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ABSTRACT
Sequential recommendation models the dynamics of a user’s previ-
ous behaviors in order to forecast the next item, and has drawn a
lot of attention. Transformer-based approaches, which embed items
as vectors and use dot-product self-attention to measure the rela-
tionship between items, demonstrate superior capabilities among
existing sequential methods. However, users’ real-world sequential
behaviors are uncertain rather than deterministic, posing a sig-
nificant challenge to present techniques. We further suggest that
dot-product-based approaches cannot fully capture collaborative
transitivity, which can be derived in item-item transitions inside
sequences and is beneficial for cold start items. We further argue
that BPR loss has no constraint on positive and sampled negative
items, which misleads the optimization.

We propose a novel STOchastic Self-Attention (STOSA) to over-
come these issues. STOSA, in particular, embeds each item as a
stochastic Gaussian distribution, the covariance of which encodes
the uncertainty. We devise a novel Wasserstein Self-Attention mod-
ule to characterize item-item position-wise relationships in se-
quences, which effectively incorporates uncertainty into model
training. Wasserstein attentions also enlighten the collaborative
transitivity learning as it satisfies triangle inequality. Moreover, we
introduce a novel regularization term to the ranking loss, which as-
sures the dissimilarity between positive and the negative items. Ex-
tensive experiments on five real-world benchmark datasets demon-
strate the superiority of the proposed model over state-of-the-art
baselines, especially on cold start items. The code is available in
https://github.com/zfan20/STOSA.
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1 INTRODUCTION
Recommender systems [6, 9, 21, 26, 27, 31, 46, 47] become crucial
components in web applications [24, 55, 56], which provide person-
alized item lists by modeling interactions between users and items.
Sequential recommendation (SR) attracts a lot of attention from
both the academic community and industry due to its success and
scalability. SR methods format each user’s historical interactions
as a sequence by sorting interactions chronologically. The goal of
SR is to characterize users’ evolving interests and predict the next
preferred item.

SR encodes users’ dynamic interests by modeling item-item tran-
sition relationships in sequences. Recent advancements in Trans-
former [25, 44] introduce the self-attention mechanism to reveal
the position-wise item-item relationships, which leads to the state-
of-the-art performance in SR. SASRec is the pioneering work in
proposing Transformer for sequential recommendation, which ap-
plies scaled dot-product self-attention to learn item-item corre-
lation weights. BERT4Rec [40] adopts bi-directional modeling in
sequences. TiSASRec [22] and SSE-PT [48] extend SASRec with
additional time interval information and user regularization, re-
spectively.

Despite the success of self-attention in sequential recommenda-
tion, we argue that methods based on dot-product self-attention
fail to incorporate: 1) dynamic uncertainty and 2) collaborative tran-
sitivity.

Firstly, existing SR methods assume that dynamic user inter-
ests are deterministic. As such, the inferred user embeddings are
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fixed vectors in the latent space, which are insufficient to represent
multifarious user interests, especially in the real-world dynamic
environment. Item transitions, which reflect the evolving process of
user sequential behaviors, are sometimes hard to understand, and
the two items in one item transition may not even lie in the same
product category. Hence, if a user has a significant portion of unex-
pected item transitions, modeling this user with a deterministic pro-
cess achieves sub-optimal recommendations. For example, in books
recommendation, a user interested in science-fiction, romance, and
biography is more uncertain than another user interested in thriller,
horror, and fantasy. Moreover, even two users share the same inter-
est topics, the user with more fluctuated interests (e.g., items in item
transitions are in different topics) is more uncertain. Intuitively,
users with greater interest dynamic variability are more uncertain.
Therefore, dynamic uncertainty is a crucial component when we
model user interests in a sequential environment.

Another limitation of the existing self-attention mechanism is
that it fails to incorporate collaborative transitivity in sequences.
Collaborative transitivity can realize the latent similarity between
items appearing in the same item-item transition pair but also in-
ductively introduces additional collaborative similarities beyond
limited item-item transitions in datasets. Thus, the collaborative
transitivity can further alleviate cold-start item issues with the help
of extra inducted collaborative similar items. For example, given
item transition pairs (ix → iy ) and (iy → iz ), we can conclude that
ix and iy are close to each other and so as for iy and iz . According
to collaborative transitivity, ix and iz should also be close. However,
existing dot-product self-attention is unable to realize this collab-
orative closeness. For example, given embeddings of ix = [0, 2],
iy = [1, 1], iz = [2, 0], the dot-products of (ix , iy ) and (iy , iz ) are
both 2, however, the dot-product between ix and iz is 0 because ix
and iz transition pair is not observed. This issue becomes worse for
unpopular items (item cold start problem) as the insufficient data
for cold start items limits the set of collaborative neighbors.

However, it is rather challenging to resolve the dynamic uncer-
tainty and incorporate the collaborative transitivity into a SR model.
Firstly, characterizing dynamic uncertainty among item transition
relationships is still under-explored. Most existing self-attention
SR models, e.g., SASRec [17] and BERT4Rec [40], represent items
as fixed vector embeddings, ignoring the uncertainty in sequential
correlations. A recent work DT4SR [7] represents items as distri-
butions, which proposes the mean and covariance embedding to
model uncertainty in items. However, DT4SR is incapable of model-
ing dynamic uncertainty as it models item transition relationships
via dot-product attention, which cannot incorporate such dynamic
uncertainty.

On top of modeling dynamic uncertainty, inducing collaborative
transitivity remains a challenge. Existing works [13, 17, 36, 40, 41]
based on the dot-product fail to satisfy the triangle inequality and
consequently cannot accomplish the collaborative transitivity. Dif-
ferent from dot product, distances typically satisfy triangle inequal-
ity1, which transits additional collaborative closeness and benefits
a lot in item cold start issue. This assumption is theoretically sup-
ported in TransRec [10] and will also be empirically demonstrated

1d (ix , iz ) ≤ d (ix , iy ) + d (iy, iz )

in the following experimental results section. Although some met-
ric learning frameworks [10, 23, 54] propose distance functions to
guarantee the triangle inequality, none of them can model dynamic
uncertainty as well as collaborative transitivity in the sequential
setting. The choice of distance function is pivotal to collaborative
transitivity modeling.

