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Abstract

Modeling joint probability distributions over
sequences has been studied from many perspec-
tives. The physics community developed matrix
product states, a tensor-train decomposition for
probabilistic modeling, motivated by the need
to tractably model many-body systems. But
similar models have also been studied in the
stochastic processes and weighted automata lit-
erature, with little work on how these bodies of
work relate to each other. We address this gap
by showing how stationary or uniform versions
of popular quantum tensor network models
have equivalent representations in the stochastic
processes and weighted automata literature,
in the limit of infinitely long sequences. We
demonstrate several equivalence results between
models used in these three communities: (i)
uniform variants of matrix product states,
Born machines and locally purified states from
the quantum tensor networks literature, (ii)
predictive state representations, hidden Markov
models, norm-observable operator models and
hidden quantum Markov models from the
stochastic process literature, and (iii) stochastic
weighted automata, probabilistic automata and
quadratic automata from the formal languages
literature. Such connections may open the door
for results and methods developed in one area
to be applied in another.
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1 Introduction

Matrix product states (MPS) were first developed by
the physics community as compact representations of
often intractable wave functions of complex quantum
systems (Perez-Garcia et al., 2006; Klümper et al., 1993;
Fannes et al., 1992), in parallel with the equivalent
tensor-train decomposition (Oseledets, 2011) developed in
applied mathematics for high-order tensors. These tensor
network models have been gaining popularity in machine
learning, especially as means of compressing highly-
parameterized models (Novikov et al., 2015; Garipov
et al., 2016; Yu et al., 2017; Novikov et al., 2014). There
has also been recent interest in directly connecting ideas
and methods from quantum tensor networks to machine
learning (Stoudenmire and Schwab, 2016; Han et al.,
2018; Guo et al., 2018; Huggins et al., 2019). In particular,
tensor networks have been used for probabilistic modeling
as parameterizations of joint probability tensors (Glasser
et al., 2019; Miller et al., 2021; Stokes and Terilla, 2019).
But the same problem has also been studied from various
other perspectives. Notably, observable operator models
(Jaeger, 2000) or predictive state representations (PSRs)
(Singh et al., 2004) from the machine learning literature
and stochastic weighted automata (Balle et al., 2014b) are
approaches to tackle essentially the same problem. While
Thon and Jaeger (2015) provide an overview discussing
connections between PSRs and stochastic weighted au-
tomata, their connection to MPS has not been extensively
explored. At the same time, there exist many variants of
tensor network models related to MPS that can be used
for probabilistic modeling. Glasser et al. (2019) recently
provided a thorough investigation of the relative expres-
siveness of various tensor networks for the non-uniform

* denotes equal contribution
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case (where cores in the tensor decomposition need not
be identical). However, to the best of our knowledge,
similar relationships have not yet been established for the
uniform case. We address these issues by examining how
various quantum tensor networks relate to aforementioned
work in different fields, and we derive a collection of
results analyzing the relationships in expressiveness
between uniform MPS and their various subclasses.

The uniform case is important to examine for a number
of reasons. The inherent weight sharing in uniform tensor
networks leads to particularly compact models, especially
when learning from highly structured data. This compact-
ness becomes especially useful when we consider physical
implementations of tensor network models in quantum
circuits. For instance, Glasser et al. (2019) draw an equiva-
lence between local quantum circuits and tensor networks;
network parameters define gates that can be implemented
on a quantum computer for probabilistic modeling.
Uniform networks have fewer parameters, corresponding
to a smaller set of quantum gates and greater ease of im-
plementation on resource constrained near-term quantum
computers. Despite the many useful properties of unifor-
mity, the tensor-network literature tends to focus more on
non-uniform models. We aim to fill this gap by developing
expressiveness relationships for uniform variants.

We expect that the connections established in this paper
will also open the door for results and methods in one area
to be applied in another. For instance, one of the proof
strategies we adopt is to develop expressiveness relation-
ships between subclasses of PSRs, and show how they also
carry over to equivalent uniform tensor networks. Such
cross fertilization also takes place at the level of algorithms.
For instance, the learning algorithm for locally purified
states (LPS) employed in Glasser et al. (2019) does not
preserve uniformity of the model across time-steps, or
enforce normalization constraints on learned operators.
With the equivalence between uniform LPS and hidden
quantum Markov models (HQMMs) established in this
paper, the HQMM learning algorithm from Adhikary et al.
(2020), based on optimization over the Stiefel manifold,
can be adapted to learn uniform LPS while enforcing
all appropriate constraints. Similarly, spectral algorithms
that have been developed for stochastic process models
such as hidden Markov models (HMMs) and PSRs (Hsu
et al., 2012; Siddiqi et al., 2010; Bailly et al., 2009) could
also be adapted to learn uniform LPS and uniform MPS
models. Spectral algorithms typically come with consis-
tency guarantees, along with rigorous bounds on sample
complexity. Such formal guarantees are less common in
tensor network methods, such as variants of alternating
least squares (Oseledets, 2011) or density matrix renormal-
ization group methods (White, 1992). On the other hand,
tensor network algorithms tend to be better suited for very
high-dimensional data; presenting an opportunity to adapt

them to scale up algorithms for stochastic process models.

