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Abstract—Data may have multiple modalities, known as
multi-view data. With the assumption that multi-view data
often lie on a latent subspace, multi-view subspace clustering
finds the underlying subspace by leveraging multiple views and
clusters the data accordingly. Due to inevitable system errors,
multi-view data may contain outliers and it may not therefore
strictly follow subspace structure. Besides, prior information
such as pairwise constraints describing relations between
data instances is often available. These constraints provide a
valuable guide on learning. Unfortunately, standard multi-view
subspace clustering methods do not simultaneously exploit high
order correlations among views and prior constraints with low
computational complexity. In this paper, we propose a novel
Robust Multi-View Subspace Clustering method, named as
RMVSC, which is capable of taking advantage of high order
correlations among views and prior constraints for outlier-
robust multi-view subspace clustering with low computational
complexity. The key idea is to use a low-rank tensor along
with a constraint to integrate information from views and prior
constraints for more comprehensive learning. We regard under-
lying clean subspace of singular vectors of views (leveraging
views) which also represent projection coefficient of cluster
membership vectors in data space (utilizing prior constraints)
as a tensor. By decomposing singular vector of each view into
its underlying clean subspace and a structured-sparse error
(outlier) term, we characterize outliers explicitly. To solve the
challenging optimization problem, we develop an algorithm
based on Augmented Lagrangian Multiplier. Experimental
results on real-world datasets show the superiority of the
proposed method and its robustness against outliers.
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I. INTRODUCTION

Data is often determined and observed by different

views/perspectives, known as multi-view data. Multi-view

data often come from diverse and different sources. Each

individual view may be comprised of arbitrary type and

number of features [1]. For instance, an image may be

described by different feature types such as color, edge and

texture where each feature type is a view of data. While

these individual views could be sufficient for learning, they

often provide complementary and consistent information

to each other [1]. Thus, it is advantageous to combine

multiple views for more comprehensive learning. Besides,

due to sensor failures and system errors, each view may be

erroneous, where error refers to the deviation between model

assumption and data [2]. Error could exhibit as outliers,

which refer to large deviations from real data values.

Multi-view clustering is one of the important tasks in

multi-view learning. The key problem is how to exploit

complementary and consistent information from multiple

views rather than using a single view to boost clustering

performance [1], [3], [4]. One of the most common algo-

rithms used for multi-view clustering is multi-view subspace
clustering, which is based on the assumption that multi-

view data lie on a latent subspace [5]–[9]. Following

this assumption, the key idea is to first uncover underlying

subspace and then conduct clustering accordingly. To capture

high order correlations underlying multiple views for more

comprehensive learning, one of the most promising ap-

proaches is to use tensor [7]–[9]. Tensor is a generalization

of vectors (first order tensors) and matrices (second order

tensors). Zhang et al. equipped a tensor established by

stacking subspace matrices of all views with a low-rank

constraint, while decomposing each individual view into the

underlying clean subspace and error matrix that encodes the

error in the view [7]. Different from [7], Xie et al. imposed

more efficient and effective tensor low-rank constraint to

exploit high order correlations in data while following the

same decomposition [8].

Lack of label information to guide the learning process

makes clustering task much harder. Thus, it is important

to utilize prior information such as prior pairwise con-
straints that describe relationship between data instances

when learning representations. Prior pairwise constraints

discover valuable information about structure of data, i.e.,

similarity between data instances and therefore act as a pow-

erful guidance for learning. Prior pairwise constrains often

consist of two parts: must-link and cannot-link constraints.

A must-link constraint imposes the same cluster (or class)

membership on the pair of data instances, while a cannot-

link constraint specifies that pair of data instances should

not be assigned to the same cluster (or class). For example,

for object clustering, we may know as prior information that

two data instances must belong to the same cluster and we

thus the pairwise similarity between them equals to 1.

To incorporate prior pairwise constraints into multi-view

clustering, Zhao et al. proposed an approach named as
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Figure 1: Overview of the proposed RMVSC method: Given a collection of data instances with multiple views X(1), ..., X(K)

where K indicates number of views, RMVSC integrates all underlying clean subspaces M(1), ..., M(K) which is constructed

by separating error terms E(1), ..., E(K) from singular vectors of views Z(1), ..., Z(K) into a low-rank tensor M to capture

high order correlations underlying data under prior pairwise constraints to jointly promote the subspace representations.

MVMC [4]. Initially, MVMC builds pairwise similarity

matrices for views and enforces prior pairwise constraints

i.e., must-link and cannot-link constraints on the correspond-

ing entries in the similarity matrices. It then learns shared

similarity matrix across all views by casting multi-view

clustering task into similarity matrix completion problem.

MVMC suffers from the following drawbacks: (1) it fails

to exploit high order correlations underlying the multi-view

data because it only captures pairwise correlations in data,

(2) MVMC concentrates only on clean data, which makes it

inadmissible for outlier-corrupted multi-view data to a large

extent. Existing multi-view clustering methods that take

prior pairwise constraints into account focus only on clean

multi-view data and do not explore high order correlations

in data. Besides, existing tensorized multi-view subspace

clustering methods do not utilize clues from prior pairwise

constraints when learning representations for clustering.

These approaches have high computational complexity i.e.,

O(N3) where N refers to the number of data instances.

It is thus unrealistic to apply them on large multi-view

datasets. All the challenges lead to the problem of outlier-

robust multi-view clustering with prior pairwise constraints.