Moreover, we argue that collaborative transitivity optimized by
standard Bayesian Personalized Ranking (BPR)2 [36] loss fails to
guarantee the dissimilarity between positive and negative items
in BPR. BPR measures the difference between a user’s preference
scores on the positive item and a randomly sampled negative item.
However, there is no guarantee that the positive item is further
away from the negative item in the latent space. The incorporation
of the distance between positive items and negatively sampled
items is reasonable and necessary. Typically, negative items are
sampled from items that the user never shows interest with, even if
randomly sampled negative items are not necessarily hard negative
items [50] due to data bias [2]. A proper way to sample negative
items is an important topic in the recommendation, but it is beyond
this paper’s scope.

To this end, we propose a new framework STOchastic Self-
Attention (STOSA), which comprises of three modules: (1) stochas-
tic embeddings, (2)Wasserstein self-attention, and (3) regularization
term in BPR loss. Specifically, we model items as Gaussian distri-
butions with stochastic embeddings, consisting of mean (for base
interests) and covariance (for the variability of interests) embed-
dings. On top of stochastic embeddings, we propose to use distances
to measure item transitions, which is originated from metric learn-
ing [16, 33]. We propose a novel Wasserstein Self-attention layer,
which measures attentions as scaled Wasserstein distances between
items. We also introduce a novel regularization term in BPR loss
to consider the distance between positive items and negatively
sampled items. The contributions of this work are as follows:
• To the best of our knowledge, STOSA is the first work proposing
aWasserstein Self-Attention to consider collaborative transitivity
in SR.

• We introduce stochastic embeddings to measure both base inter-
ests and the variability of interests inherent in user behaviors
and improve BPR loss for SR with an additional regularization for
constraining the distance between positive items and negatively
sampled items.

• STOSA outperforms the state-of-the-art recommendation meth-
ods. The experimental results also demonstrate the effectiveness
of STOSA on cold start items.

• Several visualizations verify the effectiveness of Wasserstein self-
attention over the traditional scaled dot-product self-attention
and justify the improvements for cold start items by collaborative
transitivity.

2 RELATEDWORK
Several topics are closely related to our research problem. We first
introduce some relevant works in the sequential recommendation,
which is the primary problem setting in this paper. As we use

2We only discuss BPR loss in this paper because it is the most widely used ranking
loss for the top-N recommendation, but the same issue also happens to other losses,
such as Hinge Loss.
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distance rather than dot-product as the metric, recommendation
methods with metric learning will also be discussed. Finally, we
will introduce some relevant works about using distributions as
representations.

2.1 Sequential Recommendation
Sequential Recommendation (SR) recommends the next item based
on the chronological sequence of the user’s historical interactions.
The fundamental idea of SR is learning sequential patterns within
consecutive interacted items. One representative work of SR is
FPMC [37]. With the inspiration of Markov Chain’s capability of
learning item-item transitions, FPMC fuses the idea of Markov
Chains with matrix factorization. FPMC learns the first-order item
transition matrix, assuming that the next-item prediction is only
relevant to the previous one item. Fossil [11] extends this idea
and considers higher order of item transitions. Another line of SR
uses convolutional neural networks for sequence modeling, such
as Caser [41]. Caser regards the embedding matrix of items in the
sequence as an image and applies convolution operators with the
motivation of capturing local item-item transitions.

The advancements of sequence modeling developed in deep
neural networks inspire the adoption of Recurrent Neural Net-
work (RNN) [15, 28, 32, 35, 49, 53] and Self-Attention mechanisms
into SR [17, 22, 40]. For example, GRU4Rec [14] proposes to use
Gated Recurrent Units in the session-based recommendation. The
success of self-attention-based Transformer [44, 52] and BERT [4,
51] inspires the community to investigate the possibility of self-
attention in the sequential recommendation. Unlike Markov chain
and RNN methods, self-attention utilizes attention scores from all
item-item pairs in the sequence. SASRec [17] and BERT4Rec [40]
both demonstrate the effectiveness of self-attention with the state-
of-the-art performance in next-item recommendation.

2.2 Metric Learning for Recommendation
Metric learning explores a proper distance function to measure the
dissimilarity between objects, such as Euclidean distance, Maha-
lanobis distance [30] and Graph distance [8]. A crucial property
that differentiates distance and dot-product as metrics is that dis-
tances usually satisfy the triangle inequality. Triangle inequality,
as an inductive bias [33] for distances, is useful when data sparsity
issue exists [10]. One early work on metric learning for recom-
mendation is CML [16]. CML proposes a hinge loss on minimizing
the L2 distance between embeddings of the user and interacted
items. LRML [42] then demonstrates the geometric restriction of
CML and introduces a latent relation as a translation vector in the
distance calculation. TransRec [10] borrows the idea of knowledge
embedding and also develops a translation vector for the sequential
recommendation. SML [23] is the state-of-the-art metric learning
recommendation method. It introduces an additional item-centric
metric and the adaptive margin on top of CML.

2.3 Distribution Representations
Representing objects (e.g., words, nodes, and items) as distributions
has been attracting interest from the research community [1, 12,
39, 45]. Distribution representations introduce uncertainties and
provide more flexibility compared with one single fixed embedding.

DVNE [57] utilizes Gaussian distribution as the node embedding
in graphs and proposes a deep variational model for higher-order
proximity information propagation. TIGER [34] and [45] represent
words as Gaussians, and TIGER also introduces Gaussian attention
for better learning the entailment relationship among words. PM-
LAM [29] and DDN [54] both propose to use Gaussian distributions
to represent users and items. DDN learns the mean and covariance
embeddings with two neural networks. DT4SR [7] is the most rele-
vant work, which represents items as distributions and learns mean
and covariance with separate Transformers.

3 PRELIMINARIES AND DISCUSSIONS
In this section, we first formulate the SR problem and then introduce
the self-attention mechanism for solving this problem.

