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Abstract—Data may have multiple modalities, known as
multi-view data. With the assumption that multi-view data
often lie on a latent subspace, multi-view subspace clustering
finds the underlying subspace by leveraging multiple views and
clusters the data accordingly. Due to inevitable system errors,
multi-view data may contain outliers and it may not therefore
strictly follow subspace structure. Besides, prior information
such as pairwise constraints describing relations between
data instances is often available. These constraints provide a
valuable guide on learning. Unfortunately, standard multi-view
subspace clustering methods do not simultaneously exploit high
order correlations among views and prior constraints with low
computational complexity. In this paper, we propose a novel
Robust Multi-View Subspace Clustering method, named as
RMYVSC, which is capable of taking advantage of high order
correlations among views and prior constraints for outlier-
robust multi-view subspace clustering with low computational
complexity. The key idea is to use a low-rank tensor along
with a constraint to integrate information from views and prior
constraints for more comprehensive learning. We regard under-
lying clean subspace of singular vectors of views (leveraging
views) which also represent projection coefficient of cluster
membership vectors in data space (utilizing prior constraints)
as a tensor. By decomposing singular vector of each view into
its underlying clean subspace and a structured-sparse error
(outlier) term, we characterize outliers explicitly. To solve the
challenging optimization problem, we develop an algorithm
based on Augmented Lagrangian Multiplier. Experimental
results on real-world datasets show the superiority of the
proposed method and its robustness against outliers.

Keywords-Outlier, Multi-view, Subspace clustering

[. INTRODUCTION

Data is often determined and observed by different
views/perspectives, known as multi-view data. Multi-view
data often come from diverse and different sources. Each
individual view may be comprised of arbitrary type and
number of features [1]. For instance, an image may be
described by different feature types such as color, edge and
texture where each feature type is a view of data. While
these individual views could be sufficient for learning, they
often provide complementary and consistent information
to each other [1]. Thus, it is advantageous to combine
multiple views for more comprehensive learning. Besides,
due to sensor failures and system errors, each view may be
erroneous, where error refers to the deviation between model
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assumption and data [2]. Error could exhibit as outliers,
which refer to large deviations from real data values.

Multi-view clustering is one of the important tasks in
multi-view learning. The key problem is how to exploit
complementary and consistent information from multiple
views rather than using a single view to boost clustering
performance [1], [3], [4]. One of the most common algo-
rithms used for multi-view clustering is multi-view subspace
clustering, which is based on the assumption that multi-
view data lie on a latent subspace [5]-[9]. Following
this assumption, the key idea is to first uncover underlying
subspace and then conduct clustering accordingly. To capture
high order correlations underlying multiple views for more
comprehensive learning, one of the most promising ap-
proaches is to use tensor [7]-[9]. Tensor is a generalization
of vectors (first order tensors) and matrices (second order
tensors). Zhang et al. equipped a tensor established by
stacking subspace matrices of all views with a low-rank
constraint, while decomposing each individual view into the
underlying clean subspace and error matrix that encodes the
error in the view [7]. Different from [7], Xie et al. imposed
more efficient and effective tensor low-rank constraint to
exploit high order correlations in data while following the
same decomposition [8].

Lack of label information to guide the learning process
makes clustering task much harder. Thus, it is important
to utilize prior information such as prior pairwise con-
straints that describe relationship between data instances
when learning representations. Prior pairwise constraints
discover valuable information about structure of data, i.e.,
similarity between data instances and therefore act as a pow-
erful guidance for learning. Prior pairwise constrains often
consist of two parts: must-link and cannot-link constraints.
A must-link constraint imposes the same cluster (or class)
membership on the pair of data instances, while a cannot-
link constraint specifies that pair of data instances should
not be assigned to the same cluster (or class). For example,
for object clustering, we may know as prior information that
two data instances must belong to the same cluster and we
thus the pairwise similarity between them equals to 1.

To incorporate prior pairwise constraints into multi-view
clustering, Zhao et al. proposed an approach named as
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Figure 1: Overview of the proposed RMVSC method: Given a collection of data instances with multiple views X(1), .., X (%)

where K indicates number of views, RMVSC integrates all underlying clean subspaces M), ...,

M) which is constructed

by separating error terms E(), ..., E) from singular vectors of views Z1), ..., Z(¥) into a low-rank tensor M to capture
high order correlations underlying data under prior pairwise constraints to jointly promote the subspace representations.

MVMC [4]. Initially, MVMC builds pairwise similarity
matrices for views and enforces prior pairwise constraints
i.e., must-link and cannot-link constraints on the correspond-
ing entries in the similarity matrices. It then learns shared
similarity matrix across all views by casting multi-view
clustering task into similarity matrix completion problem.
MVMC suffers from the following drawbacks: (1) it fails
to exploit high order correlations underlying the multi-view
data because it only captures pairwise correlations in data,
(2) MVMC concentrates only on clean data, which makes it
inadmissible for outlier-corrupted multi-view data to a large
extent. Existing multi-view clustering methods that take
prior pairwise constraints into account focus only on clean
multi-view data and do not explore high order correlations
in data. Besides, existing tensorized multi-view subspace
clustering methods do not utilize clues from prior pairwise
constraints when learning representations for clustering.
These approaches have high computational complexity i.e.,
O(N?3) where N refers to the number of data instances.
It is thus unrealistic to apply them on large multi-view
datasets. All the challenges lead to the problem of outlier-
robust multi-view clustering with prior pairwise constraints.

