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Abstract — This paper presents ISLA, a system that enables
low power [oT nodes to self-localize using ambient 5G signals
without any coordination with the base stations. ISLA operates
by simply overhearing transmitted 5G packets and leverages
the large bandwidth used in 5G to compute high-resolution
time of flight of the signals. Capturing large 5G bandwidth
consumes a lot of power. To address this, ISLA leverages
recent advances in MEMS acoustic resonators to design a RF
filter that can stretch the effective localization bandwidth to
100 MHz while using 6.25 MHz receivers, improving ranging
resolution by 16 x. We implement and evaluate ISLA in three
large outdoors testbeds and show high localization accuracy
that is comparable with having the full 100 MHz bandwidth.

1 Introduction

Recent years have witnessed a tremendous growth in the num-
ber of connected IoT devices, with surveys projecting up to
31 billion deployed IoT nodes by 2030 [38]. With such ubiqg-
uitous deployment of IoT nodes, the ability to localize and
track these nodes with high accuracy is essential for many
applications. For example, in data driven agriculture, it can
enable real time micro-climate monitoring and livestock track-
ing [39]. In smart cities, IoT sensors are deployed throughout
the city for tasks such as air quality monitoring, tracking buses,
trains, and cars, and monitoring the structural health of infras-
tructure [22]. In the era of Industry 4.0, it can also enable wide
area inventory tracking and facilitate factory automation [24].

Today, the most prevalent outdoors localization technol-
ogy is GPS which is mainly used in cars and mobile phones.
However, off-the-self GPS chips can consume about the same
power as the entire IoT device, thus reducing the battery life
to half in addition to the extra hardware costs [5]. Due to
this, past work has proposed the use of cellular networks or
dedicated IoT base stations for localization [9, 27]. These
solutions, however, either achieve very low resolution of 100s
of meters [9, 18] or require active participation of the base
stations to jointly compute the location or tightly synchronize
the base stations [27,40,45]. Realizing such solutions in prac-
tice requires the cooperation of cellular providers to bear the
additional cost of modifying the base stations and a back end
server to support the localization feature.

In this paper, we ask whether an IoT device can accurately
localize itself simply by listening to ambient 5G cellular sig-
nals, without any coordination with the 5G base stations?
Doing so would allow us to easily deploy self-localizing IoT
nodes is wide areas without the need to modify the cellular
base stations or deploy new base stations for localization.

5G cellular networks present unique opportunities for en-
abling accurate localization. First, the small cell architecture
in 5G networks will lead to a very high density of 5G base
stations, with up to 40 to 50 base stations deployed per square
km [15], thereby allowing us to leverage more anchor points
in the network for increased localization accuracy. Second,
the 5G standard is designed to support very high data rates
and can have OFDM signals spanning up to 100 MHz in band-
width in the sub-6 GHz frequency range, and up to 400 MHz
bandwidth in the mmWave frequency range [37]. Such large
bandwidth can be used for accurate localization. To see how,
consider the 5G OFDM signal shown in Fig. 1(a) where data
bits are encoded in N frequency subcarriers. We can use the
preamble which contains known bits to compute the channel
impulse response (CIR) by taking an inverse FFT. The CIR in
Fig. 1(a) shows the Time-of-Flight (ToF) of different signal
paths. Estimating the ToF from few base stations allows us to
localize the device. The larger the bandwidth of the signal, the
higher the resolution. In fact, we can achieve a resolution of 3
meters for 100 MHz and 0.75 meters for 400 MHz signals.!

Leveraging these opportunities, however, is challenging
since power-constrained and low-cost IoT nodes cannot cap-
ture the large bandwidth of the 5G signals. They are equipped
with low-power and low-speed Analog-to-Digital Converters
(ADCs) that can only capture a narrow bandwidth. In fact,
while IoT has been one of the cornerstone applications in
the design of 5@, it is only supported in narrowband chunks
for low data rate applications [2,3]. Therefore, while the 5G
standard does allocate higher bandwidth (up to 400 MHz)
for mobile broadband and high data rate applications, IoT
nodes can capture only a very small fraction of this band-
width (~ 20x smaller [37]). As a result, they significantly
lose out on the ToF resolution that was made possible by the
high bandwidth 5G signals as shown in Fig. 1(b). Moreover,
it is infeasible to measure the absolute time-of-flight without
any coordination or synchronization with the base stations.

In this paper, we present ISLA, a system that enables IoT
Self-Localization using Ambient 5G signals. ISLA does not
require any coordination with or modifications to the base
stations. The key enabler of ISLA is the use of MEMS (micro-
electro-mechanical-system) acoustic resonators. Past work
[11,12] has demonstrated that we can use such MEMS res-
onators to design new kinds of RF filters that look like a
spike-train in the frequency domain, as shown in Fig. 1(c).
To understand how we can leverage such MEMS spike-train
filters, consider the 5G OFDM signal shown in Fig. 1(a).

IThe resolution is computed as ¢/B where c is the speed of light and B is
the bandwidth of the signal.
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Passing this signal through the filter allows us to keep a few
subcarriers of the wideband OFDM symbol while suppress-
ing all other subcarriers as shown in Fig. 1(d). There are
two important features of the resulting signal: (1) Since the
remaining subcarriers that are passed by the filter span the
entire wideband, we should, in principle, be able to recover
the channel impulse response at the same high resolution of
the original signal. (2) Since the remaining subcarriers create
a sparse signal in the frequency domain, it should be possible
to recover these subcarriers by sampling the signal below the
Nyquist sampling rate using the same low-power low-speed
ADCs on the ToT nodes.?

However, recovering the channel impulse response from
a signal sampled with the low-speed ADCs is non-trivial.
First, sampling the signal below the Nyquist rate leads to
aliasing in the frequency domain as shown in Fig. 1(e). Some
subcarriers might collide by aliasing on top of each other
making it hard to recover these subcarriers. Past work in
sparse recovery addresses this problem by using two co-prime
subsampling rates [16]. Unfortunately, we do not have the
flexibility to choose co-prime subsampling factors. In fact,
since the number of OFDM subcarriers in the 5G standard is a
power of 2 (e.g. 1024, 2048, 4096), we can only subsample the
signal by powers of 2 otherwise the values of the subcarriers
will be corrupted as we prove in section 5.3 To address this,
we carefully co-design the MEMS hardware with the recovery
algorithm. In particular, we jointly optimize the filter shape
(spacing between peaks, width of each peak, frequency span)
with the subsampling rate to minimize the number of colliding
OFDM subcarriers as we describe in detail in section 5.

Second, the recovered OFDM subcarriers are not uniformly
distributed across the wideband bandwidth. This is because
non-idealities in the MEMS filter make it hard to design a uni-
form spike train like the one shown in Fig. 1(c). As a result, we
can no longer recover the CIR using standard super-resolution
algorithms like MUSIC with spatial smoothing [21,44] as
they require uniform measurements. Instead, we formulate an
inverse optimization problem that accounts for non-idealities

2Note that the MEMS filter is passive and does not consume any power.
3For example, for a 100 MHz OFDM signal, we can only sample at 50
MS/s (2x), 25 MS/s (4x), 12.5 MS/s (8x), 6.25 MS/s (16x), ...
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Recovered Subcarriers
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Figure 1: ISLA’s pipeline. (a) wideband OFDM signal and its corresponding CIR. (b) narrowband OFDM signal and its corresponding lower resolution CIR.
(c) ISLA’s spike train MEMS filter that sparsifies the wideband signal. (d-f) follow the signal journey through ISLA’s pipeline that recovers the original CIR.

Time of Flight
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and optimizes the CIR in the continuous time domain to
achieve super resolution as described in Sec. 5.

