
Continuous-Time Sequential Recommendation with Temporal
Graph Collaborative Transformer

Ziwei Fan*, Zhiwei Liu*

Department of Computer Science,

University of Illinois at Chicago

USA

{zfan20,zliu213}@uic.edu

Jiawei Zhang

IFM Lab, Department of Computer

Science, University of California,

Davis

USA

jiawei@ifmlab.org

Yun Xiong

Shanghai Key Laboratory of Data

Science, School of Computer Science,

Fudan University

China

yunx@fudan.edu.cn

Lei Zheng

Pinterest Inc.

USA

lzheng@pinterest.com

Philip S. Yu

Department of Computer Science,

University of Illinois at Chicago

USA

psyu@uic.edu

ABSTRACT
In order to model the evolution of user preference, we should learn

user/item embeddings based on time-ordered item purchasing se-

quences, which is defined as Sequential Recommendation (SR) prob-

lem. Existing methods leverage sequential patterns to model item

transitions. However, most of them ignore crucial temporal collab-

orative signals, which are latent in evolving user-item interactions

and coexist with sequential patterns. Therefore, we propose to unify

sequential patterns and temporal collaborative signals to improve

the quality of recommendation, which is rather challenging. Firstly,

it is hard to simultaneously encode sequential patterns and collab-

orative signals. Secondly, it is non-trivial to express the temporal

effects of collaborative signals.

Hence, we design a new framework Temporal Graph Sequential
Recommender (TGSRec) upon our defined continuous-time bi-

partite graph. We propose a novel Temporal Collaborative Trans-

former (TCT) layer in TGSRec, which advances the self-attention

mechanism by adopting a novel collaborative attention. TCT layer

can simultaneously capture collaborative signals from both users

and items, as well as considering temporal dynamics inside sequen-

tial patterns. We propagate the information learned from TCT layer

over the temporal graph to unify sequential patterns and temporal

collaborative signals. Empirical results on five datasets show that

TGSRec significantly outperforms other baselines, in average up

to 22.5% and 22.1% absolute improvements in Recall@10 and MRR,

respectively. Our code is available online in https://github.com/

DyGRec/TGSRec.

*Both authors contribute equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482242

CCS CONCEPTS
• Information systems→Collaborative filtering;Recommender
systems; Personalization.

KEYWORDS
Sequential Recommendation, Temporal Effects, Graph Neural Net-

work, Transformer

ACM Reference Format:
Ziwei Fan*, Zhiwei Liu*, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip

S. Yu. 2021. Continuous-Time Sequential Recommendation with Temporal

Graph Collaborative Transformer. In Proceedings of the 30th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’21),
November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3459637.3482242

1 INTRODUCTION
Recommender system has become essential in providing personal-

ized information filtering services in a variety of applications [21,

26, 31, 40, 41]. It learns the user and item embeddings from his-

torical records on the user-item interactions [8, 34]. In order to

model the dynamics of the user-item interaction, current research

works [5, 9, 35, 37, 42] leverage historical time-ordered item pur-

chasing sequences to predict future items for users, referred to as

the sequential recommendation (SR) problem [9, 12]. One of the

fundamental assumptions of SR is that the users’ interests change

smoothly [9, 12, 37, 42]. Thus, we can train a model to infer the

items more likely to appear in the future sequence. For example,

with the recent developments of Transformer [38], current endeav-
ors design a series of self-attention SR models to predict future

item sequences [12, 36, 44]. A self-attention model infers sequence

embeddings at position 𝑡 by assigning an attention weight to each

historical item and aggregating these items. The attention weights

reveal impacts of previous items to the current state at time point 𝑡 .

Despite their effectiveness, existing works only leverage the

sequential patterns to model the item transitions within sequences,

which is still insufficient to yield satisfactory results. The reason

is that they ignore the crucial temporal collaborative signals,
which are latent in evolving user-item interactions and coexist with

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

433

https://github.com/DyGRec/TGSRec
https://github.com/DyGRec/TGSRec
https://doi.org/10.1145/3459637.3482242
https://doi.org/10.1145/3459637.3482242


Figure 1: A toy example of temporal collaborative signals.
Given the items that users 𝑢1, 𝑢2, 𝑢3 and 𝑢4 like in the past
timestamps 𝑡1, 𝑡2, 𝑡3 and 𝑡4, the target is to recommend an
item to 𝑢4 at 𝑡5 as the next item after 𝑖2.

sequential patterns. To be specific, we present the effects of temporal

collaborative signals in Figure 1. The target is to recommend an

item to 𝑢4 at 𝑡5 as the next item after 𝑖2. By only considering the

sequential patterns, 𝑖3 is recommended since it appears 2 times after

𝑖2 as in𝑢1 and𝑢3, compared with 𝑖4 of only 1 time in𝑢2. However, if

also taking account of collaborative signals, we would recommend

𝑖4, because both 𝑢2 and 𝑢4 have interactions with 𝑖1 at 𝑡2 and 𝑖2 at

𝑡3 and 𝑡4, respectively, which indicates their high similarity. Hence,

𝑢2’s sequential patterns are of more impacts to 𝑢4. This motivates

us to unify sequential patterns and temporal collaborative signals.
However, incorporating temporal collaborative signals in SR is

rather challenging. The first challenge is that it is hard to simultane-

ously encode collaborative signals and sequential patterns. Current

models capture the sequential pattern based on the transition of

items within sequences [9, 12, 28], thus lacking the mechanism to

model the collaborative signals across sequences. Jodie [17] and

DGCF [20] employs LSTM to model the dynamics and interactions

of user and item embeddings but they cannot learn the impacts of all

historical items, thus unable to encode sequences. SASRec [12] pro-

posed to use a self-attention mechanism to encode item sequence,

while the effects of users, i.e., collaborative signals, are omitted. SSE-

PT [44] implicitly models collaborative signals by directly adding

the same user embedding into the sequence encoding. However, it

fails to model the interactions between user and item, thus unable

to explicitly express collaborative signals.

The second challenge is that it is hard to express the temporal

effects of collaborative signals. In other words, it remains unclear

how to measure the impacts of those signals from a temporal per-

spective. For example, in Figure 1, 𝑖1 is interacted with 𝑢2 and 𝑢4 at

𝑡1, while 𝑖2 is interacted with them respectively at 𝑡3 and 𝑡4. Since

there is a lag, it is problematic to ignore the time gap and assume

they are of equal contributions. We should use temporal informa-

tion to infer the importance of those collaborative signals to the

recommendation on 𝑡5. Existing works [9, 12, 20, 36] assume that

items appear discretely with equal time intervals. Thus, they only

focus on the orders/positions of items in the sequence, which limits

their capacity in expressing the temporal information. Some recent

works [19, 50] also notice the importance of time span. But their

models either fail to capture time differences between historical

interactions or are unable to generalize to any unseen future times-

tamps or time difference, thus are still far from revealing the actual

temporal effects of collaborative signals.

(a) Example of CTBG (b) Temporal Inference

Figure 2: The associated CTBG of Figure 1 and the inference
of temporal embeddings of 𝑢4 and 𝑖4 at 𝑡5.

Current transformer-based models [12, 36] adopt self-attention

mechanism, which has query, key, and value inputs from item em-

beddings and employs dot-product to learn their correlation scores.

The limitation is that self-attention is only able to capture item-item

relationships in sequences. Additionally, they have no module to

capture temporal correlations of items. To this end, we propose a

new model Temporal Graph Sequential Recommender (TGSRec).
It consists of two novel components: (1) the Temporal Collaborative

Transformer (TCT) layer and (2) graph information propagation.

The first component advances current transformer-based models

as it can explicitly model collaborative signals in sequences and

express temporal correlations of items in sequences. To be more

specific, TCT layer adopts collaborative attention among user-item

interactions, where the query input to the collaborative attention

is from the target node (user/item), while the key and value in-

puts are from connected neighbors. As such, TCT layer learns the

importance of those interactions, thuswell characterizing the collab-

orative signals. Moreover, TCT layer fuses the temporal information

into the collaborative attention mechanism, which explicitly ex-

presses the temporal effects of those interactions. Altogether, the

TCT layer captures temporal collaborative signals.