3.1 Problem Definition
Given a set of usersU and itemsV , and their associated interac-
tions, we can sort the interacted items of each user u ∈ U chrono-
logically in a sequence as Su = [vu1 ,v

u
2 , . . . ,v

u
|Su |

], wherevui ∈ V

denotes the i-th interacted item in the sequence. The goal of SR is to
recommend a top-N ranking list of items as the potential next items
in a sequence. Formally, we should predict p

(
v
(u)
|Su |+1 = v |Su

)
.

3.2 Self-Attention for Recommendation
Since we adopt the self-attention mechanism as the backbone of
sequence encoder, we introduce it before proposing our model. The
intuition of the self-attention mechanism is that items in sequences
are correlated but of distinct importance to the items at different
positions in a sequence. Specifically, given a user’s action sequence
Su and the maximum sequence length n, the sequence is first trun-
cated by removing earliest items if |Su | > n or padded with 0s to
get a fixed length sequence s = (s1, s2, . . . , sn ). An item embedding
matrix M ∈ R |V |×d is defined, where d is the number of latent
dimensions. A trainable positional embedding P ∈ Rn×d is added
to sequence embedding matrix as:

ÊSu = [ms1 + ps1 ,ms2 + ps2 , . . . ,msn + psn ]. (1)

Specifically, self-attention uses dot-products between items in the
sequence to infer their correlations, which are as follows:

SA(Q,K,V) = softmax
(
QK⊤

√
d

)
V, (2)

where Q = ÊSuWQ , K = ÊSuWK , and V = ÊSuWV . As both Q
and K use the same input sequence, the scaled dot-product compo-
nent can learn the latent correlation between items. Additionally,
other components in Transformer are utilized in SASRec, includ-
ing the point-wise feed-forward network, residual connection, and
layer normalization.

4 PROPOSED MODEL
In this section, we introduce stochastic self-attention (STOSA)
to overcome limitations of existing dot-product self-attention, as
shown in Figure 1. We first represent items as stochastic embed-
dings with Elliptical Gaussian distributions, comprised of the mean
embedding and covariance embedding. Then we develop a novel
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Figure 1: Model Architecture of the proposed STOSA. si denotes the item in the position i and ŝi+1 indicates the output inferred
next item in (i+1)-th position.We propose stochastic embeddings to consider dynamic uncertainty information and introduce
a novelWasserstein Self-Attention layer for capturing collaborative transitivity signals. We introduce Feed-forward networks
with ELU activation and guarantee the positive definite property of covariances.

Wasserstein self-attention module based on the Wasserstein dis-
tance to infer the stochastic sequence embeddings. A Wasserstein
distance is adopted to measure the dissimilarity between items in
the sequence with uncertainty signals. Finally, we incorporate a
novel regularization term measuring the distance between positive
and negative items into the standard BPR loss.

4.1 Stochastic Embedding Layers
We introduce uncertainty into item embeddings by representing
items as distributions. Differing deterministic vector representation,
modeling items as stochastic distributions covers larger space for
including more collaborative neighbors. Specifically, we use multi-
dimensional elliptical Gaussian distributions to represent items. An
elliptical Gaussian distribution is governed by a mean vector and
a covariance vector3, where covariance introduces the potential
uncertainty of the item. For all items, we define a mean embedding
table Mµ ∈ R |V |×d and the covariance embedding table MΣ ∈

R |V |×d . As mean and covariance identify different signals, we thus
introduce separate positional embeddings for mean and covariance
Pµ ∈ Rn×d and PΣ ∈ Rn×d , respectively. In analogy to Eq. (1), we
can obtain mean and covariance sequence embeddings of user u as:

Êµ
Su
= [Êµs1 , Ê

µ
s2 , . . . , Ê

µ
sn ] = [mµ

s1 + p
µ
s1 ,m

µ
s2 + p

µ
s2 , . . . ,m

µ
sn + p

µ
sn ],

ÊΣ
Su
= [ÊΣs1 , Ê

Σ
s2 , . . . , Ê

Σ
sn ] = [mΣ

s1 + p
Σ
s1 ,m

Σ
s2 + p

Σ
s2 , . . . ,m

Σ
sn + p

Σ
sn ].

(3)
For example, for the first item s1 in the sequence, its stochastic
embedding is represented as a d-dimensional Gaussian distribution
N(µs1 , Σs1 ), where µs1 = Êµs1 and Σs1 = diaд(Ê

Σ
s1 )) ∈ R

d×d .
3The covariance of elliptical Gaussian distribution is a diagonal matrix, therefore the
diagonal values can be viewed as a vector.

4.2 Wasserstein Self-Attention Layer
There remain challenges in modeling sequential dynamics with
stochastic embeddings. First, it remains problematic to model dy-
namics of item transitions with distributions while still satisfying
the triangle inequality. Secondly, the aggregation of these sequen-
tial signals to obtain the sequence’s representation (i.e., the user’s
representation) is still not resolved. To tackle both challenges, we
introduce Wasserstein distances as attention weights to measure
the pair-wise relationships between items in the sequence, and
we also adopt the linear combination property of Gaussian distri-
butions [5] to aggregate historical items and obtain the sequence
representation.

4.2.1 Wasserstein Attention. We propose a novel variant of self-
attention adaptive to stochastic embeddings. We first denote A ∈

Rn×n as the self-attention values. Akt denotes the attention value
between item sk and item st in k-th and t-th positions in the se-
quence, where k ≤ t with the consideration of causality, repspec-
tively. According to Eq. (2), the attention weight of traditional
self-attention is calculated as:

Akt = QkK
⊤
t /

√
d . (4)

However, dot-product is not designed for measuring the discrep-
ancy between distributions (i.e., stochastic embeddings) and fails
to satisfy triangle inequality. Instead, we adopt Wasserstein dis-
tance4 [38] to measure the distance between stochastic embed-
dings of two items. Formally, given two items sk and st , the corre-
sponding stochastic embeddings are N(µsk , Σsk ) and N(µst , Σst ),

4We also tried Kullback–Leibler (KL) divergence, but it achieves worse performance
and inferior inference efficiency as well as violates triangle inequality.