To utilize clues from prior pairwise constraints for more
comprehensive multi-view subspace clustering, we propose
a novel method for outlier-Robust Multi-View Subspace
Clustering with prior pairwise constraints (RMVSC) that
only requires low computational complexity. Unlike the
existing tensorized multi-view subspace clustering methods
that regard all subspace representations of views as a tensor,
RMVSC aims to reduce computational complexity while
preserving clustering performance by establishing a tensor
with subspace of singular vectors of views, as shown in Fig.
1. The subspace of singular vectors of views requires low
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computational complexity compared with subspace of views,
yielding a more compact representation of multi-view data.
Inspired by the idea of robust subspace recovery [2] that
decomposes possibly erroneous data into clean data as well
as error term that encodes error in data, these subspaces
are learned by a joint decomposition of singular vector of
each individual view into the underlying clean subspace
and structured-sparse error (outlier) term with enforcement
of low-rank constraint on the tensor built on underlying
clean subspaces. The low-rank constraint also decreases the
redundancy of the learned subspaces.

To integrate information from views and prior constraints
for comprehensive learning, we use the subspaces as dot
product of projection coefficient of cluster membership
vectors in data space to find clustering solution. We also
introduce a constraint into the objective function to enforce
prior constraints. The proposed RMVSC method formulates
the problem of multi-view subspace clustering with prior
pairwise constraints as a joint tensor rank minimization with
{5 1 regularization term along with view decomposition. To
further improve robustness of RMVSC against outliers, we
impose {2 ; norm on the error matrix. Since error matrix
with outliers has sparse row structure, we use {2 ; norm to
characterize this sparsity property.

Since multi-view data is often collected from different
sources, error matrices of views may have inconsistent mag-
nitude values and can therefore significantly drop clustering
performance. As suggested by [2], we impose a constraint
on column of error matrices to jointly have consistent
magnitude values by vertical concatenation of error matrices
of all views. Similar to prevalent clustering approaches [4],
[8], we use a two stage framework for clustering: we
first learn affinity matrix for similarity matrices of views
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Table I: List of notations

Symbol Definition and description

X each uppercase letter represents a scale

X each boldface lowercase letter represents a vector

X each boldface uppercase letter represents a matrix

X each calligraphic letter represents a tensor

Xi,j the (4, j)-th entry of X

X the i-th entry of x

X(:,:,4) | the 4-th frontal slice of X

[1X]]2 £o-norm of matrix X

X 7 Frobenius norm of matrix X, defined as || X||r = /3>, ; A%7j

[1X]]2,1 43,1 norm of matrix X, defined as [|X|[2,1 = 3=, [IX(:,4)]2

X er The trace norm of matrix X, defined as sum of the singular values of
X

WXl er | X = 3 11Xt 0) e

and then apply a traditional clustering algorithm such as
k-means to obtain the final clustering solution. Notably,
importance of clustering based on similarity between data
instances has been well recognized in the literature [10].
Decomposing each individual view into underlying clean
subspace and error term as well as imposing {2 ; norm on
the error matrix make objective function of the proposed
RMVSC method challenging to optimize. We present a
new efficient optimization algorithm based on Augmented
Lagrangian Multiplier [11], [12] to solve it. We also provide
computational complexity and convergence analysis of the
optimization solution. Our main contributions are as follows:

o To the best of our knowledge, RMVSC is the first work
for outlier-robust multi-view subspace clustering that
ties together high order correlations underlying multi-
view data as well as prior information and harnesses
them under a unified framework with low computa-
tional complexity. Different from existing tensorized
multi-view subspace clustering algorithms, the pro-
posed RMVSC method aims to reduce computational
complexity by stacking underlying clean subspace of
singular vectors of all views as a tensor.

We propose a new efficient optimization algorithm to
solve the objective function along with convergence and
computational complexity analysis.

Through extensive experiments on real-world datasets,
we show the proposed RMVSC method outperforms
several state-of-the-art multi-view clustering algorithms
and is robust against error due to outliers in data.

II. PRELIMINARIES

Table I summarizes the notations. The N order tensor X’
is defined as X € R x12X--XIN (g tensor of size I; X Iy X
... x In). A slice of a tensor is a 2D section formulated by
fixing all but two indices where X (:, :, ) denotes i-th frontal
slices. The trace norm of matrix X is ||X]|¢ = >, 03(X)
where o;(X) indicates the i-th largest singular value. The
trace norm of tensor X is ||X||e = >, || X (5, 1,9)|er-
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III. OUTLIER-ROBUST MULTI-VIEW SUBSPACE
CLUSTERING WITH PRIOR INFORMATION

We are given N distinct data instances with K related
views, the possibly erroneous views are denoted as X1 ¢
RV>I o XE) ¢ RVN*Ix for which I; indicates number
of features in ¢-th view such that 1 <= ¢ <= K and all
views are generated from latent subspace. Let C' indicate
number of clusters. Prior pairwise constraints of type of
must-link A € RV*N where A, ; = 1 if data instances
¢ and j must belong to the same cluster, and cannot-link
B € RV*Y where B; ; = 1 if data instances i and j should
not be assigned to the same cluster are also given. Our goal
is to partition all the NV data instances into C' clusters while
recovering underlying clean subspace of all views.

