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Abstract—Cyber attacks have become increasingly complicated, persistent, organized, and weaponized. Faces with this situation,

drives a rising number of organizations across the world are showing a growing willingness to leverage the open exchange of cyber

threat intelligence (CTI) for obtaining a full picture of the fast-evolving cyber threat situation and protecting themselves against cyber-

attacks. However, modeling CTI is challenging due to the explicit and implicit relationships among CTI and the heterogeneity of cyber-

threat infrastructure nodes involved in CTI. Owing to the limited labels of cyber threat infrastructure nodes involved in CTI,

automatically identifying the threat type of infrastructure nodes for early warning is also challenging. To tackle these challenges, a

practical system called HinCTI is developed for modeling cyber threat intelligence and identifying threat types. We first design a threat

intelligence meta-schema to depict the semantic relatedness of infrastructure nodes. We then model cyber threat intelligence on

heterogeneous information network (HIN), which can integrate various types of infrastructure nodes and rich relations among them.

Following, we define a meta-path and meta-graph instances-based threat Infrastructure similarity (MIIS) measure between threat

infrastructure nodes and present a MIIS measure-based heterogeneous graph convolutional network (GCN) approach to identify the

threat types of infrastructure nodes involved in CTI. Moreover, through the hierarchical regularization strategy, our model can alleviate

the problem of overfitting and achieve good results in the threat type identification of infrastructure nodes. To the best of our knowledge,

this work is the first to model CTI on HIN for threat identification and propose a heterogeneous GCN-based approach for threat type

identification of infrastructure nodes. With HinCTI, comprehensive experiments are conducted on real-world datasets, and

experimental results demonstrate that our proposed approach can significantly improve the performance of threat type identification

compared to the existing state-of-the-art baseline methods. Our work is beneficial to greatly relieve security analysts from heavy

analysis work and efficiently protect organizations against cyber-attacks.

Index Terms—Cyber threat intelligence, threat type identification, heterogeneous information network, graph convolutional network, threat

infrastructure nodes
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1 INTRODUCTION

NOWADAYS, to obtain the overall picture of the fast-evolv-
ing cyber threat situation and protect themselves from

the complicated, persistent, organized, and weaponized
cyber-attacks, a rising number of organizations across the
world are showing an increasing willingness to leverage the
open exchange of cyber threat intelligence (CTI) [1]. CTI is
evidence-based knowledge about an existing or emerging
threat to assets and can be used to inform decisions regard-
ing a subject’s response to the threat [2]. As we know, cyber

criminals usually make full use of network infrastructures
(e.g., domain names and Internet Protocol or IP addresses)
to conduct cyber-attacks. The Pyramid of Pain model [3]
indicates six levels of threat indicators for detecting attack
activities, and the lower three levels are file hashes, IP
addresses, and domain names. These three levels are atomic
indicators and can be consumed by network security devi-
ces such as intrusion detection system (IDS), firewall, and
spam filters on email servers. Through the application pro-
gram interfaces (APIs) provided by the threat intelligence
sharing platforms (TISPs), users can acquire huge amounts
of CTI about file hashes, IP addresses, and domain names
(i.e., the lower three levels of the Pyramid of Pain model that
are the focus of this study). Generally, diverse intelligence
sources can help depict cyber-threat infrastructure nodes
from different perspectives. For instance, a domain name
can be described with information not only from commercial
CTI sources such as IBM X-Force Exchange Platform1 and
ThreatBook2 but also from the related datasets such as pas-
sive domain name system (DNS) and domain name blacklist.
Facing increasingly sophisticated cyber-attacks, modeling
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CTI provides numerous advantages [4], [5], [6], [7], such as
obtaining a full picture of the fast-evolving cyber threat situa-
tion and unveiling potential groups that are behind specific
attacks. Take domain name infrastructure nodes as an exam-
ple, the threat types of domain names can be spam URLs,
brute force login attacks, malware activity, and botnet node
activity. Identifying the threat types of infrastructure nodes
not only benefits the fine-grained threat warning but also
facilitates targeted defensive measures. Note that we only
consider CTI represented in structured data in this research.
The extraction of structured data from unstructured data such
as security technique reports is another important research
direction [8], [9].

1.1 Motivation

The modeling of CTI and the threat type identification of
infrastructure nodes should undoubtedly be the most funda-
mental requirements for any cyber threat defense and warn-
ing system. In the past few years, academic and industry
communities in the fields of cybersecurity and data mining
have been attracted to this topic, and many state-of-the-art
studies have been carried out, such as [7], [10], and [11]. Some
of them are very creative and elaborate, but most of them face
the following two key limitations thatmust be solved.

First, few studies have focused on the problem of lim-
ited threat type labels of infrastructure nodes involved in
CTI. Owing to the high cost of manual labeling, the threat
labels of cyber-threat infrastructure nodes is incomplete in
the CTI database, and the labels are annotated with threat
types by intelligence providers or security analysts [11].
Thus, how to accurately and effectively learn from the lim-
ited labeled infrastructure nodes and a large number of
relationships among them to predict the threat types of
unlabeled nodes is a paramount concern and key task for
most security analysts and operators [11].

Furthermore, few studies have focused on the higher-level
semantic relations among cyber-threat infrastructure nodes
from the perspective of heterogeneous information network
(HIN) [12]. In a large-scale CTI sharing environment, graph-
based automatic analysis has attracted significant research
efforts in recent years [5], [10], [13]. However, most of these
works primarily focus on homogeneous information networks
or bipartite graphs, which cannot discover the higher-level
semantic relations among different types of nodes. As a special
type of information network, HIN involves multiple types of
nodes or relations, which have different semantic meanings.
Such complex and semantically enriched information net-
works have great potential for knowledge discovery [14], [15].
However, the application of HIN in CTI mining is largely
unexplored. Although some works have considered multiple
types of nodes and relations, they have not considered higher-
level semantics. Modeling CTI onHIN can provide an efficient
and compact representation of linked cyber-threat infrastruc-
ture nodes in various semantics, such as capturing the complex
relations among different types of infrastructure nodes, distin-
guishing different cyber-attacks based on the differences of
network behaviors, and exploring how adversaries organize
campaigns and adapt their techniques. Thus, a practical model
for CTI on HIN, which leverages network correlations for bet-
ter mining of CTI, should be further explored to relieve secu-
rity analysts fromheavy analysiswork [16].

1.2 Our Contributions

To the best of our knowledge, we are the first to simulta-
neously design a HIN for CTI modeling, and propose a
meta-path and meta-graph instances-based threat infra-
structure similarity (MIIS) measure-based heterogeneous
graph convolutional network (GCN) approach for threat
type identification of cyber-threat infrastructure nodes. The
main innovations of our mechanism go beyond those of
existing approaches in terms of the following three aspects:

1) A CTIModeling Approach Based on HIN is Proposed From
the Perspective of Computation (Meta-Path and Meta-
Graph Instances-Based Computing). By modeling CTI
based on HIN, the proposed framework can not only
integrate infrastructure nodes involved in CTI in a
semantically meaningful way, including domain
name, IP addresses, malware hashes, email addresses,
and their relations but also extract and incorporate
higher-level semantics of infrastructure nodes.

2) A MIIS Measure-Based Heterogeneous GCN Approach is
Proposed to Identify the Threat Types of Infrastructure
Nodes. We define a MIIS measure between threat
infrastructure nodes, and present a MIIS measure-
based heterogeneous GCN approach to identify the
threat type of infrastructure nodes. Through hierar-
chical regularization, the approach can alleviate the
problem of overfitting and achieve good results in
the threat type identification of infrastructure nodes.
This research can also promote cyber security inves-
tigations with partial or incomplete information.

3) A Practical System Called HinCTI is Developed for
Modeling Cyber Threat Intelligence and Identifying
Threat Types. With the system, we conduct compre-
hensive experiments on real-world datasets, and
experimental results demonstrate that our proposed
approach can significantly improve the performance
of threat type identification compared with the exist-
ing state-of-the-art baseline methods.

