We generate 22,000 binary class labels and a protected attri-
bute a with a uniform random distribution, and assign a 2-
dimensional feature vector to each label by drawing sam-
ples from two different Gaussian distributions: pðxjy ¼ 1Þ ¼
Nð½2; 2�; ½5; 1; 1; 5�Þ and pðxjy ¼ �1Þ¼Nð½�2;�2�; ½10; 1; 1; 3�Þ.
The size of each group in the synthetic dataset is roughly
the same. Then we randomly sample 2,000 data points from

Fig. 4. The impact of sample size on accuracy (Red) and discrimination
level (Blue) on (a) LR in Health dataset; (b) SVM in Health dataset; (c)
LR in Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f)
SVM in Adult dataset. An increasing in the sampling size leads to an
increase in accuracy and may help to reduce discrimination level.

Fig. 5. Comparison with original scheme (ORI), uniform sampling (US)
and preferential sample (PS) with (a) LR in Health dataset; (b) SVM in
Health dataset; (c) LR in Bank dataset; (d) SVM in Bank dataset; (e) LR
in Adult dataset; (f) SVM in Adult dataset. With the fairness-enhanced
sampling method (FS), discrimination decreases without much cost of
accuracy or accuracy increases without much cost of discrimination.
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the synthetic dataset as a fair test dataset, and split the
remaining dataset randomly into two halves: one half is to
be used as the labeled dataset and the other half with labels
removed to serve as the unlabeled dataset.

Note that the synthetic dataset is a fair dataset, and the
discriminatory dataset is generated by calibrating data
points in the group GPP based on the synthetic dataset. Dis-
criminatory dataset 1 (DA 1) is generated by sampling 2,000
data points randomly in the group GPP and data points do
not change in other groups. Discriminatory dataset 2 (DA 2)
is generated by sampling 3,000 data points randomly in the
group GPP and data points do not change in other groups.
In each discriminatory dataset, we sample 2,000 data points
as the discriminatory test dataset and the remaining as the
training dataset.

5.2.2 Synthetic Data Tested With Discriminatory and

Fair Datasets

Table 1 shows that our method is able to reduce discrimina-
tion level when training datasets have different discrimi-
nation levels. For example, more data points are classified
into the Protected group with positive labelsGPP after imple-
menting our method, and discrimination level of DA 1
reduces from 0.2705 to 0.2076 in LR. It is also note that accu-
racy does not decrease much with the proposed FS method.
For example, accuracy of DA 2 reduces from 0.8825 to 0.8730
in LR.

We test the biased datasets with the proposed FS method
on the fair test dataset with LR and SVM, and results are
shown in Table 2. With the proposed FS method, discrimi-
nation level decreases and accuracy increases. More specifi-
cally, discrimination level decreases from 0.1018 to 0.0062
and accuracy increases from 0.8535 to 0.8810 in the DA 2.
Discrimination level with the discriminatory test dataset is
much higher than with the fair test dataset. We attribute
this to the evaluation bias. Discriminatory dataset and dis-
criminatory test data have the same data distribution, and
thus the size of each group in the discriminatory test dataset
is not equal. Even if the trained classifier is fair, the result
may still be unfair. In real-world datasets, test datasets are
sampled from the whole datasets and thus can contain eval-
uation bias.

5.3 Discussion and Summery

5.3.1 Discussion

We discuss on how the proposed FS framework is able to
reduce discrimination in terms of discrimination decompo-
sition into discrimination in bias, variance and noise. Dis-
crimination in bias depends on the model choice. As we
observe in the experiments, very broadly, LR can achieve a
lower discrimination level than SVM. Discrimination in var-
iance relates to the training data. Unlabeled data help to
reduce discrimination in variance by increasing the size of
training data. Ensemble learning helps to reduce discrimi-
nation in variance by averaging the training results from
base models. An appropriate unlabeled data size, sample
size and ensemble size in our framework is able to help
reduce more discrimination in variance. Discrimination in
noise depends on the quality of data. Training with unla-
beled data may bring discrimination in noise. However,
ensemble learning offsets this effect. When the same model
is used, the benefit of unlabeled data in discrimination
reduction depends on the impact of unlabeled data on dis-
crimination in variance and discrimination in noise.

5.3.2 Summary

From these experiments, we see that the FS framework is
able to reduce representation discrimination with a better
trade-off between accuracy and discrimination. In the pro-
posed FS framework, discrimination reduction in variance
is usually more than the discrimination incurred by label
noise. However, all the factors in the framework—model
choice, unlabeled data size, ensemble size, sample size—
each make their own particular contribution to increasing
accuracy while ensuring fair representation.

6 RELATED WORK

In recent years, much research on fair machine learning has
been undertaken. The following subsections summarize the
three main streams of this work.

6.1 Pre-Processing Methods

Pre-processing methods eliminate the discrimination
by adjusting the training data by ways of suppression,

TABLE 1
Two Discriminatory Datasets Tested on the Discriminatory Test
Dataset in ORI Method and the Proposed Fairness-Enhanced

Method (FS) With LR and SVM

Test with discriminatory test dataset

Method Acc Dis GPP GUP GPN GUN

LR

DA 1 (ORI) 0.8815 0.2705 183 586 626 605
DA 2 (ORI) 0.8875 0.3642 104 628 642 626
DA 1 (FS) 0.8825 0.2076 232 537 627 604
DA 2 (FS) 0.8730 0.2890 159 573 642 626

SVM

DA 1 (ORI) 0.8825 0.2664 188 581 629 602
DA2 (ORI) 0.8880 0.3724 102 630 649 619
DA 1 (FS) 0.8825 0.2097 231 538 628 603
DA 2 (FS) 0.8745 0.3130 149 583 655 476

We show accuracy (Acc), discrimination level (Dis) and the number of data
points of each group in the discriminatory test dataset after classification.