Finally, one of our key motivations is to simply provide
a means of translating between similar models developed
in different fields. While prior works (Glasser et al., 2019;
Kliesch et al., 2014; Critch and Morton, 2014) have noted
similarities between tensor networks, stochastic processes
and weighted automata, many formal and explicit
connections are still lacking, especially in the context of
model expressiveness. It is still difficult for practitioners
in one field to verify that the model classes they have
been working with are indeed used elsewhere, given the
differences in nomenclature and domain of application;
simply having a thesaurus to rigorously translate between
fields can be quite valuable. Such a thesaurus is
particularly timely given the growing popularity of tensor
networks in machine learning. We hope that the con-
nections developed in this paper will help bring together
complementary advances occurring in these various fields.

Summary of Contributions In Section 2, we demon-
strate that uniform Matrix product states (uMPS) are
equivalent to predictive state representations and stochas-
tic weighted automata, when taken in the non-terminating
limit (where we evaluate probabilities sufficiently away
from the end of a sequence). Section 3 presents the known
equivalence between uMPS with non-negative parameters,
HMMs, and probabilistic automata, to show in Section
4 that another subclass of uMPS called Born machines
(BM) (Han et al., 2018) is equivalent to norm-observable
operator models (NOOM) (Zhao and Jaeger, 2010) and
quadratic weighted automata (QWA) (Bailly, 2011). We
also demonstrate that uBMs and NOOMs are relatively
restrictive model classes in that there are HMMs with
no equivalent finite-dimensional uBM or NOOM (HMMs
* NOOMs/uBMs). Finally, in Section 5, we analyze a
broadly expressive subclass of uMPS known as locally pu-
rified states (LPS), demonstrate its equivalence to hidden
quantum Markov models (HQMMs), and discuss the open
question of how the expressiveness of uLPS relates to that
of uMPS. We thus develop a unifying perspective on a
wide range of models coming from different communities,
providing a rigorous characterization of how they are
related to one another, as illustrated in Figures 1 and 2.
The proofs for all theorems are provided in the Appendix.
In our presentation, we routinely point out connections
between tensor networks and relevant concepts in physics.
However, we note that these models are not restricted
to this domain. Furthermore, we focus on models with
a finite number of outcomes or observations, also called
alphabets in the formal language community. This is the
most commonly used setting for the models we consider,
and does not really restrict the applicability of our results.

Notation We use bold-face for matrix and tensor
operators (e.g. A), arrows over symbols to denote vectors
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(e.g. ~x), and plain non-bold symbols for scalars. The
vector-arrows are also used to indicate vectorization
(column-first convention) of matrices. We frequently
make use of the ones matrix 1 (filled with 1s) and the

identity matrix I, as well as their vectorizations ~1 and ~I.
We use overhead bars to denote complex conjugates (e.g.
Ā) and † for the conjugate transpose (ĀT =A†). Finally,
tr(·) denotes the trace operation applied to matrices, and
⊗ denotes the Kronecker product.

2 Uniform Matrix Product States

Given a sequence of N observations, where each outcome
can take di values, the joint probability of any particular
sequence y1, ... ,yN can be written using the following
tensor-train decomposition, which gives an MPS:

P(y1,...,yN) ∝ MPSy1,...,yN

=A[N],yNA[N−1],yN−1 ... A[2],y2A[1],y1 (1)

where each A[i] is a three-mode tensor core of the MPS
containing di slices, with the matrix slice associated with
outcome Yi denoted by A[i],yi. The above joint probability
distribution must be normalized through a partition func-
tion. A common strategy to efficiently compute this parti-
tion function is to convert the tensor chain into a canonical
form wherein expensive tensor contractions reduce to
the identity. Each matrix slice A[i],yi is a Di+1 ×Di
matrix, and the conventional choice (which we use in this
paper) of open boundary conditions is to set D0=DN =1
(i.e. A[1],y1 and A[N],yN are column and row vectors
respectively). MPS with open boundaries are equivalent
to tensor train (TT) decompositions, and we will define
them over the complex field, a choice common in quantum
physics and tensor network settings. The maximal value
of D=maxkDk is also called the bond-dimension or the
TT-rank (Glasser et al., 2019) of the MPS. For fixed
dynamics, this will lead the MPS cores A[i] to be identical.

In this paper, we will focus on the “uniform” case of
identical cores, i.e., a uniform MPS or uMPS. uMPS
models were first developed in the quantum physics
community (Perez-Garcia et al., 2006; Vanderstraeten
et al., 2019), although employing a different probabilistic
correspondence (Born machines as discussed later) than
described below. As we will discuss, this corresponds nat-
urally to Markovian dynamical systems; the notion of past

An alternate choice, periodic boundary conditions, sets
D0=DN≥1 and uses a trace operation to evaluate the prod-
uct of matrices in Equation 1. MPS with periodic boundaries
are equivalent to the tensor ring decomposition (Mickelin and
Karaman, 2018).