These innovative designs collectively make HinCTI an
efficient solution that can be used in the complex cyber
security environment. A series of comprehensive experi-
ments based on the real-world cyber-threat data from IBM
X-Force Exchange Platform and other sources are conducted
to evaluate the effectiveness and efficiency of the proposed
approach. Experimental results demonstrate the superiority
of the proposed approach by comparison with the state-of-
the-art baseline methods.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 depicts the modeling of CTI
on HIN, presents preliminary concepts, and gives an over-
view of the system architecture. Section 4 gives a detailed
description of the proposed heterogeneous GCN-based threat
type identification approach. Section 5 describes the experi-
ments and performance results of the proposed approach
by comparison with the state-of-the-art baseline methods.
Section 6 summarizes the paper and outlines futurework.

2 RELATED WORK

The main contributions of our mechanism benefit from
many existing representative work. In this section, we first
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review the typical work of modeling of CTI. We then ana-
lyze the graph-based threat identification and the network
representation learning for threat identification.

2.1 Modeling of CTI

From the perspective of CTI sharing, numerous exchange
formats, such as Structured Threat Information eXpression
(STIX) [17], Incident Object Description and Exchange For-
mat (IODEF) [18], and OpenIOC [19], are proposed to
describe security incidents and observations related to
attack campaigns. However, STIX, IODEF, and OpenIOC
are not used for computational purposes. To extract and
incorporate higher-level semantics of infrastructure nodes,
CTI must be modeled from the perspective of computation.

The modeling of CTI based on multiple intelligence sour-
ces (e.g., IBM X-Force Exchange, and ThreatBook) can be
very beneficial to discover the correlations among various
cyber-attack events, facilitate the analysis of cyber attacks,
and obtain a complete visibility across Kill Chain phases
[20]. For instance, referring to IP and DNS registration infor-
mation can be useful for malware database, and referring to
malware database entries is useful for IP and DNS blacklists
wherever appropriate. Likewise, a vulnerability database
can refer to any malware samples, which exploit that vul-
nerability, and vice versa. Modi et al. [4] proposed an auto-
mated CTI fusion framework called ATIS, which considers
multiple threat sources and connects apparently isolated
cyber events. Gascon et al. [21] proposed MANTIS, a plat-
form for CTI that provides a unified presentation for numer-
ous standards and correlates threat data from different
sources through a novel type-agnostic similarity algorithm
based on attributed graphs. However, the similarity algo-
rithm only considers the similarity of fingerprints (hash val-
ues) of any two objects, and the available higher-level
semantics (indirect relations involving other types of nodes)
are totally neglected. Boukhtouta et al. [5] presented an
approach to investigate cyber-threats, in which tens of types
of nodes are considered. However, the higher-level seman-
tics among infrastructure nodes are not further analyzed.

Researchers have proposed approaches to automatically
extract nodes and relations from unstructured CTI text,
such as tweets, blogs, and forums [8], [9]. Liao et al. [8]
proposed an approach to automatically extract Indicators
of Compromises (IoCs) from blog posts in natural lan-
guage. They model the problem as graph similarity prob-
lem and identify the IoC item if it has a similar graph
structure as the training set. However, the identified IoCs
do not preserve their roles in a malicious campaign, which
makes analyzing the characteristics of campaign in differ-
ent stages and correlating with field measurements diffi-
cult. Husari et al. [9] proposed TTPDrill, leveraging natural
language processing (NLP) and information retrieval (IR)
to extract threat actions from unstructured CTI text. How-
ever, we do not focus on the extraction of nodes and their
relations from unstructured text, and we simply utilize the
extraction results.

2.2 Graph-Based Threat Identification

Graph-based threat identification is an important research
approach in the fields of network security and data

mining, and it offers the characterization of the interaction
between infrastructure nodes and the identification of
influential entities and groups. By leveraging the linkage
information between infrastructure nodes of interest,
graph-based methods can uncover the potential relation-
ships, which are relatively harder for attackers to evade
because making a cyber attack unavoidably generate
plenty of links in the graph [22].

In recent years, a number of innovative graph-based
threat identification methods have been developed for cyber
security. However, existing research heavily focuses on
homogeneous information networks, which can only per-
form simple correlation analysis. Manadhata et al. [13] lever-
aged graph inference and adapted belief propagation to
detect malicious domain names. However, only the host-
domain graph is constructed, and ignoring IP-domain
graph and other informative graphs greatly hinders the
accuracy of identification. Shi et al. [23] proposed a mali-
cious domain name identification approach based on
extreme machine learning (ELM), in which construction-
based, IP-based, TTL-based, and Whois-based features are
extracted to characterize a domain name and fed into ELM.
However, ignoring relationships among different types of
infrastructure nodes can greatly reduce the performance of
identification. Some scholars developed an ontology for
cyber security knowledge graphs to represent the rich rela-
tions between cyber entities [24], [25], [26]. However, the
approach requires a significant amount of work to build
and is somewhat difficult to use. In our previous work [27],
we proposed a graph mining-based trust evaluation mecha-
nism with multidimensional features for heterogeneous
CTI. In this paper, we further analyze the higher-level rela-
tionship between heterogeneous infrastructure nodes and
study the infrastructure nodes in a complex and semanti-
cally enriched HIN, which is simple to build and use.

Topic modeling techniques such as Latent Dirichlet Allo-
cation (LDA) have been widely used for automatically iden-
tifying the topics of large amounts of source code whose
purposes are unknown [28], [29]. Samtani et al. [30] applied
classification and topic modeling techniques to explore the
functions and characteristics of assets in hacker forums. In
[31], the authors proposed AZSecure Hacker Assets Portal,
in which LDA is utilized on online hacker forum source
code to identify major hacker code topics. In [32], the
authors leveraged topic modeling to analyze hacker com-
munity source code and explore emerging hacker assets
and key hackers for proactive CTI. Given that we only con-
sider CTI represented in structured data in this research,
topic modeling-based approaches, which are usually used
for textual data, are unsuitable for this task. The extraction
of structured data from textual data has been studied, e.g.,
[8], [9]. Log analysis techniques are widely used in threat
identification, such as analysis of DNS log data for detecting
malicious domain names [33], [34] and analysis of system
audit logs for finding entry point of an attack [9]. Pei et al.
[35] presented HERCULE, which conducts community dis-
covery on logs from multiple systems to reconstruct a com-
plete, intuitive, and human-understandable attack story.
However, the aim of our research is a re-mining of CTI data
for threat identification, which is quite different from log
analysis-based anomaly detection.
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2.3 Network Representation Learning for Threat
Identification

Network representation learning, i.e., network embedding,
aims to embed network into a low dimensional space while
preserving the network structure and property so that
the learned embedding can be easily applied by machine
learning techniques. Recently, many efficient network
embedding methods have been proposed to address repre-
sentation learning problem for homogeneous network,
such as DeepWalk [36], Node2Vec [37]. Compared to the
widely studied homogeneous information network, the
heterogeneous properties of HIN (i.e., containing multiple
types of nodes or links) make directly apply homogeneous
techniques for HIN representation learning difficult. To
tackle this challenge, Dong et al. [38] proposed Metapath2-
Vec, which designs a meta-path-based random walk and
utilizes skip-gram to perform heterogeneous graph embed-
ding. However, Metapath2Vec can only utilize one meta-
path and may ignore useful information. Fu et al. [39]
proposed HIN2Vec to explore meta-paths in HINs for
representation learning. Graph neural network (GNN) [40],
[41] is proposed to extend the deep neural network to deal
with arbitrary graph-structured data. Wang et al. [42] pro-
posed heterogeneous graph attention network (HAN) to
handle heterogeneous graph, considering node-level and
semantic-level attentions. Compared to the research on
areas such as bibliographic networks (classifying and clus-
tering author and paper nodes) [38] and recommendation
systems [43], [44], network representation learning has
only recently been applied to the research on cybersecurity
such as [45], [46].