We assume that the features in each individual view are
sufficient for obtaining most of the clustering information
(complementary). Also, the true underlying clustering would
assign corresponding data instances in each view to the
same cluster (consistency). Each view might be erroneous.
Besides, cluster membership vectors lie in the subspace
of the first P left singular vectors of feature matrices
of all views where P >= C. The last assumption used
in [4], [5], [13] essentially implies that all the cluster
membership assignments can be accurately predicted by a
linear combination of feature vectors of instances. Span of
vectors is defined as a set of all linear combinations of
them. Mathematically, span of all the cluster membership
assignments is subset of span of the first P left singular
vectors of feature matrices of all views.

Our aim is to address non-overlapping clusters due to high
popularity of multi-view datasets with such characteristics.
We assume each data instance belongs to only one cluster,
but our method could be easily adjusted for the overlapping
clusters by using traditional similarity-based overlapping
clustering approaches [14]. In the following, we describe
how to derive the proposed objective function.

A. Pairwise Similarity Matrix Construction

Prior pairwise constraints provide a valuable guide on
learning the subspace because they reveal information on
the structure of the data, i.e., relationship between data
instances. In order to utilize clues from prior pairwise con-
straints, we establish pairwise similarity matrix with respect
to each individual view based on must-link and cannot-link
constraints A and B. Let uﬁv) € RY be the membership
vector of the c-th cluster in the v-th view where u&’i) =1,
if data instance ¢ is assigned to the c-th cluster and zero,
otherwise. The pairwise similarity matrix S(*) € RN*N
can be then formulated as S® = 327 u®” (uf”)T where
st =
in v-th view, and zero, otherwise. Specifically, Sl(-?’j) =1if
Aij=1and S{") =0if By, = 1.

1, if data instances ¢ and j belong to the same cluster
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Let S, denote groundtruth pairwise similarity matrix, Sy
indicate partial observations of S, defined as follows:

1 if A =1,

1
0 ifB;, =1 )

(i,7)-th entry of Sy, = {

Q € RV*N i a binary matrix (observation matrix) with
the same size as S, and its entries indicate whether each
corresponding entry in S, is observed or not based on
the prior pairwise constraints. In other words, €2; ; = 1 if
the corresponding entry in S, is observed and €2; ; = 0,
otherwise. * for matrices denotes the element-wise product.
Sop can be obtained by €2 x Sy = Spp.

To efficiently exploit feature matrix X (*) for each individ-
ual view v, we define Z(® = [z{"), ... z{")] € R¥*P 10 de-
note the first P left singular vectors of X(v) corresponding to
the P largest singular values, where P >= C'. As mentioned
earlier, we assume that the cluster membership vectors

ugv), --- and u(c) lie in the subspace of the first P left sin-
gular vectors of feature matrix Z(),--. and Z(). We can
then derive Span(u”,- - ,ugj)) C Span(z\”, - -- ,zgf)).

According to the span definition, cluster membership
vector is defined as linear combination of left singular
vectors. Vi = 1,...,C, u (v) Z(”)B(v) where 0(”) € RP
denotes projection coefﬁ(nents of cluster membershlp vectors
in view v space. The similarity matrix S(*) can be thus
written as follows:

C
S(v Z u v)(u(v Z U)e(v) (U)OEU))T —
M(” (z<v ) (2)

where M(") = Zle ()T e RP*P. Since M®)
is a symmetric positive semidefinite matrix which ensures
that all of its eigenvalues are non-negative, it can be in-
terpreted as covariance matrix that provides direction of
linear relationship between projection coefficients of cluster
membership vectors in each individual view space.

B. PFairwise Similarity Matrix Completion

The importance of considering similarity matrix or re-
lationship among data instances has been well recognized
by previous literature and clustering using similarity matrix
has caught significant attention [10]. To approximate sim-
ilarity matrices S(*) while reducing their complexity, we
minimize rank(S(")), where rank(-) denotes the low-rank
approximation of a true density matrix (i.e., low-rankness
criterion). However, since rank(S(”)) IS non-convex, we
replace rank(S(*)) with the trace norm ||S(*)||,,. as a convex
envelope to the matrix rank [15]. As Z(*) and (Z("))T are
orthogonal matrices, from Eq. (2), we can thus write the
following equation for each S(*) [13]:

IS = |IZOM(ZO)T |, = IM@], 3)

To explore complementary and high order correlations un-
derlying multiple views as well as information of each view,
we merge M(¥) to a 3¢ order tensor with size P x P x K
defined as M € RPXPXK (e, M(:,:,v) = M®). Like-
wise, we merge all S(*) to a 37 order tensor S € RV*N*K
and Z() to a 3"¢ order tensor Z € RN*PXK gyuch that
S(;,:v) = S® and Z(:,:,v) = Z™), respectively. To
enforce low-rankness criterion on S, we minimize rank(S).
Since rank(S) is non-convex, we replace rank(S) with |||,
as a convex envelope to tensor rank. We can further obtain
a novel equality as follows:

ISler = [[M]er )

The main benefit of Eq. (4) is that it enables us to exploit
high order correlations underlying multi-view data by using
tensor in addition to information of each individual view.

