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Abstract—Fraud detection problems are usually formulated
as a machine learning problem on a graph. Recently, Graph
Neural Networks (GNNs) have shown solid performance on fraud
detection. The successes of most previous methods heavily rely on
rich node features and high-fidelity labels. However, labeled data
is scarce in large-scale industrial problems, especially for fraud
detection where new patterns emerge from time to time. Mean-
while, node features are also limited due to privacy and other
constraints. In this paper, two improvements are proposed: 1) We
design a graph transformation method capturing the structural
information to facilitate GNNs on non-attributed fraud graphs.
2) We propose a novel graph pre-training strategy to leverage
more unlabeled data via contrastive learning. Experiments on a
large-scale industrial dataset demonstrate the effectiveness of the
proposed framework for fraud detection.

I. INTRODUCTION

The rapid growth of online services facilitates people’s life
while fosters fraudsters who reap monetary rewards and users’
privacy via tampering with the system and policy. To name a
few, the review spammer could boost the reputation of dishon-
est merchants in e-commerce and sabotage the recommender
system [1]. Meanwhile, an increasing number of fraudsters
have been engaging in social platforms and online financial
services, according to a recent report [2].

To combat the fraudsters automatically, many machine
learning approaches have been proposed [3]. As Graph Neural
Networks (GNNs) achieving superior performance on many
graph-related tasks [4], [S], many researchers and practitioners
begin to adopt GNNs to detect fraud in various scenarios [6]—
[9]. Most GNNs hold the graph homophily assumption where
the connected nodes in a graph should have similar properties.
Specifically, GNN recursively aggregates the node and its
neighbor information to learn the node representation.

For the fraud detection problem, fraudsters usually behave
insidiously, but their suspicious signals can be magnified when
connecting them via shared entities like the IP address and the
device [6]. For instance, if a group of coordinated fraudsters
frequently use the same IP address and device, they would be
closely connected on graphs built with the above entities. On
the contrary, benign entities are more independent on the graph
since they do not have coordinated behavior. After aggregating
the neighbor information of the entities in the above graph
using GNNs, fraudster entities’ suspiciousness will become
more significant compared to benign ones.

Despite the effectiveness of GNN-based fraud detectors,
most of them depend on highly personalized graphs coupled
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with corresponding data which are not applicable to other
problems [6], [9]. Meanwhile, the majority of previous works
demand informative node features composed of user personal
and behavioral information [7], [8]. However, the privacy
and data retention policies may restrict the access of user
information by companies in practice. Besides the challenge of
constructing the graph, most real-world fraud detection tasks
suffer from label scarcity issues since data annotation is labor-
intensive due to the adversarial nature of fraudsters [8].

In this paper, we propose an approach that tackles two
challenges above. 1) For the challenge of graph construction
in practice, we propose a generic graph structure and node
feature initialization approach. We first introduce a graph
transformation technique to convert commonly-used industrial
graphs into smaller graphs while retaining useful information
for downstream models. Then, inspired by recent work on
node feature initialization for GNNs [10], [11], we leverage
graph topological features to initialize node features for the
non-attributed graph. 2) To alleviate the label scarcity prob-
lem, we leverage the graph pre-training strategy, which is
able to leverage more unlabeled data via graph contrastive
learning [12]-[14]. Specifically, we devise a self-supervised
GNN pre-training framework to capture the graph’s topolog-
ical properties across the unlabeled data. Then we generate
inductive node embedding into the labeled dataset via the pre-
trained graph encoder to train the fraud classifier.

Our framework has been validated by experimental results
on a large-scale industrial dataset. The proposed graph con-
struction approach and graph pre-training strategy can improve
learning efficiency and boost fraud detection performance. Our
contributions are summarized as follows:

« We propose a graph construction method for GNN-based
fraud detection on the non-attributed graph.

o A graph pre-training strategy is adopted to alleviate the
label scarcity problem in the fraud detection problem.

« Experimental results on a large-scale real world dataset
validate various combinations of approaches.