To utilize clues from prior pairwise constraints for more

comprehensive multi-view subspace clustering, we propose

a novel method for outlier-Robust Multi-View Subspace

Clustering with prior pairwise constraints (RMVSC) that

only requires low computational complexity. Unlike the

existing tensorized multi-view subspace clustering methods

that regard all subspace representations of views as a tensor,

RMVSC aims to reduce computational complexity while

preserving clustering performance by establishing a tensor

with subspace of singular vectors of views, as shown in Fig.

1. The subspace of singular vectors of views requires low

computational complexity compared with subspace of views,

yielding a more compact representation of multi-view data.

Inspired by the idea of robust subspace recovery [2] that

decomposes possibly erroneous data into clean data as well

as error term that encodes error in data, these subspaces

are learned by a joint decomposition of singular vector of

each individual view into the underlying clean subspace

and structured-sparse error (outlier) term with enforcement

of low-rank constraint on the tensor built on underlying

clean subspaces. The low-rank constraint also decreases the

redundancy of the learned subspaces.

To integrate information from views and prior constraints

for comprehensive learning, we use the subspaces as dot

product of projection coefficient of cluster membership

vectors in data space to find clustering solution. We also

introduce a constraint into the objective function to enforce

prior constraints. The proposed RMVSC method formulates

the problem of multi-view subspace clustering with prior

pairwise constraints as a joint tensor rank minimization with

�2,1 regularization term along with view decomposition. To

further improve robustness of RMVSC against outliers, we

impose �2,1 norm on the error matrix. Since error matrix

with outliers has sparse row structure, we use �2,1 norm to

characterize this sparsity property.

Since multi-view data is often collected from different

sources, error matrices of views may have inconsistent mag-

nitude values and can therefore significantly drop clustering

performance. As suggested by [2], we impose a constraint

on column of error matrices to jointly have consistent

magnitude values by vertical concatenation of error matrices

of all views. Similar to prevalent clustering approaches [4],

[8], we use a two stage framework for clustering: we

first learn affinity matrix for similarity matrices of views
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Table I: List of notations

Symbol Definition and description
X each uppercase letter represents a scale
x each boldface lowercase letter represents a vector
X each boldface uppercase letter represents a matrix
X each calligraphic letter represents a tensor
Xi,j the (i, j)-th entry of X
xi the i-th entry of x
X (:, :, i) the i-th frontal slice of X
||X||2 �2-norm of matrix X

||X||F Frobenius norm of matrix X, defined as ||X||F =
√∑

i,j A2
i,j

||X||2,1 �2,1 norm of matrix X, defined as ||X||2,1 =
∑

j ||X(:, j)||2
||X||tr The trace norm of matrix X, defined as sum of the singular values of

X
||X ||tr ||X ||tr =

∑
v ||X (:, :, v)||tr

and then apply a traditional clustering algorithm such as

k-means to obtain the final clustering solution. Notably,

importance of clustering based on similarity between data

instances has been well recognized in the literature [10].

Decomposing each individual view into underlying clean

subspace and error term as well as imposing �2,1 norm on

the error matrix make objective function of the proposed

RMVSC method challenging to optimize. We present a

new efficient optimization algorithm based on Augmented

Lagrangian Multiplier [11], [12] to solve it. We also provide

computational complexity and convergence analysis of the

optimization solution. Our main contributions are as follows:

• To the best of our knowledge, RMVSC is the first work

for outlier-robust multi-view subspace clustering that

ties together high order correlations underlying multi-

view data as well as prior information and harnesses

them under a unified framework with low computa-

tional complexity. Different from existing tensorized

multi-view subspace clustering algorithms, the pro-

posed RMVSC method aims to reduce computational

complexity by stacking underlying clean subspace of

singular vectors of all views as a tensor.

• We propose a new efficient optimization algorithm to

solve the objective function along with convergence and

computational complexity analysis.

• Through extensive experiments on real-world datasets,

we show the proposed RMVSC method outperforms

several state-of-the-art multi-view clustering algorithms

and is robust against error due to outliers in data.

II. PRELIMINARIES

Table I summarizes the notations. The N th order tensor X
is defined as X ∈ R

I1×I2×...×IN (a tensor of size I1× I2×
...× IN ). A slice of a tensor is a 2D section formulated by

fixing all but two indices where X (:, :, i) denotes i-th frontal

slices. The trace norm of matrix X is ||X||tr =
∑

i σi(X)
where σi(X) indicates the i-th largest singular value. The

trace norm of tensor X is ||X ||tr =
∑

i ||X (:, :, i))||tr.

III. OUTLIER-ROBUST MULTI-VIEW SUBSPACE

CLUSTERING WITH PRIOR INFORMATION

We are given N distinct data instances with K related

views, the possibly erroneous views are denoted as X(1) ∈
R

N×I1 , ..., X(K) ∈ R
N×IK for which Ii indicates number

of features in i-th view such that 1 <= i <= K and all

views are generated from latent subspace. Let C indicate

number of clusters. Prior pairwise constraints of type of

must-link A ∈ R
N×N where Ai,j = 1 if data instances

i and j must belong to the same cluster, and cannot-link

B ∈ R
N×N where Bi,j = 1 if data instances i and j should

not be assigned to the same cluster are also given. Our goal

is to partition all the N data instances into C clusters while

recovering underlying clean subspace of all views.

We assume that the features in each individual view are

sufficient for obtaining most of the clustering information

(complementary). Also, the true underlying clustering would

assign corresponding data instances in each view to the

same cluster (consistency). Each view might be erroneous.