Theorem. Let S(:,:,v) = S ¢ RV*N | Z(: . v) =
ZW ¢ RNXP and M(:,:,0) = M® ¢ RP*P for
1 <=wv <= K, and S® = ZM®)(Z®)T  Based on
the tensorization, we can derive ||S||¢ = || M]]¢r-

Proof. Based on tensor trace norm, we have the following:

1 & 1 &
_ . _ (v)
1S1ler = 22 E 1G5 0)ller = 52 E 1S

= fZHZ<“>M<”>(Z<” ) Ml = —ZHM@)Ht ©)

v=1

Since & S5 |IM®||;, = || M|, We proved that
[|S]|er = ||M]|¢ holds.

C. Outlier-Robust Multi-View Subspace Clustering

With the aim of improving robustness against error, we
separate error from each individual view by decomposing it
into underlying clean subspace of the view and error (outlier)
term that encodes error in the view as follows:

z) = zOM® + g™ (6)

where M(?) represents the same variable in Eq. (2) which
acts as the subspace of singular vectors of view v, and E(*)
indicates error in view v.

Our proposed decomposition in Eq. (6) is novel because it
seamlessly connects pairwise similarity completion and error
removal from views via M(*). More precisely, according
to Egs. (2) and (6), M®) has more responsibility than
just storing information on direction of linear relationship
between projection coefficients for singular vectors of views.
M) captures clean underlying subspace of singular vectors
as well as projection coefficients of cluster membership
vectors. The role of M(*) in Eq. (2) as subspace of singular
vectors in Eq. (6) is motivated by the assumption that cluster
membership vectors lie in the space of singular vectors of
views. According to Egs. (6) and (4), we derive the following
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objective function to learn the underlying clean subspace of
singular vectors of views while utilizing prior information
by optimizing M(?) and E(®):

min || M]|¢
M<7’),E(“)
st 20 =Z2OM® L E® M =MD ... M)
(N

where ® denotes the merge operator to put M(*) along third
mode and construct M. Since multi-view data may come
from multiple sources with inconsistent magnitude values, as
suggested by [2], we vertically concatenate error matrices,
ie, E=[ED;... ;EX)] ¢ RENXP (o have the consistent
magnitude values across columns of E(*) jointly. To further
improve robustness of the proposed RMVSC method against
outliers, we impose ¢ ; norm on E. This norm characterizes
outliers elegantly because error matrix with outliers has
sparse row support [2]. The objective function can be then
written as follows () is the nonnegative trade-off parameter):

min ||M‘|t’r . Z(’U) = Z(U)M(“) + E(U)7
M) E®)
M:(I)(M(l)’ ’M(K)),E: [E(l), ,E(K)] (8)

D. Outlier-Robust Multi-View Subspace Clustering with
Prior Constraints

According to S, = xS, we introduce a constraint into
Eq. (8) to preserve observed entries based on prior pairwise
constraints: Q+Z M) (Z®))T = S ;. The final objective
function for the proposed RMVSC method is as follows:

||M‘|tr+)\||EH2l s.t. Z( v) = Z(U)M(v) —f—E(v),

M<v> E
M=amMD ... 7M(K))7
E=[EY; ... .E¥] Q«z20OM(ZNT =8, (9
Initially, we optimize M. We then unfold M to obtain
M® using M(:,:,v) = M®). Next, we establish S()
as S = ZOM®(Z™®)T. Finally, we obtain affinity
matrix S by combining all similarity matrices using average
operator as follows: S = + Zﬁil ZOM®) (Z()T,

IV. OPTIMIZATION PROCEDURE

We use Augmented Lagrange Multiplier (ALM) to solve
the objective function in Eq. (9). By introducing the auxiliary
tensor variable G , we make the objective function separable.
We thus solve the following optimization problem:
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min

[1G]er + AlE|[2,1
M) E(®) .G

K
+Z(< Y®), 20 — zOM®) — E® )

v=1

K
I W) _ z@n@) _ )2
L <WM-G>+ 2Z:\Z zOM® —EM|3)

p v v v
+5lIM —QII%+€ZIIQ* (ZM(ZC)T) = So [

v=1

(10)

M(”)-subproblem. When E(®) and G are fixed, we need
to solve the following subproblem to update M(®):

K
m(ln) (< Y@, z® —zOOM®) — g >)
M (v

v=1

+ < W('U)7M('U) _ G(U) >

K
e ®) _ zM® _ gp®)(2 Pinvi@ _ )2
P M —EV|[}) + ZIMY — GV

+e Z 192 (ZMPN(ZE)T) = Sop [

v=1

Y

We use gradient descent to solve the above subproblem.
The gradient for M(*) (7)) can be computed as follows:

Tme = 26(ZONT (% (ZOMO) (20T —
— e 4 Ly
P

Sob))z(v)
+p(M®)

1
—g(z@))T(z(v) ~ZOM® —E® 4 —y®™) (12
L
where Y(), W are two Lagrange multipliers. Then, M)
can be updated using M) «+ M®) — NV M) -
E(”)-subproblem. When other variables are fixed, the

following subproblem should be solved to update E(*):