The second module is devised upon our proposed Continuous-

Time Bipartite Graph (CTBG). The CTBG consists of user/item

nodes, and interaction edgeswith timestamps, as shown in Figure 2a.

Given timestamps, neighbor items of users preserve sequential

patterns. We propagate temporal collaborative information learned

around each node to surrounding neighbors over CTBG. Therefore,

it unifies sequential patterns with temporal collaborative signals.

In this work, we propose to use temporal embeddings of nodes

for recommendation, which are dynamic and inferred at specified

timestamps. For example, at time 𝑡 , we infer the temporal user

embedding by aggregating the context. We illustrate the temporal

inference of 𝑢4 and 𝑖4 at time 𝑡5 in Figure 2b. The temporal em-

beddings are inferred by our proposed TCT layer. It uses temporal

information to discriminate impacts of those historical interactions

and makes inferences of temporal node embeddings. The contribu-

tions of this paper are as follows:

Graph Sequential Recommendation:We connect the SR prob-

lem with graph embedding methods, which focuses on unifying

the sequential patterns and temporal collaborative signals.

Temporal Collaborative Transformer:We propose a novel tem-

poral collaborative attention mechanism to infer temporal node

embeddings, which jointly models collaborative signals and tem-

poral effects. This overcomes the inadequacy of the traditional

self-attention mechanism on capturing the temporal effects and

user-item collaborative signals.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

434



Extensive Experiments:We conduct a comparison experiment on

five real-world datasets. Comprehensive experiments demonstrate

the state-of-the-art performance of TGSRec and its effectiveness of

modeling temporal collaborative signals.

2 RELATEDWORK
In this section, we first review some related work, which includes

sequential recommendation (SR), temporal information, and some

graph-based recommender systems.

2.1 Sequential Recommendation
SR predicts the future items in the user shopping sequence by

mining the sequential patterns. An initial solution to the SR prob-

lem is to build a Recurrent Neural Network (RNN) [9, 42, 51, 55].

GRU4Rec [9] is proposed to predict the next item in a session by

employing the GRU modules. Later, a Hierarchical RNN [33] is pro-

posed to enhance the RNN model regarding the personalizing infor-

mation. Additionally, LSTM [10, 42] can be applied to explore both

the long-term and short-term sequential patterns. Moreover, in or-

der to capture the intent of users at local sub-sequence, NARM [18]

is proposed by combining the RNN model with attention weights.

The major drawback of the RNNmodel is that it can only generate a

single hidden vector, which limits its power to encode sequences [2].

Recently, owing to the success of self-attention model [3, 22,

38, 52] in NLP tasks, a series of attention-based SR models are pro-

posed [11, 12, 23, 28, 32, 36, 43]. SASRec [12] applies the transformer

layer to assign weights to items in the sequence. Later, inspired by

the BERT [3] model, BERT4Rec [36] is proposed with a bidirectional

transformer layer. [28] introduce the sequence to sequence training

procedure in SR. SSE-PT [44] designs a personalized transformer

to improve the SR performance. ASReP [23] proposes augmenting

short sequences to alleviate the cold-start issue in Transformer. Ti-

SASRec [19] enhances SASRec with the time-interval information

found in the training data. However, these models only focus on

the item transitions within sequences, while unable to unify the

important temporal collaborative signals with sequential patterns

and are not generalized to unseen timestamps.

2.2 Temporal Information
Previously mentioned SR works are specifically designed to cap-

ture sequential patterns, while ignoring the important temporal

information [15, 17, 19, 46, 47]. In practice, the context of users

and items changes over time, which is crucial for modeling the

temporal dynamics in SR. TimeSVD++ [15] is a representative work

which models the temporal information into collaborative filter-

ing (CF) method. It simply treats the bias as a function over time.

BPTF [47] extends matrix factorization to tensor factorization and

uses time as the third dimension. MS-IPF [46] defines a temporal

graph, where it operates PageRank algorithm for recommendation.

Recently, CDTNE [30] is proposed by applying temporal random

walk over its defined continuous-time dynamic network. TGAT [49]

also introduces temporal attention for learning dynamic graph em-

beddings. JODIE [17] develops user and item RNNs to update user

and item embeddings. Regarding the SR problem, a few recent

works [19, 50] also notice the importance of temporal information.

CTA [43], MTAM [11], and TiSASRec [19] all consider to use time

intervals between successive items in sequences. TASER [50] en-

codes both the absolute time and relative time as vectors, which are

processed to attention models to complete the SR task. However,

these models are not able to unify temporal collaborative signals

with sequential patterns.

2.3 Graph-based Recommendation
Because we solve the SR problem based on the graph structure [53,

54], we also review some graph-based recommender system mod-

els [7, 24–26, 30, 40], especially those based on Graph Neural Net-

work (GNN) methods [1, 7, 14, 40]. Compared with directly learning

from sequences, graph-based models can also capture the struc-

tural information [1, 30]. Both NGCF [40] and LightGCN [7] argue

that graph-based models are able to effectively model collaborative

signals, which is crucial in learning user/item embeddings. The

successes of GNN in recommender systems [1, 7, 39, 40] provide

simple yet effective methods in learning user/item embeddings from

graphs. GNN models learn the embeddings by aggregating neigh-

bors [7, 40]. Therefore, it is easy to stack multiple layers to learn

both the first-order and high-order collaborative signals [7, 40].

CTDNE [30] defines a temporal graph to learn dynamic embed-

dings of nodes. TGAT [49] learns the dynamic graph embeddings

based on the graph attention model. Basconv [25] characterizes het-

erogeneous graphs to learn user/item embeddings. Those models

argue that graph is powerful in modeling both the structural and

temporal information. However, few works investigate the possi-

bility of solving SR problems based on graphs. SR-GNN [45] learns

embeddings of session graphs by using a GNN to aggregate item

embeddings but fails to model temporal collaborative signals.

3 DEFINITIONS AND PRELIMINARIES
In this section, we introduce some definitions and preliminaries.

Different from using users’ interactions sequences as inputs in

SR, we introduce the Continuous-Time Bipartite Graph (CTBG) to

represent all temporal interactions. Each edge in this graph has the

timestamp as the attribute. The directly connected neighbors of

every user/item node in this graph preserve the sequential order

via the timestamps at edges. The formal definition of CTBG are

given in the following:

Definition 3.1 (Continuous-Time Bipartite Graph). A con-
tinuous time bipartite graph with 𝑁 nodes and 𝐸 edges for recom-
mendations is defined as B = {U,I, ET }, whereU and I are two
disjoint node sets of users and items, respectively. Every edge 𝑒 ∈ ET
is denoted as a tuple 𝑒 = (𝑢, 𝑖, 𝑡), where 𝑢 ∈ U, 𝑖 ∈ I, and 𝑡 ∈ R+
as the edge attribute. Each triplet (𝑢, 𝑖, 𝑡) denotes the interaction of a
user 𝑢 with item 𝑖 at timestamp 𝑡 .

This paper focuses on the SR problem with continuous times-

tamps. An example of the CTBG is presented in Figure 2a. Let I𝑢 (𝑡)
denote the set of items interacted with the user 𝑢 before times-

tamp 𝑡 , and I \ I𝑢 (𝑡) denote the remaining items. We defined the

continuous-time sequential recommendation problem which we

study in this paper as following:

Definition 3.2 (Continuous-Time Recommendation). At a
specific timestamp 𝑡 , given user set U, item set I, and the associated
CTBG, the continuous-time recommendation of 𝑢 is to generate a

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

435



ranking list of items fromI\I𝑢 (𝑡), where the items that𝑢 is interested
will be ranked top in the list.