II. PRELIMINARY AND PROBLEM DEFINITION

We take the loan-default detection task to demonstrate the
widely-used graph prototype for fraud detection. As Fig. 1
(a) shows, a personal loan dataset usually includes entities
like address, device, loan, and user. Most previous works
build a multi-entity graph composed of different entities as
nodes and their relations as edges (e.g., user-has-loan, user-
uses-device) [6], [7], [9]. We can formally define the above
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non-attributed multi-entity graph as G,, = (Vpn, Em, Oy, Re),
where v; € V,,, denotes the nodes, &,, denotes the edges. Oy,
(Re resp.) represents the node types (relation types resp.).

Problem Definition. Given a non-attributed multi-entity
graph, we first transfer it into an attributed single-entity graph
Gs = (Vs, &, X%, X"), where every v; € Vs belongs to the
target entity to be classified. X© and X" represent the edge
feature matrix and node feature matrix, respectively. With G
and a set of partially annotated node labels y; € Y, y; € (0,1),
where O (1 resp.) represents the benign (suspicious resp.)
entity, we aim at training a classifier f : Gs — Y to learn
the representation of every v; € Vs and predict their labels.

[II. METHODOLOGY

In this section, 1) we first elucidate how we transform an at-
tributed single-entity graph from a non-attributed multi-entity
graph. Then, 2) we present a graph pre-training strategy with
contrastive learning to leverage the unlabeled data. Finally, 3)
we introduce how we encode the final node representation for
fraud classification and how to fine-tune the GNN encoder.
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Fig. 1: Transferring a multi-entity graph into a single-entity graph.

A. Graph Construction

1) Structure transformation: As Fig. 1 (a) showing, many
industrial graphs may contain entities like address and device,
which only play the role to connect similar target entities
(i.e., users) while it is not easy to extract features from them.
Since GNNs’ capability and efficiency are largely dependent
on node feature [10] and graph size [15], respectively, we
propose to transfer all non-target entities as the feature of
edges between target entities (as shown in Fig. 1). Specifically,
the edge feature is a d-dimension one-hot vector, where d is
the number of all non-target entity types, and each dimension
indicates whether two end target entities are connected via the
corresponding non-target entity.

The structure transformation above has three benefits: 1) the
single-entity graph shrinks the graph size significantly from the
multi-entity graph via only keeping the target entities as nodes;
2) the connections and their importance between target entities
and different non-target entities are retained and can facilitate
GNNs; 3) for a center target node, a GNN could perceive
more neighbor’s information on the single-entity graph than
the multi-entity graph with the same number of layers.

2) Node feature initialization: GNNs aim at learning node
representations by learning the similarities shared between
connected nodes. However, the expressive ability of a GNN
is highly dependent on the quality of node features [10], [11].
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Therefore, given the single-entity graph without target entity
features, it would be better to initialize node features before
feeding the graph into GNNs. Considering the costly feature
engineering and the adversarial nature of fraudsters, we resort
to adopting the following four graph topological features for
an expeditious node feature initialization [10], [11].:

e Random: generating a feature vector for each node via
sampling from a Gaussian distribution.

e Degree [5]: converting the node degree into a one-hot
degree vector for each node, where the vector dimension
depends on the maximum degree across all nodes.

e PageRank [16]: computing the PageRank score for each
node, and use it as the node feature.

o FEigen [17]: applying the eigen decomposition on the nor-
malized adjacency matrix of G4 and the top-k eigenvalues
are the k-dimensional feature vector for each node.

We compare the performance of four nodes feature initial-
ization approaches in Section IV-C.
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Fig. 2: Pre-training the GNN encoder on the unlabeled data.
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As we mentioned in Section I, many real-world fraud
detection tasks suffer from the label scarcity problem. Though
GNNSs can leverage unlabeled data during training, their capa-
bility is limited within the local neighborhood of target entities.
Thanks to the recent advance in graph pre-training [18],
[19], we adopt self-supervised contrastive learning to encode
more information from unlabeled data. Specifically, under the
assumption that common and transferable structural patterns
exist across different nodes’ sub-graphs, we can use plenty of
unlabeled nodes to pre-train a GNN encoder to capture the
local structure similarity between different nodes. Our graph
pre-training framework has three steps: 1) data augmentation,
which constructs positive and negative sub-graph pairs of a
node; 2) GNN encoder, which maps one node’s structural
pattern to the latent representation; 3) encoder training, which
optimizes the GNN encoder with a contrastive loss.