K
‘ @) 7 _ zM® _ B®
min A|[Bl|20 + ) (< Y™, 20 - z0M®) —EO) >)

v=1

K
/’L v v v v
+§ Z(Hz( VI, ACORY, (GO ) )||%)

v=1

— M[Ell21 + £ |IE - DI} (13)
where D is constructed by vertically concatenating the
matrices Z(*) —Z(®)M®) —|—(l%)Y(“) together along column.
According to [2], the solution for the subproblem can be
obtained as follows:
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Algorithm 1 outlier-Robust Multi-View Subspace Cluster-
ing with prior pairwise constraints (RMVSC)

Input: X1 ... X(K) A B, C

Parameter: )\, P

Output: M) ... M) E, clustering results

LE=0,n=01e=10, u = 107% p = 1075, tol =
1076, ;= 1.9
2: Y(U) =0,G=W=0, Pmaz = Hmaz = 1010

3: Construct S,, from A and B using S, =
ey ue” ()T

4: forv=1,- -, K do

5. repeat

6: Update M) < M®) — 73009

7: Update E using Eq. (14)

8: Update G(*) using Eq. (16)

9: Update W + W + p(M — G)

10: Update Y*) < Y®) 4 1(Z() — Z(VM @) —E™))

11 = min(mp, fomag ), p = min(mp, pmaz)

12: until [|Z") -ZOM® —E®)||, < tol and || M) —

GW||o < tol
13: end for

14: S = % 25:1 Z(U)M(v)(z(v))T
15: Apply k-means on the shared similarity matrix S

|

where e; denotes i-th column of E, d; represents i-th
column of D, respectively.

G-subproblem. When other variables are fixed, to update
variable G, ming |G| + §||IM — G + %WH% should be
solved. The solution for the subproblem is given by the
singular value decomposition for the frontal slices of G i.e.,
G(:,:,v) = G [16]. In other words, G can be updated
slice-by-slice as follows:

[1d:|l2 7ﬁd» i Ild A
Tap i i (ldifl2 >4

0 otherwise

(14)

@) Pia® _ v _ w2
min |G e + GG =M = W A5)

The above subproblem has a closed-form solution by
using singular value threshold (SVT) method [17]. More
precisely, let UMY ) (V®)T denote the SVD form of
(M®) + %W(“)). We update G() as follows:

G(v) — U(v)sl/p(z(v))(v(v))T (16)

where S, = maxz(X — 7,0) + min(X 4 0, 0) is shrinkage
operator [11].

W-subproblem. Lagrange multiplier W is updated as
W W+ p(M - G).
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Y (“)-subproblem. We update it as Y « Y® 4
wW(ZW) — ZOIM®) — EW),

The optimization procedure is described in Algorithm
1. The convergence condition is two infinity norms on
optimality gap for subspace representations.

V. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
ANALYSIS

Table II: Complexity of tensorized multi-view subspace
clustering algorithms

Methods Computational C lexity

LTMSC O(DN?Z + N?) (D : largest dimension of view features)

TMSRL O(DN? 4+ N?) (D : largest dimension of view features)
t-SVD-MSC O(N®) + O(K(2N?Klog(N)))

RMVSC O(NPK) + O(P°K)

The computational bottleneck of RMVSC only lies in
solving the subproblems of E and G. The computational
complexity of E at each iteration is O(NPK). For G
subproblem, computing K SVDs of P x P matrices at
each iteration takes O(P3K). Overall, the per iteration
complexity is O(NPK) + O(P3K), which is significantly
less than computational complexity of existing tensorized
multi-view subspace clustering methods in [7]-[9], named
as t-SVD-MSC, TMSRL and LTMSC, as reported in Table
II. It is worth mentioning that P << N where N is the
number of data instances which can be arbitrarily large. P
is usually some multiple of C, the number of clusters. C' is
much smaller than N.

According to [2], [8], two requirements are sufficient
for convergence of Algorithm 1: (1) Z(*) is of full col-
umn rank, (2) the optimality gap ie., ||[(M E) ) —
arg minyge) . g Bq.(9)]|% at each iteration iter is mono-
tonically decreasing. To satisfy the first condition, similar to
[2], we can state that M(*) € span((Z(*))T). We can there-
fore express M(*) as linear combination of (Z™)T . In other
words, M) = P(“YM(®) where P(*) is derived by making
the columns of (Z(”))T orthogonal. The decomposition part
of Eq. (9) can be equivalently stated as follows:

7@ — PO M) 4+ E® (17)

It is evident that I = Z(P®) which is of full column
rank. The second condition is met to some extent due to
the convexity of the Lagrange function. The convergence of
Algorithm 1 could be thus well expected.

VI. EXPERIMENTAL EVALUATION

We empirically evaluate the performance of the proposed
RMVSC method on several challenging real-world datasets.