Finally, while the above can provide very precise ToF mea-
surements, these ToF estimates are not going to capture the
true time taken by the signal to travel between the base station
and the IoT device. This is because the 5G base stations are
not time-synchronized with each other or the IoT device. To
localize the device without any synchronization with the base
station, ISLA leverages a second antenna on the receiver to
compute the differential ToF of the propagation paths. While
the absolute ToF measurements are corrupted by synchroniza-
tion offsets, these offsets are constant across the 2 antennas
on the IoT node, and hence can be eliminated by subtracting
the measurements from the 2 antennas. Using this differential
ToF at the 10T receiver, we show in section 7 that with mea-
surements from four or more base stations, the IoT device can
localize itself regardless of its orientation. We integrate our
approach into a full system that addresses additional system
challenges such as figuring the base station ID and accounting
for carrier frequency offsets.

Evaluation: We implemented and evaluated ISLA indoors
for microbenchmarks and outdoors for overall localization
performance. We ran experiments in three outdoor settings:(1)
Between campus buildings (52 mx 85 m), (2) a large parking
lot (240 m x400 m), and (3) an agricultural farm (480 m x 860
m). We use USRP X310 radios as base stations that can
transmit high-bandwidth packets of 100 MHz. Our custom
IoT nodes are equipped with 2 antennas and subsample the
5G signals at 6.25 MS/s which is 16x below the Nyquist rate.
We fabricated a MEMS spike-train filter operating at a center
frequency of 400 MHz and used it to demonstrate accurate
reconstruction of the channel impulse response. However, due
to significant interference at the 400 MHz band outdoors in
our city, we ran experiments at 1 GHz and applied the filter
response in digital. Our results reveal that with 5 base stations
in range, ISLA can achieve a median accuracy of 1.58 m on
campus, 17.6 m in the parking lot, and 37.8 m in the farm
where the IoT node can be as much as 500 meters away from
most base stations. For the parking lot testbed, the accuracy
improves to 9.27 m with 15 base stations and 4.26 m with
25 base stations in range. We compare ISLA’s localization

1012

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



approach with several baselines [9,21,43] and show up to
4—11x higher localization accuracy. Finally, we show that
ISLA achieves a comparable performance to having a full 100
MHz receiver while using a 16 x lower sampling rate.

Contributions: We make the following contributions:

e We present, to the best of our knowledge, the first system
that allows IoT nodes to localize themselves using ambient
5G signals without any coordination with the base stations.

o We demonstrate the ability to reduce the sampling rate by
16x while retaining the benefits of high bandwidth 5G
signals by leveraging recent advances in MEMS REF filters.

o We implement and evaluate ISLA to demonstrate accurate
localization in 3 outdoor settings.

2 Related Work

Localization has been extensively studied in cellular, WiFi,
and IoT networks. Our work differs from past research in
that it is the first to enable self-localization using ambient 5G
signals without requiring coordination with the base stations.

A. Cellular Based Localization: Several studies [9,17, 18,
29,33] have proposed to use nearby cell tower information and
statistics in order to localize a mobile device. These methods,
however, have a median accuracy of around 100 to 500 meters,
and are mostly useful for very coarse localization. To improve
localization accuracy, [4,35] propose to combine WiFi APs
with cellular base stations. Despite their relatively higher ac-
curacy, these methods require fingerprinting the surroundings
and as such require extensive training and do not generalize to
new locations. More recent work exploits massive MIMO and
millimeter wave for localization in 5G [30,31,42]. However,
all of this work requires coordination with base stations and
assumes the devices can capture the entire bandwidth of the
5G signals which does not work for IoT devices.

B. IoT Based Localization: [5] leverages TV whitespaces
to achieve high localization accuracy for LoRA IoT devices.
However, it requires all base stations to be tightly synchro-
nized at the physical layer (time and phase) in order to mea-
sure TDoA (Time Difference of Arrival). Recent work [27]
designs low power backscatter devices that leverage LoRa for
localization to achieve high accuracy. However, the system
mainly targets indoor applications where software radios can
be deployed as base stations to sample the I/Q of the signal
and localize the 10T node. Moreover, its current system de-
sign [27] supports only a single node. The authors of [34]
propose an outdoors localization technique for SigFox IoT
devices based on fingerprinting. However, as mentioned ear-
lier, fingerprinting requires constant training and cannot scale
to new environments. Finally, there is a lot of work on using
UWB or RFID nodes for localization [10, 13,41]. However,
these works focus on indoors and short range as the range of
UWB and RFIDs is limited to 10-30 meters [7, 14].

C. IoT Self-Localization: LivingloT [19] enables self-

localization on IoT nodes. It designs a miniaturized device
that can be carried by a bumblebee and uses backscatter for
communication. The node localizes itself by extracting the
angle to the Access Point from the amplitude measurements
using an envelop detector. The technique, however, requires
the APs to switch the phase across two antennas to change the
received amplitude at the IoT node, and hence, cannot be ap-
plied to 5G without modifying the base stations. [26] enables
self-localization by placing a camera on a WISP RFID but
only operates within a range of 3.6 m from the RFID reader.

D. WiFi Based Localization: There has been a lot of work on
indoor localization using WiFi [6,21,25,32,40,43,44,46,47].
The closest to our work are [21,40,43] which estimate the
channel impulse response (CIR) and time of flight (ToF)
from the WiFi access point (AP). Chronos [40] hops be-
tween WiFi channels to compute the CIR at high resolution.
However, it requires tight timing coordination with the AP
to compensate for carrier frequency offset (CFO) and ensure
phase coherence across the measurements. ISLA, on the other
hand, captures measurements from many frequencies across
a wideband without hopping by using the MEMS filter, and
hence, does not require any coordination with the base sta-
tions. SpotFi [21] combines measurements across antennas
with large WiFi bandwidth to separate Line of Sight (LoS)
path from multipath reflections in the CIR using MUSIC
along two dimensions: ToF and Angle of Arrival (AoA). mD-
Track [43] also incorporates Doppler shifts and Angle of
Departure (AoD) in addition to ToF and AoA and iteratively
refines the CIR to achieve a better estimate of the LoS path.
In section 10, we adapt SpotFi’s and mD-Track’s CIR esti-
mation algorithms to our setting and demonstrate that ISLA’s
algorithm achieves 4 — 11x higher accuracy. It is worth not-
ing, however, that for our application, these past works cannot
benefit from the doppler or AoA/AoD dimensions.

E. MEMS Filter: Recent work has used MEMS spike-train
filters for the application of wideband spectrum sensing [12].
However, [12] can only detect signal power at different fre-
quencies and cannot recover complex I and Q samples needed
for estimating the CIR. Furthermore, [12] deals with collisions
resulting from aliasing by using co-prime sub-sampling rates.
Such approach does not apply in the context of 5G OFDM
signals, since, as we show in section 5 the sub-sampling factor
can only be a power of 2. ISLA instead co-designs the hard-
ware filter together with sampling rate to avoid collisions.

3 Background

A. Spike-Train MEMS Filters: Our work builds on recent
advances in MEMS REF filters. MEMS filters can work be-
tween a few MHz and 30 GHz and can be integrated with ICs
to form a chip-scale RF front-end solution for IoT devices.
Past work on MEMS RF filters optimize for filters with a
single passband [36, 48], however, the MEMS filter used by
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ISLA leverages MEMS resonators that have an assortment of
equally spaced resonance frequencies to create a spike train
in the frequency domain as shown in Fig. 1(c).

A MEMS filter works by leveraging the inverse piezoelec-
tric effect to convert RF signals into acoustic vibrations for
filtering and processing. It then converts acoustic waves in
the device back to the RF signals through piezoelectric effect.
In this process, the frequency filtering is achieved because
not all frequencies can be efficiently converted between RF
and acoustic domains. Frequencies that match the resonance
frequencies of the piezoelectric structure can go through the
conversions with little loss, while other frequencies are fil-
tered out. Hence, the spike train frequencies can be designed
by changing the dimension of the piezoelectric material in the
MEMS device as well as the placement of electrodes shown
under the microscope in Fig. 1(c).