2039



Sequential Recommendation via Stochastic Self-Attention WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

where µsk = ÊµskW
µ
K , Σsk = ELU

(
diaд(ÊΣskW

Σ
K )

)
+ 1, µst = ÊµstW

µ
Q ,

Σst = ELU
(
diaд(ÊΣstW

Σ
Q )

)
+1. Exponential Linear Unit (ELU) maps

inputs into [−1,+∞). It is used to guarantee the positive definite
property of covariance. We define the attention weight as the nega-
tive 2-Wasserstein distanceW2(·, ·) is measured as follows,

Akt = −(W2(sk , st ))

= −

(
| |µsk − µst | |

2
2 + trace

(
Σsk + Σst − 2(Σ1/2sk Σsk Σ

1/2
st )1/2

))
,

(5)

WhyWasserstein distance? There are several advantages of us-
ing Wasserstein distance. First, Wasserstein distance measures the
distance between distributions, with the capability of measuring
the dissimilarity of items with uncertainty information. Secondly,
Wasserstein distance satisfies triangle inequality [3] and can capture
collaborative transitivity inductively in sequence modeling. Finally,
Wasserstein distance also enjoys the advantage of a more stable
training process as it provides a smoother measurement when two
distributions are non-overlapping [19], which in SR means two
items are far away from each other. However, KL divergence will
produce an infinity distance, causing numerical instability.

Note that Eq. (5) can be computed with batch matrix multipli-
cations without sacrificing computation and space efficiency com-
pared with traditional self-attention, which will be discussed in the
complexity analysis section of Appendices.

4.2.2 Wasserstein Attentive Aggregation. The output embedding
of the item in each position of the sequence is the weighted sum
of embeddings from previous steps, where weights are normalized
attention values Ã as:

Ãkt =
Akt∑t
j=1 Ajt

. (6)

As each item is represented as a stochastic embedding with both
mean and covariance, the aggregations of mean and covariance are
different. We adopt the linear combination property of Gaussian
distribution [5], which is as follows,

zµst =
t∑

k=1
ÃktV

µ
k , and z

Σ
st =

t∑
k=0

Ã2
ktV

Σ
k , (7)

where Vµsk = ÊµskW
µ
V , VΣ

sk = diaд(Ê
Σ
sk ))W

Σ
V , and k ≤ t for causality.

The outputs Zµ = (zµs1 , z
µ
s2 , . . . , z

µ
sn ) and Z

Σ = (zΣs1 , z
Σ
s2 , . . . , z

Σ
sn ) to-

gether form the newly generated sequence’s stochastic embeddings,
which aggregates historical sequential signals with awareness of
uncertainty.

4.3 Feed-Forward Network and Layer Outputs
The self-attention and the aggregation learn relationships in linear
transformation. However, non-linearity can capture more complex
relationships. We apply two point-wise fully connected layers with
an ELU activation to introduce non-linearity in learning stochastic
embeddings:

FFNµ (zµst ) = ELU(zµstW
µ
1 + b

µ
1 )W

µ
2 + b

µ
2 ,

FFNΣ(zΣst ) = ELU(zΣstW
Σ
1 + b

Σ
1 )W

Σ
2 + b

Σ
2 ,

(8)

whereW ∗
1 ∈ Rd×d ,W ∗

2 ∈ Rd×d ,b∗1 ∈ Rd , andb∗2 ∈ Rd are learnable
parameters and ∗ can be µ or Σ. We adopt ELU instead of ReLU
because of the numerical stability of ELU. We also adopt other
components like [17, 40, 44], such as residual connection, layer
normalization, and dropout layers, the layer outputs are,

Zµst = zµst + Dropout(FFN
µ (LayerNorm(zµst ))),

ZΣ
st = ELU

(
zΣst + Dropout(FFN

Σ(LayerNorm(zΣst )))
)
+ 1.

(9)

We adopt ELU activation and ones addition to covariance embed-
dings to guarantee the positive definite property of covariance. Note
that if we stack more layers, Zµ and ZΣ can be inputs of the next
Wasserstein self-attention layer. We ignore the layer superscript
for avoiding over-complex symbolization.

4.4 Prediction Layer
We predict the next item based on output embeddings Zµ and ZΣ

from last layer if we stack several layers. We adopt the similar
shared item embedding strategy in [17, 22, 40] for reducing model
size and the risk of overfitting. Formally, for the item st in the t-
th position of the sequence, the prediction score of next item j at
(t + 1)-th position is formulated as 2-Wasserstein distance of two
distributions N(µst , Σst ) and N(µ j , Σj ),

dst , j =W2(st , j), (10)

where µst = Zµst and Σst = ZΣ
st are inferred representations given

(s1, s2, · · · , st ), 1 ≤ t ≤ n; µ j = Mµ
j and Σj = MΣ

j are embeddings
indexed from input stochastic embedding tablesMµ andMΣ.

For evaluation, different from dot-product methods, a smaller
distance score indicates a higher probability of the next item. We
thus generate the top-N recommendation list by sorting scores in
ascending order.

4.5 BPR Loss with Positive v.s. Negative
We adopt the standard BPR loss [36] as base loss for measuring
the ranking prediction error. However, BPR loss fails to consider
the distance between the positive item and the negative sampled
item. Therefore, we introduce a regularization term to enhance
such distances as follows:

ℓpvn (st , j
+, j−) =

[
dst , j+ − dj+, j−

]
+
, (11)

where [x]+ = max(x , 0) is the standard hinge loss, j+ is the ground
truth next item, and j− is a randomly sampled negative item from
items that the user never interacts with. The intuition behind
ℓpvn (t , j

+, j−) is that the distance between positive item and nega-
tive item dj+, j− has to be larger than the prediction distance dst , j+ .
Otherwise, when dj+, j− < dst , j+ , it becomes counter-intuitive. The
inequalitydj+, j− < dst , j+ indicates that the positive item j+ is closer
with negative item j− than with st while st , as the previous item of
j+, should have a smaller distance with j+ instead. We incorporate
this hinge loss as a regularization term with BPR loss into the final
loss as follows,

L =
∑

Su ∈S

|Su |∑
t=1

− log(σ (dst , j− −dst , j+ ))+λℓpvn (st , j
+, j−)+β | |Θ| |22 .