A. Real-World Datasets

Statistics of the following real-world datasets are summa-
rized in Table III. Coil (CO)': a generic object dataset that

Uhttp://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on January 29,2022 at 00:23:05 UTC from IEEE Xplore. Restrictions apply.



contains images of object categories taken from different
angels. Similar to [7], all images are normalized to 32 X
32. In addition to intensity (view 1), Gabor features (view
2) are extracted with one scale A = 4 at four orientations
6 = {0°,45°,90°,135°}. The dimension of Gabor is 4096.
Caltech-Middle (CM): a generic object dataset which is
subcategory of Caltech-All dataset 2. The views are (1) Hog
features, (2) LBP features, and (3) concatenation of Cenhist,
Gist, Wavelet moments and Gabor features. Caltech-All
(CA)?: a generic object dataset which is supercategory of
Caltech-Middle dataset. The views are (1) Hog features,
(2) LBP features, and (3) concatenation of Cenhist, Gist,
Wavelet moments and Gabor features. NUS [18]: a generic
object dataset with six types of features. View 1 has LAB-
226, Edge direction histogram, while view 2 includes LAB-
64, HSV and wavelet features.

Table III: Statistics of the real-world multi-view datasets

Dataset # data instances | # views | # clusters
Coil (CO) 1440 2 20
Caltech-Middle (CM) 2386 3 20
Caltech-All (CA) 9144 3 102
NUS 30000 2 31

B. Baselines

We compare RMVSC with the following 10 baselines.
Best Single View (BSV) does clustering on the most in-
formative view. Feature Concatenation (FC) concatenates
features of all views. Robust Multi-View Spectral Cluster-
ing via Low-Rank and Sparse Decomposition (RMSC)
is based on integration of matrix low-rank constraint and ¢;
norm for robust multi-view clustering in Markov Chain [19].
A is tuned from {1073,1072,--- /102, 10%}. Error-Robust
Multi-View Clustering (EMVC) learns low-rank shared
transition probability matrix across all views in Markov
chain and enforces /5 ; and group ¢; norms to characterize
various error types [20]. Each regularization hyperparame-
ter is tuned from {107°,1078,-..  108,10°}. t-SVD-MSC
learns subspace representations in favor of efficient low-rank
constraint on tensor by stacking subspace representations
of all views as well as {5 ; sparsity on the corresponding
error matrices for multi-view subspace clustering [8]. The
parameter A is tuned from {0,0.2,0.4,...,2}. Multi-View
Matrix Completion for Clustering with Side Informa-
tion (MVMC) a multi-view clustering method that ties
together feature representations of all views and instance-
level metadata via matrix completion for multi-view clus-
tering. Parameter k is tuned from {100, 200, 300, 400, 500}.
Low-Rank Representation (LRR) applies low-rank con-
straint on concatenated views to recover underlying sub-
space representation and imposes regularization to improve
robustness against error. It then employs PCA to reduce

2http://www.vision.caltech.edu/Image_Datasets/Caltech 101/
3http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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learned representation dimensionality to 500 and modifies it
with prior must-link pairwise constraints [2]. Parameter A is
tuned from {1073,1072,--- ,10%,10%}. Low-Rank Tensor
Constrained Multi-View Subspace Clustering (LTMSC)
regards subspace representations of all views as a tensor
and formulates the multi-view clustering problem as a tensor
rank minimization problem with ¢5 ; regularization term [7].
Multimodal Sparse and Low-rank Subspace Clustering
(MSSC) learns a shared subspace representation across
all views, while decomposing each view into underlying
subspace representation and other terms to encode error
in the view [21]. A related parameters are tuned from
{1073,1072,--- ,102,10%}. Tensorized Multi-View Sub-
space Representation Learning (TMSRL) incorporates
label-based prior constraints into tensorized multi-view sub-
space clustering. There is no mature approach to convert
prior pairwise constraints to label-based prior constraints for
TMSRL [9]. We include it without any prior information.

C. Experimental Settings

For RMVSC, we apply line search to find optimal value
for A\ from {0.001,0.01,0.1,1, 10, 100,1000}. We consider
the range Ps.; = {100, 200, 300,400, 500} for parameter P
such that the optimal value is chosen as min(Pse,d™))
where d) denotes number of features in view v. The
maximum number of iterations for all methods is set to 50.
We use standard Normalized Mutual Information (NMI)
and Purity to measure the clustering performance. The
higher value of each metric indicates the better performance.
Each experiment is repeated for five times, and the mean of
each metric in each dataset is reported. We then use k-means
to obtain final clustering solution. We run k-means 20 times
on each dataset and report the average results.

Similar to [22], we generate prior pairwise constraints by
randomly selecting a pair of data instances. The ratio of
prior constraints is varied from the range {0.1,0.2} such
that 3 = ratio x N? (B denotes quantity of prior con-
straints). RMVSC1, MVMCI1, and LRR1 denote the meth-
ods when using ratio = 0.1 prior pairwise constraints, while
RMVSC2, MVMC2 and LRR?2 indicate the corresponding
algorithms with ratio = 0.2 prior pairwise constraints. We
randomly select a small portion of data instances {2%, 4%}
and replace their feature values in all views by random
values, which is similar to generation of attribute outliers
in [23]. The outlier-contaminated data instances are chosen
as uniformly distributed random numbers.