Then, the SR problem is equivalent to make continuous-time

recommendations on a set of future timestamps T𝑢 for each user 𝑢:

Definition 3.3 (Continuous-Time Seqential Recommenda-

tion). For a specific user 𝑢, given a set of future timestamps T𝑢 > 𝑇 ,
the continuous-time sequential recommendation for this user is to
make a continuous-time recommendation for every timestamp 𝑡 ∈ T𝑢 .

This is a generalized definition compared with other works [12,

28].We explicitly consider timestamps, while others only care about

the orders/positions. Therefore, differing from existing works using

next-item prediction to evaluate sequential recommendation, future

timestamps should be present to make a prediction. If timestamps

are position numbers in sequences, the studied problem is reduced

to the same definition as using only orders/positions information.

Note that timestamp can be any real value, thus being continuous.

4 PROPOSED MODEL
In this section, we present the TGSRecmodel, which unifies sequen-

tial patterns and temporal collaborative signals. The framework of

the TGSRec model is presented in Figure 3. There are three major

components: 1) Embedding layer, which encodes nodes and times-

tamps in a consistent way to connect the SR problem with graph

embedding method; 2) Temporal Collaborative Transformer (TCT)
layer, which employs a novel temporal collaborative attentionmech-

anism to discriminate temporal impacts of neighbors, and aggre-

gates both node and time embeddings to infer the temporal node

embedding; 3) Prediction layer, which utilizes output embeddings

from the final TCT layer to calculate the score.

4.1 Embedding Layer
We encode two types of embeddings in this paper, one being the

long-term embeddings of nodes, and the other being the continuous-
time embeddings of timestamps on edges.

4.1.1 Long-Term User/Item Embeddings. Long-term embeddings

for users and items are necessary [4] for long-term collaborative

signals representation. In CTBG, it functions as node features and

is optimized to model the holistic structural information. A user

(item) node is parameterized by a vector 𝒆𝑢 (𝒆𝑖 ) ∈ R𝑑 . Since we learn
embeddings for nodes in the CTBG, we retrieve the embedding of

a node by indexing an embedding table 𝑬 = [𝑬U ; 𝑬I ] ∈ R𝑑×|V |
,

where V = U ∪ I. Note that the embedding table 𝑬 serves as a

starting state for the inference of temporal user/item embeddings.

During the training process, 𝑬 will be optimized.

4.1.2 Continuous-Time Embedding. The continuous time encod-

ing [48, 50] behaves as a function that maps those scalar timestamps

into vectors, i.e., Φ : 𝑇 ↦→ R𝑑𝑇 , where𝑇 ∈ R+. Based on previous SR
models [19, 43, 50], time span plays a vital component in expressing

the temporal effects and uncovering sequential patterns. The time

encoding function embeds timestamps into vectors so as to repre-

sent the time span as the dot product of corresponding encoded

time embeddings. Therefore, we define the temporal effects as a

function of time span in continuous time space: given a pair of

interactions (𝑢, 𝑖, 𝑡1) and (𝑢, 𝑗, 𝑡2) of the same user, the temporal

effect is defined as a function𝜓 (𝑡1 − 𝑡2) ↦→ R, which is expressed

as a kernel value of the time embeddings of 𝑡1 and 𝑡2:

𝜓 (𝑡1 − 𝑡2) = K(𝑡1, 𝑡2) = Φ(𝑡1) · Φ(𝑡2), (1)

where K is the temporal kernel and · denotes the dot product

operation. The temporal effect 𝜓 (𝑡1 − 𝑡2) measures the temporal

correlation between two timestamps. Moreover, the time encoding

function should be generalized to any unseen timestamp such that

any time span not found in training data can still be inferred by

the encoded time embeddings. Unlike modeling the absolute time

difference like [19], representing temporal effects as a kernel is

generalized to any timestamp as it models the time representations

directly. Therefore, the temporal effect of any pair of timestamps can

be inductively inferred by the dot product of time representations.

Eq. (1) can be achieved by a continuous and translation-invariant

kernel K(𝑡1, 𝑡2) based on Bochner’s Theorem [27]. By explicitly

representing the temporal features, the temporal embedding is:

Φ(𝑡) ↦→
√

1

𝑑𝑇

[
cos(𝜔1𝑡), sin(𝜔1𝑡), . . . , cos(𝜔𝑑𝑇 𝑡), sin(𝜔𝑑𝑇 𝑡)

]⊤
,

(2)

where 𝝎 =
[
𝜔1, . . . , 𝜔𝑑𝑇

]⊤
are learnable and 𝑑𝑇 is the dimension.

4.2 Temporal Collaborative Transformer
Next, we present the novel TCT layer of TGSRec. We intend to

address two strengths of a TCT layer: (1) constructing informa-

tion from both user/item embeddings and temporal embedding,

which explicitly characterizes temporal effects of the correlations;

(2) a collaborative attention module, which advances existing self-

attention mechanism by modeling the importance of user-item

interactions, which is thus able to explicitly recognize collaborative

signals. To achieve this, we first present the information construc-

tion and aggregation from a user perspective. Then, we introduce

a novel collaborative attention mechanism to infer importance of

interactions. Finally, we demonstrate how to generalize to items.

4.2.1 Information Construction. We construct input information of

each TCT layer as the combination of long term node embeddings

and time embeddings. As such, we can unify temporal information

and collaborative signals. In particular, the query input information

at the 𝑙-th layer for user 𝑢 at time 𝑡 is:

𝒉(𝑙−1)𝑢 (𝑡) = 𝒆 (𝑙−1)𝑢 (𝑡)∥Φ(𝑡), (3)

where 𝑙 = 1, 2, . . . , 𝐿. 𝒉(𝑙−1)𝑢 (𝑡) ∈ R𝑑+𝑑𝑇 is the information for 𝑢 at

𝑡 , 𝒆 (𝑙−1)𝑢 (𝑡) ∈ R𝑑 is the temporal embedding of 𝑢, and Φ(𝑡) ∈ R𝑑𝑇
denotes the time vector of 𝑡 . ∥ denotes the concatenation operation.

Other operations including summation are possible. However, we

use concatenation for simplicity. It also provides intuitive interpre-

tation in the attention, as shown in Eq. (7). Note that when 𝑙 = 1, it

is the first TCT layer. The temporal embedding 𝒆 (0)𝑢 (𝑡) = 𝑬𝑢 , i.e., the
long-term user embedding. When 𝑙 > 1, the temporal embedding

is generated from the previous TCT layer.

In addition to the query node itself, to we also propagate temporal

collaborative information from its neighbors. We randomly sample

𝑆 different interactions of𝑢 before time 𝑡 asN𝑢 (𝑡) = {(𝑖, 𝑡𝑠 ) | (𝑢, 𝑖, 𝑡𝑠 ) ∈
E𝑡 and 𝑡𝑠 < 𝑡}. The input information at the 𝑙-th layer for each

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

436



𝑢1

𝑢2

𝑢3

𝑢4

𝑖1

𝑖2

𝑖4

𝑖3

𝑡5

𝑡4

𝑡3
Neighbor 
Sampling TCT – layer 2Temporal Collaborative Transformer (TCT) – layer 1

Tem
p

o
ral C

o
llab

o
rative 

A
tten

tio
n

 

𝛟(𝑡5)𝒆𝑢4
(𝟎)

𝛟(𝑡3)

𝛟(𝑡4)

𝑢4

𝑖1
𝑡3

𝑖2
𝑡4

𝑡5

key

value

query

𝒆𝑢4
𝟏 (𝒕𝟓)

𝒆𝑖2
𝟎

𝒆𝑖1
𝟎

𝛟(𝑡5)

𝛟(𝑡3)

𝛟(𝑡4)𝒆𝑖2
𝟏 (𝒕𝟒)

𝒆𝑖1
𝟏 (𝒕𝟑)

C
o

n
cat

FFN

Lin
ear

Lin
ear

Lin
ear

Tem
p

o
ral C

o
llab

o
rative A

tten
tio

n
 

Concat

FFN

𝒆𝑢4
𝑳
(𝒕𝟓)

𝒆𝑖4
𝑳
(𝒕𝟓)…

B
P

R
  Lo

ss

Prediction

𝑯𝒩𝑢4

𝟎
(𝒕𝟓)

𝑢1

𝑢2

𝑢3

𝑢4

propagation

Lin
e

ar
Lin

e
ar

Lin
e

ar

TC
T
–

Layer L

…

Figure 3: The framework of TGSRec. The query node is𝑢4, whose final temporal embedding at time 𝑡5 is 𝒉
(2)
𝑢4

(𝑡5). The TCT layer
samples its neighbor nodes and edges. Timestamps on edges are encoded as vectors by using mapping function Φ. Node em-
beddings for the first TCT layer are long-term embeddings. Node embeddings for other TCT layers (e.g. layer 2) are propagated
from the previous TCT layer, thus being temporal node embeddings.