Besides, cluster membership vectors lie in the subspace

of the first P left singular vectors of feature matrices

of all views where P >= C. The last assumption used

in [4], [5], [13] essentially implies that all the cluster

membership assignments can be accurately predicted by a

linear combination of feature vectors of instances. Span of

vectors is defined as a set of all linear combinations of

them. Mathematically, span of all the cluster membership

assignments is subset of span of the first P left singular

vectors of feature matrices of all views.

Our aim is to address non-overlapping clusters due to high

popularity of multi-view datasets with such characteristics.

We assume each data instance belongs to only one cluster,

but our method could be easily adjusted for the overlapping

clusters by using traditional similarity-based overlapping

clustering approaches [14]. In the following, we describe

how to derive the proposed objective function.

A. Pairwise Similarity Matrix Construction

Prior pairwise constraints provide a valuable guide on

learning the subspace because they reveal information on

the structure of the data, i.e., relationship between data

instances. In order to utilize clues from prior pairwise con-

straints, we establish pairwise similarity matrix with respect

to each individual view based on must-link and cannot-link

constraints A and B. Let u
(v)
c ∈ R

N be the membership

vector of the c-th cluster in the v-th view where u
(v)
c,i = 1,

if data instance i is assigned to the c-th cluster and zero,

otherwise. The pairwise similarity matrix S(v) ∈ R
N×N

can be then formulated as S(v) =
∑C

c=1 u
(v)
c (u

(v)
c )� where

S
(v)
i,j = 1, if data instances i and j belong to the same cluster

in v-th view, and zero, otherwise. Specifically, S
(v)
i,j = 1 if

Ai,j = 1 and S
(v)
i,j = 0 if Bi,j = 1.
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Let Sgt denote groundtruth pairwise similarity matrix, Sob

indicate partial observations of Sgt defined as follows:

(i, j)-th entry of Sob =

{
1 if Ai,j = 1,

0 if Bi,j = 1.
(1)

Ω ∈ R
N×N is a binary matrix (observation matrix) with

the same size as Sgt, and its entries indicate whether each

corresponding entry in Sgt is observed or not based on

the prior pairwise constraints. In other words, Ωi,j = 1 if

the corresponding entry in Sob is observed and Ωi,j = 0,

otherwise. * for matrices denotes the element-wise product.

Sob can be obtained by Ω ∗ Sgt = Sob.
To efficiently exploit feature matrix X(v) for each individ-

ual view v, we define Z(v) = [z
(v)
1 , ..., z

(v)
P ] ∈ R

N×P to de-

note the first P left singular vectors of X(v) corresponding to

the P largest singular values, where P >= C. As mentioned

earlier, we assume that the cluster membership vectors

u
(v)
1 , · · · and u

(v)
C lie in the subspace of the first P left sin-

gular vectors of feature matrix Z(1), · · · and Z(K). We can

then derive Span(u
(v)
1 , · · · ,u(v)

C ) ⊆ Span(z
(v)
1 , · · · , z(v)P ).

According to the span definition, cluster membership

vector is defined as linear combination of left singular

vectors. ∀i = 1, ..., C, u
(v)
i = Z(v)θ

(v)
i where θ

(v)
i ∈ R

P

denotes projection coefficients of cluster membership vectors

in view v space. The similarity matrix S(v) can be thus

written as follows:

S(v) =
C∑

c=1

u(v)
c (u(v)

c )� =
C∑

c=1

Z(v)θ(v)
c (Z(v)θ(v)

c )� =

Z(v)M(v)(Z(v))� (2)

where M(v) =
∑C

c=1 θ
(v)
c (θ(v)

c )� ∈ R
P×P . Since M(v)

is a symmetric positive semidefinite matrix which ensures

that all of its eigenvalues are non-negative, it can be in-

terpreted as covariance matrix that provides direction of

linear relationship between projection coefficients of cluster

membership vectors in each individual view space.

B. Pairwise Similarity Matrix Completion
The importance of considering similarity matrix or re-

lationship among data instances has been well recognized

by previous literature and clustering using similarity matrix

has caught significant attention [10]. To approximate sim-

ilarity matrices S(v) while reducing their complexity, we

minimize rank(S(v)), where rank(·) denotes the low-rank

approximation of a true density matrix (i.e., low-rankness

criterion). However, since rank(S(v)) is non-convex, we

replace rank(S(v)) with the trace norm ||S(v)||tr as a convex

envelope to the matrix rank [15]. As Z(v) and (Z(v))� are

orthogonal matrices, from Eq. (2), we can thus write the

following equation for each S(v) [13]:

||S(v)||tr = ||Z(v)M(v)(Z(v))�||tr = ||M(v)||tr (3)

To explore complementary and high order correlations un-

derlying multiple views as well as information of each view,

we merge M(v) to a 3rd order tensor with size P ×P ×K
defined as M ∈ R

P×P×K (i.e., M(:, :, v) = M(v)). Like-

wise, we merge all S(v) to a 3rd order tensor S ∈ R
N×N×K

and Z(v) to a 3rd order tensor Z ∈ R
N×P×K such that

S(:, :, v) = S(v) and Z(:, :, v) = Z(v), respectively. To

enforce low-rankness criterion on S , we minimize rank(S).

Since rank(S) is non-convex, we replace rank(S) with ||S||tr
as a convex envelope to tensor rank. We can further obtain

a novel equality as follows:

||S||tr = ||M||tr (4)

The main benefit of Eq. (4) is that it enables us to exploit

high order correlations underlying multi-view data by using

tensor in addition to information of each individual view.