1) Data augmentation: Contrastive learning requires one
instance’s positive pairs and negative samples to enhance
the classifier’s discriminative capability. Similar to previous
work [19], we construct positive pairs as two sub-graphs of
a node. Since two sub-graphs should share similar structure
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information to guarantee them to be positive pairs, we sample
them from the r-ego network of a node.

We first conduct two iterations of random walk on node u’s
r-ego network G4 (u) (the superscript is ignored for simplicity),
to generate two sub-graphs G?(u) and G¥(u), which are re-
garded as a positive pair. After constructing positive sub-graph
pairs for a node, we regard the sub-graphs generated from
different nodes v’s r-ego networks as the negative samples
of the node. Fig. 2 demonstrates the sub-graph construction
process, where G4(u) and G¥(u) are a positive pair since they
are sampled from the same node. G* (v) and G*2(v) denote
the negative samples of node u, which are sub-graphs sampled
from the r-ego network of a different node.

2) GNN encoder: After retrieving positive and negative
sub-graphs, we feed them into two graph encoders f4
and f*, which are illustrated in Figure 2. We encode the
sub-graph G, (u?) with graph encoder f?, while encoding
other sub-graphs with f*. Correspondingly, we generate low-
dimensional representation vectors e, and ey, for the positive
pair G,(u?) and G,(u*), respectively. We use the Graph
Isomorphism Network (GIN) [20] as the GNN encoder to
learn the node representation by only considering the node
feature. This approach has two advantages: 1) increasing
the migration and generalization capabilities of the graph
structure; 2) decoupling the correlation between node features
and edge features. The GNN encoder aggregation function is:

XV = MLP((l R x;.’),
JEN(3)

ey

where Xf/ is v;’s embedding at the next GNN layer, € is the
weight parameter, x; is v;’s embedding at the current layer,
and x7,j € N is the neighbor node embedding of v;.

3) Encoder training: We adopt the contrastive loss named
InfoNCE [21] to optimize the graph encoder in a self-
supervised fashion, which maximizes the agreements between
positive pairs. The InfoNCE loss is formulated as follows:

exp(e;ek /T)
LintoNcE = — 10g =7 T )
>_i—1 €xp(eje;/T)
where 7 is the temperature hyper-parameter. Minimizing
Eq. (2) is equivalent to maximizing the similarity between
positive pairs, i.e., e, and ey, while minimizing the similarity
between negative pairs, i.e., e, and e; where ¢ # k. In practice,
we view those instances as a query embedding e, and a set
of key embeddings {e;}|"_;. The contrastive loss looks up a
single key (denoted by e;) that e, matches in the key set.

In contrastive learning, maintaining a K-size look-up key
set is essential. Intuitively, as the denominator in Eq. (2)
expresses, a larger key set size leads to better sampling of the
underlying data space. To further improve the optimization
process, we adopt the MoCo [22] training scheme, which
maintains a dynamic set of keys with a queue and a moving-
averaged encoder. MoCo is able to increase the key set
size without additional back-propagation costs. Formally, if
denoting the parameters of fj, as 6 and those of f, as 6,

2)
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MoCo updates 6y, as 0, <— mby+(1—m)0y, where m € [0, 1)
is a momentum hyper-parameter.

C. Model Fine-tuning

The pre-trained GNN encoder is then employed on the la-
beled graph to fine-tune embeddings. Specifically, we sample a
sub-graph for each node and fine-tune the pre-trained encoder
to encode the sub-graph. The objective for this fine-tuning
step is to predict the associated label of each node. To note,
in addition to node features, we aggregate both node and edge
features of neighbors for final representation learning:

xV" :MLP((1+6) x4+ > ReLU(! +xfj)), 3)
JEN (D)
where xf; is the edge features between node ¢ and j. After
passing the final node embedding to an MLP classifier, we
adopt following cross-entropy loss to fine-tune the GNN
encoder and the MLP parameters:

Leg= Y —log(yi-ReLUMLP(x}"))), (4)
vi€Virain
where x?” represents v;’s embedding after GNN’s last layer.
IV. EXPERIMENT
A. Dataset