TABLE 2
Two Discriminatory Datasets Tested on the Fair Test Dataset

in ORI Method and the Proposed Fairness-Enhanced
Method (FS) With LR and SVM

Test with fair test dataset

Method Acc Dis GPP GUP GPN GUN

LR

DA1 (ORI) 0.8701 0.0484 438 556 492 514
DA 2 (ORI) 0.8535 0.1018 376 618 483 523
DA 1 (FS) 0.8790 0.0161 474 520 496 510
DA 2 (FS) 0.8810 0.0062 471 523 483 523

SVM

DA1 (ORI) 0.8700 0.0483 441 553 495 511
DA 2 (ORI) 0.8525 0.1118 372 622 489 517
DA1 (FS) 0.8790 0.0168 474 520 496 510
DA 2 (FS) 0.8775 0.0272 460 534 493 513

We show accuracy (Acc), discrimination level (Dis) and the number of data
points of each group in the fair test dataset after classification.
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reweighing or sampling to obtain fair datasets before training
[3], [11], [23]. Also, learning fair intermediate representations
in the pre-process phase has received much attention. [12]
was the first to open up fair machine learning by learning fair
intermediate representations. The basic idea is that mapping
the training data to a transformed spacewhere asmuchuseful
information as possible is retained, but the dependencies
between sensitive attributes and class labels are removed.
Many researchers have subsequently studied fair representa-
tion learningwith different methods, such as adversary learn-
ing [13], [14], [24], [25], [26]. These methods are based on
using a classifier to predict sensitive attributes as adversarial
components. The advantage of pre-precessing methods is
that these methods can apply to all algorithms and tasks.
Note that pre-processing approaches cannot be employed to
eliminate discrimination arising from the algorithm itself.

6.2 In-Processing Methods

In-processing methods avoid discrimination with fair con-
straints [15] used regularizer term to penalize discrimina-
tion to enforce non-discrimination in the learning objective.
[4], [27], [28] designed fairness constraints to achieve fair
classification, where the fairness constraint is enforced by
weakening the correlation between sensitive attribute and
labels. In [29], [30], [31], the constrained optimization prob-
lem is formulated as a two-player game and fairness defini-
tions are formalized as linear inequalities. Other recent
work have a similar spirit to enforce fairness by adding con-
straints to the objective [32], [33]. The advantage of in-proc-
essing methods is that the level of fairness and accuracy can
be controlled by the threshold of fairness constraints. How-
ever, fairness constraints are often irregular and need to
be relaxed for optimization, and thus the solution may not
be convergent. In addition, individual fairness can also be
regard as in-processing methods [6], [34], [35].

6.3 Post-Processing Methods

A third approach to achieving fairness is post-processing,
where a learned classifier is modified to adjust the decisions
to be non-discriminatory for different groups. [5] proposed an
approach to use of post-processing to ensure fairness criteria
of equal opportunity and equal odds and subsequent work
include [36], [37] However, it is not guaranteed to find the
most accurate fair classifier [38], and requires test-time access
to the protected attribute, whichmight not be available.

6.4 Comparison With Other Work

Existing fair methods focus on supervised and unsuper-
vised learning, and these methods cannot be applied to SSL
directly. As far as we know, only [39], [40] considered fair
SSL. In [39], data is used to learn the output conditional
probability, and unlabeled data is used for calibration in the
post-processing phase. This method is to eliminate the
aggregation discrimination, while the proposed FS method
is to reduce representation discrimination. In [40], the pro-
posed method is built on neural networks for SSL in the in-
processing phase, and this method is to reduce measure-
ment discrimination. In [11], representation discrimination
is reduced by uniform sampling and preferential sampling,
while in some cases not enough data in minority group can

be sampled to generate a fair dataset. Our work make use of
unlabeled data to form fairer datasets and theoretically ana-
lyze the discrimination via decomposition in bias, variance
and noise. In our paper, we study the fair SSL based on label
and unlabeled data in the pre-processing phase and our
goal is to use labeled data to reduce representation discrimi-
nation, and in turn achieve a better trade-off between accu-
racy and discrimination.

7 CONCLUSION AND FUTURE WORK

In this paper, we use unlabeled data to achieve a better
trade-off between accuracy and discrimination in the pre-
processing phase. To achieve this, we developed a three-
pronged strategy, where each component makes an impor-
tant contribution to decreasing discrimination and/or
improving the accuracy of the final predictions. Pseudo label-
ing in a semi-supervised setting exploits unlabeled data, on
the premise thatmore training data is likely to reduce discrim-
ination. A re-sampling method leads to multiple sampled fair
datasets, and training on fairly-sampled will result in a fairly
trained model. Lastly, ensemble learning is applied to
improve the quality of the final predictions. A theoretical
analysis and our experimental results show that our method
delivers what it promises – unlabeled data is a viable option
to achieve a better trade-off between accuracy and discrimina-
tion. Model choice, unlabeled data size, ensemble size and
sampling size are factors that affect training results.

In future work, we intend to explore designs for fairness
constraints thatmake use of unlabeled data to enforce fairness
in the in-processing phase. Further, we have an assumption in
this paper that labeled and unlabeled have the same distribu-
tion. However, this assumption may not hold in some real-
world cases. Hence, another research direction is to how to
achieve fair semi-supervised learning where labeled and
unlabeled data have different data distributions.
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