Operational characterizations of the bond dimension have
been developed in quantum physics, in terms of entangle-
ment (Eisert et al., 2010) or the state space dimension of
recurrent many-body dynamics which generate the associated
wavefunction (Schoen et al., 2005).

Figure 1: Tensor Network Diagrams. White squares
correspond to tensors with as many modes as lines
emanating from them, and black end dots indicate
boundary vectors. A connecting line represent contraction
along a mode, while adjacent tensors without connecting
lines are multiplied together via the Kronecker product.
Connecting lines (without black dots) at the boundaries
represent the application of the identity.

being independent of future given the present is encoded
by the tensor train structure where each core only has
two neighbours. While an MPS is inherently defined with
respect to a fixed sequence length, a uMPS can be applied
to sequences of arbitrary fixed or infinite length (Cirac and
Sierra, 2010). As there should be no distinction between
the cores at different time steps in a uMPS, a natural rep-
resentation is to fix two boundary vectors (~σ, ~ρ0), leading
to the following decomposition of the joint probability:

P(y1,...,yN)=uMPSy1,...,yN

=~σ†AyNAyN−1...Ay2Ay1~ρ0 (2)

To explore connections with arbitrary-length PSRs and
WFAs, we will particularly focus on the non-terminating
limit. Consider that if we wished to compute the
probability of some subsequence from t = 1, ... , T of
the N-length uMPS (T < N), we could compute
P(y1,...,yT )=

∑
yN
···
∑
yT+1

P(y1,...,yT ,yT+1,...,yN). The
non-terminating limit is essentially when we consider
the uMPS to be infinitely long, i.e., we compute the
probability of the subsequence in the limit as N→∞.

Definition 1 (Non-terminating uMPS). A non-
terminating uMPS is an infinitely long uMPS where
we can compute the probability of any sequence
P(y1, ... , yT ) of length T by marginalizing over in-
finitely many future observations, i.e. P(y1, ... , yT ) =
limN→∞

∑
yN
···
∑
yT+1

P(y1,...,yT ,yT+1,...,yN).
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This is a natural approach to modeling arbitrary length se-
quences with Markovian dynamics; intuitively, if given an
identical set of tensor cores at each time step, the probabil-
ity of a sequence should not depend on how far it is from
the ‘end’ of the sequence. Similar notions are routinely
used in machine learning and physics. In machine learning,
it is common to discard the first few entries of sequences
as “burn-in” to allow systems to reach their stationary
distribution. In our case, the burn is being applied to the
end of the sequence. The non-terminating limit is also
similar to the “thermodynamic limit” employed in many-
body physics, which marginalizes over an infinite number
of future and past observations (Vanderstraeten et al.,
2019). Such limits reflect the behavior seen in the interior
of large systems, and avoid more complicated phenomena
which arise near the beginning or end of sequences.

2.1 The Many Names of Matrix Product States

While connections between MPS and hidden Markov
models (HMM) have been widely noted, we point out
that non-terminating uMPS models have been studied
from various perspectives, and are referred to by differ-
ent names in the literature, such as stochastic weighted
finite automata (stochastic WFA) (Balle et al., 2014a),
quasi-realizations (Vidyasagar, 2011), observable operator
models (OOM) (Jaeger, 2000), and (uncontrolled) predic-
tive state representations (PSR) (Singh et al., 2004). The
latter three models are exactly identical (we just refer to
them as uncontrolled PSRs in this paper) and come from
the stochastic processes perspective, while stochastic WFA
are slightly different in their formulation, in that they are
more similar to (terminating) uMPS (see below). Thon
and Jaeger (2015) detail a general framework of sequential
systems to study how PSRs and WFA relate to each other.

Predictive State Representations We write the
stochastic process defined by an n–dimensional predictive
state representation over a set of discrete observationsO as
a tuple (Cn, ~σ, {τττy}y∈O, ~x0). The initial state ~x0∈Cn is
normalized, as enforced by the linear evaluation functional
~σ, i.e., ~σ†~x0 = 1, and the observable operators are con-
strained to have normalized marginals over observations
~σ†
∑
yτττy=~σ†, i.e., ~σ† is a fixed point of the transfer oper-

ator
∑
yτττy. The probability of arbitrary length sequences

y1,...,yT ∈OT is computed as ~σ†τττyT ...τττy1~x0, which should
be non-negative for any sequence. Note that we simply
require this to hold for a valid PSR; we do not explicitly
enforce constraints to ensure this. This joint probability
computation is identical to Equation 2, where evaluation
functional ~σ and the initial state ~x0 are analogous to the
left and right boundary vectors of the uMPS, and the
observable operators τττy correspond to the matrix slices Ay.
In this sense, both uMPS and PSRs define tensor-train
decompositions of joint distributions for a given fixed num-

ber of observations T . The only difference is that a uMPS
does not require its evaluation functional to be the fixed
point of its transfer operator. However, as we now discuss,
any arbitrary uMPS evaluation functional will eventually
converge to the fixed point of its transfer operator in the
non-terminating limit. The fixed point then becomes the
effective evaluation functional of the uMPS in this limit.