B. Wireless Channel Impulse Response (CIR): The wire-
less channel can be modeled as the superposition of the signal
along all the different paths it takes to travel from the trans-
mitter to the receiver. The channel at frequency f; can be
written as: h; = Y-, ajexp /2%idi/¢_ where L is the number
of propagation paths between the transceivers, d; is the dis-
tance traversed by path /, g; is the complex path attenuation
of path /, and c is the speed of light.

In OFDM systems, data is transmitted over multiple fre-
quency subcarriers {fy, ... fy—1}. If the frequency spacing
between these subcarriers is Af, then the bandwidth spanned
by the signal is B = Af x (N — 1). Now, given the channel
measurements {ho,...hy_1} across these frequencies, the
Channel Impulse Response (CIR) can be computed as the

inverse FFT of the channel measurements.
N-1, L

nd .
CIR(T) = Z (Z a exp_ﬂn_ch" ) expﬂmf” (1)
=1

n=0

where t={J,... W 1)} seconds. There are two important
things to note here. First, the resolution in Time-of-Flight
in the CIR is 1/B seconds, that is inversely proportional to
the bandwidth B. Hence, larger bandwidth results in higher
ToF resolution and more accurate ranging. Second, the maxi-
mum unambiguous ToF that can be measured from the CIR is
% = 1/Af seconds. This means, if some physical propa-
gation path in the environment has ToF > 1/Af then it would
alias and appear at a different tap value in the estimated CIR
in Eq. 1. For 5G OFDM signal with B = 100 MHz bandwidth
and Af = 60 kHz , we have a resolution of 10 ns (3 meters)
and a range of 16.6 us (5 km).

4 System Overview

ISLA enables self-localization on narrowband IoT devices by
leveraging the MEMS spike-train filter to capture ambient
wideband 5G signals. ISLAconsists of 3 main components:

(1) Capturing the wideband 5G OFDM signal using the
MEMS filter: The received 5G signal is passed through the
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Figure 2: Overview showing the flow of ISLA’s system

MEMS filter which samples the OFDM symbol in the fre-
quency domain. Specifically, the MEMS filter passes the
OFDM frequency bins that align with the filter passbands
while suppressing all other frequency bins. The resulting out-
put from the filter is a sparse spectrum as shown in Fig. 2(b).
This sparse signal is then subsampled by the narrowband
IoT device significantly below the Nyquist rate (16x lower)
which results in aliasing the remaining subcarriers into the
narrowband as shown in Fig. 2(c). We co-design the filter
hardware with the recovery algorithm to easily reconstruct
the wideband OFDM subcarriers as we describe in section 5.

(2) Super-Resolution CIR Estimation: Using the recovered
wideband channel measurements, /SLA then reconstructs a
high resolution Channel Impulse Response (CIR) by leverag-
ing its super-resolution algorithm which estimates the off-grid
positions of the propagation paths as described in Section 6.
This high-resolution CIR allows ISLA to filter out the LoS
path from the multipath in the channel for high resolution
time-of-flight estimation as shown in Fig. 2(e).

(3) Localization Algorithm: Since the IoT node is not syn-
chronized with the base station, the measured ToF will be
corrupted by a timing offset. To address this, ISLA leverages
two antennas on the IoT device and computes the differen-
tial CIR across the antennas to eliminate the synchronization
offsets. This results in the locus of the IoT device to lie on a
circle that is defined by the locations of the base stations and
the angle subtended by the base stations at the IoT device’s
location, as we explain in Section 7. Thus, by looking at the
intersection of such circles, we can accurately infer the posi-
tion of the IoT device as shown in Fig. 2(f). Finally, we show
how to integrate ISLA with the 5G-NR standard by addressing
additional system challenges in section 8.

S Capturing 5G Signals Using MEMS Filter

ISLA leverages the MEMS spike-train filters to capture the
wideband channel measurements on a narrowband receiver.
We explain this sensing process through Fig. 2. Consider
a preamble OFDM symbol transmitted from the base sta-
tion with N subcarrier frequencies at { fy, ..., fy—1}, shown
in Fig. 2(a). Let the received time domain symbol be x()
and its frequency domain representation be X (f). We have
X(f) = XN20 cuhnd(f — f), where ¢, are the data bits mod-
ulated onto the subcarriers and 4,, are the channel values at
fn- We want to extract this channel information to compute
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the Channel Impulse Response CIR(T). Since the preamble
bits ¢, are known, we can compensate for ¢, and compute the
CIR(7) by taking an IFFT of the channel values &,. However,
this requires capturing the entire bandwidth of the 5G OFDM
signal. Our goal is to recover the CIR using a narrowbandwith.
To do so, we leverage the MEMS spike-train filter.

The spike-train filter response is made up of uniformly
spaced passbands as shown in Fig. 2(b). The spike-train
filter serves to sparsify the OFDM symbol by selectively
passing subcarriers that fall inside the MEMS passbands,
while suppressing all other frequencies. Let the set of fre-
quencies passed by the spike-train be indexed by M. Then,
the frequency domain of the signal X(f) (¥(t) in the time
domain) after passing through the spike-train filter will be
X(f) = Liem cihid(f — fi)-

This sparse spectrum is shown in Fig. 2(b). Next, the IoT
receiver subsamples the signal () using a low-speed ADC
that samples at a rate R = B/P, where B is the bandwidth of
the transmitted symbol and P is an integer corresponding to
the subsampling factor. Let y(¢) be the subsampled signal,
that is, y(t) = (P x t), and let Y (f) be its frequency domain

representation. Then Y (f) is an aliased version of X (f):
P-1

Y(f) =) X(f+iR) )
i=0

Y (f) will cover a narrow bandwidth equal to R MHz as
depicted in Fig. 2(c). The process of aliasing is as follows.
Any frequency f;, j € M, that falls outside the narrowband
of the IoT device, will alias onto the frequency bin f; inside
the narrowband after subsampling, such that f; — fj =zXR,
where z is some integer. Note that for every f;, we have a
unique f ;. So given the measurement at the aliased frequency
f j» we can potentially recover the channel value h; at the
corresponding unaliased frequency f;.

However, recovering these channel values from the aliased
spectrum is non-trivial because multiple of the frequency sub-
carriers passed by the spike-train filter may collide by aliasing
on top of each other and summing up. This is unfavorable
since now we are unable to extract the channel values for any
of the colliding frequencies. Past work addresses this by lever-
aging multiple co-prime subsampling factors, which ensures
that the same frequencies don’t collide repeatedly.

Unfortunately, we do not have such flexibility to choose any
sub-sampling factor here. This is because in order to recover
the channel value /; from the aliased frequency fj, we need
to ensure that the complex scaling factor c¢; X i; encoded on
subcarrier f; remains preserved upon aliasing. This is crucial
because the wireless channel information is contained inside
this scaling factor. The following lemma states the condition
that ensures this:

Lemma 5.1. For a sub-sampling factor P and N OFDM
subcarriers, the complex valued scaling factors for each sub-
carrier will be preserved upon aliasing if N = z X P, for some
integer z, given the aliasing results in no collisions.

The proof for the above lemma is in Appendix A. Thus,
to be able to recover channel values, we are restricted to
subsample the signal by an integer factor of N. Further, since
the OFDM subcarriers in the 5G standard are set to powers
of 2, we can only subsample the wideband signal by powers
of 2.

Due to this lack of choice in subsampling factors, we in-
stead shift our focus on designing the spike-train filter such
that the frequencies passed by the filter do not collide upon
aliasing. We achieve this by leveraging the structured periodic
sparsity of the spike-train, and design a filter that ensures no
collisions for the given subsampling factor P.