3 CTI MODELING

In this section, we first define the problem of modeling CTI
on HIN. We then introduce preliminary concepts. Finally,
we give an overview of the system architecture.

3.1 CTI Modeling Based on HIN

The definition and characterization of “CTI” have received
substantial attention across academic communities, includ-
ing network security [10] and data mining [11], [27]. A piece
of CTI generally refers to cyber-attack-related evidence,
involving a group of different types of threat infrastruc-
tures, such as malicious IP addresses, malicious domain
names, malware hashes, and malicious email addresses. We
name the above infrastructures as threat infrastructure nodes.
Relationships exist between threat infrastructure nodes,
including relationships between nodes of the same type and
between nodes of different types, i.e., relationships between
domain names, relationships between IP addresses, rela-
tionships between malware hashes, relationships between
email addresses, and relationships among them. We name
the above relationships as threat infrastructure relations.

Through the APIs provided by threat intelligence pro-
viders, including open-source communities such as IoC
Bucket3 and commercial CTI service providers such as
ThreatBook, we can derive huge amounts of relations (i.e.,
domain-IP, domain-malware, IP-malware, domain-email, and IP-

email) among different types of threat infrastructure nodes
(i.e., domain names, IP addresses, email addresses, and mal-
ware hashes) to construct the cyber threat intelligence HIN.
As for the relations between nodes of the same type, we
extract related information from various sorts of exter-
nal sources to enrich the context of threat infrastructure
nodes. As shown in Fig. 1, the direct relations between two
domain names can be enriched by domain-related service,
such as from Whois4 database to get relations of co-owner,
co-organization, co-location of DNS, and co-registrar. The
direct relations between two IP addresses can be enriched
by IP-related service, such as from IP2Location5 service to
get relation of having the same internet service providers
(ISPs). The direct relations between two malware hashes
can be enriched by open-source malware analysis tools,
such as from Common Vulnerabilities and Exposures (CVE)
database to get relations of exploiting the same vulnerabil-
ity. The direct relations between two email addresses can be
enriched by the relation of same host name.

After extracting the above threat infrastructure nodes
and threat infrastructure relationships from CTI instances
and external sources, we can build a cyber threat intelli-
gence HIN, as shown in Fig. 1, which contains four types of
threat infrastructure nodes, i.e., malware hashes, IP
addresses, domain names, and email addresses. The threat
intelligence can be regarded as a group of threat infrastruc-
ture nodes and threat infrastructure relationships that can
contribute to explain the relationship between various types
of nodes. Thus, a piece of threat intelligence instance can be
treated as a subgraph of the whole HIN. One particular
advantage of HIN is that meta-paths (defined in Section 3.2)
and meta-graphs (defined in Section 4.2) defined over node
types can reflect semantically meaningful information about
similarities and, thus, can naturally provide explainable
results for threat analysis and identification. For instance, a
relation between two domain names can be revealed by
meta-path Domain-Malware-Domain, which describes two
domain names are visited by the same malware, or by meta-

Fig. 1. Examples of two cyber threat intelligence instances involving dif-
ferent types of threat infrastructure nodes and edges.

3. https://www.iocbucket.com/
4. https://www.whois.com/
5. https://www.ip2location.com
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path Domain-Email-Domain which describes two domain
names registered by the same email address.

3.2 Preliminaries

Definition 1 (Cyber-Threat Infrastructure Nodes[5]): As
cybercriminals usually make full use of network resources to
conduct their malicious activities, we define that cyber-threat
infrastructure nodes consist of IP addresses, domain names,
malware hashes, and email addresses.

The collected CTI from intelligence providers is generally
in the form of hash values of malwares, malicious IP
addresses and malicious domain names. Thus, we only
consider the lower-level basic CTI and represent them as a
HIN in this paper. The nodes in the graph represent cyber-
threat infrastructures, i.e., domain names, IP addresses,
malware hashes, and email addresses. In this paper, we
investigate how to leverage the HIN to facilitate the mining
of CTI datasets.

Definition 2 (HIN [47]): A HIN is a graph G ¼ ðV; EÞ with a
node type mapping f : V ! A and a relation type mapping
c : E ! R, where V denotes the node set, and E denotes the
link set. A denotes the node type set, andR denotes the relation
type set, where the number of node types jAj > 1 or the num-
ber of relation types jRj > 1.

Fig. 1 gives an example of two CTI instances connected
with different types of nodes and relationships. After given
a complex HIN for CTI modeling, describing its meta-level
(i.e., schema-level) is necessary for better understanding.

Definition 3 (Meta-Schema (or Network Schema)):Given a
HIN G ¼ ðV; EÞ with the node type mapping f : V ! A and the
relation type mapping c : E ! R, the meta-schema (or network-
schema) for network G, denoted as TG ¼ ðA;RÞ, is a graph with
nodes as node types fromA and edges as relation types fromR.
As described in Fig. 2, CTI modeling involves four types

of nodes (i.e., domain names, IP addresses, malware hashes,
and email addresses), and five types of relations among dif-
ferent types of nodes (i.e. R, S, G, C, N, as shown in Table 2).
Fig. 2c shows an example of the HIN meta-schema charac-
terizing the relationships of threat infrastructures described
in CTI. Another important concept of HIN is meta-path
defined over types, which can formulate the semantics of
higher-level relationships among nodes and, thus, can natu-
rally provide explainable results for threat infrastructure

modeling. Here, we follow this concept and extend it to our
HinCTImodel.

Definition 4 (Meta-Path [47]): A meta-path P is a path
defined on the graph of network schema TG ¼ ðA;RÞ and is

denoted in the form of A1
R1�!A2

R2�! . . .
Rd�!Adþ1, which

defines a composite relation R ¼ R1 �R2 � . . . � Rd between
node types A1 and Adþ1, where symbol � denotes the composi-
tion operator on relations, and d is the length of P .

In general, a meta-path corresponds to a type of path
within the network schema, containing a certain sequence of
link types. For simplicity, we use object types connected by
symbol “,” to denote the meta-path when there is only one
relationship between a pair of types: P ¼ ðA1;A2; . . . ;Adþ1Þ.
If 8l;fðvlÞ ¼ Al and edge el ¼ vl; vlþ1h i belongs to relation
type Rl 2 P , then a meta-path instance p ¼ ðv1; v2; . . . ; vdþ1Þ
between v1 and vdþ1 in network G follows the meta-path
P ¼ ðA1; A2; . . . ;Adþ1Þ. We further introduce semantically
meaningful meta-paths that describe infrastructure node
relations in Section 4.2.

The literature gives many definitions of the term “threat
type identification”, and they vary from team to team and
from project to project. Here, we give a clear definition for
describing the purpose of the paper as follows [48].

Definition 5 (Threat Type Identification): For the collected
cyber-threat infrastructure nodes without threat labels, threat
type identification means to identify their threat type labels by
the constructed heterogeneous GCN-based threat type identifi-
cation model, leveraging those cyber-threat infrastructure
nodes with threat labels and the relations among them.

On the threat intelligence sharing platforms, a large num-
ber of threat-infrastructure nodes are without threat labels,
which is incomplete for CTI consumers. Thus, predicting
the threat types of nodes without threat labels leveraging
the threat-infrastructure nodes and their relations involved
in the large amount of basic CTI is of great significance.