(12)
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We minimize L and optimize all learnable parameters Θ with Adam
optimizer [18]. In the ideal case, the second term λℓ(st , j

+, j−) be-
comes 0, which means st is close to j+ but both st and j+ are far
away from j−.

5 EXPERIMENTS
In this section, we validate the effectiveness of the proposed STOSA
in several aspects by presenting experimental results and com-
parisons. The experiments answer the following research ques-
tions (RQs):

• RQ1: Does STOSA provide better recommendations than base-
lines?

• RQ2: What is the influence of Wasserstein self-attention and the
regularization term ℓpvn?

• RQ3: Does STOSA help the item cold start issue?
• RQ4: What is the distinction between dot-product and Wasser-
stein attention?

• RQ5: Why STOSA can alleviate the item cold-start issue?

5.1 Datasets
We evaluate the proposed STOSA on five public benchmark datasets
from Amazon review datasets across various domains, with more
than 1.2 million users and 63k items in total. Amazon datasets
are known for high sparsity and have several categories of rating
reviews. We use timestamps of each rating to sort interactions of
each user to form the sequence. The latest interaction is used for
testing, and the last second one is used for validation. Following [7,
10, 17, 22, 40, 48], we also adopt the 5-core settings by filtering
out users with less than 5 interactions. We treat the presence of
ratings as positive interactions. Details of datasets statistics and
preprocessing steps are in the Appendices.

5.2 Evaluation
For each user, we sort the prediction scores calculated by Eq. (10)
in ascending order to generate the top-N recommendation list. We
rank all items instead of the biased sampling evaluation [20]. We
adopt the standard top-N ranking evaluation metrics, Recall@N,
NDCG@N, and Mean Reciprocal Rank (MRR). Recall@N measures
the average number of positive items being retrieved in the gener-
ated top-N recommendation list for each user. NDCG@N extends
Recall@N by also considering the positions of retrieved positive
items in the top-N list. MRR measures the ranking performance
in the entire ranking list instead of top-N. We report the averaged
metrics over all users. We report the performances when N = 1
and N = 5.

5.3 Baselines
We compare the proposed STOSA with the following baselines
in three groups. The first group includes static recommendation
methods, which ignore the sequential order, including BPR [36] and
LightGCN [13]. The second group of baselines consist of recom-
mendation methods based on metric learning, including CML [16],
SML [23]. The third group includes sequential recommendation
methods: TransRec [10], Caser [41], SASRec [17], DT4SR [7], and
BERT4Rec [40].

For all baselines, we search the embedding dimension in {64, 128}.
As the proposed model has both mean and covariance embeddings,
we only search for {32, 64} for STOSA for the fair comparison. More
details of hyper-parameters grid search are in Appendices.

5.4 Overall Comparison (RQ1 and RQ2)
We compare the performance of all models in Table 1 and demon-
strate the effectiveness of STOSA. We interpret the results with
following observations:
• STOSA obtains the best performance against all baselines in all
metrics, especially in top-1 recommendation (Recall@1). The
relative improvements range from 3.16% to 35.11% in all metrics,
demonstrating the superiority of STOSA. We can also observe
that improvements are consistent in MRR for measuring the
entire recommendation list, ranging from 5.68% to 11.54%. We
attribute improvements to several factors of STOSA: (1). distri-
bution representations help expand the latent interaction space
of items to better understand uncertainty and flexibility; (2). col-
laborative transitivity enhances the discovery and induction of
collaborative signals inherent in item-item transitions; (3). the
newly introduced ℓpvn loss poses an additional constraint, which
restrains distances between positive items and negative items to
be no larger than ones of positive item transitions.

• Static methods, including BPRMF, LightGCN, CML, and SML, per-
form worse than sequential methods. This phenomenon verifies
the necessity of temporal order information for the recommen-
dation. Among all static methods, BPRMF, LightGCN achieve
the best performances in different datasets. BPRMF and Light-
GCN perform better in Tools and Office datasets while achieving
comparative results in other datasets. The reason for inferior per-
formances of metric learning methods (CML and SML) might be
the norm constraint of embeddings as both models will normalize
all embeddings to have the norm of one.

• Among all sequential baselines, SASRec and DT4SR perform
the best. DT4SR outperforms SASRec in three of five datasets,
indicating the necessity of distribution representations and mod-
eling uncertainty information in sequential recommendation.
BERT4Rec fails to achieve satisfactory performance potentially
due to the loss inconsistency between the adopted Cloze objective
and the recommendation task. The comparison between Caser
and Transformer-based methods demonstrates the effectiveness
of self-attention in sequential modeling for recommendation.

5.5 Parameters Sensitivity (RQ2)
In this section, we investigate the performance sensitivity of the
weight λ on the additional regularization ℓpvn across all datasets.
Recall that the λ in Eq. (12) constraints the distance between the
positive items and sampled negative items to be no less than the
ground truth prediction distance. The trends are shown in Figure 2.

With a proper selection of λ, STOSA can perform better than
SASRec and DT4SR. We can observe that as the values of λ become
larger, the MRR performance first improves then drops. Another
observation is that the values of λ can significantly affect the per-
formance. A properly selected λ can dramatically improves the
performance, indicating the necessity of the consideration of dis-
tances between positive items and sample negative items. However,
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Table 1: Overall Performance Comparison Table. The best and second-best results are bold and underlined, respectively. ‘OOM’
means the out-of-memory error. ‘Improve.’ is the relative improvement against the second-best baseline performance.

Dataset Metric BPRMF LightGCN CML SML TransRec Caser SASRec DT4SR BERT4Rec STOSA Improv.