D. Experimental Results

Tables IV and V report clustering performance (NMI and
purity) on NUS and CO datasets, while Tables VI and VII
on CM and CA datasets. The bold numbers highlight the
best results. The first column for each dataset denotes the
data without any additive outliers, while the other columns
indicate dataset with {2%,4%,6%} outliers in all views.
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Table IV: Comparison results on (erroneous) datasets (NMI) - Part 1

Method\Dataset | NUS | NUS2% | NUS4% | NUS6% CO CO2% CO4% CO6%
BSV 14.4 13.9 13.7 11.0 77.0 75.7 74.1 74.0
FC 10.3 9.9 8.1 7.7 71.4 75.3 73.4 71.1
RMSC 17.2 16.1 14.5 132 82.9 81.0 78.0 75.9
EMVC 18.0 16.9 15.1 14.3 87.0 87.0 83.5 80.4
LTMSC 18.3 18.2 15.1 132 86.0 79.1 76.4 72.6
TMSRL 19.6 18.0 15.5 13.9 81.0 79.5 76.5 73.0
t-SVD-MSC 20.3 18.5 17.6 15.2 88.4 82.5 823 82.1
MSSC 10.3 9.9 8.0 6.9 53.5 50.5 479 46.2
LRR1 20.6 19.2 17.4 15.3 91.5 90.5 90.0 89.1
LRR2 21.2 20.0 18.2 16.5 91.1 90.7 90.1 89.1
MVMC1 20.0 18.0 16.5 15.0 94.8 91.6 89.3 87.6
MVMC2 22.0 19.1 17.2 16.6 95.2 92.3 89.6 87.6
RMVSCI1 235 23.1 21.2 21.0 99.4 98.2 97.5 96.7
RMVSC2 32.6 32.3 32.1 32.2 99.5 98.9 97.9 97.6

Table V: Comparison results on (erroneous) datasets (Purity) - Part 1

Method\Dataset | NUS | NUS2% | NUS4% | NUS6% CO CO2% C04% C06%
BSV 17.8 16.0 14.7 13.9 68.4 67.2 65.8 66.2
FC 15.6 13.2 11.3 10.0 69.9 66.2 64.4 62.1
RMSC 19.3 18.9 17.4 16.2 76.2 73.6 70.6 68.4
EMVC 25.0 21.0 20.0 18.9 78.0 75.9 73.5 71.6
LTMSC 30.1 29.0 27.2 25.6 81.0 732 70.1 69.5
TMSRL 30.5 30.0 28.3 26.9 74.5 73.6 70.5 70.0
t-SVD-MSC 31.1 30.5 30.0 28.3 82.0 75.2 74.9 75.0
MSSC 16.5 14.0 12.7 11.0 50.0 43.4 413 38.7
LRR1 323 31.5 30.2 28.3 80.0 79.0 78.1 78.3
LRR2 33.0 32.0 31.8 30.0 79.7 79.2 80.2 79.1
MVMCI1 32.1 31.0 29.1 27.0 88.7 84.8 823 81.0
MVMC2 32.5 31.3 29.0 28.0 89.2 85.4 82.3 80.7
RMVSC1 35.6 35.0 35.0 33.0 96.2 95.9 94.1 91.0
RMVSC2 38.8 38.5 37.0 35.5 98.1 97.9 96.9 94.1

The proposed RMVSC2 method under 6% of error out-
performs all baseline without additive error on both NMI
and purity over all four datasets. That means robustness to
error of the proposed method. Even for RMVSCI1 with 6%
error, it still outperforms the baselines without additive error
on purity over all datasets, while on NMI except NUS.

Also, the proposed RMVSC method achieves superior
performance to tensorized multi-view subspace clustering
approaches, i.e., t-SVD-MSC, LTMSC and TMSRL, that
exploit high order intrinsic structure in data, while failing
to incorporate prior pairwise constraints during learning.
The clustering performance becomes better when using
prior pairwise constraints and high order correlations un-
derlying multi-view data. RMVSC leads to improvement
with a large average margin of at least 10%. Our method
outperforms RMSC, EMVC, LRR and MSSC, i.e., robust
multi-view clustering schemes that do not capture high order
correlations in data. Compared to LRR, our method gains
significant improvement in average at least 4%. Overall,
RMVSC achieves in average improvement of 6%.

The proposed RMVSC method achieves superior perfor-
mance to LTMSC, t-SVD-MSC, TMSRL i.e., multi-view
clustering algorithms that separate error from data while
clustering the data instances. On CO dataset in Tables
IV and V, our method obtains a nearly perfect result (in
average greater than 96%). Based on Tables IV and VI, on
CM, CA and NUS, the improvement of our method over
other tensorized multi-view clustering approaches LTMSC,
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TMSRL and t-SVD-MSC is noticeable because our method
utilizes prior constraints to enhance clustering solution. Our
method exhibits robustness against outliers.

E. Hyperparameter Analysis

RMVSC has two major parameters, (A, P) where P de-
notes number of first left singular vectors of feature matrices
of all views. Fig. 2 shows the clustering performance for A
and P for datasets without additive error when the ratio of
metadata is 0.1. On NUS, we cannot report the results for
P = 400 and P = 500 because one of the views has less
than 400 features. The performance is fairly stable. RMVSC
gives more promising results when A is in range of [0.01,
0.1] and P has possible maximum value.