3.3 System Architecture

The architecture of our proposed CTI modeling and identifi-
cation system based on HIN, called HinCTI, is shown in
Fig. 3, which mainly consists of the following four modules:

� CTI Modeling Based on HIN. Through the APIs pro-
vided by various CTI providers, we can obtain a
large amount of valuable CTI, involving massive

Fig. 2. CTI modeling based on HIN. (a) Four types of nodes (i.e., Domain Name (D), IP Address (I), Malware Hash (M), Email Address (E)). (b) The
cyber threat intelligence HIN consists of four types of nodes and five types of relationships. Five different colored lines represent five distinct relations
among various types of nodes. (c) Meta-schema of cyber threat intelligence HIN. (d) Examples of meta-paths and meta-graphs involved in HinCTI
(e.g., domain-malware-domain, domain-IP-domain).
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threat infrastructure nodes and relationships among
them. In cyber threat intelligence HIN, the more con-
text information correlates with nodes, the more con-
ducive for CTI analysis. Thus, to enrich the context of
infrastructure nodes, we extract information from
external databases to establish relations between
nodes of the same type and different types, e.g.,
“Whois” database for both domain name and IP
nodes, “CVE” database for malware nodes, and
“Passive DNS” database for both domain name and
email address nodes. In this way, cyber threat intelli-
gence HIN is constructed to depict the relationships
among various types of infrastructure nodes.

� Feature Extractor andMeta-Path andMeta-Graph Builder.
Based on the meta-schema designed for cyber threat
intelligence HIN, we build a set of meta-paths and
meta-graphs to capture the higher-level relatedness
over infrastructure nodes from different semantic
meanings.

� Heterogeneous GCN-Based Threat Type Identification.
We first extract infrastructure node features and gen-
erate node feature matrixX. Then, meta-graph based
adjacent matrices are aggregated to obtain the
weighted adjacent matrix B. Finally, we leverage
heterogeneous GCN to fuse X and B to learn the
threat types of cyber-threat infrastructure nodes.

� Threat Type Identifier. For each newly collected
unknown threat infrastructure node, the node fea-
tures will be first extracted, then its related infra-
structure nodes will be extracted from external
sources. The relationships among these infrastruc-
ture nodes will be further analyzed. Based on the
extracted features and the constructed heteroge-
neous GCN-based threat type identification model,
the threat type of the infrastructure node will be

labeled by the threat identifier. Based on the identi-
fied threat type label, security analysts can give early
warning and adopt defensive strategies.

4 PROPOSED THREAT TYPE IDENTIFICATION

APPROACH

In this section, we first introduce feature extraction, fol-
lowed by the building of meta-paths and meta-graphs. We
then describe the heterogeneous GCN-based threat type
identification approach, and finally depict how the hierar-
chical regularization strategy alleviate the problem of over-
fitting. As CTI about domain names is more static and
efficient than other types of infrastructure nodes in cyberse-
curity [3], we specifically focus on the threat type identifica-
tion of domain name infrastructure nodes. Before the
detailed description of the proposed approach, we first list
key notations and their descriptions in Table 1.

4.1 Feature Extraction

Node Features. Domain names are frequently used by attack-
ers to keep in touch with server. The malicious domain
names have different attributes compared with benign
domain names. Legitimate web owners choose a succinct
domain name so that users can remember it better, whereas
malicious domains are usually generated by domain name
generation algorithm (DGA) in batches. That is, the average
length of malicious domain names is longer than that of
benign domain names [49]. Regarding the information
entropy of distribution of alphanumerics within a domain
name, the entropy is an expression of the disorder, and the
higher the entropy, the more chaotic the distribution [50].
The character distribution of Domain-Flux based malicious
domain names is usually chaotic [50]. Thus, we choose the
length and information entropy of domain name as the

Fig. 3. System architecture of the proposed HinCTI. (1) Modeling of CTI on HIN, and generation of cyber threat intelligence HIN. (2) Extraction of
node features and designing of a set of meta-paths and meta-graphs based on cyber threat intelligence HIN. (3) The node feature matrix X and the
MIIS measure-based adjacent matrix B of domain name infrastructure nodes are the inputs of the heterogeneous GCN model. (4) The heteroge-
neous GCN model predicts the threat types of domain name infrastructure nodes, such as spam, and botnet C&C server. The threat type identifica-
tion results of infrastructure nodes can be used for giving early warning and adopting defensive strategies. Note that the threat type identification
task of different types of nodes (i.e., D, I, M, and E) in HinCTI are carried out separately, and we take the domain name infrastructure node (i.e., D)
as an example.
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character-based features in the threat type identification of
domain names.

The active time of domain names for malicious purpose
is considered short [23]. Whenever old domain names are
deactivated by authorities, attackers register new ones rap-
idly and employ them for malicious purpose before they are
detected and blocked by authorities, which typically makes
the life time of malicious domain name much shorter. By
contrast, benign web owners usually register their domain
names for long-term business. Thus, we define the active
time of domain name as the interval (counted in days)
between registration expiration date and creation date
based on the Whois data. Moreover, given that a legitimate
domain name is frequently queried by users, owners of
legitimate domain names will promptly update their Whois
information to ensure the domain names serve users well.
To the contrary, owners of malicious domain names do not
update Whois information, and their update frequency is
lower than that of owners of benign domain names. Follow-
ing, we take the active time and update frequency of
domain name as the time-related node features.

Relation-Based Features. Although node features of a
domain name can be used to reflect their behaviors and
detect malicious domain names like “amazon-gst-sale.
com”, the intrinsic and complex relationships between it
and its associated malwares can provide more critical infor-
mation the identification. The relationships extracted
among the nodes can provide a higher level of representa-
tion than that of the simple statistics, which requires more
efforts for attackers to evade the detection. The area of

attack will be greatly reduced if the attackers reduce com-
munication with the related malwares, domain names, and
IP addresses. Thus, to analyze the increasingly sophisticated
malicious domain names, we consider not only the node
features, but also the relationships summarized in Table 2,
in which “element” denotes the element in the related rela-
tion matrices.

� R: To describe the relation between a domain name
and the IP address it resolved to, we build the
domain-resolvedTo-IP matrix R where each element
rij 2 f0; 1g means if domain i is resolved to IP
address j.

� S: To represent the relation between a malware and a
domain name, we generate the domain-visitedBy-mal-
warematrix S where each element sij 2 f0; 1g denotes
whether domain name i is visited bymalware j.

� G: To describe the relation between a domain name
and an email address, we generate the domain-regis-
teredBy-email matrix G where each element
gij 2 f0; 1g denotes if domain name i is registered by
email address j.

� C: To denote the relation that an IP address commu-
nicates with malware, we generate the IP-communica-
teWith-malware matrix C where each element
cij 2 f0; 1g denotes if IP address i has communicated
with malware j.

� N : To represent the relation that an IP address connects
to an email address, we generate the IP-connectTo-email
matrix N where each element nij 2 f0; 1g denotes
whether IP address i has connected to email address j.
Note that matrixRT , ST ,GT ,CT ,andNT represent the
transposedmatrix ofR, S,G,C, andN , respectively.

4.2 Meta-Path and Meta-Graph Builder

Although meta-path can be used to depict the correlations
between nodes, it fails to capture a more complex relation-
ship. Meta-graph [51] is proposed to use a directed acyclic
graph of nodes to handle more complex relationship
between HIN nodes, which can be defined as follows:

Definition 6 (Meta-Graph [51]): A meta-graph Fi is a
directed acyclic graph with single source node ns and single tar-
get node nt, defined on a HIN G ¼ ðV; EÞ with schema TG ¼
ðA;RÞ. Formally, a meta-graph is defined as Fi ¼ ðVFi

;
EFi

;AFi
;RFi

; ns; ntÞ, where VFi
� V and EFi

� E are con-
strained by AFi

� A andRFi
� R, respectively.

TABLE 1
Notations and Their Descriptions

Notation Description

X feature matrix of infrastructure nodes
m dimension of infrastructure node features
N number of infrastructure nodes
F meta-path and meta-graph set

F ¼ fFkjk ¼ 1; 2; . . . ; ng
vi the ith infrastructure node
NumPFk

ðvi; vjÞ number of meta-path and meta-graph
instances under Fk between two
infrastructure nodes vi and vj

MIISðvi; vjÞ meta-path and meta-graph instances-based
similarity between infrastructure nodes vi
and vj

Bk adjacent matrix based on Fk

bb weight vector of meta-path and meta-graph
set F, where bb ¼ ½b1; b2; . . . ; bn� and bk is
the weight of Fk.