Doing so significantly simplifies our recovery algorithm. In
particular, given that (1) the frequency response of the spike-
train filter and its collision-free aliasing patterns are known,
and that (2) the scaling factors at the frequency subcarriers
remain preserved upon aliasing, we can now simply rearrange
the frequencies in Y(f) to their corresponding unaliased fre-
quency positions as shown in Fig. 2(d). Further, we can extract
the channel values at these unaliased frequencies by dividing
the complex scaling factor ¢; x h; by the known preamble bit
cj. Thus, by leveraging the spike-train filter, ISLA is able to
extract wideband channel values on a narrow band IoT device.
Next, we discuss the design parameters of the spike-train filter
that ensures no collisions.

Spike-Train Filter Design: We explain the spike-train fil-
ter design with a specific example, shown in Fig. 3(a). Let
the wideband transmitted OFDM signal (B MHz bandwidth)
be comprised of 32 frequency subcarriers, indexed from -
16 to 15, with O denoting the carrier frequency bin. From
Lemma 5.1, we want the subsampling factor P to divide
N = 32. So we choose P = 4, that is, the IoT receiver subsam-
ples the signal by 4 x. This implies that the IoT receiver is
only able to capture % = 8§ frequency bins centered around the
carrier frequency as shown by the shaded region in Fig. 3(a).
Let this narrow band set of frequencies be denoted as fyp.

Recall that when you subsample a B MHz signal by P,
then all frequency subcarriers spaced by R = % MHz will
alias onto the same frequency bin in the narrow band spec-
trum. Here, this translates into all frequencies spaced by 8
subcarriers aliasing onto the same narrowband bin. This is
depicted in Fig. 3(a) through the color coding scheme. For
instance, the subcarriers at {—9,—1,7,15} (represented as
purple colored) would all appear at frequency bin -1 in the
narrow band spectrum upon aliasing. For a given subcarrier k
in the narrow band spectrum, that is, k € {—4,...,3}, let us
denote the set of subcarriers that would alias into k as I;. So
we have I_; = {-9,—1,7,15}.

The spike-train filter will selectively pass frequency sub-
carriers in the wideband OFDM signal, which after aliasing
can be recovered from the narrow band signal at the receiver.
Let the set of frequency subcarriers passed by the spike-train
filter be denoted by fy, where M € [—15,...,16]. We want
the following conditions to hold:
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MEMS spike-train filter. (c) Aliasing pattern of spike-train filter frequency response.

1. No Collisions: To ensure that we can successfully recover
the wideband channels, no two subcarriers in fj; should
alias and collide in the same narrowband frequency bin
upon subsampling. To achieve this, the spike-train filter
must satisfy: For any set Iy where k € {—4,...,3}, fy must
contain at most one subcarrier from I.

2. Extract Maximum Possible Channel Values: Given that the
narrowband spectrum spans 8 frequency subcarriers, this
means that the receiver can successfully recover at most 8
channel values after subsampling. In the presence of noise,
we want to recover as many channel measurements as pos-
sible for robustness. Hence, every narrowband subcarrier
in fyp should yield one channel measurement from the
wideband signal. This translates to: For any set I where
ke {—4,...,3}, fu must contain at least one frequency
subcarrier from I.

1 and 2 put together, dictates that the spike-train filter
should pass exactly one frequency subcarrier from each .

3. Span the Wideband OFDM symbol: To retain the high ToF
resolution, we want the set of frequencies in fj; to span
the entire wideband signal.

The above conditions can be met leveraging the structured
sparsity in the spike-train filter response. Specifically, we can
design three key parameters of the spike-train filter: (1) spac-
ing between consecutive spikes AF, (2) width of the spikes
AS, and (3) the starting frequency subcarrier f181 in the spike-
train, to follow Lemma 5.2. We prove in Appendix A that
such a filter response satisfies the above conditions.

Lemma 5.2. Consider an OFDM symbol with N frequency
subcarriers, indexed as {f;z’v""vov"'vf%—l} with inter-
frequency spacing of Af, and a narrowband receiver that
subsamples by Px. If P? divides N, then the ideal filter param-
eters that meet all three requirements are: (1) f,B, = f;zzv, (2)

(5 —1) XAf <AS < &5 x Af, and (3) AF = 5 (14 ) x Af.

Furthermore, we can achieve the required filter response
by designing the topology of the MEMS resonators, which
we explain in more details in Appendix B.

In Fig. 3(a), we show the ideal frequency response of the
spike-train filter designed with the above parameters as the
red dotted line. In theory, such a filter should allow us to
leverage all fyp subcarriers to recover the wideband channel
measurements from the aliased signal. However, in practice,

MEMS spike-train filters are non-ideal i.e., the roll-off of the
passband boundaries are not as sharp as perfect rectangular
functions, the spikes are not perfectly equally spaced, and the
passband widths are not identical. These imperfections can
be observed in the frequency response shown in Fig. 3(b). As
a result of these non-idealities, there will still be collisions at
the boundary regions of the spikes after aliasing, as shown
in Fig. 3(c). To avoid collisions from polluting our CIR esti-
mates, we only consider the subcarriers that do not collide as
shown in Fig. 3(c). However, this results in non-uniform sam-
pling of the OFDM subcarriers across the wideband channel.
In sec. 6, we show how to leverage ISLA’s super-resolution
algorithm to recover high resolution CIR estimates from these
non-uniform channel measurements.

Tradeoff Between Range and Resolution: Recall from sec-
tion 3 that the resolution in ToF depends on bandwidth,
whereas the maximum unambiguous ToF (range) depends on
the inter-frequency spacing between channel measurements.
In the 5G OFDM signal with bandwidth B = 100 MHz and
subcarrier spacing Af = 60kHz, ISLA is able to retain the
high ToF resolution of 10 ns (3 m) by collecting wideband
channel measurements that span the entire 100 MHz. How-
ever, in doing so, the frequency spacing between the channel
measurements in ISLA increases, thus reducing the maximum
ToF range. Specifically, the frequency spacing increases by
P = 16x in ISLA, thus reducing the maximum range from
5 km to 312 meters. This is an issue since now it becomes
difficult to identify the LoS path from the CIR for localization.
You could have the case where the LoS path is at 200 meters
but a reflected path at 400 meters aliases and appears at the
bin corresponding to 88 meters in the CIR. Thus, you cannot
simply pick the first peak as LoS.

To address this, ISLA combines the wideband channel mea-
surements from the spike-train filter, /s, with the narrowband
channel measurements hyp collected at the subcarriers fp,
and formulates a joint optimization with both these channels
to estimate the CIR. Since the narrowband channel measure-
ments hyp retain the same subcarrier spacing of Af = 60kHz,
it increases the effective maximum ToF range back to 5 km,
thus resolving the LoS ambiguity in the CIR.
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6 Super-Resolution CIR Estimation

Here we describe our super-resolution algorithm that can
retrieve high resolution ToF estimates t;’s along with the
associated complex attenuations a; for the L multipath com-
ponents in the channel. As discussed in Sec. 5, the IoT device
can recover channel measurements h,,, = hy U hypg at the
subcarriers fio; = fyu U fyp where fy are recovered from the
spike-train filter and fyp without the filter. Since these chan-
nel values are sampled at non-uniformly spaced frequencies,
we cannot apply standard super-resolution algorithms like
MUSIC with spatial smoothing [21,44] as they require uni-
form measurements. Instead, we optimize for the channel
impulse response in the continuous time domain by leverag-
ing an off-grid estimation technique that can estimate high
resolution ToF values from the channel information.

We begin by framing this as an inverse problem.
We start by modeling the forward operator F: hy, =
F(t1,y...,TL,a1,...,ar), which maps physical path param-
eters to the wireless channel. F comprises of the following
distinct transformations, as illustrated in Fig. 4:

(1) CIR in Continuous Domain: (Fig. 4(a)) Given path pa-
rameters {Ti,...,T.,d1,...,ar}, the continuous domain CIR
can be written as: CIR ., = ):,L:1 a;8(t— 7;), with each path
represented as an impulse positioned at its respective ToF 1;,
and scaled by its complex attenuation a;.