Since PSRs were formulated with dynamical systems in
mind, we typically consider sequences of arbitrary length,
whose probabilities are determined via a hidden state
which evolves under a time-invariant update rule: the
state update conditioned on an observation yt is computed

as ~xt=
τττyt~xt−1

~σTτττyt~xt−1
and the probability of an observation

yt is P(yt|~xt) = ~σTτττyt~xt. This allows us to deal more
flexibly with arbitrary length sequences as compared
to a generic uMPS. This flexibility for arbitrary-length
sequences is precisely why we consider non-terminating
uMPS: we can compute the conditional probability of a
sequence P(yt|y1:t−1) by marginalizing over all possible
future observations with a relatively simple equation:

P(yt|y1:t−1)=

∑
yN ,...,yt+1

P(yN ,...,yt+1,yt,yt−1,...y1)∑
yN ,...,yt

P(yN ,...,yt,yt−1,...,y1)

=
~σ†
(∑

yτττy

)N−(t+1)

τττyt...τττ1~ρ0

~σ†
(∑

yτττy

)N−t
τττyt−1

...τττ1~ρ0

(3)

Thus the effective evaluation functional ~σ†
(∑

yτττy

)N−t
is

a function of time and so different at every time step in gen-
eral. However, if the transfer operator τττ=

∑
yτττy has some

fixed point ~σ†∗, i.e., ~σ†∗τττ=~σ†∗, then the effective evaluation
functional at timestep t (which is N−t steps away from
the left boundary of the uMPS) will eventually converge to
~σ∗ given a long enough sequence. So, as long as we remain
sufficiently far from the end of a sequence, the particular
choice of the the left boundary vector does not matter.

Given that the non-terminating limit effectively replaces
the uMPS evaluation functional ~σ by the fixed point
~σ∗, consider what happens if we require ~σ = ~σ∗ to
begin with, as is the case for PSRs. In this case, our
effective evaluation functional remains independent of t,
permitting a simple recursive state update rule that does
not require fixing a prior sequence length or marginalizing

In fact, the effective evaluation functional will con-
verge at an exponential rate towards the fixed point, so
that ‖~σt − ~σ∗‖2 = O(exp N−t

ξ
), with a “correlation length”

ξ'(1−|λ2|/|λ1|)−1 set by the ratio of the largest and second
largest eigenvalues of the transfer operator (Orús, 2014).
Transfer operators with non-degenerate spectra can always
be rescaled to have a unique fixed point, while those with
degenerate spectra form a measure zero subset.
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Figure 2: Expressiveness Relationships Betweens Models: Subset relationships between stochastic process
models, non-terminating uniform quantum tensor networks, and weighted automata, along with a summary of new
relationships established in this paper. The grey area is potentially empty.

over future observations. In this sense, a non-terminating
uMPS is strictly equivalent to a PSR, a relationship which
we will see holds between several other model families.

Theorem 2.1. Non-terminating uniform matrix product
states are equivalent to uncontrolled predictive state
representations.

If we do not consider the non-terminating limit of a uMPS,
the subsequence length and boundary choice will affect
the probability computed. Then, we technically only have
an equivalence with PSRs for a fixed sequence length
(when the evaluation functional is a fixed point of the
transfer operator) and no notion of recursive state update.

Stochastic Weighted Automata A weighted au-
tomaton (WA) is a tuple (Cn, ~σ, {τττy}y∈O, ~x0) which
computes a function f(y1, ... ,yT ) = ~σ†τττyT ...τττy1~x0. In
contrast with PSRs, no constraints are enforced on the
weights of a weighted automaton in general. A weighted
automaton is stochastic if it computes a probability
distribution. These models constitute another class of
models equivalent to PSRs and uMPS, and represent
probability distributions over sequences of symbols from
an alphabet O. As discussed earlier, we focus on models
with a finite number of alphabets. It is worth mentioning
that the semantics of the probabilities computed by
PSRs and stochastic WAs can differ: while PSR typically
maintain a recursive state and are used to compute the
probability of a given sequence conditioned on some past
sequence, stochastic WA are often used to compute the
joint distributions over the set of all possible finite length
sequences (just as in uMPS). We refer the reader to Thon
and Jaeger (2015) for a unifying perspective.