We evaluate our method on a large-scale industrial dataset.
In Table I, by comparing the statistics of the multi-entity graph
G, and the single-entity graph G, there is a large discrepancy
between them. By transforming G,’s structure, the number of
nodes has been reduced 26.69 times and edges by 22.07 times
comparing with G,,. Like many real-world fraud detection
cases, the labeled data is very small. Only 0.188% of nodes
are labeled on the graph used in this paper, which contains
1482 fraudulent and 1287 benign target entities. Utilizing the
unlabeled data is critical for success, and our method has
demonstrated the effectiveness of such a setting.

TABLE I: Dataset Statistics.

# target entity | # non-target entity | [Oy] €]
Gm 1,469,149 37,694,849 6 113,375,579
Gs 1,469,149 0 1 5,136,750

B. Experimental Settings

We compare four feature initialization methods proposed
in Section III-A2 under various settings. We adopt a 3-layer
GNN encoder for all settings. For pre-training, batch size is
200, embedding dimension is 16, and learning rate is 1e 8.
For fine-tuning, batch size is 100, embedding dimension is 32,
and learning rate is 1le~®. We conduct five-fold experiments
and report the average micro-F1 score in Table II.

C. Result Analysis

Besides the node embedding, we also use the 3-hop sub-
graph embedding for fraud classfication. Table II shows the
experimental results, and we have the following findings:
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TABLE II: Fraud detection performance (micro-F1 score), “PT” rep-
resents using pre-training, “NE” and “SE” represent node embedding
and sub-graph embedding, respectively.

multi-entity graph | single-entity graph

Method NE SE NE SE
Random 0.436 0.439 0.441 0.447
Random + PT | 0.424 0.427 0.405 0.410
Degree 0.472 0.481 0.488 0.479
Degree + PT 0.499 0.483 0.532 0.541
PageRank 0.566 0.559 0.594 0.610
PageRank + PT | 0.641 0.633 0.661 0.674
Eigen 0.630 0.628 0.679 0.683
Eigen + PT 0.623 0.644 0.708 0.721

1) The single-entity graph is better than the multi-entity
graph: The best classification result in the single-entity graph
exceeds that of the multi-entity graph by 11.95%. For center
node, a GNN can reach farther target entities on the single-
entity graph compared to that of multi-entity graphs, thus more
informative nodes are encoded on the single-entity graph.

2) Graph pre-training is helpful: We can observe a per-
formance boost for most feature initialization methods after
applying the proposed graph pre-training strategy (see method
+ PT in Table II). This result indicates the effectiveness of
using the contrastive learning to pre-train the GNN encoder
on the unlabeled data, and it boosts 5.56% micro-F1 score
compare Eigen + PT with Eigen. On the contrary, graph pre-
training has a negative effect on randomly initialized nod
features. A possible reason is that the random feature carries
no topological information of the node and thus can not be
leveraged by self-supervised contrastive learning.

3) Sub-graph embedding is more effective than node em-
bedding: As shown in Table II, using sub-graph embedding
in the single-entity graph has noticeable improvement while
the multi-entity graph is not. It suggests that the single-entity
graph has a better representation than the multi-entity graph
with the same hops, and insufficient neighbor information will
bring more harm rather than gain.

D. Embedding Visualization

Fig. 3: t-SNE plots of node embeddings obtained by: (a) Eigen +
multi-entity; (b) Eigen + single-entity; (c) Eigen + PT + multi-entity;
(d) Eigen + PT + single-entity. Red: fraudster, green: benign entity.

To understand the difference between the proposed methods
straightforwardly, we adopt t-SNE [23] to visualize the node
and sub-graph embeddings generated by the GNN encoders in
Fig. 3. It can be seen from the figure that graph pre-training
not only gathers similar nodes together but also increases the
discriminative capability of the GNN encoder.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework to transform a general
non-attributed graph in industry and initialize its node and
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edge features for GNN-based fraud detection. The experimen-
tal results on a large-scale industrial dataset demonstrate the
effectiveness of the proposed framework. Future work includes
investigating more informative node feature initialization ap-
proaches and optimize the graph pre-training efficiency.
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