Theorem. Let S(:, :, v) = S(v) ∈ R
N×N , Z(:, :, v) =

Z(v) ∈ R
N×P and M(:, :, v) = M(v) ∈ R

P×P for

1 <= v <= K, and S(v) = Z(v)M(v)(Z(v))�. Based on

the tensorization, we can derive ||S||tr = ||M||tr.

Proof. Based on tensor trace norm, we have the following:

||S||tr =
1

K

K∑
v=1

||S(:, :, v)||tr =
1

K

K∑
v=1

||S(v)||tr

=
1

K

K∑
v=1

||Z(v)M(v)(Z(v))�||tr =
1

K

K∑
v=1

||M(v)||tr (5)

Since 1
K

∑K
v=1 ||M(v)||tr = ||M||tr, we proved that

||S||tr = ||M||tr holds.

C. Outlier-Robust Multi-View Subspace Clustering

With the aim of improving robustness against error, we

separate error from each individual view by decomposing it

into underlying clean subspace of the view and error (outlier)

term that encodes error in the view as follows:

Z(v) = Z(v)M(v) +E(v) (6)

where M(v) represents the same variable in Eq. (2) which

acts as the subspace of singular vectors of view v, and E(v)

indicates error in view v.

Our proposed decomposition in Eq. (6) is novel because it

seamlessly connects pairwise similarity completion and error

removal from views via M(v). More precisely, according

to Eqs. (2) and (6), M(v) has more responsibility than

just storing information on direction of linear relationship

between projection coefficients for singular vectors of views.

M(v) captures clean underlying subspace of singular vectors

as well as projection coefficients of cluster membership

vectors. The role of M(v) in Eq. (2) as subspace of singular

vectors in Eq. (6) is motivated by the assumption that cluster

membership vectors lie in the space of singular vectors of

views. According to Eqs. (6) and (4), we derive the following
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objective function to learn the underlying clean subspace of

singular vectors of views while utilizing prior information

by optimizing M(v) and E(v):

min
M(v),E(v)

||M||tr
s.t. Z(v) = Z(v)M(v) +E(v),M = Φ(M(1), · · · ,M(K))

(7)

where Φ denotes the merge operator to put M(v) along third

mode and construct M. Since multi-view data may come

from multiple sources with inconsistent magnitude values, as

suggested by [2], we vertically concatenate error matrices,

i.e., E = [E(1); · · · ;E(K)] ∈ R
KN×P to have the consistent

magnitude values across columns of E(v) jointly. To further

improve robustness of the proposed RMVSC method against

outliers, we impose �2,1 norm on E. This norm characterizes

outliers elegantly because error matrix with outliers has

sparse row support [2]. The objective function can be then

written as follows (λ is the nonnegative trade-off parameter):

min
M(v),E(v)

||M||tr + λ||E||2,1 s.t. Z(v) = Z(v)M(v) +E(v),

M = Φ(M(1), · · · ,M(K)),E = [E(1); · · · ;E(K)] (8)

D. Outlier-Robust Multi-View Subspace Clustering with
Prior Constraints

According to Sob = Ω∗Sgt, we introduce a constraint into

Eq. (8) to preserve observed entries based on prior pairwise

constraints: Ω∗Z(v)M(v)(Z(v))� = Sob. The final objective

function for the proposed RMVSC method is as follows:

min
M(v),E(v)

||M||tr + λ||E||2,1 s.t. Z(v) = Z(v)M(v) +E(v),

M = Φ(M(1), · · · ,M(K)),

E = [E(1); · · · ;E(K)],Ω ∗ Z(v)M(v)(Z(v))� = Sob (9)

Initially, we optimize M. We then unfold M to obtain

M(v) using M(:, :, v) = M(v). Next, we establish S(v)

as S(v) = Z(v)M(v)(Z(v))�. Finally, we obtain affinity

matrix S by combining all similarity matrices using average

operator as follows: S = 1
K

∑K
v=1 Z

(v)M(v)(Z(v))�.

IV. OPTIMIZATION PROCEDURE

We use Augmented Lagrange Multiplier (ALM) to solve

the objective function in Eq. (9). By introducing the auxiliary

tensor variable G , we make the objective function separable.

We thus solve the following optimization problem:

min
M(v),E(v),G

||G||tr + λ||E||2,1

+
K∑

v=1

(< Y(v),Z(v) − Z(v)M(v) −E(v) >)

+ <W,M−G > +
μ

2

K∑
v=1

(||Z(v) − Z(v)M(v) −E(v)||2F )

+
ρ

2
||M− G||2F + ε

K∑
v=1

||Ω ∗ (Z(v)M(v)(Z(v))�)− Sob||2F
(10)

M(v)-subproblem. When E(v) and G are fixed, we need

to solve the following subproblem to update M(v):

min
M(v)

K∑
v=1

(< Y(v),Z(v) − Z(v)M(v) −E(v) >)

+ < W(v),M(v) −G(v) >

+
μ

2

K∑
v=1

(||Z(v) − Z(v)M(v) −E(v)||2F ) +
ρ

2
||M(v) −G(v)||2F

+ε
K∑

v=1

||Ω ∗ (Z(v)M(v)(Z(v))�)− Sob||2F (11)

We use gradient descent to solve the above subproblem.