3 Non-Negative uMPS, Hidden Markov
Models, and Probabilistic Automata

We first point out a well-known connection between
hidden Markov models (HMM) and matrix product

states (Kliesch et al., 2014; Critch and Morton, 2014).
We refer to uMPS where all tensor cores and boundary
vectors are non-negative as non-negative uMPS. HMMs
have been extensively studied in machine learning and
are a common approach to modeling discrete-observation
sequences where an unobserved hidden state undergoes
Markovian evolution (where the future is independent
of past given present) and emits observations at each
time-step (Rabiner and Juang, 1986). HMMs can be
thought of as a special case of PSRs where all parameters
are constrained to be non-negative. Such models are
usually characterized by an initial belief state ~x0 and
column-stochastic transition and emission matrices A
and C. Formally, we give the following definition:

Definition 2 (Hidden Markov Model). An
n−dimensional hidden Markov model for a set of
discrete observations O is a stochastic process described
by the tuple (Rn,A,C, ~x0). The transition matrix

A ∈ Rn×n≥0 and the emission matrix C ∈ R
|O|×n
≥0 are

non-negative and column stochastic i.e. ~1TA=~1TC=~1T .
The initial state ~x0 ∈ Rn≥0 is also non-negative and is

normalized ||~x0||1=~1T~x=1.

The state transitions through the simple linear update
~x′t=A~xt−1. To condition on observation y, we construct
the diagonal matrix diag(C(y,:)) from the yth row of C,

and perform a normalized update ~xt|yt=
diag(C(y,:))~x

′
t

~1Tdiag(C(y,:))~x
′
t

.

This multi-step filtering process can be simplified using
an alternative representation with observable operators as
Ty=diag(C(y,:))A, where we rewrite the normalization
constraints on operators as 1T

∑
yTy = 1T . Then, we

recover a recursive state update ~xt=
Tyt−1

~xt−1

~1TTyt−1
~xt−1

. Clearly,

HMMs are a special case of PSRs where the parameters
are restricted to be non-negative, and a special case
of uMPS when the left boundary ~σ† = 1T , the right
boundary ~ρ0=~x0, and the tensor core slice Ay=Ty.
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Probabilistic Automata Lastly, non-negative uMPS
are equivalent to probabilistic automata from formal
language theory (Denis and Esposito, 2008, Section 4.2),
which are in essence weighted automata where transition
matrices need to satisfy stochasticity constraints. The
strict equivalence between probabilistic automata and
HMMs is proved in Dupont et al. (2005, Proposition 8)
(see also Section 2.2 in Balle et al. (2014b)). In addition,
it is known that non-negative uMPS are strictly less
expressive than general uMPS for representing probability
distributions; a proof of this result in the context of
formal languages can be found in Denis and Esposito
(2008). We give a brief discussion of this next.

3.1 The Negative Probability Problem
and the Expressiveness of Finite PSRs

As noted by several authors (Jaeger, 2000; Adhikary et al.,
2020), PSRs lack a constructive definition; the definition of
a PSR simply demands that the probabilities produced by
the model be non-negative without describing constraints
that can achieve this. Indeed, this is the cost of relaxing
the non-negativity constraint on HMMs; it is undecidable
whether a given set of PSR parameters will assign a nega-
tive probability to some arbitrary-length sequence (Denis
and Esposito, 2004; Wiewiora, 2008), an issue known
as the negative probability problem (NPP). A similar is-
sue arises in the many-body physics setting, where the
analogous question of whether a general matrix product
operator describes a non-negative quantum density opera-
tor is also undecidable (Kliesch et al., 2014). In the special
case where all PSR parameters are non-negative, we have
a sufficient condition for generating valid probabilities,
namely that the PSR is a hidden Markov model. Oth-
erwise, the best available approach to characterize valid
states for PSRs is whether they define a pointed convex
cone (that includes the initial state) which is closed under
its operators, and all points in it generate valid probabil-
ities (Heller, 1965; Jaeger, 2000; Adhikary et al., 2020).

While this undecidability is an inconvenient feature of
PSRs, it turns out that constraining PSRs to have only
non-negative entries comes with a reduction in expres-
sive power; there are finite (bond/state) dimensional
uMPS/PSRs which have no equivalent finite-dimensional
HMM representations for arbitrary length sequences
(for example, the probability clock in Jaeger (2000)).
The general question of which uncontrolled PSRs have
equivalent finite-dimensional HMMs (though not always
discussed in those terms) is referred to by some as the
positive realization problem (Benvenuti and Farina, 2004;
Vidyasagar, 2011). A common approach is to use the
result that a PSR has an equivalent finite-dimensional
HMM if and only if the aforementioned convex cone of
valid initial states {~x0} for a set of given operators ~σ†,
{τττy} is k-polyhedral for some finite k (Jaeger, 2000).

There has been some work trying to investigate whether
it is possible to maintain the superior expressiveness
of uMPS/PSRs while avoiding the undecidability issue.
Zhao and Jaeger (2010); Bailly (2011); Adhikary et al.
(2020) explore this question in the machine learning
context, while Glasser et al. (2019) consider this problem
from the quantum tensor network perspective. We will
explore these proposals shortly. When discussing the rela-
tive expressiveness of a model compared to a uMPS/PSR,
if its bond dimension (i.e. state dimension) grows with
sequence length, we say there is no equivalent parameter-
ization of the uMPS/PSR distribution in this model class.
In other words, we consider two model classes equivalent
if any joint distribution over sequences that can be rep-
resented by a model in one class (with finite bond/latent
dimension) can be represented exactly by a model in the
other class (also with finite bond/latent dimension).