B MIISmeasure-based adjacent matrix
UFk

commuting matrix under Fk

L threat type label set, where
L ¼ fliji ¼ 1; 2; . . . ; Kg andK is the
number of labels.

Li child threat type label set of li, where
Li ¼ flðjÞi jj ¼ 1; 2; . . . ; Kig, lðjÞi is the jth child
label of li, andKi is the number of li’s child
labels.

W parameter vector of labels in the final
output layer of GCNmodel, where
W ¼ ½wl1 ; wl2 ; . . . ; wlK � and wli is that of
label li.

TABLE 2
Descriptions of Relation Matrices

Matrix Element Description

R rij If domaini is resolved to IPj, then rij ¼ 1;
otherwise, rij ¼ 0.

S sij If domaini is visited by malwarej, then
sij ¼ 1; otherwise, sij ¼ 0.

G gij If domaini is registered by emailj, then
gij ¼ 1; otherwise, gij ¼ 0.

C cij If IPi communicates with malwarej, then
cij ¼ 1; otherwise, cij ¼ 0.

N nij If IPi connects to emailj, then nij ¼ 1;
otherwise, nij ¼ 0.
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As depicted in Fig. 4, different meta-paths and meta-
graphs characterize the relatedness over threat infrastructure
nodes from different aspects, i.e., with varying semantic
meanings. For instance, meta-pathF1 depicts the relatedness
over threat infrastructures through the domain-IP relations
(i.e., two domain names are both resolved to the same IP
address). Meta-path F2 describes the relatedness over infra-
structure nodes through the domain-malware relations (i.e.,
two domain names are both visited by the same malware).
Meta-graph F11 depicts the relatedness over threat infra-
structures from a more comprehensive view which incor-
porates both external and intrinsic connections. That is, in
meta-graph F11, two domain names are connected as they
are both visited by the same malware (external connection),
and their resolved IP addresses not only connect to the same
email address but communicate with the same malware
(intrinsic connection).

In our approach, to detect the threat types of infrastruc-
ture nodes, meta-path andmeta-graph are jointly considered
to capture the complex relatedness among infrastructure
nodes which is more expressive than pure meta-path-based
or pure meta-graph-based approaches. Different meta-paths
and meta-graphs measure the relatedness between two
infrastructure nodes from different views. That is, the more
meaningful meta-paths and meta-graphs enumerated by
the meta-schema, the higher accuracy of the similarity mea-
sure is. To detect the threat type of domain name infrastruc-
ture nodes, based on the meta-schema described in Fig. 2c
and the domain knowledge of human experts in the field of
cyber security, we enumerate 12 meaningful symmetric
meta-paths and meta-graphs (i.e., F1–F12 shown in Fig. 4)
over different lengths to characterize the relatedness over
domain name infrastructure nodes.

4.3 Heterogeneous GCN-Based Threat Type
Identification

After extracting the features of infrastructure nodes and
designing the meaningful meta-paths and meta-graphs
depicted in the previous subsections, we introduce the pro-
posed MIIS measure-based heterogeneous GCN approach

to identify the threat types of infrastructure nodes involved
in CTI. This heterogeneous GCN, which simultaneously
integrates node features and meaningful meta-path and
meta-graph-based similarity adjacency relations, enables
the representation of infrastructure nodes in a more com-
prehensive way. Before the definition of MIIS, we present
the definition of number of meta-path and meta-graph
instances under Fk, called NumPFk

, as follows:

Definition 7 (: Num ber of meta- P ath and meta-graph
instances under Fk, NumPFk

). Given a network G ¼ ðV; EÞ,
its network schema TG ¼ ðA;RÞ and a symmetric meta-path or
meta-graph Fk, the number of meta-path/meta-graph instances
under Fk between two domain name infrastructure nodes
vi; vj, denoted as NumPFk

ðvi; vjÞ, can be defined as

NumPFk
ðvi; vjÞ ¼ UFk

ðvi; vjÞ; (1)

where UFk
is the commuting matrix between domain name

infrastructure nodes under Fk.

As for meta-path Fk ¼ ðA1; A2 . . . ; Adþ1Þ, its commuting
matrix between node type A1 and Adþ1 can be calculated as

UFk
¼ QA1A2

�QA2A3
� . . . �QAdAdþ1 ; (2)

where QAiAiþ1 is the adjacency matrix between type Ai and
type Aiþ1, and symbol � represents the matrix multiplication.
However, as formeta-graph, the problem of calculating its com-
muting matrix to get the count of meta-graph instances
becomes more complicated. Taking meta-graph F10 in Fig. 4
as an example, the two ways to pass through the meta-graph
are path ðD; I;E; I;DÞ and path ðD; I;M; I;DÞ. Note that D
represents the type of domain name infrastructure node in
cyber threat intelligence HIN. In the path ðD; I;E; I;DÞ,
ðI;E; IÞ means that two IP addresses (I) have similarities if
they both connect to the same email address (E). Similarly, in
the path ðD; I;M; I;DÞ, ðI;M; IÞ means that two IP addresses
(I) have similarities if they both communicate with the same
malware (M). Inspired by [51], we define our logic of similarity
when there are multiple ways for a flow passing through the
meta-graph from the source node to the target node. When
there are multiple paths, we constrain a flow to satisfy all of
them, which requires one more matrix operation than simple
matrixmultiplication, i.e., theHadamardproduct (Schur prod-
uct). Takingmeta-graphF10 in Fig. 4 as an example, Algorithm
1 depicts how to calculate its commuting matrix, where �
is the Hadamard product and N , C, and R represent the
IP-email, IP-malware, and domain-IP adjacency matrices,
respectively, as shown in Table 2. After obtaining UPr , it is eas-
ier to obtain thewhole commutingmatrixUF10

by themultipli-
cation of a sequence of matrices. In practice, all the meta-paths
and meta-graphs (i.e., F1–F12 shown in Fig. 4) defined in this
paper can be computed by multiplication operations and
Hadamard product on the correspondingmatrices.

As described in Section 4.2, we design 12 meta-paths and
meta-graphs (i.e., F1–F12) with different types of nodes and
relations. As different meta-paths and meta-graphs can
define different similarities and introduce different higher-
level semantics, it is natural to incorporate all useful meta-
paths and meta-graphs when identifying the threat type of
infrastructure nodes. However, different meta-paths and
meta-graphs have varying importance. Treating different

Fig. 4. Meta-paths and meta-graphs designed for threat type identifica-
tion of domain name infrastructure nodes. The symbol D stands for
domain name, I stands for IP address, M stands for malware hash, and
E stands for email-address.
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meta-paths and meta-graphs equally is unpractical and
weakens the semantic information provided by the mean-
ingful meta-paths and meta-graphs. For example, domain
name D1 can either connect to domain name D2 via meta-
path ðD1; E1; D2Þ (both registered by the same email add-
ress E1) or connect to domain name D3 via meta-path
ðD1;M1; D3Þ (both visited by the same malware M1). When
considering more on the source of threat, meta-path
ðD;E;DÞ usually plays a more important role than that of
ðD;M;DÞ; however, it will be the other way around when
considering more on the behavior of threat. Thus, given that
different meta-paths and meta-graphs depict the related-
ness over threat infrastructures in very diverse ways, to
explore the complementary nature of these different
aspects, we propose to leverage a meta-path and meta-
graph-based weighted adjacent matrix to incorporate differ-
ent semantics. Here, we define a similarity with weights for
any two threat infrastructure nodes vi and vj, which is
denoted asMIISðvi; vjÞ and defined as follows:

Definition 8 ( MIIS). Given a meta-path and meta-graph set,
denoted as F ¼ fFkjk ¼ 1; 2; . . . ; ng, the MIIS measure
between two infrastructure nodes vi and vj can be defined as

MIISðvi; vjÞ ¼
Xn
k¼1

bk

2�NumPFk
ðvi; vjÞ

NumPFk
ðvi; viÞ þNumPFk

ðvj; vjÞ ;

(3)

where NumPFk
ðvi; vjÞ is the number of meta-path and meta-

graph instances between infrastructure nodes vi and vj underFk,
NumPFk

ðvi; viÞ is that between vi and vi, NumPFk
ðvj; vjÞ is

that between vj and vj. We use the parameter vector bb ¼ ½b1; b2;
. . . ;bn� to denote the weights of F, where bk is the weight of
meta-path/meta-graphFk and satisfies bk � 0;

Pn
k¼1 bk ¼ 1.