(𝑖, 𝑡𝑠 ) pair is:

𝒉(𝑙−1)
𝑖

(𝑡𝑠 ) = 𝒆 (𝑙−1)
𝑖

(𝑡𝑠 )∥Φ(𝑡𝑠 ), (4)

where 𝒉𝑖 (𝑡𝑠 ) is the information for item 𝑖 at 𝑡𝑠 , 𝒆𝑖 (𝑡𝑠 ) denotes

the temporal embedding of 𝑖 at 𝑡𝑠 . Again, note that when 𝑙 = 1,

𝒆 (0)
𝑖

(𝑡𝑠 ) = 𝑬𝑖 , i.e., the long-term item embedding. When 𝑙 > 1, the

temporal embedding is output from the previous TCT layer.

4.2.2 Information Propagation. After constructing the information,

we propagate the information of sampled neighbors N𝑢 (𝑡) to infer

the temporal embeddings. Since the neighbors are involving with

time 𝑡 , in this way, we can unify the sequential patterns with tem-

poral collaborative signals. We compute the linear combination of

the information from all sampled interactions as:

𝒆 (𝑙)N𝑢
(𝑡) =

∑
(𝑖,𝑡𝑠 ) ∈𝑁𝑢 (𝑡 )

𝜋𝑢𝑡 (𝑖, 𝑡𝑠 )𝑾
(𝑙)
𝑣 𝒉(𝑙−1)

𝑖
(𝑡𝑠 ), (5)

where 𝜋𝑢𝑡 (𝑖, 𝑡𝑠 )1 denotes the importance of an interaction (𝑢, 𝑖, 𝑡𝑠 )
and𝑾𝑣 ∈ R𝑑×(𝑑+𝑑𝑇 ) is the linear transformation matrix. 𝜋𝑢𝑡 (𝑖, 𝑡𝑠 )
represents the impact of a historical interaction (𝑢, 𝑖, 𝑡𝑠 ) to the

temporal inference of𝑢 at time 𝑡 , which is calculated by the temporal

collaborative attention.

4.2.3 Temporal Collaborative Attention. We adopt the novel tem-

poral collaborative attention mechanism to measure the weights

𝜋𝑢𝑡 (𝑖, 𝑡𝑠 ), which considers both neighboring interactions and the

temporal information on edges. Both factors contribute to the im-

portance of historical interactions. Thus, it is a better mechanism

to capture temporal collaborative signals than self-attention mecha-

nism that only models item-item correlations. The attention weight

𝜋𝑢𝑡 (𝑖, 𝑡𝑠 ) is formulated as follows:

𝜋𝑢𝑡 (𝑖, 𝑡𝑠 ) =
1√

𝑑 + 𝑑𝑇

(
𝑾 (𝑙)
𝑘

𝒉(𝑙−1)
𝑖

(𝑡𝑠 )
)⊤

𝑾 (𝑙)
𝑞 𝒉(𝑙−1)𝑢 (𝑡), (6)

where𝑾 (𝑙)
𝑘

and𝑾 (𝑙)
𝑞 are both linear transformation matrices, and

the factor
1√

𝑑+𝑑𝑇
protects the dot-product from growing large with

high dimensions. We adopt dot-product attention because if we

ignore transformationmatrices and the scalar factor, based on Eq. (3)

1𝜋𝑢
𝑡 (𝑖, 𝑡𝑠 ) also has a superscript of the layer number 𝑙 , which is ignored for simplicity.

and Eq. (4), the right-hand side of Eq. (6) can be rewritten as:

𝒆 (𝑙−1)𝑢 (𝑡) · 𝒆 (𝑙−1)
𝑖

(𝑡𝑠 ) + Φ(𝑡) · Φ(𝑡𝑠 ), (7)

where the first term denotes the user-item collaborative signal, and

the second term models the temporal effect according to Eq. (1).

With more stacked layers, collaborative signals and temporal ef-

fects are entangled and tightly connected. Hence, the dot-product

attention can characterize impacts of temporal collaborative signals.

Hereafter, we normalize the attention weights across all sampled

interactions by employing a softmax function:

𝜋𝑢𝑡 (𝑖, 𝑡𝑠 ) =
exp

(
𝜋𝑢𝑡 (𝑖, 𝑡𝑠 )

)∑
(𝑖′,𝑡 ′𝑠 ) ∈𝑁𝑢 (𝑡 ) exp

(
𝜋𝑢𝑡 (𝑖 ′, 𝑡 ′𝑠 )

) . (8)

Moreover, the computation is implemented by packing the in-

formation of all sampled interactions. To be more specific, we

stack the information (Eq. (4)) of all sampled interactions as a

matrix 𝑯 (𝑙−1)
N𝑢

(𝑡) ∈ R(𝑑+𝑑𝑇 )×𝑆 , as illustrated2 in Figure 3. We de-

note 𝑲 (𝑙−1)
𝑢 (𝑡) = 𝑾 (𝑙)

𝑘
𝑯 (𝑙−1)
N𝑢

(𝑡), 𝑽 (𝑙−1)
𝑢 (𝑡) = 𝑾 (𝑙)

𝑣 𝑯 (𝑙−1)
N𝑢

(𝑡) and
𝒒 (𝑙−1)𝑢 (𝑡) = 𝑾 (𝑙)

𝑞 𝒉(𝑙−1)𝑢 (𝑡), which are respectively the key, value

and query input for the temporal collaborative attention module.

We illustrate this in Figure 3 as green blocks. For simplicity and

without ambiguity, we ignore the superscripts and time 𝑡 and com-

bine Eq. (6) and Eq. (8). Then, we can rewrite the Eq. (5) as:

𝒆N𝑢
= 𝑽𝑢 · Softmax

(
𝑲⊤
𝑢 𝒒𝑢√
𝑑 + 𝑑𝑇

)
, (9)

which is in the form of dot-product attention in Transformer [38].

Therefore, we can safely apply the multi-head attention operation

and concatenate the output from each head as the information for

aggregation, which is presented in Figure 3. Note that our attention

is not a self-attention but a temporal collaborative attention, which

jointly models user-item interactions and temporal information.

4.2.4 Information Aggregation. To output the temporal node em-

bedding, the final step of a TCT layer is to aggregate the query

information in Eq. (3) and the neighbor information in Eq. (5). We

concatenate and send them to a feed-forward neural network (FFN):

𝒆 (𝑙)𝑢 (𝑡) = FFN

(
𝒆 (𝑙)N𝑢

(𝑡)∥𝒉(𝑙−1)𝑢 (𝑡)
)
, (10)

2
In figure 3, an embedding is a row vector, while in notations, it is a column vector.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

437



where 𝒆 (𝑙)𝑢 (𝑡) is the temporal embedding of 𝑢 at 𝑡 on 𝑙-th layer, and

FFN consists of two linear transformation layers with a ReLU acti-

vation function in between [38]. The output temporal embedding

𝒆 (𝑙)𝑢 (𝑡) can either be sent to the next layer or output as the final

temporal node embedding for prediction.