4 Uniform Born Machines,
Norm-Observable Operator Models,
and Quadratic Weighted Automata

Born machines (BMs) (Han et al., 2018) are a popular
class of quantum tensor networks that model probability
densities as the absolute-square of the outputs of a
tensor-train decomposition, and hence always output
valid probabilities. As with uMPS, we will work with
uniform Born machines (uBMs) (Miller et al., 2021), for
which the joint probability of N discrete random variables
{Yi}Ni=1 is computed as follows (with boundary vectors
~α and ~ω0 sandwiching a sequence of identical cores A):

P(y1,...,yN)=uBMy1,...,yN =
∣∣~α †AyN ... Ay1~ω0

∣∣2 (4)

We can re-write this decomposition showing uBMs to be
special kinds of uMPS/PSR:

uBMy1,...,yN =
∣∣∣~α †AyN ...Ay1~ω0

∣∣∣2
= ~α †AyN ...Ay1~ω0 ~ω

†
0(Ay1)†...(AyN )†~α

= ~σ † τττyN ... τττy1 ~ρ0

(5)

where τττy = Ay ⊗Ay, ~ρ0 = ~ω0 ⊗ ~ω0, and ~σ = ~α⊗ ~α.
This makes it clear that uBMs are a special class
of MPS/PSRs, where the observable operators τττy
and boundary conditions must satisfy the additional
requirement of having unit Kraus-rank (i.e., a symmetric
unit Schmidt rank decomposition).

Norm Observable Operator Models Motivated by
the NPP for PSRs, Zhao and Jaeger (2010) introduce
norm-observable operator models or NOOMs. Coming
from the PSR literature, they were designed to model joint

An operator A has unit Kraus-rank if it has a
decomposition A=X⊗X.
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distributions of observations as well as recursive state-
updates to obtain conditional probabilities (analogous to
PSRs in Section 2.1). They bear a striking resemblance
to uniform Born machines (uBMs) and the connection
has not been previously explored. Both NOOMs and
uBMs associate probabilities with quadratic functions of
the state vector, with NOOMs directly using the squared
2-norm of the state to determine observation probabilities.
While NOOMs were originally defined on the reals, we
use a more general definition over complex numbers.

Definition 3 (Norm-observable operator model). An
n-dimensional norm-observable operator model for a
set of discrete observations O is a stochastic process
described by the tuple (Cn,{φφφy}y∈O, ~ψ0). The initial

state ~ψ0 ∈ Cn is normalized by having unit 2-norm i.e.
‖~ψ0‖22=1. The operators φφφy∈Cn×n satisfy

∑
yφφφ
†
yφφφy=I.

These models avoid the NPP by using the 2-norm of
the state to recover probability which, unlike for HMMs,
is insensitive to the use of negative parameters in the
matrices φφφy. We write the joint probability of a sequence
as computed by a NOOM and manipulate it using using
the relationship between 2-norm and trace to show:

P(y1,...,yN)=NOOMy1,...,yN

=
∣∣∣∣∣∣φφφyN ··· φφφy1~ψ0

∣∣∣∣∣∣2
2

=tr(φφφyN ··· φφφy1~ψ0
~ψ†0(φφφy1)† ··· (φφφyN )†)

=~I†τττyN ··· τττy1 ~ρ0

(6)

where τττy=φφφy⊗φφφy∈Cn
2×n2

and ~ρ0=~ψ0⊗~ψ0. Equation 6
shows that NOOMs are a special subset of PSRs/MPS,
as every finite-dimensional NOOM has an equivalent

finite-dimensional PSR (Cn
2

, ~I, {φφφy⊗φφφy}y∈O, ~ψ0⊗~ψ0)
(Zhao and Jaeger, 2010). From a quantum mechanical per-
spective, the unit rank constraint on NOOM initial states
can be framed as requiring the initial state to be a pure
density matrix. We can also recursively update the state

conditioned on observation yt as ~ψt=
φφφyt

~ψt−1

‖φφφyt
~ψt−1‖2

, where

yt is observed with probability P(yt|~ψt)=‖φφφyt~ψt−1‖22.

Non-terminating uniform BMs are NOOMs
Note that the NOOM joint distribution in Equation 6
is almost identical to that of uBMs in Equation 5, with
τττy and ~ρ0 having unit Kraus rank; but the left boundary

/ evaluation functional ~σ=~α⊗~α is replaced by ~σ=~I and
necessarily is full Kraus rank. So how can we reconcile
these nearly identical models? Similar to our approach
in Section 2.1, we can consider the uBM for an infinitely
long sequence where the exact specification of the left
boundary / evaluation functional ceases to matter in the
non-terminating limit; the effective evaluation functional
converges to the fixed point of the transfer operator and
we have a notion of recursive state update. Assuming that

the uBM transfer operator is a similarity transform away
from a trace-preserving quantum channel (i.e., which
is normalized by satisfying

∑
yφφφ
†
yφφφy = I; see appendix

for more details), we have that an arbitrary evaluation
functional (with unit Kraus-rank) of such a uBM will even-

tually converge to ~I, the NOOM’s evaluation functional:

Theorem 4.1. Non-terminating uniform Born machines
are equivalent to norm observable operator models.