The MIIS measure is defined from the perspective of two
parts: the semantic overlap, which is defined by the number
of paths between threat infrastructures vi and vj, and the
semantic broadness, which is defined by the number of
path instances between themselves (i.e., paths from vi to vi,
and paths from vj to vj). The weight vector bb, which can be
learned automatically, is leveraged to incorporate the meta-
path and meta-graph-based node similarities together.

Algorithm 1. Calculation of commuting matrix forMF10
:

1 Calculate UP1 ¼ QIE �QT
IE ¼ N �NT , where P1 is the subpath

ðI; E; IÞ;
2 Calculate UP2 ¼ QIM �QT

IM ¼ C � CT , where P2 is the subpath
ðI;M; IÞ;

3 Calculate UPr ¼ UP1 � UP2 ;
4 Calculate UF10

¼ QDI � UPr �QT
DI ¼ R � UPr �RT .

After calculating the similarity of any two domain name
infrastructure nodes by the MIIS measure, we can construct
a matrix B with dimension of N �N , where N is the num-
ber of domain name nodes and Bij ¼ Bji ¼MIISðvi; vjÞ.
According to the description in Section 4.1, we can derive
the domain name node feature matrix X with dimension of
N �m. Doing so is an obvious way to leverage the popular
two-layer GCN [52] architecture to identify the threat types
of infrastructure nodes. Here, the category labels represent

the threat types of infrastructure nodes. The input of the
GCN-based identification model is B and X, with
B 2 RN�N , X 2 RN�m, which contains the m-dimensional
original domain name node features. We first calculate
B̂ ¼ eD	12 eB eD	12, where eB ¼ Bþ IN is the MIIS measure-
based adjacency matrix with added self-connections, IN is
the identity matrix, and eD is diagonal matrix witheDii ¼

P
j
eBij. Then, the forward model takes the following

simple form:

Z ¼ fðX;BÞ ¼ softmaxðB̂ReLU ðB̂XW ð0ÞÞW ð1ÞÞ; (4)

where ReLU denotes an activation function defined as
ReLUð�Þ ¼ maxð0; �Þ, and the softmax activation function is
applied row-wise, which is defined as softmaxðxiÞ ¼
exi=

P
j e

xj . The neural network weights W ð0Þ 2 Rm�h is
an input-to-hidden trainable weight matrix for a hidden
layer with h feature maps; the neural network weights
W ð1Þ 2 Rh�K is a hidden-to-output trainable weight matrix,
where K is the number of threat type labels. Both are
trained using gradient descent, and we perform batch gradi-
ent descent using the full dataset for every training iteration,
which is a viable option as long as datasets fit in memory.
Stochasticity in the training process is introduced via drop-
out [53].

Given a set of threat type labeled threat infrastructures,
our model optimizes the cross-entropy H between the true
label distribution and the predicted distribution as follows:

H ¼ 	
X
i2YL

XK
k¼1
ðlkðviÞlnZkðviÞ þ ð1	 lkðviÞÞlnð1	 ZkðviÞÞÞ;

(5)
YL is the set of domain name infrastructure node indices
that have labels, K is the number of labels in the hierarchy,
lkðviÞ is a binary label to indicate whether infrastructure
node vi belongs to label k, and ZkðviÞ refers to the probabil-
ity of neural network prediction of label k for infrastructure
node vi.

4.4 Hierarchical Regularization

If we simply treat each label as an independent decision,
then Eq. (5) can be used directly to train the neural network.
However, there is usually a hierarchy structure among the
threat type labels, in which a parent label contains several
child labels. Fig. 5 shows examples of threat label hierarchy
of all threat infrastructure nodes. The parent label “BotNet”
contains multiple child labels, such as BruteForce, spam,
Command and Control (C&C) server, backdoor, etc. Thus,
introducing hierarchical dependencies among labels can
improve the performance of threat type identification. That
is, when a leaf label (which has no child label in the hierar-
chical structure) has few training examples, the decision can
be regularized by its parent label. Inspired by [54] and [55],
we use a hierarchical regularization over the final output
layer of GCN model. As a simplification, the hierarchical
dependencies among labels encourage the parameters of
labels with hierarchical relationships to be similar. For
instance, in Fig. 5, there is an edge between labels “BotNet”
and “C&C Server”, so the parameters of these two labels
tend to be similar to each other.
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Formally, we denote the threat type label set as
L ¼ fliji ¼ 1; 2; . . . ;Kg, where K is the number of labels. As
we focus on the hierarchical relationships of labels, we denote
Li ¼ flðjÞi jj ¼ 1; 2; . . . ;Kig as the child label set of label li
where Ki is the number of li’s child labels. We denote
W ¼ ½wl1 ; wl2 ; . . . ; wlK � as the parameters of labels in the final
output layer of GCN model, where wli is that of label li. We
then use the following hierarchical regularization strategy to
regularize the parameters in the final output layer:

�ðWÞ ¼
XK
i¼1

XKi

j¼1

1

2
jjwli 	 w

l
ðjÞ
i

jj2: (6)

Finally, we use the following loss function with hierarchical
regularization to optimize the parameters:

J ¼ H þ C�ðWÞ; (7)

where C is the penalty parameter.
From above, the overall process of HinCTI can be briefly

described as Algorithm 2.

Algorithm 2. Overall process of HinCTI:

Input: The heterogeneous graph G ¼ ðV; EÞ; meta-path and
meta-graph set F ¼ fF1;F2; . . . ;Fng; feature matrix
of infrastructure nodes X; the set of node indices that
have labels in the training set YL and their labels
L ¼ fliji ¼ 1; 2; . . . ;Kg.

Output: Predicted labels of nodes in the testing set.
1 for Fi 2 fF1;F2; . . . ;Fng do
2 Calculate commuting matrix UFk

using Eq. (2) and
Algorithm 1;

3 Calculate the number of meta-path and meta-graph instan-
ces using Eq. (1);

4 end
5 CalculateMIISðvi; vjÞ using Eq. (3), and get B;
6 FuseX and B using Eq. (4);
7 Calculate cross-entropy H  	P

i2YL
PK

k¼1ðlkðviÞlnZkðviÞ þ
ð1	 lkðviÞÞlnð1	 ZkðviÞÞÞ;

8 Calculate hierarchical regularization term �ðWÞ  PK
i¼1PKi

j¼1
1
2 jjwli 	 w

l
ðjÞ
i

jj2 ;
9 Calculate loss function J  H þ C�ðWÞ ;
10 Back propagation and update parameters in heterogeneous

GCN-based threat type identification model;
11 return The predicted labels of nodes in the testing set.