VII. RELATED WORK

Multi-view learning has been extensively studied in recent
years [3]. Existing approaches for multi-view clustering,
which are mostly related to our work, can be roughly
classified into three categories [3], [8]: (1) graph-based
approaches, (2) co-training or co-regularized methods, (3)
subspace learning algorithms. Graph-based approaches use
multiple graph fusion strategy to capture complementary
and consistent information across all views as well as
information of each individual view [19], [20], [24]. To
handle various error types in multi-view data, Najafi et
al. presented a Markov chain based multi-view clustering
method, named as EMVC, to obtain a shared transition
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Table VI: Comparison results on (erroneous) datasets (NMI) - Part 2

Method\Dataset | CM | CM2% CM4% CM6 % CA CA2% | CA4% CA6%
BSV 59.9 57.7 55.4 54.1 53.0 49.6 48.6 479
FC 38.4 37.6 36.7 36.0 37.0 34.0 335 33.0
RMSC 50.7 49.1 479 46.5 57.5 56.1 54.2 53.0
EMVC 579 57.6 56.9 55.9 59.2 57.2 55.0 54.1
LTMSC 49.2 485 475 46.9 64.1 62.0 61.0 60.1
TMSRL 69.5 69.0 67.1 65.8 63.8 62.5 61.6 60.5
t-SVD-MSC 60.1 59.8 58.3 57.1 69.0 68.0 64.1 63.2
MSSC 50.2 489 454 445 442 41.0 40.0 39.2
LRR1 79.0 77.1 76.0 74.1 70.5 69.2 67.0 65.2
LRR2 83.0 81.8 79.0 77.1 70.8 70.0 70.0 68.4
MVMCI1 74.1 69.3 65.1 63.9 68.0 65.0 62.1 60.4
MVMC2 75.7 71.0 69.4 67.0 68.7 66.9 63.2 62.0
RMVSCI1 90.3 86.1 85.4 83.0 72.0 71.1 70.1 69.2
RMVSC2 90.5 88.6 86.5 84.1 74.0 734 71.9 71.0

Table VII: Comparison results on (erroneous) datasets (Purity) - Part 2

Method\Dataset | CM | CM2% CM4% CM6% CA CA2% | CA4% CA6%
BSV 76.3 74.5 72.3 71.4 51.5 478 46.7 46.0
FC 61.1 60.2 59.4 58.9 35.1 314 30.9 30.4
RMSC 69.7 67.7 67.1 66.6 60.1 58.0 56.3 54.0
EMVC 79.1 78.0 76.5 74.9 61.0 59.0 58.2 56.5
LTMSC 60.1 59.5 58.6 59.1 64.7 64.2 62.0 60.5
TMSRL 70.9 70.4 68.2 66.2 65.0 64.5 62.3 61.0
t-SVD-MSC 75.8 75.0 74.3 73.4 68.1 67.0 65.9 63.2
MSSC 54.2 535 50.1 50.4 55.1 53.2 52.1 40.5
LRR1 81.3 80.7 78.0 76.1 65.0 62.8 60.8 58.4
LRR2 86.1 84.6 82.3 80.0 67.1 65.0 63.1 61.2
MVMCI1 86.5 81.0 79.2 77.0 68.2 66.1 64.3 62.7
MVMC2 86.7 83.1 81.4 79.9 69.1 68.2 67.1 65.2
RMVSC1 95.5 92.6 90.6 89.4 73.1 72.7 71.2 70.0
RMVSC2 95.8 94.0 92.4 91.5 75.1 74.2 73.2 71.5

probability matrix among all views via low-rank and sparse
decomposition of each view [20]. The sparsity is introduced
by integration of ¢ ; and group ¢; norms. The proposed
RMVSC method differs from this category of approaches
in a way that it uses subspace as data structure that indeed
facilitates representation and processing.

Co-training or co-regularized algorithms capture pairwise
correlation between views, while focusing on each individual
view simultaneously [1], [4]. Zhao et al. proposed a method
that casts multi-view clustering with prior pairwise con-
straints into matrix completion problem while minimizing
distance between shared similarity matrix across all views
and similarity matrix of each individual view [4]. Different
from this category, our method fully utilizes pairwise and
high order correlations in multi-view data. The goal of
multi-view subspace clustering is to seek underlying clean
subspace representation of views and perform clustering of
data instances accordingly [7]-[9], [21]. Zhang et al. for-
mulated multi-view subspace clustering as tensor rank min-
imization constrained with /5 ; regularization term, while
decomposing each view into the underlying clean subspace
representation and error term to encode error in the view
[7]. The tensor is established by stacking subspace repre-
sentation of all views. None of the existing methods utilize
clues from prior pairwise constraints for enhanced clustering
solution with low computational complexity while exploring
high order correlations underlying multi-view data. RMVSC
belongs to the third category.
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VIII. CONCLUSION

In this paper, we presented a novel method, named as
RMVSC, for outlier-robust multi-view subspace cluster-
ing with prior pairwise constraints. To exploit high order
complementary and consistent information across all views
as well as reduce computational complexity significantly,
RMVSC regards subspace of singular vectors of views as a
tensor. To improve robustness against outliers, each view is
decomposed into underlying clean subspace and error term.
A constraint term is devised to enforce prior constraints.
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