With the above equivalence, we now turn to the
question of how the expressiveness of uBM/NOOMs
compares to non-negative uMPS/HMMs, As we have
seen, they are all special classes of uMPS, but with
different constructions. Glasser et al. (2019) studied the
expressiveness of non-uniform BMs, showing that there
are finite-dimensional non-uniform BMs that cannot be
modeled by finite dimensional non-uniform HMMs, and
conjecture that the reverse direction is also true. Zhao
and Jaeger (2010) showed by example the existence of a
NOOM (and so a non-terminating uBM) that cannot be
modeled by any finite-dimensional HMM. However, they
left open the question of whether HMMs were a subclass
of NOOMs. We answer this question in the following
theorem, which also implies the latter corollary through
its equivalence with non-terminating uBM.

Theorem 4.2 (HMM * NOOM). There exist finite-
dimensional hidden Markov models that have no equivalent
finite-dimensional norm-observable operator model.

Corollary 4.1 (uBM * HMM and HMM * uBM).
There exist finite-dimensional non-terminating uniform
Born machines that have no equivalent finite-dimensional
hidden Markov models, and vice-versa.

The proof (see appendix) relies on the fact that both
NOOMs and HMMs are special cases of PSRs, and any
two equivalent PSRs are related by a similarity transform.
We show that there is no similarity transform between
HMMs and NOOMs that preserves the normalization
requirement of NOOM states.

Quadratic Weighted Automata Finally, we note
that quadratic weighted automata (QWA) (Bailly, 2011),
developed in the stochastic weighted automata literature,
are equivalent to uBM. Bailly (2011) suggest that QWA
* HMM and that HMM * QWA, but do not provide a
proof. To the best of our knowledge, the proof we provide
is the first to formally show the non-equivalence of QWA
and HMM.

5 Locally Purified States
and Hidden Quantum Markov Models

While uBMs/NOOMs are constructive models guaranteed
to return valid probabilities, they still aren’t expressive
enough to capture all HMMs, a fairly general class.
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Hence, it may be desirable to identify a construction that
is more expressive than these models but still gives valid
probabilities. Locally purified states (LPS) were proposed
as a tensor-network model of discrete multivariate prob-
ability distributions inspired from techniques used in the
simulation of quantum systems. Glasser et al. (2019) show
that these models are not only strictly more expressive
than non-uniform HMMs, but also correspond directly
to local quantum circuits with ancillary qubits – serving
as a guide to design quantum circuits for probabilistic
modeling. We arrive at the LPS model from the MPS
model essentially by marginalizing over an additional
mode – called the “purification dimension” – in each of
the MPS tensors. The rank of an LPS, also called its
puri-rank, is defined the same way as the bond dimension
(or TT-rank) for the MPS. The corresponding uniform
LPS defines the unnormalized probability mass function
over N discrete random variables {Yi}Ni=1 as follows:

P(y1,...,yN)=uLPSy1,...,yN

=

∑
βL

K
T

βL,L⊗K
T
βL,L

∑
β

Kβ,yN⊗Kβ,yN

···
···

∑
β

Kβ,y1⊗Kβ,y1

∑
βR

KβR,R⊗KβR,R


(7)

Hidden Quantum Markov Models Hidden quan-
tum Markov models (HQMMs) were developed by Monras
et al. (2010) as a quantum generalization of hidden Markov
models that can model joint probabilities of sequences and
also allow for recursive state updates we have described
previously. Srinivasan et al. (2018b,a) specifically develop
HQMMs by constructing quantum analogues of classical
operations on graphical models, and show that HQMMs
are a more general model class compared to HMMs.
Adhikary et al. (2020) on the other hand develop HQMMs
by relaxing the unit Kraus-rank constraint on NOOM
operators and initial state. We give a formal definition
of these models here (noting that the Choi matrix Cy

is a particular reshuffling of the sum of superoperators
Ly defined below (see Adhikary et al. (2020)):

Definition 4 (Hidden Quantum Markov Models). An
n2−dimensional hidden quantum Markov model for a
set of discrete observations O is a stochastic process
described by the tuple (Cn

2

, ~I, {Ly}y∈O, ~ρ0). The initial

state ~ρ0∈Cn
2

is a vectorized unit-trace Hermitian PSD
matrix of arbitrary rank, so ~I T~ρ0 = 1. The Liouville
operators Ly∈Cn

2×n2

(with corresponding Choi matrices

Cy) are trace-preserving (TP) i.e. ~IT
(∑

yLy

)
=~IT , and

completely positive (CP) i.e. Cy�0.