Home

Recall@1 0.0029 0.0026 0.0025 0.0026 0.0018 OOM 0.0046 0.0029 0.0029 0.0053 +13.63%
Recall@5 0.0096 0.0095 0.0076 0.0084 0.0063 OOM 0.0127 0.0129 0.0105 0.0133 +3.16%
NDCG@5 0.0062 0.0060 0.0059 0.0056 0.0040 OOM 0.0087 0.0082 0.0067 0.0093 +6.76%

MRR 0.0073 0.0071 0.0062 0.0061 0.0052 OOM 0.0094 0.0093 0.0092 0.0100 +6.17%

Beauty

Recall@1 0.0082 0.0064 0.0072 0.0069 0.0085 0.0112 0.0129 0.0143 0.0119 0.0193 +35.11%
Recall@5 0.0300 0.0287 0.0249 0.0279 0.0321 0.0309 0.0416 0.0449 0.0396 0.0504 +12.15%
NDCG@5 0.0189 0.0174 0.0184 0.0173 0.0204 0.0214 0.0274 0.0296 0.0257 0.0351 +18.45%

MRR 0.0216 0.0203 0.0198 0.0191 0.0236 0.0231 0.0291 0.0323 0.0294 0.0360 +11.54%

Tools

Recall@1 0.0062 0.0071 0.0048 0.0055 0.0059 0.0056 0.0103 0.0103 0.0059 0.0120 +15.81%
Recall@5 0.0216 0.0231 0.0129 0.0156 0.0210 0.0129 0.0284 0.0289 0.0189 0.0312 +7.85%
NDCG@5 0.0139 0.0152 0.0096 0.0107 0.0134 0.0091 0.0194 0.0196 0.0123 0.0217 +11.04%

MRR 0.0154 0.0170 0.0107 0.0118 0.0152 0.0106 0.0207 0.0206 0.0160 0.0226 +9.81%

Toys

Recall@1 0.0084 0.0077 0.0072 0.0102 0.0062 0.0089 0.0193 0.0202 0.0110 0.0240 +18.88%
Recall@5 0.0301 0.0266 0.0249 0.0283 0.0222 0.0240 0.0551 0.0550 0.0300 0.0577 +4.86%
NDCG@5 0.0194 0.0173 0.0154 0.0195 0.0143 0.0210 0.0377 0.0360 0.0206 0.0412 +9.45%

MRR 0.0216 0.0200 0.0178 0.0210 0.0166 0.0221 0.0385 0.0387 0.0244 0.0415 +7.35%

Office

Recall@1 0.0073 0.0088 0.0096 0.0090 0.0100 0.0069 0.0198 0.0206 0.0137 0.0234 +13.59%
Recall@5 0.0214 0.0226 0.0249 0.0190 0.0343 0.0302 0.0656 0.0630 0.0485 0.0677 +3.20%
NDCG@5 0.0144 0.0157 0.0172 0.0140 0.0219 0.0186 0.0428 0.0421 0.0309 0.0461 +7.71%

MRR 0.0162 0.0181 0.0191 0.0164 0.0263 0.0268 0.0457 0.0475 0.0408 0.0502 +5.68%
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Figure 2: MRR performances over various λ on all datasets.

λ should not be too large as negative items are not strictly negative
rather than sampled negative items, which is the potential reason
why the performance drops when λ increases.

One special case is setting λ = 0, which is also an ablation study
of verifying the effectiveness of STOSA. When λ = 0, STOSA still
outperforms SASRec in most datasets, except the Tools dataset.
This indicates the superiority of Wasserstein Self-Attention and the
necessity of modeling uncertainty information and collaborative
transitivity for the sequential recommendation.

5.6 Improvements Analysis (RQ3)
In this section, we analyze the sources of performance gains by
comparing with SASRec on different groups of users and items.
The analysis verifies the effectiveness of uncertainty information
in user modeling and cold start items issue alleviation.

5.6.1 Performances w.r.t Sequence Lengths. We separate users into
groups based on their number of interactions in the training portion,
which is also the training sequence lengths of users. We report
the average NDCG@5 on each group of users. Figure 3 shows
the sizes of each group of users and the corresponding NDCG@5

performances. The group with the shortest sequence length has the
most users, and sizes decrease as sequence lengths become longer.

From Figure 3, STOSA achieves most significant improvements
in users within the largest sequence length interval, compared
with short sequences. The relative improvements on the longest
sequence interval range from 9.70% to 54.45% across all datasets.
The intuition behind these improvements is that users with more
interactions are more likely to have diverse interests, indicating
more uncertain behaviors. It demonstrates the effectiveness of sto-
chastic representations in capturing uncertainty in user behaviors.
We can also observe that STOSA can achieve comparative and bet-
ter performances in most sequence length intervals, demonstrating
the superiority of STOSA for the sequential recommendation.

5.6.2 Performances w.r.t Item Popularity. We investigate the per-
formances on different groups of items based on the popularity to
demonstrate that the collaborative transitivity and the proposed
regularization ℓpvn both help alleviate the cold-start items issue.
We report the sizes and average NDCG@5 on each group of items,
and each group is separated based on popularity. The distribution of
sizes is similar to the one of users, where most items are unpopular.
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Figure 3: NDCG@5 performances on different sequence lengths (i.e., number of training interactions of users) on all datasets.
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Figure 4: NDCG@5 performances on different item popularity (i.e., number of training interactions of items) on all datasets.

The performances comparison on all datasets is shown in Fig-
ure 4. For all datasets, the best improvements are from items with
interactions no more than 3 (i.e., cold start items). This observation
supports the effectiveness of Wasserstein Self-Attention in cap-
turing collaborative transitivity and the additional regularization
ℓpvn in generalizing the latent item transitions discovery. However,
the performance becomes worse for popular items in Beauty and
Toys datasets. We believe the reason might be the noisy neighbors
of popular items in stochastic representations, which introduces
potentially larger space for collaborative neighborhoods discovery.

5.7 Qualitative Analysis
In this section, we qualitatively visualize the attention weights and
some examples of similar items retrieval. Specifically, we conduct a
case study on a specific user with a long sequence length while her
test item is a cold start item, which helps identify the significant
difference between STOSA and SASRec. We also analyze the pro-
posed STOSA by comparing the prediction lists with SASRec and
STOSA, which can be found in Appendices.