(2) Off-Grid Estimation: (Fig. 4(b)) The OFDM symbol
spans a bandwidth B MHz and comprises of N subcarriers.
Due to this discretization and truncation in the frequency
domain, the observed CIR at the receiver will also be dis-
cretized, and computed on the grid defined by t,, where
Tg = {%, ey <N;1) }. However, as with most natural signals,
the ToFs of the physical propagation paths t; will rarely align
with this discretized T, grid, that is, the 7;’s will lie at an off-
grid position. As a result, the leakage from the continuous
off-grid CIR component from path / to the discrete CIR grid
positions at T, can be computed as CIR' (t) = a/¥n (T — 1),

where Yy is the discretized sinc function defined as:

sin (1T N-—1
Yn(T) = sin(WT;eXp (‘WJ' (T) T) 3)
(3) Superposition: (Fig. 4(c)) With multiple propagation
paths in the channel, the net observed CIR at the receiver
is the sum of the CIR profiles contributed by each propaga-
tion path: CIR™ (1) = ¥ ayn (T — ).

(4) Discrete Fourier Transform: (Fig. 4(d)) Finally, the
channel A, can be computed by sampling the corresponding
frequencies f;,; from the DFT of the superposed CIR. Let
us denote the N x N Fourier matrix as Fy, and let V be the
matrix that chooses the rows corresponding to f;,, from Fy.
Then we have: ;,, = V Fy CIR"™ where CIR™ isa N x 1
dimension vector.

Putting the above four transformations together, the forward
operator F can be expressed as:

hio = F ({w,ar}iny) = V Fy'¥a @)
where ¥ is a N x L matrix with ¥; ; = Yy (1, —7;), and dis a
L x 1 vector comprising the complex attenuations a; for each
path. Now that we have the forward operator, the inverse prob-
lem to retrieve the path parameters from observed channel
vector h;ot can be formulated as a L-2 minimization:

{(t,aj}e = argmin |k, — VEN¥E? (5

Yooy ULy A1 5oy,
Solving the Optimization: Note that if we are given W,
then Eq. 5 becomes a linear optimization problem in &. Thus,
given W, the closed form solution for @ that minimizes Eq. 5
is@ = (VEy®)'h,,,, where T represents the pseudo-inverse.
Thus the objective function in Eq. 5 can be rewritten as:

{1 }i21 = argmin||hy, — VEN®(VENE) By |
Bt (©)
st. >0 VIie{l,2,...,L}

The objective function is now reduced to just the ToF vari-
ables 1;’s. This optimization problem is non-convex and con-
strained, and we use the well-known interior-point method to
solve this [8]. For the initialization point to the optimization
algorithm, we use approximate ToF values from the CIR com-
puted by taking the inverse FFT of the observed channel h;m.
While these ToF estimates are distorted by the discretization
and superpositioning artifacts described previously, it gives a
good starting point for the optimization.

Also, note that the number of paths N in the wireless chan-
nel is not known a priori. As we keep increasing the number
of paths N that the algorithm is initialized with, it keeps find-
ing a better and better fit to the channel data, and after a point,
starts overfitting to the noise. In order to avoid overfitting and
yet yield accurate estimates for the path parameters, we run
the optimization problem multiple times, each time increasing
the number of paths it is initialized with by 1. We terminate
the algorithm when the decrease in the value of the objective
function falls below some threshold €, and set the current
value of N to be the number of paths in the channel.
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7 ISLA’s Localization Algorithm

The above off-grid estimation algorithm gives us highly pre-
cise ToF estimates for the propagation paths. However, since
the 5G base stations are not time synchronized with the IoT
device, there is going to be an offset between the sampling
clocks in their RF chains. As a result, the measured ToF at the
IoT node also includes delays from the sampling time offset
(STO) between the different base stations and the IoT node,
and hence cannot provide accurate distance estimates.

To address this, ISLA leverages two antennas on the [oT
node to compute the differential ToF rather than the absolute.
The key idea here is that while the absolute ToF measure-
ments are corrupted by synchronization offsets, these offsets
are constant across the two antennas on the IoT node. Hence,
the offsets can be eliminated by differencing the two measure-
ments. Let the ToF values to the two antennas be T; and 15,
and their corresponding distances be d| and d;, as denoted
in Fig. 5(a). Then the locus of the base station from the IoT
device’s frame of reference is a hyperbola with the two an-
tennas being the foci, and the difference in distances to the
two foci equaling d» — d;. At large distances, this hyperbola
can be approximated as two rays along the asymptotes of the
hyperbola, depicted by the red dashed lines in Fig. 5(a).

By overhearing packets from different base stations, the
IoT device can infer the locus of each base station to lie on
approximated rays originating from the [oT device’s location.
This is shown in Fig. 5(b), where base station 1 can lie on the
rays at angles 0; or —01, and similarly the base station 2 can
lie on the rays at angles 6, or —6,. Both 8 and —0 are possible
since there is the ambiguity that the signal might have arrived
from the front or the back of the device. Given this, we can
see that the angle subtended by the two base stations at the
location of the [oT device will be |62 — 61]|, and this is going
to be constant irrespective of the orientation of the IoT node.
(There is ambiguity in that the angle subtended can also be
|62+ 61]|, and we will address this shortly).

Given the angle subtended by the base stations and the
known locations of the base stations, according to the In-
scribed Angle Theorem, we can determine the locus of the
10T device to lie on the arc of a circle, where the line segment
connecting the two base stations is the chord and the corre-
sponding inscribed angle is equal to the angle subtended by
the base stations. This is illustrated in Fig. 5(b) as the green
dashed arc. Leveraging different pairs of base stations, ISLA

can draw multiple such arcs and the intersection points of
these arcs will give us the IoT device’s location.

Sources of Ambiguity: There are some sources of ambiguity
that need to be resolved. First, the angle subtended by the
two base stations in Fig. 5(b) could also be |8, + 61|, and
second, the arc drawn with the base stations at the end points
could also be pointing towards the north rather than south,
as depicted in Fig. 5(b). These ambiguities can be resolved
easily by leveraging 4 base stations as anchor points. Keeping
one base station common, we have three base station pairs
which yields three unique arcs. Only the right configurations
of angles subtended and arcs drawn will give us a common
intersection point for all three arcs. ISLA’s localization algo-
rithm tries all configurations and picks the one where all arcs
coincide at the same point.

8 Integrating /SLA with SG-NR Standard

Similar to the LTE standard, the 5G-NR packet consists of 10
subframes, each of duration 1 ms [28]. To allow for coherent
packet demodulation, the 5G frame appends known preamble
bits on each subframe which enables channel estimation and
correction across the entire bandwidth of the 5G channel. Ad-
ditionally, in the first subframe of the packet, the base station
also includes all information required by devices to associate
with the network, which comprises of the synchronization
signals (PSS and SSS frames) for CFO correction and frame
timing, and the Base Station ID. To allow every device in the
network to receive this critical information, it is always en-
coded in the narrowest supported bandwidth of the wideband
packet, which is 4.32 MHz in the 5G standard [28].

ISLA’s hardware circuit, discussed in Section 9, is designed
such that it can switch between capturing the 6.25 MHz nar-
rowband spectrum, or the wideband spectrum via the spike-
train filter. ISLA begins by capturing the first subframe of
the 5G packet through its narrowband RF path, and extracts
the synchronization frames and base station ID encoded in
the narrowband subcarriers of the wideband packet. Using
publicly available databases like [1], ISLA can retrieve the
location of the Base Station given its ID. The synchroniza-
tion frames help eliminate coarse CFO and SFO. From the
subsequent subframes, ISLA first estimates the narrowband
channel, and then switches to the RF path with the spike-train
filter to sense wideband channel. Note that ISLA does not
need to meet tight timing constraints to switch since each
subframe lasts 1 ms and there are multiple such subframes
in each packet that can be leveraged for channel estimation.
Thus, ISLA can simply skip a subframe while switching.