4.5 Analysis of the Proposed Approach

The proposed HinCTI can deal with various types of infra-
structure nodes and relations and fuse rich semantics in a
heterogeneous graph. Information can transfer from one
type of node to another via diverse relationships. Benefitted
from such a cyber threat intelligence HIN, diverse semantics
can enhance the threat identification of infrastructure nodes.
We then give the analysis of computational complexity of
our proposed approach as follows. With regard to MIIS
measure, multiplying adjacency matrices of a meta-path/
meta-graph in a natural sequence way can be inefficient.
However, the classic matrix chain multiplication problem
can be optimized by dynamic programming [56] in Oðd3Þ,
where d is the length of a meta-path/meta-graph which is
usually very small. With regard to GCN training, inspired
by [52], we leverage TensorFlow [57] for an efficient GPU-
based implementation of Eq. (4) using sparse-dense matrix
multiplications. The computational complexity of evaluat-
ing Eq. 4 is Oðj"jmhKÞ, which scales linearly in terms of the
number of graph edges denoted as j"j.

5 EXPERIMENTS

In this section, we conduct comprehensive experimental
studies to demonstrate the effectiveness of the presented
practical system HinCTI, which integrates the above pro-
posed approach.

5.1 Experimental Setup

Datasets. We collect real-world data from two popular threat
intelligence sharing platforms, namely, IBMX-Force Exchange
Platform and VirusTotal6, and enrich the data as described in
Section 3.1. Although the collected data set involves 126,933
infrastructure nodes, only 11,340 nodes are left after prepro-
cessing due to crawler constraints and data sparsity.

Labels for 10,833 infrastructure nodes are crawled from
the intelligence companies, and the remaining 507 unla-
beled infrastructure nodes are labeled by three recruited
security researchers with the help of third-party analysis
tools. The statistics of the evaluation datasets is described in
Table 3, including number of nodes for train, validation,
and test and number of classes (i.e., number of threat types)
for different types of infrastructure nodes.

Baselines. We compare our proposed approach with the
following baselines, including state-of-the-art network
representation learning methods and several traditional
threat type identification methods.

� Node2Vec [37] + SVM: A random walk-based net-
work embedding method for homogeneous graphs.

Fig. 5. Simplified example of threat label hierarchy of all threat infrastruc-
ture nodes, where R2L represents unauthorized access from a remote
machine to a local machine and U2R represents unauthorized access to
local superuser privileges by a local unprivileged user.

TABLE 3
Statistics of the Evaluation Datasets

Node Type #Train #Validataion #Test #Class

Domain name 2,827 354 353 47
IP address 3,360 420 420 23
Malware hash 1,670 209 208 15
Email address 1,215 152 152 3

6. https://www.virustotal.com
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Here, we use p ¼ 1 and q ¼ 1 and ignore the hetero-
geneity of nodes and perform Node2Vec on the
whole heterogeneous graph.

� Metapath2Vec [38] + SVM: A heterogeneous graph
embedding method, which performs meta-path-
based random walk and utilizes skip-gram to embed
the heterogeneous graphs. Here we test all the meta-
paths and report the best performance.

� HAN [42] + SVM: A semi-supervised heterogeneous
graph neural network, which considers node-level
attention and semantic-level attention to learn the
importance of nodes and meta-paths, respectively.

� HinCTI-: The HinCTI model that does not consider
hierarchical regularization.

EvaluationMetrics. To quantitatively evaluate the threat type
identification performance of different methods, we follow [54]
to use Macro-F1 score and Micro-F1 score as our evaluation
metrics. The metrics involved in performance evaluation are
shown in Table 4.We apply 10-fold cross-validation and report
the average performance measures in terms of Macro-F1 and
Micro-F1 scores with significance level a ¼ 0:05.Macro-F1 is a
type ofF1 score that evaluates averagedF1 of all different labels
in the hierarchy. Let TPt, FPt, FNt denote the true-positives,
false-positives, and false-negatives for the tth label in label setL
respectively.Macro-F1 can be defined as:

Macro-F1 ¼ 1

jLj
X
t2L

2� Precisiont �Recallt
Precisiont þRecallt

;

Precisiont ¼ TPt

TPt þ FPt
;Recallt ¼ TPt

TPt þ FNt
:

(8)

Micro-F1 is another type of F1 score that considers the
overall precision and recall of all labels. Micro-F1 can be
defined as:

Micro-F1 ¼ 2� Precision�Recall

PrecisionþRecall
;

Precision ¼
P

t2L TPtP
t2L TPt þ

P
t2L FPt

;

Recall ¼
P

t2L TPtP
t2L TPt þ

P
t2L FNt

:

(9)

Based on the experimental setup described, we conduct
experiments of threat type identification of infrastructure
nodes on the operating system Ubuntu 18.04.2, Intel(R)
Core(TM) i5-6600K CPU@ 3.50GHz and NVIDIA GeForce
GTX 1080 Ti GPU. The software platforms are TensorFlow-
gpu 1.13.1 and Python 3.7.3.

5.2 Evaluation of Different Meta-Paths and Meta-
Graphs

In this set of experiments, based on the dataset described in
Section 5.1, we evaluate the performance of different correla-
tions among threat infrastructures depicted by differentmeta-
graphs (i.e., F1–F12). In the experiments, given a meta-graph
Fk, we calculate the Fk based on MIIS measure described in
Section 4.3 and leverage hierarchical regularization described
in Section 4.4 to learn the threat type label of the nodes with
type of domain names in the HIN. The optimal identification
results of different meta-graphs are presented in Table 5. Dif-
ferent meta-graphs show different performances in threat
type identification. Each of them represents a specific seman-
tics in the task of threat type identification.

From Table 5, we can also observe that: (1) some meta-
paths, e.g.,F4, performwell on the testing set, whereras other
meta-paths do not perform well on their own, such as F5,
which may be because the semantics of the meta-path cannot
reflect the problem of threat type identification of infrastruc-
ture nodeswell. (2) The approach based onmeta-graph is gen-
erally more expressive than that based on pure meta-path in
terms of depicting more complex and comprehensive rela-
tionships among nodes and thus achieve better identification
performance. a) The performance of F10, which integratesF6

and F7, outperforms that of both F6 and F7. b) The relation-
ships among nodes depicted by the meta-graphs consisting of
complicated correlations (e.g.,F10–F12) can provide much
higher-level semantics and obtain better identification results
than others (e.g., F1-F3). Exploring the performance when
different meta-paths and meta-graphs are incorporated
together for the identification is meaningful, which is evalu-
ated in the next set of experiments.

5.3 Performance Evaluation of HinCTI

In this set of experiments, we evaluate our proposed
approach HinCTI by comparisons with several typical

TABLE 4
Metrics Involved in Performance Evaluation of

Threat Type Identification Methods

Metrics Description

TPt # of infrastructure nodes correctly classified as the
tth label in label set L

FPt # of infrastructure nodes mistakenly classified as
the tth label in label set L

FNt # of infrastructure nodes in the tth label in label
set Lmistakenly classified

Pre TP=ðTP þ FP Þ
Rec TP=ðTP þ FNÞ
F1 2� Pre�Rec = ðPreþRecÞ
Macro-F1 averaged F1 of all different labels in the hierarchy
Micro-F1 a type of F1 score considering the overall

precision and recall of all labels in the hierarchy

TABLE 5
Performance Evaluation of Different Meta-Paths

and Meta-Graphs

ID Meta-paths included Macro-F1 Micro-F1

F1 / 0.7244 0.7646
F2 / 0.7115 0.7594
F3 / 0.7076 0.7588
F4 / 0.7450 0.7764
F5 / 0.7047 0.7469
F6 / 0.7247 0.7682
F7 / 0.7144 0.7604
F8 F2 & F3 0.7307 0.7746
F9 F1 & F2 0.7361 0.7764
F10 F6 & F7 0.7366 0.7823
F11 F2 & F6 & F7 0.7451 0.7892
F12 F3 & F6 & F7 0.7424 0.7833
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network representation learning methods combined with
the SVM algorithm (i.e., Node2Vec [37] + SVM, Metapath2-
Vec [38] + SVM, and HAN [42] + SVM) and HinCTI-. For
node2vec, we ignore the heterogeneous property of HIN
and directly feed the HIN for representation learning. For
metapath2vec, we test meta-path F1-F7 to guide the ran-
dom walks in metapath2vec and report the best perfor-
mance. For node2vec and metapath2vec, which are random
walk-based methods, we set window size to 5, walk length
to 100, and walks per node to 500. To facilitate the compari-
sons, we use the experimental procedure provided in [37],
[42] and implement the algorithm according to the descrip-
tion of [38]. For a fair comparison, the dimension of embed-
ding is set to 64. The learned node representation vector
and node features are input of SVM algorithm to identify
the threat types of infrastructure nodes.