4.2.5 Generalization to items. Though we only present the TCT
layer from the user query perspective, it is analogous if the query

is an item at a specific time. We only need to alternate the user

query information to the item query information, and change the

neighbor information in Eq. (4) and Eq. (5) accordingly as user-time

pairs. Then, we can make an inference of the temporal embedding

of item 𝑖 at time 𝑡 as 𝒆 (𝑙)
𝑖

(𝑡), which is sent to the next layer.

4.3 Model Prediction
The TGSRec model consists of 𝐿 TCT layers. For each test triplet

(𝑢, 𝑖, 𝑡), it yields temporal embeddings for both 𝑢 and 𝑖 at 𝑡 on the

last TCT layer, denoting as 𝒆 (𝐿)𝑢 (𝑡) and 𝒆 (𝐿)
𝑖

(𝑡), respectively. Then,
the prediction score is:

𝑟 (𝑢, 𝑖, 𝑡) = 𝒆 (𝐿)𝑢 (𝑡) · 𝒆 (𝐿)
𝑖

(𝑡), (11)

where 𝑟 (𝑢, 𝑖, 𝑡) denotes the score to recommend 𝑖 for 𝑢 at time 𝑡 .

With the generalized continuous-time embeddings and the pro-

posed TCT layers, we can generalize and infer user/item embed-

dings at any timestamp, thus making multiple steps recommenda-

tion feasible while existing work only predicts next item. Recall

that based on the Definition 3.3, we recommend each user a ranking

list of items at the given timestamp. Therefore, we use Eq. (11) to

calculate scores of all candidate items and sort them by scores.

4.4 Model Optimization
To learn the model parameters, we use the pairwise BPR loss [34],

which is widely used for top-N recommendation. The pairwise BPR

loss assumes that the observed implicit feedback items have greater

prediction scores than those unobserved and is also designed for

ranking based top-N recommendation. The objective function is:

L𝑏𝑝𝑟 =
∑

(𝑢,𝑖, 𝑗,𝑡 ) ∈O𝑇

−log𝜎 (𝑟 (𝑢, 𝑖, 𝑡) − 𝑟 (𝑢, 𝑗, 𝑡)) + _ | |Θ| |2
2
, (12)

where O𝑇 denotes the training samples, Θ includes all learnable

parameter, and 𝜎 (·) is a sigmoid function. The training samples

O𝑇 = {(𝑢, 𝑖, 𝑗, 𝑡) | (𝑢, 𝑖, 𝑡) ∈ E𝑇 , 𝑗 ∈ I \ I𝑢 (𝑡)}, where the positive

interaction (𝑢, 𝑖, 𝑡) comes from the edge set E𝑇 of CTBG, the neg-

ative item 𝑗 is sampled from unobserved items I \ I𝑢 (𝑡) of user
𝑢 at timestamp 𝑡 ; Θ includes long-term embedding 𝐸, time em-

bedding parameter 𝜔 , and all linear transformation matrices. The

loss is optimized via mini-batch Adam [13] with adaptive learning

rate. Alternatively, we can optimize the model with a Binary Cross

Entropy (BCE) loss as:

L𝑏𝑐𝑒 =
∑

(𝑢,𝑖, 𝑗,𝑡 ) ∈O𝑇

log𝜎 (𝑟 (𝑢, 𝑖, 𝑡)) + log𝜎 (1 − 𝑟 (𝑢, 𝑗, 𝑡)) + _ | |Θ| |2
2
,

(13)

which is compared with BPR loss in experiments.

5 EXPERIMENTS
In this section, we present the experimental setups and results to

demonstrate the effectiveness of TGSRec. The experiments answer

the following Research Questions (RQs):

• RQ1: Does TGSRec yield better recommendation?

• RQ2: How do different hyper-parameters (e.g., number of neigh-

bors 𝑆 , etc.) affect the performance of TGSRec?
• RQ3: How do different modules (e.g., temporal collaborative

attention, etc.) affect the performance of TGSRec?
• RQ4: Can TGSRec effectively unify sequential patterns and tem-

poral collaborative signals? (Reveal temporal correlations)

5.1 Datasets
We conduct our experiments on four Amazon review datasets [29]

and MovieLens ML-100K dataset [6]. The Amazon datasets are col-

lected from different domains
3
, from the Amazon website during

May 1996 to July 2014. The Movie Lens dataset is collected from

September 19th, 1997 through April 22nd, 1998. We use Unix times-

tamps on all datasets. For each dataset, we chronologically split for

train/validation/test in 80%/10%/10% ratio based on the interaction

timestamps. More details, such as data descriptions and statistics,

are presented in the Table 1. We can find amazon datasets are much

sparser and their time spans are much longer compared with ML-

100K dataset. For Amazon related datasets, the time intervals of

successive interactions are typically in days, while ML-100k has

shorter time intervals, ranging from seconds to days.

Table 1: Statistics of datasets.

Dataset Toys Baby Tools Music ML100K

#Users 17,946 17,739 15,920 4,652 943

#Items 11,639 6,876 10,043 3,051 1,682

#Edges 154,793 146,775 127,784 54,932 48,569

#Train 134,632 128,833 107,684 51,765 80,003

#Valid 11,283 10,191 10,847 2,183 1,516

#Test 8,878 7,751 9,253 984 1,344

Density 0.07% 0.12% 0.08% 0.38% 6.30%

Avg. Int. 85 days 61 days 123 days 104 days 4.8 hours

“Av. Int.” denotes average time interval.

5.2 Experimental Settings
5.2.1 Baselines. We compared TGSRec with the state-of-the-art

methods in three different groups. Static models: Static models ig-

nore the temporal information and generate static user/item embed-

dings for a recommendation. We compare with the most standard

baseline BPRMF [34], and also compare with a recent GNN-based

model LightGCN [7]. Temporal models: We compare some rele-

vant temporal methods, such as CTDNE [30] and one recent model

TiSASRec [19], which utilize time information. We also try to com-

pare with JODIE [17]. However, we do not report it because has

out-of-memory errors on most datasets. Transformer-based SR
models: Since our model is built upon the transformer, we mainly

focus on comparing with the recent transformer-based SR methods,

3
https://jmcauley.ucsd.edu/data/amazon/

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

438



Table 2: Overall Performance w.r.t. Recall@{10,20} and MRR.

Datasets Metric BPR LightGCN SR-GNN GRU4Rec Caser SSE-PT BERT4Rec SASRec TiSASRec CDTNE TGSRec Improv.

Recall@10 0.0021 0.0016 0.0020 0.0274 0.0138 0.1213 0.1273 0.1452 0.1361 0.0016 0.3650 0.2198

Recall@20 0.0036 0.0026 0.0033 0.0288 0.0238 0.1719 0.1865 0.2044 0.1931 0.0045 0.3714 0.1670Toys

MRR 0.0024 0.0018 0.0018 0.0277 0.0082 0.0595 0.0643 0.0732 0.0671 0.0025 0.3661 0.2929

Recall@10 0.0028 0.0036 0.0030 0.0036 0.0077 0.0911 0.0884 0.0975 0.1040 0.0218 0.2235 0.1195

Recall@20 0.0039 0.0045 0.0062 0.0048 0.0193 0.1418 0.1634 0.1610 0.1662 0.0292 0.2295 0.0663Baby

MRR 0.0019 0.0024 0.0024 0.0028 0.0071 0.0434 0.0511 0.0455 0.0521 0.0157 0.2147 0.1626

Recall@10 0.0023 0.0021 0.0051 0.0048 0.0077 0.0775 0.1296 0.0913 0.0946 0.0186 0.2457 0.1161

Recall@20 0.0036 0.0035 0.0092 0.0059 0.0161 0.1155 0.1784 0.1337 0.1356 0.0271 0.2559 0.0775Tools

MRR 0.0026 0.0023 0.0028 0.0051 0.0068 0.0419 0.0628 0.0460 0.0480 0.0203 0.2468 0.1840

Recall@10 0.0122 0.0142 0.0051 0.0549 0.0183 0.0915 0.1352 0.1372 0.1372 0.0071 0.5935 0.4563