5.7.1 Wasserstein Self-Attentions Visualization (RQ4). Figure 5 in
the Appendices illustrates the heat maps of self-attention weights
on the last 20 positions, learned by SASRec and STOSA, respectively.
Recall that one of the critical differences between SASRec and
STOSA is the calculation of attention weights, where SASRec adopts
dot-product, and STOSA uses negative 2-Wasserstein distance.

We can observe some commonalities and differences between
two attention weights heat maps. The attention weights of STOSA
and SASRec are shown in Figure 5a and Figure 5b, respectively.
Both attention weights give larger weights to more recent behav-
iors, where the values in the bottom right corner are significant.
However, STOSA has a more uniform attention weights distribution
than SASRec as SASRec only highlights a small set of items in the
sequence. The reason behind this difference is potentially the con-
sideration of collaborative transitivity, which connects co-occurred
items more tightly and introduces more collaborative neighbors in
item-item transitions modeling.

5.7.2 Item Embeddings Visualization Comparison (RQ5). We use
T-SNE [43] to visualize the latent spaces of items learned by SASRec
and STOSA, respectively, as shown in Figure 6 in the Appendices.
We color items based on the items’ popularity. We have the follow-
ing observations: (1). the distributions of popular items (items with
popularity more than 7) are significantly different between SAS-
Rec and STOSA, and (2). the distributions of cold items (popularity
<= 3) are mostly uniform in both SASRec and STOSA. In SASRec,
popular items are mostly located far away from the center and
not closely connected to each other. STOSA learns a significantly
different distribution of popular items, forcing them to locate close
to the center and form a denser connected group. Moreover, due
to the limited data for cold items, most cold items are uniformly
distributed.

This difference is attributed to the collaborative transitivity
learned in STOSA, which SASRec ignores and fails to generalize
collaborative signals to cold items. The collaborative transitivity
helps cold items to retrieve more collaborative neighbors as popular
items can be related to triangle inequality. It again demonstrates
the necessity and superiority of collaborative transitivity signals
for the sequential recommendation.

6 CONCLUSION
This work proposes a novel stochastic self-attention sequential
model STOSA for modeling dynamic uncertainty and capturing
collaborative transitivity. We also introduce a novel regularization
to BPR loss, guaranteeing a large distance between the positive
item and negative sampled items. Extensive results and qualitative
analysis on five real-world datasets demonstrate the effectiveness of
STOSA and alsowell support the superiority of STOSA in alleviating
cold start item recommendation issues as well as the necessity of
collaborative transitivity for sequential recommendation.
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Appendices

A COMPLEXITY ANALYSIS
We analyze the space and time complexity of STOSA and demon-
strate that STOSA has similar asymptotic space and time complexity
as SASRec [17]. Note that even if stochastic embeddings are com-
prised of mean and covariance embeddings, we still use the same
latent size as SASRec by equally separating dimensions to mean
and covariance. For example, if we use d = 128 in SASRec, we use
dµ = d/2 = 64 and dΣ = d/2 = 64 for fair comparisons.

A.1 Space Complexity:
The learnable parameters in STOSA are from the stochastic em-
beddings and parameters in the Wasserstein self-attention layers,
feed-forward networks and layer normalization. The overall num-
ber of parameters isO(2|V| d2 +2n

d
2 +2(

d
2 )

2) = O(|V|d+nd+d2/2),
which is slightly smaller than the complexity of SASRec, which is
O(|V|d + nd + d2) [17].

A.2 Time Complexity:
The computational complexity of STOSA is dominated by the
Wasserstein self-attention layer and the feed-forward networks.
The Wasserstein self-attention defined in Eq. (5) can be converted
to using batch matrix multiplications. The second term in Eq. (5)
can be transformed as a calculation of Euclidean norm as follows

trace
(
Σst + Σsk − 2(Σ1/2sk Σst Σ

1/2
sk )1/2

)
= | |Σ

1/2
st − Σ

1/2
sk | |2F , (13)

where | | · | |2F is Frobenius norm that can be calculated by matrix
multiplications. Also, as Σst and Σsk are both diagonal matrices, we
can further reduce the computational complexity to O(nd2 +

n2d
2 +

2n2). And the Euclidean norm of mean embeddings part in Eq. (5)
can also be calculated by matrix multiplications with the same
time complexity. Therefore, the overall Wasserstein self-attention
time complexity isO(nd + n2d + 4n2). By also considering the feed-
forward networks, we obtain the final asymptotic computational
complexity asO(nd+n2d+4n2+ nd2

2 ). The computation complexity
of traditional self-attention [17] is O(n2d + nd2). Note that both
complexities are typically dominated by the O(n2d) term as d is
typically much larger than 4, It indicates that STOSA has asymptotic
similarly time complexity with SASRec.

Table 2: Datasets Statistics

Dataset #users #items #interactions density
avg.

interactions
per user

Home 66,519 28,237 551,682 0.03% 8.3
Beauty 22,363 12,101 198,502 0.05% 8.3
Toys 19,412 11,924 167,597 0.07% 8.6
Tools 16,638 10,217 134,476 0.08% 8.1
Office 4,905 2,420 53,258 0.44% 10.8

B DATASETS AND PREPROCESSING
Details of datasets statistics5 are presented in Table 2.

C IMPLEMENTATION DETAILS AND
BASELINES GRID SEARCH

We implement STOSA with Pytorch in a Nvidia 3090 GPU with
64GB system memory. We grid search all parameters and report
the test performance based on the best validation results. For all
baselines, we search the embedding dimension in {64, 128}. As the
proposed model has both mean and covariance embeddings, we
only search for {32, 64} for STOSA for the fair comparison. We
also search max sequence length from {50, 100}. We tune the learn-
ing rate in {10−3, 10−4}, search the L2 regularization weight from
{10−1, 10−2, 10−3}, dropout rate from {0.3, 0.5, 0.7}. For sequential
methods, we search number of layers from {1, 2, 3}, and number of
heads in {1, 2, 4}. We adopt the early stopping strategy that model
optimization stops when the validation MRR does not increase for
50 epochs. The followings are the model specific hyper-parameters
search ranges of baselines: The third group consists of sequential
recommendation methods:
• BPR:6 BPR is the most classical collaborative filtering method
for personalized ranking with implicit feedbacks. We search the
learning rate in {10−3, 10−4} and L2 regularization weight from
{10−1, 10−2, 10−3}.