However, because ISLA captures the narrowband channel
and wideband channel from different subframes, there is going
to be an additional phase accumulation between the two mea-
surements due to residual CFO. To address this, we slightly
modify Eq.6, and the detailed description for this modification
is presented in Appendix C.
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Figure 6: Ourdoor Experiment Testbeds: (a) Campus testbed surrounded by buildings. (b) Parking lot testbed. (c) Agricultural farm testbed.

(d) Prototype base station in the agricultural farm testbed.

9 System Implementation

System Design: We have built a prototype ISLA device by
combining our MEMS spike-train filter with commodity, off-
the-shelf, low-power components. Figure 7(a) shows the cir-
cuit diagram, and Fig. 7(b) shows the actually prototype. It
receives ambient 5G transmissions with two antennas fol-
lowed by identical RF chains. Depending on whether the IoT
devices wants to receive the full 100 MHz spectrum using the
spike-train filter or the narrowband spectrum, the RF chains
can switch between two paths: (1) the received wideband spec-
trum first be filtered by the MEMS spike-train filter, and then
down-converted and sampled without using the anti-aliasing
filter. (2) the MEMS spike-train filter is bypassed but the
down-converted signal will first go through an anti-aliasing
filter before sampling. We select between the two paths using
RF switches controlled by a single microcontroller.

Implementation: We fabricated a MEMS spike-train filter
at 400 MHz center frequency. However, due to the strong in-
terference from the amateur radios in this band, we were not
able to run experiments outdoor using this filter. Hence, the
above prototype was only used indoors. In the outdoor exper-
iments, we transmitted in a vacant 100 MHz wide spectrum
between 950 and 1050 MHz, and we emulate the IoT radio
front-end described above with the MEMS spike-train filters
in digital using an X310 USRP software-defined radio (SDR).
We would like to note that in practical deployments we do not
expect interference to play a major issue since /SLA will be de-
ployed in the proprietary frequency bands licensed by cellular
companies, which in turn will have limited interference.

The X310 SDR has two identical RF chains, and can sample
the full 100 MHz bandwidth with UBX160 daughterboards.
To emulate the MEMS spike-train in digital, we first measure
the spike-train filter frequency response once using a vector
network analyzer (VNA), and we apply this filter frequency
response to the received signals sampled at 100 MHz. Then,
we downsample the filtered signal by simply keeping every
16th sample. This is equivalent to filtering the RF signal in
analog and sample it below the Nyquist sampling rate. We
also used a bandpass filters between the antenna and SDRs
to remove out-of-band interferences and synchronized the
two RF chains in time and phase through the GNU Radio
Python API. In section 10.3, we present mircobenchmarks
demonstrating the equivalence between applying the filter in

Spike-Train
Filter

RF Switches
IControl Signal

(a) Circuit Diagram
Figure 7: ISLA Prototype Circuit

(b) Prototype Circuit

digital and the above hardware prototype.

Testbed: Additionally, we also built 5G base station TX pro-
totypes to transmit ambient 5G communication signals. As
shown in Fig 6(d), the base station prototype consists an X310
USRP SDR with a UBX160 daughterboard, a 9 dBi Yagi di-
rectional antenna, and an RF Bay MPA-22-30 30 dB power
amplifier. The base stations transmit 100 MHz OFDM packets.
Using five base station prototypes, we created three testbeds
with different dimensions and at different locations to conduct
our experiments. Figure 6 shows the satellite images of our
testbeds with the base stations and clients locations marked.
The first testbed is 85 m long and 52 m wide on a university
campus, surrounded by buildings on all sides. We designated
11 basestation locations in this testbed and chose five of them
for each experiment. The second testbed is a 400 m by 240 m
parking lot with 27 base station locations. The third testbed is
at a 102 acre farmland with 860 m length 480 m width. We
selected five out of the 17 potential locations to place the base
stations in each experiment. For ground truth locations, we
used differential GPS RTK with real-time RTCM correction
data, which provides centimeter-level positioning accuracy.

10 Experimental Evaluation
10.1 Baselines

(1) Spot-Fi: [21] proposes a 2D MUSIC algorithm with spatial
smoothing, which can localize clients by separating the multi-
path components jointly along the ToF and AoA domains.

(2) mD-Track: [43] separates propagation paths by leveraging
multiple dimensions of the wireless signal (ToF, AoA, AoD
and Doppler), and proposes an iterative algorithm that goes
through multiple rounds of error computation and path re-
estimation. In our experimental setup, leveraging the AoD
and Doppler dimensions provides little benefit since the base
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Figure 8: ISLA’s localization accuracy compared against baselines across different testbeds: (a) Campus (b) Parking lot (c) Farm.

station is equipped with a single antenna and the IoT device
does not have high mobility relative to the base station.

Note that, systems like Spot-Fi and mD-Track were not de-
signed for ambient localization, and thus need to be adapted
here. Specifically, we leverage the ToF estimates provided by
these baselines for the LoS path, and in turn self-localize the
client by computing the relative ToF, as described in Section 7.
(3) RSSI: Past work leverages RSSI measurements to localize
clients in outdoor cellular networks, by either using approxi-
mate path loss models for trilateration, or by using the known
locations of nearby cells as coarse estimates. We implemented
one recent RSSI baseline [9].

(4) Spike-train filter-adapted baselines: To provide a fair com-
parison against ISLA, we modify Spot-Fi and mD-Track to
leverage the spike-train filter and utilize the wideband chan-
nel measurements for localization. It is non-trivial to adapt
Spot-Fi for the spike-train filter since the spatial smoothing
technique used in Spot-Fi requires uniformly spaced channel
measurements across frequency, whereas the spike-train filter
samples the OFDM frequency bins non-uniformly. To address
this, we restructure the spatial smoothing subarray from [21]
that allows Spot-Fi to be applied across the non-uniform fre-
quencies sampled by the spike-train filter.

10.2 Results

Unless otherwise specified, for all results, we utilize 5 ran-
domly chosen base stations as the anchor points.

A. Localization Accuracy Comparison against Baselines:
We compare ISLA’s localization against the baselines in Fig. 8.
Note that, while ISLA is designed specifically to leverage the
wideband channel sensed by the MEMS filter, the baselines
are implemented without modification and thus utilize only
the narrowband channel for localization.

From Fig. 8, ISLA achieves a median localization accuracy
of 1.58 meters in the campus testbed, 17.6 meters in the park-
ing lot testbed, and 37.8 meters in the farm testbed. Across
the same three testbeds, Spot-Fi achieves median accuracies
of 17.05 meters, 61.2 meters and 156.6 meters, whereas mD-
Track achieves 18.11 meters, 71.8 meters, and 183.1 meters
respectively. Thus, ISLA improves the localization accuracy
over Spot-Fi and mD-track by ~ 11x in the campus testbed,
and by ~ 4x in the parking lot and farm. ISLA is able to
achieve such high gains since it leverages the spike-train filter
to sense wideband channel on the narrowband device, which
allows for much higher resolution compared to the baselines

operating solely in the narrowband. Further, the localization
improvement over the narrowband baselines is most signif-
icant in the campus testbed, since it has the most multipath
from surrounding buildings, and thus ToF resolution is critical
to separate out the LoS path from reflections.

Lastly, the RSSI baseline achieves median accuracies of
64.54 meters, 120.7 meters, and 260.8 meters respectively
across the three testbeds. RSSI based methods generally have
poor performance, as they tend to oversimplify path loss mod-
els that map RSSI values to distance, which does not hold for
real world multipath channels.