Recall@20 0.0152 0.0183 0.0092 0.0589 0.0346 0.1494 0.2093 0.2094 0.1951 0.0163 0.5986 0.3892Music

MRR 0.0057 0.0064 0.0028 0.0540 0.0106 0.0423 0.0824 0.0768 0.0681 0.0037 0.3820 0.2996

Recall@10 0.0461 0.0565 0.0045 0.0996 0.0246 0.1079 0.1116 0.09450 0.1332 0.0350 0.3118 0.1786

Recall@20 0.0766 0.0960 0.0060 0.1168 0.0417 0.1801 0.1786 0.1808 0.2232 0.0536 0.3252 0.1020ML100k

MRR 0.0213 0.0252 0.0012 0.0938 0.0147 0.0519 0.0600 0.0448 0.0605 0.0162 0.2416 0.1478

0.0

0.1

0.2

0.3

.0743 .0666 .0816 .0754

.3649Toys
BERT4Rec
SSE-PT
SASRec
TiSASRec
TGSRec

(a) NDCG@10 in Toys

0.00

0.05

0.10

0.15

0.20

.0484 .0464 .0482 .0546

.2157Baby
BERT4Rec
SSE-PT
SASRec
TiSASRec
TGSRec

(b) NDCG@10 in Baby

0.00

0.05

0.10

0.15

0.20

0.25

.0627
.0440 .0496 .0521

.2450Tools
BERT4Rec
SSE-PT
SASRec
TiSASRec
TGSRec

(c) NDCG@10 in Tools

0.0

0.1

0.2

0.3

0.4

.0823
.0445

.0813 .0758

.4296Music
BERT4Rec
SSE-PT
SASRec
TiSASRec
TGSRec

(d) NDCG@10 in Music

0.00

0.05

0.10

0.15

0.20

0.25

.0608 .0542 .0451
.0645

.2565ML100K
BERT4Rec
SSE-PT
SASRec
TiSASRec
TGSRec

(e) NDCG@10 in ML100K

Figure 4: NDCG@10 Performance in all Datasets. We ignore other methods because of their low values.

which are SASRec [12], BERT4Rec [36], SSE-PT [44], and TiSAS-

Rec [19]. Other SR models: In addition, we also compare with

other type of SR models, i.e., FPMC [35], GRU4Rec [9], Caser [37],

and SR-GNN [45], for comprehensive study.

For each testing interaction (𝑢, 𝑖, 𝑡𝑡𝑒𝑠𝑡 ), our continuous-time se-

quential recommendation setting allows models to use any history

interactions {(𝑢, 𝑖, 𝑡) |𝑡 < 𝑡𝑡𝑒𝑠𝑡 } during the prediction stage, regard-

less of whether the historical interactions are in training portion,

validation part or even in testing set. However, all parameters of

models are only learned from the training data.

We implement TGSRecwith Pytorch in a Nvidia 1080Ti GPU.We

grid search all parameters and report the test performance based

on the best validation results. For all models, we search for the

dimensions of embeddings 𝑑 in range of [8, 16, 32, 64] and we tune

the learning rate in [10−2, 10−3, 10−4], search the L2 regularization

weight from [5 × 10
−1, 10−1, 10−2, 10−3]. For sequential methods,

we search the maximum length of sequence in [50, 100], number of

layers from [1, 2, 3], and number of heads in [1, 2, 4].

5.2.2 Evaluation Protocol. All models will generate a ranking list

of items for each testing interaction. Each evaluation metric is av-

eraged over the total number of interactions as the final reported

result. In order to accelerate the evaluation, we sample 1,000 nega-

tive items for evaluation instead of full set of negative items. For

each interaction (𝑢, 𝑖, 𝑡) in validation/test sets, we treat items that 𝑢

has no interactions with before 𝑡 as negative items. Regarding the

sampling bias for evaluation [16], we apply the unbiased estimator

in [16] to correct the sampled ranks. We evaluate the top-N rec-

ommendation performance by standard ranking-based evaluation

metrics Recall@N, NDCG@N, and Mean Reciprocal Rank (MRR). We

set N to be either 10 or 20 for a comprehensive comparison.

5.3 Performance Comparison (RQ1)
We compare the performance of all models and demonstrate the

superiority of TGSRec. We report the Recall and MRR of all models

in Table 2. Additionally, we visualize the comparisons of NDCG in

Figure 4. We have the following observations:

• TGSRec consistently and significantly outperforms all baselines

in all datasets. In particular, for absolute performance improve-

ment gains relative to the 2nd best, TGSRec achieves 22.51%,

16.90% and 22.15% absolute gains at recall@10, recall@20, and

MRR, respectively. TGSRec also significantly outperforms others

in NDCG, as shown in Figure 4. Several factors together deter-

mine the superiority of TGSRec: (1) TGSRec captures temporal

collaborative signals; (2) TGSRec explicitly expresses temporal

effects; and (3) TGSRec stacks multiple TCT layers to propagate

the information.

• Those static methods achieve the worst performance among all

models. A simple GRU4Rec even performs 10 times better than

them. This indicates that static embeddings fail to utilize the

temporal information, limiting its recommendation ability in SR.

Thus, it is important to model dynamics.

• The CDTNE performs better than Caser and GRU4Rec in Tools

and Baby datasets. This suggests the benefit of modeling temporal

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

439



Table 3: Ablation analysis (Recall@10) on five datasets. Bold
score indicates performance better than the default version,
while ↓ indicates a performance drop more than 50%.

Architecture Toys Baby Tools Music ML100K

(0) Default 0.3649 0.2235 0.3623 0.5935 0.3118

(1) Mean 0.0027↓ 0.0210↓ 0.0055↓ 0.0051↓ 0.0647↓
(2) LSTM 0.0991↓ 0.1237 0.1266↓ 0.3740 0.3088

(3) Fixed 𝜔 0.0854↓ 0.0944↓ 0.0910↓ 0.3679 0.2789

(4) Position 0.0380↓ 0.0243↓ 0.0209↓ 0.0742↓ 0.0878↓
(5) Empty 0.0139↓ 0.0240↓ 0.0018↓ 0.0346↓ 0.0603↓
(6) BCELoss 0.2200 0.1916 0.1763↓ 0.4624 0.3542

information with a graph. But it is still much worse than those

transformer-based methods, which again proves the strength

of transformer in encoding sequences. We also notice the poor

performance of SR-GNN. We analyze the data and find time

intervals between successive interactions vary a lot. Since SR-

GNN is originally designed for session-based sequences, it is not

suitable for SR with a long time span.

• The transformer-based SR methods consistently outperform all

other types of baselines, which demonstrates the effectiveness of

using transformer structure to encode sequence. Among them,

TiSASRec is better than SASRec on two datasets, which proves

the effectiveness of using time information. But it is still far worse

than TGSRec. The reason is twofold. One is that only the interval

information is not enough to unify the temporal information

with sequential patterns. The other is that the proposed temporal

collaborative attention in TCT layer captures more precise and

generalized temporal effects. We find that BERT4Rec is better

than the other baselines on the Tools dataset but not better on

other datasets. Since the main difference between BERT4Rec and

SASRec is the bi-directional sequence encoding, it may break

causal relations among items within a sequence. The TGSRec
performs much better than SR models, showing the necessity of

unifying sequential patterns and temporal collaborative signals.

5.4 Parameter Sensitivity (RQ2)
In this section, we conduct sensitivity analyses of the hyperparame-

ters of TGSRec, including the number of layers 𝐿, embedding size 𝑑 ,

and the number of neighbors 𝑆 . The results are reported in Figure 5.

The number of layers. The number of TCT layers 𝐿 is searched

from {0, 1, 2}. The results are shown in the top row of Figure 5.