• LightGCN:7 LightGCN is the state-of-the-art static recommen-
dation method, which considers high-order collaborative signals
in user-item graph. We search number of layers from {1, 2, 3},
and node dropout from {0.1, 0.3, 0.5, 0.7}.

• CML:8 One of the earliest works that adopt distance metrics
to measure the affinity between users and items for recommen-
dation. We search covariance loss weight from {0.1, 0.3}, and
margin from {3.0, 4.0, 5.0}.

• SML:9 This method is the state-of-the-art metric learning rec-
ommendation method. It extends CML to additionally consider
item-centric distances. We search the γ from {5, 10, 20}, λ from
{0.01, 0.1, 1.0}, and margin {0.1, 0.3, 0.5}.

• TransRec:10 A metric learning-based sequential recommenda-
tion that proposes translation vectors to encode the item transi-
tion relationships. We search the λ from {0.001, 0.01, 0.1}.

• Caser:11 A CNN-based sequential recommendation method that
views the sequence embedding matrix as an image and applies
convolution operators to it. We search the length L from {5, 10},
and T from {1, 3, 5}.

• SASRec:12 The state-of-the-art sequential method that depends
on the Transformer architecture. We search the dropout rate
from {0.3, 0.5, 0.7}.

• DT4SR:13 A metric learning-base sequential method that mod-
els items as distributions and proposes mean and covariance
Transformers. We search the dropout rate from {0.3, 0.5, 0.7}.

5https://jmcauley.ucsd.edu/data/amazon/
6https://github.com/xiangwang1223/neural_graph_collaborative_filtering
7https://github.com/kuandeng/LightGCN
8https://github.com/changun/CollMetric
9https://github.com/MingmingLie/SML
10https://github.com/YifanZhou95/Translation-based-Recommendation
11https://github.com/graytowne/caser_pytorch
12https://github.com/RUCAIBox/CIKM2020-S3Rec
13https://github.com/DyGRec/DT4SR
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• BERT4Rec:14 This method extends SASRec to model bidirec-
tional item transitions with standard Cloze objective. We search
the mask probability from the range of {0.1, 0.2, 0.3, 0.5, 0.7}.

D QUALITATIVE ANLAYSIS
D.1 Predictions Comparison

Table 3: Prediction lists comparison of user
A278LEQK1TEPVB. The ground truth item is in red
and each item is associated with its ID and the popularity.
The names of items are described in the following second
paragraph.

Model SASRec STOSA

Rank-1 (Wraparound Labels, 12) (WF-7620 Printer, 3)
Rank-2 (WF-3640 Printer, 3) (Wraparound Labels, 12)
Rank-3 (Locker, 3) (WF-3640 Printer, 3)
Rank-4 (Binders, 1) (Speaker Phone, 8)
Rank-5 (WF-7620 Printer, 3) (Ring Binder, 10)

We show the differences of top-5 predicted ranking lists for the
user A278LEQK1TEPVB between SASRec and STOSA in Table.3.
The user’s last five interacted items are S[−5 :] = [‘Ink Refillable’,
‘Write ’N Wipe’, ‘Magnetic Whiteboard’, ‘Pencil Cup Holder’, ‘WF-
4640 Inkjet Printer’ ]. Moreover, STOSA can prioritize more relevant
items even when items are cold start. The last interacted item of
the user A278LEQK1TEPVB is a Inkjet Printer. The rank-1 item of
STOSAWF-7620 Printer is a better version of Inkjet Printer while
the rank-1 item of SASRec is a Wraparound Labels, which does
not match with the user’s real interests. The reason might be that
SASRec prefers more popular items and Wraparound Labels has
more interactions than WF-7620 Printer. We can conclude that sto-
chastic representations in STOSA can introduce different neighbors
by utilizing collaborative transitivity information and also upvote
relevant but cold start items in recommendation list.

D.2 Wasserstein Self-Attentions
Visualization (RQ4)
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Figure 5: Attention Weights Visualizations of STOSA and
SASRec on the user A278LEQK1TEPVB in Office dataset.

14https://github.com/FeiSun/BERT4Rec

D.3 Item Embeddings Visualization
Comparison (RQ5)
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Figure 6: T-SNE Visualizations of item embeddings in Office
dataset learned from STOSA and SASRec. The figures are
best viewed in color.

2047

https://github.com/FeiSun/BERT4Rec

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Metric Learning for Recommendation
	2.3 Distribution Representations

	3 Preliminaries and Discussions
	3.1 Problem Definition
	3.2 Self-Attention for Recommendation

	4 Proposed Model
	4.1 Stochastic Embedding Layers
	4.2 Wasserstein Self-Attention Layer
	4.3 Feed-Forward Network and Layer Outputs
	4.4 Prediction Layer
	4.5 BPR Loss with Positive v.s. Negative

	5 Experiments
	5.1 Datasets
	5.2 Evaluation
	5.3 Baselines
	5.4 Overall Comparison (RQ1 and RQ2)
	5.5 Parameters Sensitivity (RQ2)
	5.6 Improvements Analysis (RQ3)
	5.7 Qualitative Analysis

	6 Conclusion
	Acknowledgments
	References
	Appendices
	A Complexity Analysis
	A.1 Space Complexity:
	A.2 Time Complexity:

	B Datasets and Preprocessing
	C Implementation Details and Baselines Grid Search
	D Qualitative Anlaysis
	D.1 Predictions Comparison
	D.2 Wasserstein Self-Attentions Visualization (RQ4)
	D.3 Item Embeddings Visualization Comparison (RQ5)