B. Comparison against Spike-train-adapted Baselines:
Next, we evaluate how leveraging the spike-train filter would
benefit the performance of our narrowband baselines. Fig. 9
shows the CDF of localization accuracy comparing ISLA
against the modified baselines that utilize the wideband chan-
nel from the spike-train filter. The RSSI baseline is not in-
cluded here since its localization performance does not de-
pend on bandwidth. Compared to its narrowband implemen-
tation, Spot-Fi’s median accuracy improves to 11.08 meters
in the Campus testbed, 49.07 meters in the Parking Lot, and
137.76 meters in the farm. Similarly, mD-Track’s median per-
formance improves to 15.48 meters, 51.45 meters and 103.78
meters in the three testbeds respectively. Thus, Spot-Fi and
mD-Track see improvements in localization accuracy by up
to 54% and 76% respectively. This shows that other localiza-
tion techniques can also benefit from the wide-band channel
sensing capabilities enabled by the spike-train filter.

Additionally, Fig. 9 shows that given the same channel in-
formation, ISLA’s off-grid CIR estimation algorithm is able
to better resolve and estimate the relative ToF compared to
Spot-Fi and mD-Track. This is because these baselines were
designed to leverage multiple information dimensions to sep-
arate out the multipath components, with both baselines lever-
aging 3 or more antennas for separation in the AoA domain,
and mD-Track further using the additional dimensions of
Doppler and AoD as well. In contrast, here the 10T device
has to separate out multipath in the ToF domain alone, and
ISLA is able to achieve very accurate localization owing to its
off-grid estimation algorithm.

C. ISLA Leveraging Different Amounts of Spectrum: In
this experiment, we compare ISLA’s localization algorithm
applied across three different amounts of spectrum utilization
— (1) ISLA applied only to the wideband sparse channel sensed
by the spike-train filter (without combining with narrowband
channel), (2) ISLA applied only to the narrowband channel of
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IoT device, and (3) ISLA applied across the entire 100 MHz
bandwidth of the received 5G signal. Fig. 10 plots the CDF
of localization accuracy achieved across the three testbeds.

ISLA applied on the narrowband channel performs the
poorest, achieving median accuracies of 7.9 meters, 58.9 me-
ters and 142.52 meters in the campus, parking lot and farm
testbeds. In contrast, ISLA along with the spike-train filter
can achieve corresponding median accuracies of 1.68 meters,
18.8 meters and 45.04 meters. Thus, ISLA along with spike-
train achieves an improvement in localization accuracy of
3.16 x —4.7x compared to ISLA applied in the narrowband
spectrum, despite both baselines capturing the same amount
of channel measurements. The advantage of spike-train stems
from the fact that it enables the narrowband receiver to capture
channel measurements that span a much larger bandwidth,
which results in much higher ToF resolution.

On the other hand, ISLA’s localization algorithm applied
on the full 100 MHz spectrum achieves median accuracies of
1.38 meters, 11.44 meters and 25.8 meters respectively on the
three testbeds. Thus, ISLA with the spike-train filter reduces
the localization accuracy by only 1.21x, 1.64x, and 1.74x
respectively compared to this upper bound. This demonstrates
that the spike-train filter can enable a narrowband device to
achieve localization accuracy within a factor of 2x compared
to a broadband receiver, despite the fact that it subsamples the
signal by 16x below Nyquist.

D. Localization with Number of Anchor Base Stations:

In Fig. 10(d), we compare ISLA’s localization performance
with 5, 15 and 25 base stations used as anchor points respec-
tively, in the parking lot testbed. With 5 base stations, ISLA
achieves a median accuracy of 17.6 meters, which improves
to 9.27 meters with 15 base stations, and 4.26 meters with 25
base stations. This improvement becomes even more signifi-
cant at the tail, with ISLA achieving 90" percentile accuracy
of 73.16 meters with 5 base stations, which improves to 10.9
meters accuracy with 25 base stations at 90" percentile. Thus,

leveraging more base stations can significantly improve the
localization accuracy achieved by ISLA.

E. Tracking Objects: We move the IoT device across an
L-shaped trajectory (160 meters in length and 85 meters in
width) in the parking lot testbed, and collect packet trans-
missions from the base stations at different points along this
trajectory. In this experiment, we pick 7 fixed base stations
to utilize as anchor points, and we show the ground truth
trajectory and corresponding estimated trajectory by ISLA
in Fig. 11(a). As can be observed, ISLA’s high localization
accuracy allows to faithfully capture the shape of the ground
truth trajectory.

10.3 Microbenchmarks

A. CIR Estimation using Fabricated MEMS Spike-train
Filter: To verify the equivalence between our outdoor imple-
mentation and using the prototype with the fabricated MEMS
spike-train filter at 400 MHz, we conduct indoor experiments
at 400 MHz. Specifically, we evaluate the error in recon-
structed CIR and estimated ToF values between the prototype
with the fabricated filter and ISLA with the digital filter im-
plementation. In Fig. 11(b), we show the CDF of the errors
in ToF values (converted to distance (meters)) recovered by
the two approaches, for both LoS and NLoS paths. We can
see that the position of the LoS path in the CIR estimated
from both approaches are very close, with the median error
between their estimates being 0.075 meters. The error in the
NLoS paths is higher, with a median error of 1.05 meters.
However, this will not affect the localization performance
between the two since localization only uses the LoS path.
This microbenchmark demonstrates that /SLA’s approach of
applying the filter and subsampling in digital is equivalent
to using the fabricated filter from a localization perspective,
and that the results shown in this paper are representative of a
fully implemented system.
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Figure 11: (a) Using ISLA to track object trajectory. (b) ToF difference between ISLA’s prototype with fabricated MEMS filter and digitally implemented
MEMS filter. (c) Deployment of 4G base stations in the downtown area of a major US city. (d) Number of visible 4G base stations at various downtown locations.

Direction NW NE SE SW
Median 1.3535m | 1.3544m | 1.3267m | 1.3681 m
Std Dev 0.4948 m | 0.6026 m | 0.4908 m | 0.512m

Table 1: Invariance of Localization Error to Orientation

B. Density of Deployed Base Stations: In Section 10.2D,
we have shown that ISLA’s localization accuracy increases
substantially as we use more anchor base stations. Here, we
study the distribution of how many base stations can the
client overhear at a given location. Using publicly available
databases [1], we retrieved the locations of 4G LTE base
stations belonging to 4 major carriers in the United States.
We chose 4G LTE for this analysis since 5G deployment is
still in its nascent stage in the USA, but we expect the target
coverage for 5G networks to exceed the 4G deployment.

In Fig. 11(c), we show the scatter plot of the 4G base sta-
tions located in the downtown area of a major metropolitan
city in the USA. Using the cell coverage information provided
in [1] for the different base stations, in Fig. 11(d), we plot
the CDF of the number of base stations that the client can
overhear at different locations on the map. We can see that
at the 10" percentile, the number of visible base stations is
11, thus implying that less than 10% of client locations see
less than 11 base stations. Further, the median number of base
stations visible to the client is 29. This demonstrates that the
cellular deployment is dense enough to allow many anchor
points, which in turn can achieves high localization accuracy.

C. Invariance to Orientation: Here, we demonstrate that the
localization performance is independent of the orientation of
the IoT device. This is because the arcs that define the locus
of the IoT node, depend only on the angle subtended by the
base stations at the IoT device’s location, which is invariant
to device rotation. At a given location in our campus testbed,
we orient the IoT device along 4 different directions and per-
form 100 localization experiments at each orientation. From
Table 1, we can see that the median and standard deviation in
localization error is almost the same across the 4 orientations,
thus demonstrating invariance to orientation.