When 𝐿 = 0, TGSRec has no TCT layer, thus unable to infer tem-

poral embeddings. We can observe it performs the worst on all

dataset, which justify the benefit of temporal inference. When

𝐿 = 1, it makes temporal inference, but without propagation to the

next layer. Therefore, it still performs worse than 𝐿 = 2 on most

datasets. When 𝐿 = 2, it can not only make temporal inference,

but also propagate the information to capture high-order signals,

which alleviates the data sparsity problem.

Embedding size. The embedding size 𝑑 of TCT layers is searched

from {8, 16, 32, 64}, which is presented at the mid-row in Figure 5.

We can find that the performance increases as the embedding

Top - # of layers: 𝐿

Mid - embedding size: 𝑑

Bottom - # of neighbors: 𝑆

R
ec
al
l@

1
0

R
ec
al
l@

1
0

R
ec
al
l@

1
0

Toys Baby Tools Music ML100K

Figure 5: Recall@10 w.r.t. 𝐿,𝑑 and 𝑆 on 5 datasets.

size enlarges. However, when the embedding size is too large, e.g.,
𝑑 = 64, the performance drops, which results from the over-fitting

problem because of too many parameters.

Number of neighbors. The number of neighbors 𝑆 is searched in

{5, 10, 20}, which is illustrated in the bottom row of Figure 5. We

can observe that TGSRec has performance gains on most datasets

as the number of neighbors grows. It is because more neighbors

can provide more information for encoding both sequences and

temporal collaborative signals.

5.5 Ablation Study (RQ3 & RQ4)
In this section, we conduct experiments to analyze different compo-

nents in TGSRec. We develop several variants to better understand

their effectiveness. Table 3 shows the performance w.r.t. Recall@10

of the default TGSRec and other variants. We label each row with

an index number for quick reference. The default is TGSRecwith all
components and labeled as 0. We develop the variants by substitut-

ing some components, which are temporal collaborative attention

(1-2), continuous-time embeddings (3-5), and loss function (6):

Temporal collaborative attention.We replace the proposed tem-

poral collaborative attention of sampled neighbors with a mean

pooling or LSTM module, both of which are widely used to encode

sequences. Results are labeled as (1) and (2) in Table 3. We can

observe that substituting collaborative attention with a mean pool-

ing layer severely spoils the performance. Compared with that, the

adoption of LSTM is much better, indicating the necessity of encod-

ing sequential patterns by considering item transitions. However,

both of them are worse than the default one, which implies the ad-

vantage of temporal collaborative attention in encoding sequences.

Continuous-time embedding. We use three variants to verify

the efficacy of the time mapping function Φ. The first variant is
that we sample 𝜔 in Eq. (2) directly from a normal distribution. The

second and third variants replace the Φ with a learnable positional

embedding as in [12] and emptying all zeros, respectively. The

results are labeled as (3) − (5) in Table 3. Because of the better per-

formance of position embedding compared with empty embedding,

we can conclude that TGSRec has the ability to encode sequen-

tial patterns. In addition, we also find that even a fixed 𝜔 to learn

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

440



Table 4: Variants of Temporal Information Construction

Variant Toys Baby Tools Music ML100K

TGSRec 0.3649 0.2235 0.3623 0.5935 0.3118
U w/o T 0.0103 0.0138 0.0106 0.0112 0.1555

I w/o T 0.1013 0.0961 0.0836 0.2785 0.2336

Ultimate Prince
The Loon

Lady Mr Johnson

Todd Smith

Stadium Arcadium
Carnavas

Crook By Da Book

Pimpalation
Letoya

Okonokos

Historical Interacted Music (left to right: oldest to latest)

+1h
+1d
+5d

+10d
+30d
next

+60d
+100d

Ti
m

e 
In

cr
em

en
t

0.0

0.2

0.4

0.6

Figure 6: Temporal Attention Weights Visualization

the time embedding can significantly outperform the position em-

bedding, indicating the necessity of using the temporal kernel to

capture temporal effects in sequences. Moreover, the default ver-

sion, using a trainable 𝜔 , achieves the best performance, which

indicates its capacity to learn temporal effects from data.

Loss function. We also compare BPR loss and BCE Loss, which

is labeled as (6) in Table 3. The results indicate that the BCE loss

performs inferior to BPR loss, except for the ML100K dataset. This

is because BPR loss is optimized for ranking while BCE loss is de-

signed for binary classification.

5.6 Temporal Correlations (RQ4)
Thoughwe have already indicated the answer of RQ4 in Sec. 5.5, this

section also conducts detailed analyses of the temporal correlation

within sequences to directly answer RQ4.

5.6.1 Temporal Information Construction. We develop two variants

by dismissing the time vector in either Eq. (3) or Eq. (4), i.e., users

without time vectors or items without time vectors. The results

are presented in Table 4. The observations are two-fold. Firstly, the

performance of items without time is better than users without time.

It implies that the temporal inference of user embeddings are rather

important, which matches the intuition that the preference of users

are dynamic while items are relatively more static. Secondly, the

performance deteriorates significantly in both variants, indicating

again TGSRec is able to model temporal effects of collaborative

signals while also encoding sequences.

5.6.2 Temporal Attention Weights Visualization. We visualize the

attention weights of TGSRec on the Music dataset for a user, which

is shown in Figure 6. Each row is associated with an increment

(‘h’ for hour and ‘d’ for day) from the last interactive timestamp

𝑇 = 1159142400, where ‘next’ denotes the timestamp (𝑇+34d) for

Table 5: Recommendation w.r.t. time increments after the
last interaction at timestamp 𝑇 = 1159142400. ‘next’ is the
timestamp of the test interaction. The ground truth item is
in red color. Items also predicted by SASRec and TiSASRec
are in blue color.

Time Rank-1 Rank-2 Rank-3 Rank-4

T+5d Letoya H. of Blue L. Ult. Prince Veneer

T+30d J. of A Gemini Living Lgds. Killing Joke Crane Wife

next Buf. S.F. Killing Joke Empire Stadium Arc.

T+60d D. of Future P. Even Now L. Mks. Wd. Przts. Author

SAS. Crane Wife Empire H. Fna. Are You in Rev.

TiSAS. Crane Wife Empire WTE. P. S. Stadium Arc.

the test interaction. Each column is associated with an item. We can

observe that the attention weights for items are dynamic at different

timestamps, which indicates the temporal inference characteristics

of TGSRec. Moreover, the time increments can be arbitrary values,

which verifies its continuity.

5.6.3 Recommendation Results. Besides the attention visualization,

we also present a part of the recommendation results of the same

user in Table 5. Additionally, we also show the results of SASRec

and TiSASRec, which only leverage sequential patterns. We find

that only TGSRec can predict the ground truth item (Killing Joke)
in top-4 predictions at the time of interests. When time (e.g.,𝑇+30d)

becomes close to the predicting timestampe ‘next’ (i.e., 𝑇+34d), the

ground truth item appears in the top-4 predictions. We can observe

that the top predicted items from SASRec are also recommended by

TGSRec, though in lower ranks. It again proves that TGSRec can
unify sequential patterns and temporal collaborative signals.

6 CONCLUSION
In this paper, we design a new SR model, TGSRec, to unify sequen-

tial patterns and temporal collaborative signals. TGSRec is defined
upon the proposed CTBG. We apply a temporal kernel to map

continuous timestamps on edges to vectors. Then, we introduce

the TCT layer, which can infer temporal embeddings of nodes. It

samples neighbors and learns attention weights to aggregate both

node embeddings and time vectors. In this way, a TCT layer is able

to encode both sequential patterns and collaborative signals, as

well as reveal temporal effects. Extensive experiments on five real-

world datasets demonstrate the effectiveness of TGSRec. TGSRec
significantly outperforms existing transformer-based sequential

recommendation models. Moreover, the ablation study and detailed

analyses verify the efficacy of those components in TGSRec. In
conclusion, TGSRec is a better framework to solve the SR problem

with temporal information.