The gradient for M(v) (�M(v)) can be computed as follows:

�M(v) = 2ε(Z(v))�(Ω ∗ (Z(v)M(v)(Z(v))� − Sob))Z
(v)

+ρ(M(v) −G(v) +
1

ρ
W(v))

−μ

2
(Z(v))�(Z(v) − Z(v)M(v) −E(v) +

1

μ
Y(v)) (12)

where Y(v), W are two Lagrange multipliers. Then, M(v)

can be updated using M(v) ←M(v) − η�M(v) .

E(v)-subproblem. When other variables are fixed, the

following subproblem should be solved to update E(v):

min
E

λ||E||2,1 +
K∑

v=1

(< Y(v),Z(v) − Z(v)M(v) −E(v) >)

+
μ

2

K∑
v=1

(||Z(v) − Z(v)M(v) −E(v)||2F )

= λ||E||2,1 + μ

2
||E−D||2F (13)

where D is constructed by vertically concatenating the

matrices Z(v)−Z(v)M(v)+( 1μ )Y
(v) together along column.

According to [2], the solution for the subproblem can be

obtained as follows:
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Algorithm 1 outlier-Robust Multi-View Subspace Cluster-

ing with prior pairwise constraints (RMVSC)

Input: X(1), · · · ,X(K), A, B, C
Parameter: λ, P
Output: M(1), · · · ,M(K), E, clustering results

1: E = 0, η = 0.1, ε = 10, μ = 10−4, ρ = 10−5, tol =
10−6, ηl = 1.9

2: Y(v) = 0, G =W = 0, ρmax = μmax = 1010

3: Construct Sob from A and B using Sob =∑C
c=1 u

(v)
c (u

(v)
c )�

4: for v = 1, · · ·, K do
5: repeat
6: Update M(v) ←M(v) − η�M(v)

7: Update E using Eq. (14)

8: Update G(v) using Eq. (16)

9: Update W ←W + ρ(M−G)
10: Update Y(v) ← Y(v)+μ(Z(v)−Z(v)M(v)−E(v))
11: μ = min(ηlμ, μmax), ρ = min(ηlρ, ρmax)
12: until ||Z(v)−Z(v)M(v)−E(v)||∞ < tol and ||M(v)−

G(v)||∞ < tol
13: end for
14: S = 1

K

∑K
v=1 Z

(v)M(v)(Z(v))�

15: Apply k-means on the shared similarity matrix S

ei =

{ ||di||2 −λ
μ

||di||2 di if ||di||2 > λ
μ

0 otherwise
(14)

where ei denotes i-th column of E, di represents i-th
column of D, respectively.

G-subproblem. When other variables are fixed, to update

variable G, minG ||G||tr + ρ
2 ||M − G + 1

ρW||2F should be

solved. The solution for the subproblem is given by the

singular value decomposition for the frontal slices of G i.e.,

G(:, :, v) = G(v) [16]. In other words, G can be updated

slice-by-slice as follows:

min
G(v)

||G(v)||tr + ρ

2
||G(v) −M(v) − 1

ρ
W(v)||2F (15)

The above subproblem has a closed-form solution by

using singular value threshold (SVT) method [17]. More

precisely, let U(v)
∑(v)

(V(v))� denote the SVD form of

(M(v) + 1
ρW

(v)). We update G(v) as follows:

G(v) = U(v)S1/ρ(
∑(v)

)(V(v))� (16)

where Sσ = max(X− σ, 0) +min(X+ σ, 0) is shrinkage

operator [11].

W-subproblem. Lagrange multiplier W is updated as

W ←W + ρ(M−G).

Y(v)-subproblem. We update it as Y(v) ← Y(v) +
μ(Z(v) − Z(v)M(v) −E(v)).

The optimization procedure is described in Algorithm

1. The convergence condition is two infinity norms on

optimality gap for subspace representations.

V. COMPUTATIONAL COMPLEXITY AND CONVERGENCE

ANALYSIS

Table II: Complexity of tensorized multi-view subspace

clustering algorithms

Methods Computational Complexity
LTMSC O(DN2 + N3) (D : largest dimension of view features)

TMSRL O(DN2 + N3) (D : largest dimension of view features)

t-SVD-MSC O(N3) + O(K(2N2Klog(N)))

RMVSC O(NPK) + O(P 3K)

The computational bottleneck of RMVSC only lies in

solving the subproblems of E and G. The computational

complexity of E at each iteration is O(NPK). For G
subproblem, computing K SVDs of P × P matrices at

each iteration takes O(P 3K). Overall, the per iteration

complexity is O(NPK) + O(P 3K), which is significantly

less than computational complexity of existing tensorized

multi-view subspace clustering methods in [7]–[9], named

as t-SVD-MSC, TMSRL and LTMSC, as reported in Table

II. It is worth mentioning that P << N where N is the

number of data instances which can be arbitrarily large. P
is usually some multiple of C, the number of clusters. C is

much smaller than N .
According to [2], [8], two requirements are sufficient

for convergence of Algorithm 1: (1) Z(v) is of full col-

umn rank, (2) the optimality gap i.e., ||(M(v)
iter,E

(v)
iter) −

argminM(v), E(v) Eq.(9)||2F at each iteration iter is mono-

tonically decreasing. To satisfy the first condition, similar to

[2], we can state that M(v) ∈ span((Z(v))�). We can there-

fore express M(v) as linear combination of (Z(v))�. In other

words, M(v) = P(v)M̂(v) where P(v) is derived by making

the columns of (Z(v))� orthogonal. The decomposition part

of Eq. (9) can be equivalently stated as follows:

Z(v) = Z(v)P(v)M̂(v) +E(v) (17)

It is evident that I = Z(v)P(v), which is of full column

rank. The second condition is met to some extent due to

the convexity of the Lagrange function. The convergence of

Algorithm 1 could be thus well expected.