11 Limitations and Discussion

e Power Footprint: To enable ambient localization, ISLA
leverages a second antenna and RF chain, which increases
the power footprint of the IoT device. However, we would
like to note that the power overhead of an additional RF

chain is going to be lower than that of a GPS module, which
is the likely alternative for localization. This is because the
additional RF chain on the IoT device is going to operate in
the narrowband with very low sampling rates, whereas GPS
incurs high operational power since it needs to receive and
correlate long sequences to get the signal power above the
noise floor for GPS lock acquisition. Hence, while ISLA’s
design does lead to an increased power footprint, it is still
a better alternative compared to GPS.

e Loss of SNR: Since the MEMS spike-train filter is a passive
device, the signal suffers from insertion loss when passed
through the filter, thus resulting in loss of SNR. This is
further exacerbated by the fact that in practice, the out-of-
band rejection of the spike train filter is finite, which results
in further loss of SNR. It is possible to reduce the impact of
this SNR loss at the circuit level by improving impedance
matching and the isolation between input and output ports.
We can also compensate for the SNR loss by averaging the
channel measurements across multiple OFDM symbols.

e Line-of-sight: Similar to many localization systems, ISLA
assumes the availability of line-of-sight (LoS) paths to the
base stations which might not hold under occlusion. This,
however, can be addressed by potentially selecting a subset
of base stations with LoS paths using similar techniques
demonstrated in [21]. With the dense deployment of 5G
base stations, we expect a significant subset of base stations
to have LoS path to the node.

e Fast Mobility: The current design of ISLA is not suitable
for highly dynamic applications with fast mobility such as
tracking cars. This is because the localization algorithm
must receive wideband 5G packets from 4 or more base
stations before it can self-localize.

e Multiple Providers: ISLA can benefit from capturing signals
from multiple different providers since the IoT node does
not need to associate with the base stations. However, dif-
ferent providers operate in different frequency bands which
would require different spike-train filters. This could poten-
tially be addressed by having multiple filters and switching
between them similar to our design in sec. 9.
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A Proofs

Here we re-state the lemmas and provide proofs.

Lemma 5.1 For a sub-sampling factor P and N OFDM sub-
carriers, the complex valued scaling factors for each subcar-
rier will be preserved upon aliasing if N = z X P, for some
integer z, given the aliasing results in no collisions.

Proof of lemma 5.1: Assume that x[n] is a discrete signal
from 0 to N — 1, and we are sub-sampling (or decimating) it
by a factor of P, meaning y[n] = X[n x P] for some integer P.
Then the Discrete Fourier Transform of y[n], denoted by ¥ [k]

is

IN/P|-1 ,
P = Y xpple Pmimt
n=0
N-1 Pl .
= % x[n] eI Fmng P WiE P
n=0 m=0
P—1 N-1
= 2 X (X afale F0E By
m=0 n=0

Now if P divides N, in other words N = Pz for some integer
z, the above simplifies to

. 1 P—1 N-1 om
V=5 Y () alnle /)
m=0 n=0

15

m=0

where X is the DFT of x[n]. This proves that, as long as there
is no collision, meaning that there is at most one index m in
the above equation for which X [k — zm] # 0, then the complex
values of X [k] will be fully preserved upon sub-sampling. This
proves the lemma.

We also point out that if P does not divide N, then the

complex values are not preserved. Specifically, if N/P is not
a proper integer, ¥'[k] will be in terms of X [kWN—xsJ — %m]
N/P N

where inside the argument, k IN/P] — P is not necessarily

an integer. As a result, the original information of X [k] is never
repeated in any of the ¥ indices. In fact, ¥ would closely relate
to an interpolated version of X with the Dirichlet kernel.

Lemma 5.2 Consider an OFDM symbol with N frequency
subcarriers, indexed as {f%,...,o,...,f%il} with inter-
frequency spacing of Af, and a narrowband receiver that
subsamples by Px. If P* divides N, then the ideal filter param-
eters that meet all three requirements are: (1) fj?,l = f;zN, (2)

(85 —1) xAf <AS < 25 < Af, and (3) AF = % (1+ ) x Af.

Proof of Lemma 5.2: First, we show that no two frequencies
collide after aliasing. Let g = %, and assume that two frequen-
cies fo and fg collide. Let fq be k-th subcarrier (for 0 <k < P)

covered at the i-th passband (0 <i < M—ﬂ ), and let f5 have

k' and i’ as corresponding indices. To collide after aliasing,
fo— fg = (k—K')AF + (i — i )Af must be an integer multi-
ple of gAf. However, [k —k'| <P—1and |i —i| < %. Thus
< (% + %)q = ¢, meaning we must have fo — fg =0,
proving the first design requirement. Second, we note that
P passbands that do not overlap (since AS < AF), and each
passband covers exactly % subcarriers. We therefore have

|fou—/fpl
Af
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a total of P X % = g subcarriers that, as we just showed, do
not overlap after aliasing. Therefore, after aliasing, each of
the g subcarriers is covered exactly once, ensuring the second
design requirement. Finally, we note that the smallest bin
index is covered by the filter is min fy; = %, and the largest
bin index is the last bin of the last passband, whose index can
be computed as follows:

—-N AS
mafo:T—l—(P—l)xAF—F{E-‘—l
—N N 1 N
= P x~(1+ =)+ ()1
(P 1)x (14 5)+ ()
N N
=T 4N-1=2-1L
2t 2

Thus, the entire bandwidth (including f By and f%fl) is
covered, ensuring the last design requirement.

B MEMS Spike-Train Filter

Spike-Train Filter Implementation: Following Lemma 5.2,
we can derive the desired frequency response of the spike-
train filter, and design MEMS resonators topology accord-
ingly. For example, in our experiment, we used a 100 MHz
5G-like OFDM waveform with N=2048 subcarriers and a
subcarrier spacing Af = 49 kHz, and we down-sample the fil-
tered waveform by a factor of P=16. According to Lemma 5.2,
the desired filter should 16 spikes with a spike spacing of
6.64 MHz spanning the 100 MHz bandwidth, and each spike
should have a width around 400 kHz.

We can design a spike-train filter leveraging the periodic
resonance frequencies of a type of MEMS acoustic resonators
that is commonly referred to as a LOBAR (Lateral Overtone
Bulk Acoustic Resonator). As shown in Fig. 12, the LOBAR
resonator consists of 12 electrodes on the top of a thin film
made of the piezoelectric material LINbO3. And we combine
seven resonators in a ladder filter topology [20] to build a
filter circuit. As a result, the LOBAR resonator architecture

determines the spike frequencies, whereas the slight differ-
ence between different resonators determines the width of the
spikes. For simplicity, here we only focus on these two key
parameters of the spike-train filter response, since they are
restricted by our channel recovery algorithm as described in
Sec. 5. More details on the MEMS spike-train filter design
can be found in [23].

(1) The width of the film: the spacing between spikes Af is
determined by the width of the thin film W as Af = v/W,
where v is the acoustic velocity in the piezoelectric material,
which is ~ 4 km/s in our design. Therefore, to achieve the
6.6 MHz spike spacing, we design the film width W to be
~ 660 um.

(2) The film width difference between different shunt and se-
ries resonators: the spike width AF of the spike-train filter
equals to the resonant frequency difference between shunt
and series resonators in the ladder filter, which is determined
by the difference AW between shunt and series resonators:
AF = fc%. We design with piezoelectric film width to be
660 um for series resonators and 660.26 um for shunt res-
onators, which leads to AW = 0.26um, so that the widths of
the spikes are around 400 kHz.

C Updated Objective Function to Account for
Residual CFO

ISLA captures the narrowband channel and wideband channel
from different subframes. Thus, there is going to be an ad-
ditional phase accumulation between the two measurements
due to residual CFO. To address this, we slightly modify Eq.6
where we split the objective function into two separate L-2
norm minimizations, with the first term containing only the
wideband channel h;‘,,, and the second term containing only
the narrowband channel h;\,B. This objective function is given
below:

{x7 Hey = argmin Iy — Vi Fy (Vi F'®) iy |

TseTL

- VNBFN‘P(VNBFN‘P)*hﬁvBIIZ) (7)

st. >0 Vie{l,2,... L}

The modified objective function is now invariant to phase
offsets between the two channels, and ISLA can solve this
updated optimization using the same technique described in
Sec. 6.
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