The CP-TP condition on the operators Ly implies that
we can equivalently write it via the Kraus decomposition

as Ly =
(∑

βKβ,y⊗Kβ,y

)
, using Kraus operators Kβ,y

(Kraus, 1971; Adhikary et al., 2020). Intuitively, what
makes HQMMs more general than NOOMs is that its
state can be a vectorized density matrix of arbitrary rank
and the superoperators can have arbitrary Kraus-rank,
while NOOMs require both these ranks to be 1. With
this in mind, we can write and manipulate the joint
probability of a sequence of N observations as:

P(y1,...,yN)=HQMMy1,...,yN =~ITLy1···LyN~ρ0

=~IT

∑
β

Kβ,yN⊗Kβ,yN

 ···
∑

β

Kβ,y1⊗Kβ,y1

~ρ0
(8)

The joint probability computation makes it clear that
HQMMs are a class of PSRs, and the manipulation shows
how they are equivalent to a uLPS where the left bound-
ary condition is ~I. We also compute the recursive state

update conditioned on observation y as ~ρt+1=
Ly~ρt
~ITLy~ρt

and

the probability of an observation y is P(y|ρt)=~ITLy~ρt.

Non-terminating Uniform LPS are HQMMs
Equation 8 shows that every HQMM is a uLPS, but we
also consider in what sense every uLPS is an HQMM: the
transfer operator of arbitrary CP maps with unit spectral
radius is a similarity transform away from that of a
CP-TP map (Perez-Garcia et al., 2006), so ~I is related to
such a fixed point by such a similarity transform. Thus,
every non-terminating uLPS has an equivalent HQMM
and allows for an HQMM-style recursive state update.
This is the same reasoning behind the equivalence
between non-terminating uBMs (with CP maps) and
NOOMs (with CP-TP maps).

Theorem 5.1. Non-terminating uniform locally purified
states are equivalent to hidden quantum Markov models.

While it is already known that HMMs are a strict subset of
HQMMs (since HQMMs also contain NOOMs which can-
not always be modeled by a HMM), Adhikary et al. (2020)
left open the possibility that every HQMM could have an
equivalent NOOM in some higher dimensional state space.
In light of Theorem 4.2, we can say this is not possible
as NOOMs do not capture HMMs, while HQMMs can.

Corollary 5.1 (NOOM ⊂ HQMM). Finite dimensional
norm-observable operator models are a strict subset of
finite dimensional hidden quantum Markov models.

We are not aware of any proposals from the weighted
automata literature that are analogous to these
uLPS/HQMMs.

This condition is necessary for probability distributions
such as Equations 5 and 7 to be properly normalized.
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Expressiveness of HQMMs (uLPS) and PSRs
(uMPS) We have determined that HQMMs are the
most constructive known subclass of PSRs (containing
both NOOMs and HMMs), yet the question of whether
there is a ‘gap’ between HQMMs and PSRs, i.e., if
there is a PSR which has no finite-dimensional HQMM
representation, is still open to the best of our knowledge.
The results in Glasser et al. (2019) and De las Cuevas
et al. (2013) show that MPS are more expressive than
LPS in the non-uniform case, but their technique
cannot be easily adapted to the uniform case. We are
not aware of an example of a PSR with no equivalent
finite-dimensional HQMM. A longer discussion of this
problem is presented in Appendix 2.

6 Conclusion

We presented uniform matrix product states and their
various subclasses, and showed how they relate to pre-
vious work in the stochastic processes and weighted au-
tomata literature. In discussing the relative expressiveness
of various models, we discuss if we can find an equiva-
lent finite-dimensional parameterization in another model
class, but we do not discuss the relative compactness of
various parameterizations. Glasser et al. (2019) do discuss
this for the non-uniform case, and this could be an inter-
esting direction to explore for the uniform case. We also
speculate that the connections laid out here may make
spectral learning algorithms commonly used for PSRs and
weighted automata (Hsu et al., 2012; Balle et al., 2014a;
Hefny et al., 2015) suitable for learning uMPS, and an al-
gorithm for optimization on the Stiefel manifold (Adhikary
et al., 2020) suitable for learning uLPS with appropriate
constraints. Future work will involve adapting these algo-
rithms so they can be transferred between the two fields.

We can extend our analyses to controlled stochastic
processes. Controlled generalizations of uMPS may be
developed through matrix product operators (Murg et al.,
2008; Chan et al., 2016) that append an additional open
index at each core of a uMPS, which we can associate
with actions. We can also develop input-output versions
of uniform tensor networks and uncontrolled stochastic
process models, similar to input-output OOMs from
Jaeger (1998). We briefly describe such extensions for
HQMMs and uLPSs in Appendix 3, showing that they
generalize recently proposed quantum versions of partially
observable Markov decisions processes (Barry et al., 2014;
Ying and Ying, 2014; Cidre, 2016). With this connection,
we also find that the undecidability of perfect planning
(determining if there exists a policy that can determinis-
tically reach a goal state from an arbitrary initial state in
finite steps) established for quantum POMDPs by Barry
et al. (2014) extends to these generalizations as well. We
leave a longer discussion for future work.
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