7 ACKNOWLEDGMENTS
This work is supported in part by NSF under grants III-1763325, III-

1909323, III-2106758, and SaTC-1930941. This work is also partially

supported by NSF through grant IIS-1763365 and by UC Davis.

This work is also funded in part by the National Natural Science

Foundation of China Projects No. U1936213

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

441



REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[2] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and

Hongyuan Zha. 2018. Sequential recommendation with user memory networks.

In WSDM. 108–116.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint (2018).

[4] Robin Devooght and Hugues Bersini. 2017. Long and short-term recommenda-

tions with recurrent neural networks. In Proceedings of the 25th Conference on
User Modeling, Adaptation and Personalization. 13–21.

[5] Ziwei Fan, Zhiwei Liu, Lei Zheng Zheng, Shen Wang, and S. Philip Yu. 2021.

Modeling Sequences as Distributions with Uncertainty for Sequential Recommen-

dation. In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management. ACM.

[6] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. TIIS 5, 4 (2015), 1–19.
[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR (SIGIR ’20). Association for Computing Machinery,

New York, NY, USA, 639–648.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[11] Wendi Ji, Keqiang Wang, Xiaoling Wang, TingWei Chen, and Alexandra Cristea.

2020. Hybrid Sequential Recommender via Time-aware Attentive Memory Net-

work. CIKM (2020).

[12] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In ICDM. IEEE, 197–206.

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR, Yoshua Bengio and Yann LeCun (Eds.).

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[15] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In SIGKDD.

447–456.

[16] Walid Krichene and Steffen Rendle. 2020. On Sampled Metrics for Item Recom-

mendation. In SIGKDD. 1748–1757.
[17] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-

bedding Trajectory in Temporal Interaction Networks. In KDD. ACM.

[18] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.

Neural attentive session-based recommendation. In CIKM. 1419–1428.

[19] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time Interval Aware Self-

Attention for Sequential Recommendation. InWSDM. 322–330.

[20] Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and Philip S Yu.

2020. Dynamic Graph Collaborative Filtering. ICDM.

[21] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-

eling user exposure in recommendation. InWWW. 951–961.

[22] Ye Liu, Yao Wan, Jianguo Zhang, Wenting Zhao, and S Yu Philip. 2021. Enriching

Non-Autoregressive Transformer with Syntactic and Semantic Structures for

Neural Machine Translation. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume. 1235–1244.

[23] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting Sequential

Recommendation with Pseudo-Prior Items via Reversely Pre-training Trans-

former. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval.

[24] Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen Guo, Kannan Achan, and Philip S.

Yu. 2020. Basket Recommendation with Multi-Intent Translation Graph Neural

Network. In 2020 IEEE International Conference on Big Data (Big Data). 728–737.
https://doi.org/10.1109/BigData50022.2020.9377917

[25] Zhiwei Liu, Mengting Wan, Stephen Guo, Kannan Achan, and Philip S Yu. 2020.

BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation

with Graph Convolutional Neural Network. In Proceedings of the 2020 SIAM
International Conference on Data Mining. SIAM, 64–72.

[26] Zhiwei Liu, Lei Zheng, Jiawei Zhang, Jiayu Han, and Philip S. Yu. 2019. JSCN: Joint

Spectral Convolutional Network for Cross Domain Recommendation. Bigdata
abs/1910.08219 (2019).

[27] Lynn H Loomis. 2013. Introduction to abstract harmonic analysis. Courier Corpo-
ration.

[28] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu.

2020. Disentangled Self-Supervision in Sequential Recommenders. In SIGKDD.
483–491.

[29] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In SIGIR. 43–52.
[30] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.

In The Web Conference. 969–976.
[31] Bo Peng, Zhiyun Ren, Srinivasan Parthasarathy, and Xia Ning. 2020. M2: Mixed

Models with Preferences, Popularities and Transitions for Next-Basket Recom-

mendation. arXiv preprint arXiv:2004.01646 (2020).
[32] Bo Peng, Zhiyun Ren, Srinivasan Parthasarathy, and Xia Ning. 2021. HAM:

hybrid associations models for sequential recommendation. IEEE Transactions on
Knowledge and Data Engineering.

[33] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.

2017. Personalizing session-based recommendations with hierarchical recurrent

neural networks. In RecSys. 130–137.
[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[35] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalized markov chains for next-basket recommendation. InWWW.

811–820.

[36] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-

sentations from transformer. In CIKM. 1441–1450.

[37] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation

via convolutional sequence embedding. InWSDM. 565–573.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In NIPS. 5998–6008.
[39] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:

Knowledge graph attention network for recommendation. In SIGKDD. 950–958.
[40] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In SIGIR. 165–174.
[41] Yu Wang, Zhiwei Liu, Ziwei Fan, Philip S Yu, and Lichao Sun. 2021. DSKReG: Dif-

ferentiable Sampling on Knowledge Graph forRecommendation with Relational

GNN. In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management. ACM.

[42] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

2017. Recurrent recommender networks. InWSDM. 495–503.

[43] Jibang Wu, Renqin Cai, and Hongning Wang. 2020. Déjà vu: A Contextualized

Temporal Attention Mechanism for Sequential Recommendation. In The Web
Conference. 2199–2209.

[44] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:

Sequential Recommendation Via Personalized Transformer. In RecSys. ACM,

328–337.

[45] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.

Session-based recommendation with graph neural networks. In AAAI, Vol. 33.
346–353.

[46] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and

Jimeng Sun. 2010. Temporal recommendation on graphs via long-and short-term

preference fusion. In KDD. 723–732.
[47] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell.

2010. Temporal collaborative filtering with bayesian probabilistic tensor factor-

ization. In SDM. SIAM, 211–222.

[48] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

2019. Self-attention with functional time representation learning. In NeurIPS.
15915–15925.

[49] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

2020. Inductive Representation Learning on Temporal Graphs. arXiv preprint
arXiv:2002.07962 (2020).

[50] Wenwen Ye, Shuaiqiang Wang, Xu Chen, Xuepeng Wang, Zheng Qin, and Dawei

Yin. 2020. Time Matters: Sequential Recommendation with Complex Temporal

Information. In SIGIR. 1459–1468.
[51] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic

recurrent model for next basket recommendation. In SIGIR. 729–732.
[52] Jian-Guo Zhang, Kazuma Hashimoto, Yao Wan, Ye Liu, Caiming Xiong, and

Philip S Yu. 2021. Are Pretrained Transformers Robust in Intent Classification? A

Missing Ingredient in Evaluation of Out-of-Scope Intent Detection. arXiv preprint
arXiv:2106.04564 (2021).

[53] Yao Zhang, Yun Xiong, Xiangnan Kong, Zhuang Niu, and Yangyong Zhu. 2019.

IGE+: A Framework for Learning Node Embeddings in Interaction Graphs. IEEE
Transactions on Knowledge and Data Engineering (2019).

[54] Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. 2017. Learning node

embeddings in interaction graphs. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. 397–406.

[55] Lei Zheng, Ziwei Fan, Chun-Ta Lu, Jiawei Zhang, and Philip S. Yu. 2019. Gated

Spectral Units: Modeling Co-Evolving Patterns for Sequential Recommenda-

tion. In ACM SIGIR. Association for Computing Machinery, New York, NY, USA,

1077–1080.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

442

https://doi.org/10.1109/BigData50022.2020.9377917

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Temporal Information
	2.3 Graph-based Recommendation

	3 Definitions and Preliminaries
	4 Proposed Model
	4.1 Embedding Layer
	4.2 Temporal Collaborative Transformer
	4.3 Model Prediction
	4.4 Model Optimization

	5 Experiments
	5.1 Datasets
	5.2 Experimental Settings
	5.3 Performance Comparison (RQ1)
	5.4 Parameter Sensitivity (RQ2)
	5.5 Ablation Study (RQ3 & RQ4)
	5.6 Temporal Correlations (RQ4)

	6 Conclusion
	7 Acknowledgments
	References