VI. EXPERIMENTAL EVALUATION

We empirically evaluate the performance of the proposed

RMVSC method on several challenging real-world datasets.

A. Real-World Datasets
Statistics of the following real-world datasets are summa-

rized in Table III. Coil (CO)1: a generic object dataset that

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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contains images of object categories taken from different

angels. Similar to [7], all images are normalized to 32 ×
32. In addition to intensity (view 1), Gabor features (view

2) are extracted with one scale λ = 4 at four orientations

θ = {0◦, 45◦, 90◦, 135◦}. The dimension of Gabor is 4096.

Caltech-Middle (CM): a generic object dataset which is

subcategory of Caltech-All dataset 2. The views are (1) Hog

features, (2) LBP features, and (3) concatenation of Cenhist,

Gist, Wavelet moments and Gabor features. Caltech-All
(CA)3: a generic object dataset which is supercategory of

Caltech-Middle dataset. The views are (1) Hog features,

(2) LBP features, and (3) concatenation of Cenhist, Gist,

Wavelet moments and Gabor features. NUS [18]: a generic

object dataset with six types of features. View 1 has LAB-

226, Edge direction histogram, while view 2 includes LAB-

64, HSV and wavelet features.

Table III: Statistics of the real-world multi-view datasets

Dataset # data instances # views # clusters
Coil (CO) 1440 2 20

Caltech-Middle (CM) 2386 3 20
Caltech-All (CA) 9144 3 102

NUS 30000 2 31

B. Baselines

We compare RMVSC with the following 10 baselines.

Best Single View (BSV) does clustering on the most in-

formative view. Feature Concatenation (FC) concatenates

features of all views. Robust Multi-View Spectral Cluster-
ing via Low-Rank and Sparse Decomposition (RMSC)
is based on integration of matrix low-rank constraint and �1
norm for robust multi-view clustering in Markov Chain [19].

λ is tuned from {10−3, 10−2, · · · , 102, 103}. Error-Robust
Multi-View Clustering (EMVC) learns low-rank shared

transition probability matrix across all views in Markov

chain and enforces �2,1 and group �1 norms to characterize

various error types [20]. Each regularization hyperparame-

ter is tuned from {10−9, 10−8, · · · , 108, 109}. t-SVD-MSC
learns subspace representations in favor of efficient low-rank

constraint on tensor by stacking subspace representations

of all views as well as �2,1 sparsity on the corresponding

error matrices for multi-view subspace clustering [8]. The

parameter λ is tuned from {0, 0.2, 0.4, ..., 2}. Multi-View
Matrix Completion for Clustering with Side Informa-
tion (MVMC) a multi-view clustering method that ties

together feature representations of all views and instance-

level metadata via matrix completion for multi-view clus-

tering. Parameter k is tuned from {100, 200, 300, 400, 500}.
Low-Rank Representation (LRR) applies low-rank con-

straint on concatenated views to recover underlying sub-

space representation and imposes regularization to improve

robustness against error. It then employs PCA to reduce

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
3http://www.vision.caltech.edu/Image Datasets/Caltech101/

learned representation dimensionality to 500 and modifies it

with prior must-link pairwise constraints [2]. Parameter λ is

tuned from {10−3, 10−2, · · · , 102, 103}. Low-Rank Tensor
Constrained Multi-View Subspace Clustering (LTMSC)
regards subspace representations of all views as a tensor

and formulates the multi-view clustering problem as a tensor

rank minimization problem with �2,1 regularization term [7].

Multimodal Sparse and Low-rank Subspace Clustering
(MSSC) learns a shared subspace representation across

all views, while decomposing each view into underlying

subspace representation and other terms to encode error

in the view [21]. λ related parameters are tuned from

{10−3, 10−2, · · · , 102, 103}. Tensorized Multi-View Sub-
space Representation Learning (TMSRL) incorporates

label-based prior constraints into tensorized multi-view sub-

space clustering. There is no mature approach to convert

prior pairwise constraints to label-based prior constraints for

TMSRL [9]. We include it without any prior information.

C. Experimental Settings

For RMVSC, we apply line search to find optimal value

for λ from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. We consider

the range Pset = {100, 200, 300, 400, 500} for parameter P
such that the optimal value is chosen as min(Pset, d

(v))
where d(v) denotes number of features in view v. The

maximum number of iterations for all methods is set to 50.

We use standard Normalized Mutual Information (NMI)
and Purity to measure the clustering performance. The

higher value of each metric indicates the better performance.

Each experiment is repeated for five times, and the mean of

each metric in each dataset is reported. We then use k-means

to obtain final clustering solution. We run k-means 20 times

on each dataset and report the average results.

Similar to [22], we generate prior pairwise constraints by

randomly selecting a pair of data instances. The ratio of

prior constraints is varied from the range {0.1, 0.2} such

that β = ratio × N2 (β denotes quantity of prior con-

straints). RMVSC1, MVMC1, and LRR1 denote the meth-

ods when using ratio = 0.1 prior pairwise constraints, while

RMVSC2, MVMC2 and LRR2 indicate the corresponding

algorithms with ratio = 0.2 prior pairwise constraints. We

randomly select a small portion of data instances {2%, 4%}
and replace their feature values in all views by random

values, which is similar to generation of attribute outliers

in [23]. The outlier-contaminated data instances are chosen

as uniformly distributed random numbers.