We randomly select a portion of the samples described in
Section 5.1 (ranging from 10 to 80 percent) as the training
set, 10 percent of samples as validation set, and the remain-
ing 10 percent of samples as the testing set. Fig. 6 shows the
comparison results of HinCTI and several typical network
representation learning methods in the task of threat type
identification of infrastructure nodes in terms of Macro-F1

score (left) and Micro-F1 score (right). On the whole, the
proposed model HinCTI consistently and significantly out-
performs all these typical network representation learning
methods: an improvement of approximately 4–11 percent in
Macro-F1 and 3–10 percent in Micro-F1. That is, HinCTI can
identify the threat type of infrastructure nodes better than
those of the existing state-of-the-art network representation
learning methods. The success of HinCTI lies in the proper
consideration and accommodation of the heterogeneous
property of HIN (i.e., the multiple types of nodes and rela-
tions) and the advantage of meta-path and meta-graph-
guided similarity computing for infrastructure nodes.

In addition, as shown in Fig. 6, we compare HinCTI (the
red line) and HinCTI- (the green line). HinCTI, which consid-
ers hierarchical regularization, consistently achieves approxi-
mately 1 percent improvement in terms of bothMacro-F1 and
Micro-F1, which can demonstrate the effectiveness of hierar-
chical regularization leveraged in our system.

Furthermore, from Table 5 and Fig. 6, we observe that
compared with any node representations learned based on
individual meta-path or meta-graph (i.e., F1–F12), the pro-
posed HinCTI, which efficiently incorporates different
meta-paths and meta-graphs together and learns higher-
level semantics of node representations, can significantly

improve the performance of threat type identification of
infrastructure nodes: an improvement of more than 6 per-
cent inMacro-F1 andMicro-F1.

5.4 Comparisons Among HinCTI and Traditional
Identification Methods

In this set of experiments, we compare HinCTI with four
other typical identification methods, i.e., Naive Bayes (NB),
Decision Tree(DT), Support Vector Machine (SVM), and
K-Nearest Neighbors (KNN). In NB-1, DT-1, SVM-1, and
KNN-1, we take the original node features discussed in
Section 4.1 as input. In NB-2, DT-2, SVM-2, and KNN-2, we
put all HIN-related nodes and relations as features for algo-
rithms to learn.

All the algorithms are implemented in Python and
trained and executed with best parameter values. For SVM,
we use GridSearchCV in sklearn to obtain the best combina-
tion of parameters.

The experimental results are shown in Fig. 7. The
proposed HinCTI significantly outperforms all these tradi-
tional identification methods. Compared to the perform-
ance results of NB-1, NB-2 achieves roughly 7–9 percent
improvements in Macro-F1 and Micro-F1. Compared to
the performance results of DT-1, DT-2 achieves around
6–8 percent improvements in Macro-F1 and 5–8 percent in
Micro-F1. Compared to the performance results of SVM-1,
SVM-2 achieves approximately 5–7 percent improvements
in Macro-F1 and 4–7 percent in Micro-F1. Similarly, com-
pared to the performance results of KNN-1, KNN-2
achieves nearly 4–6 percent improvements in Macro-F1 and
6–7 percent in Micro-F1. That is, HIN-related nodes and
relations leveraged by machine learning methods can help
improve the performance of threat type identification of
infrastructure nodes, which demonstrates that rich seman-
tics encoded in different types of relations can bring more
information.

Moreover, compared to the performance results of NB-2,
DT-2, SVM-2, and KNN-2, HinCTI achieves approximately
10–20 percent improvements inMacro-F1 and 11–19 percent
in Micro-F1. HinCTI is significantly better than the best
baseline methods we compared. The reason is that the
inputs of traditional identification algorithms are simply
flat features, i.e., the simple combination of different

Fig. 6. Performance comparisons of different threat type identification
approaches in terms of Macro-F1 score (Left) and Micro-F1 score
(Right).

Fig. 7. Performance comparisons among HinCTI and traditional identifi-
cation methods on Macro-F1 score (Left) and Micro-F1 score (Right).
“NB-1”, ‘DT-1‘”, “SVM-1”, and “KNN-1” represent the algorithms that
take the original node features as input. “NB-2”, ‘DT-2‘”, “SVM-2”, and
“KNN-2” represent the algorithms that HIN-related nodes and relations
are also leveraged as features for algorithms to learn.
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features. By contrast, in HinCTI, we design the expressive
representation and build the connection between the higher-
level semantics of the infrastructure node data and their threat
type labels. To identify the threat types of the increasingly
sophisticated threat infrastructures,HinCTI usingmeta-graph
based approach over HIN can build the higher-level semantic
and structural connection between threat infrastructures with
amore expressive and comprehensive view and thus achieves
better identification performance.

5.5 Performance of HinCTI for Other Types of Nodes

The proposed approach is relatively general in threat type
identification and can be applied to nodes of domain names
and other types of nodes. For the threat type identification
of other infrastructure nodes considered in this research
(i.e., IP address, malware hash, and email address), Fig. 8
shows preliminary results of HinCTI. On the whole, the pro-
posed approach HinCTI consistently outperforms all other
typical methods and achieves approaximately 6–8 percent
improvements inMacro-F1 and 6–7 percent inMicro-F1.

5.6 Discussions and Limitations

A large amount of structured CTI can be first collected, and
then the proposed approach can be leveraged to extract
diverse semantic information. This is significant not only
for threat type identification of threat infrastructure nodes
but also for the mining of CTI, as demonstrated by our mea-
surement study. Actually, our current design is still prelimi-
nary, and we discuss its limitations here. In this research,
considering the limitations of data acquisition, only four
types of infrastructure nodes and five types of relations are
considered explicitly. However, our model is extensible, in
which more types of nodes and relations can be introduced
to produce higher-level semantics, such as organizations,
domain owners, techniques and tools utilized to achieve the
attack, occurrence time and locations of the attacks inci-
dents, and relations among them. Moreover, we have not
considered the dynamic nature of infrastructure nodes’
threat type, that is, we only process the latest threat type of
infrastructure nodes in this research. However, ignoring
infrastructure nodes’ history threat types affects the perfor-
mance of identification.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a CTI modeling and threat type
identification system based on HIN, called HinCTI. We
design meta-schema and a set of meta-paths and meta-
graphs to model CTI on HIN, which can extract and incor-
porate higher-level semantics of cyber-threat infrastructure

nodes involved in CTI. Through the proposed MIIS mea-
sure-based heterogeneous GCN-based threat type identifi-
cation approach, we overcome the challenge of limited
labels of cyber-threat infrastructure nodes. Through the
hierarchical regularization, our identification approach can
also alleviate the problem of overfitting. Experiments based
on real-world dataset demonstrate that our developed sys-
tem HinCTI that integrates our proposed approach can sig-
nificantly improve the performance of threat type
identification compared with the existing state-of-the-art
baseline methods.

For future work, we plan to explore other information to
enrich the node features and relations of the cyber threat
intelligence HIN for further improving the performance of
our approach. Another interesting direction for future work
is the extraction of fine-grained structured data (including
node and their relationships) from intelligence reports
recorded in natural language, leveraging topic modeling
and natural language processing techniques. Doing so will
greatly enrich the heterogeneous information network and
enhance the performance of threat identification.
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