D. Experimental Results

Tables IV and V report clustering performance (NMI and

purity) on NUS and CO datasets, while Tables VI and VII

on CM and CA datasets. The bold numbers highlight the

best results. The first column for each dataset denotes the

data without any additive outliers, while the other columns

indicate dataset with {2%, 4%, 6%} outliers in all views.
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Table IV: Comparison results on (erroneous) datasets (NMI) - Part 1

Method\Dataset NUS NUS2% NUS4% NUS6% CO CO2% CO4% CO6%
BSV 14.4 13.9 13.7 11.0 77.0 75.7 74.1 74.0
FC 10.3 9.9 8.1 7.7 77.4 75.3 73.4 71.1
RMSC 17.2 16.1 14.5 13.2 82.9 81.0 78.0 75.9
EMVC 18.0 16.9 15.1 14.3 87.0 87.0 83.5 80.4
LTMSC 18.3 18.2 15.1 13.2 86.0 79.1 76.4 72.6
TMSRL 19.6 18.0 15.5 13.9 81.0 79.5 76.5 73.0
t-SVD-MSC 20.3 18.5 17.6 15.2 88.4 82.5 82.3 82.1
MSSC 10.3 9.9 8.0 6.9 53.5 50.5 47.9 46.2
LRR1 20.6 19.2 17.4 15.3 91.5 90.5 90.0 89.1
LRR2 21.2 20.0 18.2 16.5 91.1 90.7 90.1 89.1
MVMC1 20.0 18.0 16.5 15.0 94.8 91.6 89.3 87.6
MVMC2 22.0 19.1 17.2 16.6 95.2 92.3 89.6 87.6

RMVSC1 23.5 23.1 21.2 21.0 99.4 98.2 97.5 96.7
RMVSC2 32.6 32.3 32.1 32.2 99.5 98.9 97.9 97.6

Table V: Comparison results on (erroneous) datasets (Purity) - Part 1

Method\Dataset NUS NUS2% NUS4% NUS6% CO CO2% CO4% CO6%
BSV 17.8 16.0 14.7 13.9 68.4 67.2 65.8 66.2
FC 15.6 13.2 11.3 10.0 69.9 66.2 64.4 62.1
RMSC 19.3 18.9 17.4 16.2 76.2 73.6 70.6 68.4
EMVC 25.0 21.0 20.0 18.9 78.0 75.9 73.5 71.6
LTMSC 30.1 29.0 27.2 25.6 81.0 73.2 70.1 69.5
TMSRL 30.5 30.0 28.3 26.9 74.5 73.6 70.5 70.0
t-SVD-MSC 31.1 30.5 30.0 28.3 82.0 75.2 74.9 75.0
MSSC 16.5 14.0 12.7 11.0 50.0 43.4 41.3 38.7
LRR1 32.3 31.5 30.2 28.3 80.0 79.0 78.1 78.3
LRR2 33.0 32.0 31.8 30.0 79.7 79.2 80.2 79.1
MVMC1 32.1 31.0 29.1 27.0 88.7 84.8 82.3 81.0
MVMC2 32.5 31.3 29.0 28.0 89.2 85.4 82.3 80.7

RMVSC1 35.6 35.0 35.0 33.0 96.2 95.9 94.1 91.0
RMVSC2 38.8 38.5 37.0 35.5 98.1 97.9 96.9 94.1

The proposed RMVSC2 method under 6% of error out-

performs all baseline without additive error on both NMI

and purity over all four datasets. That means robustness to

error of the proposed method. Even for RMVSC1 with 6%

error, it still outperforms the baselines without additive error

on purity over all datasets, while on NMI except NUS.

Also, the proposed RMVSC method achieves superior

performance to tensorized multi-view subspace clustering

approaches, i.e., t-SVD-MSC, LTMSC and TMSRL, that

exploit high order intrinsic structure in data, while failing

to incorporate prior pairwise constraints during learning.

The clustering performance becomes better when using

prior pairwise constraints and high order correlations un-

derlying multi-view data. RMVSC leads to improvement

with a large average margin of at least 10%. Our method

outperforms RMSC, EMVC, LRR and MSSC, i.e., robust

multi-view clustering schemes that do not capture high order

correlations in data. Compared to LRR, our method gains

significant improvement in average at least 4%. Overall,

RMVSC achieves in average improvement of 6%.

The proposed RMVSC method achieves superior perfor-

mance to LTMSC, t-SVD-MSC, TMSRL i.e., multi-view

clustering algorithms that separate error from data while

clustering the data instances. On CO dataset in Tables

IV and V, our method obtains a nearly perfect result (in

average greater than 96%). Based on Tables IV and VI, on

CM, CA and NUS, the improvement of our method over

other tensorized multi-view clustering approaches LTMSC,

TMSRL and t-SVD-MSC is noticeable because our method

utilizes prior constraints to enhance clustering solution. Our

method exhibits robustness against outliers.

E. Hyperparameter Analysis

RMVSC has two major parameters, (λ, P ) where P de-

notes number of first left singular vectors of feature matrices

of all views. Fig. 2 shows the clustering performance for λ
and P for datasets without additive error when the ratio of

metadata is 0.1. On NUS, we cannot report the results for

P = 400 and P = 500 because one of the views has less

than 400 features. The performance is fairly stable. RMVSC

gives more promising results when λ is in range of [0.01,

0.1] and P has possible maximum value.

VII. RELATED WORK

Multi-view learning has been extensively studied in recent

years [3]. Existing approaches for multi-view clustering,

which are mostly related to our work, can be roughly

classified into three categories [3], [8]: (1) graph-based

approaches, (2) co-training or co-regularized methods, (3)

subspace learning algorithms. Graph-based approaches use

multiple graph fusion strategy to capture complementary

and consistent information across all views as well as

information of each individual view [19], [20], [24]. To

handle various error types in multi-view data, Najafi et

al. presented a Markov chain based multi-view clustering

method, named as EMVC, to obtain a shared transition
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Table VI: Comparison results on (erroneous) datasets (NMI) - Part 2

Method\Dataset CM CM2% CM4% CM6% CA CA2% CA4% CA6%
BSV 59.9 57.7 55.4 54.1 53.0 49.6 48.6 47.9
FC 38.4 37.6 36.7 36.0 37.0 34.0 33.5 33.0
RMSC 50.7 49.1 47.9 46.5 57.5 56.1 54.2 53.0
EMVC 57.9 57.6 56.9 55.9 59.2 57.2 55.0 54.1
LTMSC 49.2 48.5 47.5 46.9 64.1 62.0 61.0 60.1
TMSRL 69.5 69.0 67.1 65.8 63.8 62.5 61.6 60.5
t-SVD-MSC 60.1 59.8 58.3 57.1 69.0 68.0 64.1 63.2
MSSC 50.2 48.9 45.4 44.5 44.2 41.0 40.0 39.2
LRR1 79.0 77.1 76.0 74.1 70.5 69.2 67.0 65.2
LRR2 83.0 81.8 79.0 77.1 70.8 70.0 70.0 68.4
MVMC1 74.1 69.3 65.1 63.9 68.0 65.0 62.1 60.4
MVMC2 75.7 71.0 69.4 67.0 68.7 66.9 63.2 62.0

RMVSC1 90.3 86.1 85.4 83.0 72.0 71.1 70.1 69.2
RMVSC2 90.5 88.6 86.5 84.1 74.0 73.4 71.9 71.0

Table VII: Comparison results on (erroneous) datasets (Purity) - Part 2

Method\Dataset CM CM2% CM4% CM6% CA CA2% CA4% CA6%
BSV 76.3 74.5 72.3 71.4 51.5 47.8 46.7 46.0
FC 61.1 60.2 59.4 58.9 35.1 31.4 30.9 30.4
RMSC 69.7 67.7 67.1 66.6 60.1 58.0 56.3 54.0
EMVC 79.1 78.0 76.5 74.9 61.0 59.0 58.2 56.5
LTMSC 60.1 59.5 58.6 59.1 64.7 64.2 62.0 60.5
TMSRL 70.9 70.4 68.2 66.2 65.0 64.5 62.3 61.0
t-SVD-MSC 75.8 75.0 74.3 73.4 68.1 67.0 65.9 63.2
MSSC 54.2 53.5 50.1 50.4 55.1 53.2 52.1 40.5
LRR1 81.3 80.7 78.0 76.1 65.0 62.8 60.8 58.4
LRR2 86.1 84.6 82.3 80.0 67.1 65.0 63.1 61.2
MVMC1 86.5 81.0 79.2 77.0 68.2 66.1 64.3 62.7
MVMC2 86.7 83.1 81.4 79.9 69.1 68.2 67.1 65.2

RMVSC1 95.5 92.6 90.6 89.4 73.1 72.7 71.2 70.0
RMVSC2 95.8 94.0 92.4 91.5 75.1 74.2 73.2 71.5

probability matrix among all views via low-rank and sparse

decomposition of each view [20]. The sparsity is introduced

by integration of �2,1 and group �1 norms. The proposed

RMVSC method differs from this category of approaches

in a way that it uses subspace as data structure that indeed

facilitates representation and processing.

Co-training or co-regularized algorithms capture pairwise

correlation between views, while focusing on each individual

view simultaneously [1], [4]. Zhao et al. proposed a method

that casts multi-view clustering with prior pairwise con-

straints into matrix completion problem while minimizing

distance between shared similarity matrix across all views

and similarity matrix of each individual view [4]. Different

from this category, our method fully utilizes pairwise and

high order correlations in multi-view data. The goal of

multi-view subspace clustering is to seek underlying clean

subspace representation of views and perform clustering of

data instances accordingly [7]–[9], [21]. Zhang et al. for-

mulated multi-view subspace clustering as tensor rank min-

imization constrained with �2,1 regularization term, while

decomposing each view into the underlying clean subspace

representation and error term to encode error in the view

[7]. The tensor is established by stacking subspace repre-

sentation of all views. None of the existing methods utilize

clues from prior pairwise constraints for enhanced clustering

solution with low computational complexity while exploring

high order correlations underlying multi-view data. RMVSC

belongs to the third category.

VIII. CONCLUSION

In this paper, we presented a novel method, named as

RMVSC, for outlier-robust multi-view subspace cluster-

ing with prior pairwise constraints. To exploit high order

complementary and consistent information across all views

as well as reduce computational complexity significantly,

RMVSC regards subspace of singular vectors of views as a

tensor. To improve robustness against outliers, each view is

decomposed into underlying clean subspace and error term.

A constraint term is devised to enforce prior constraints.
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