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logarithmic sacrifice. In this paper, we show that such log-factors are not necessary.
We derive upper bounds for the L? minimax risk in nonparametric estimation.

g‘:gg ?lzclli'al network Sufficient conditions on network architectures are provided such that the upper
Nonparametric inference bounds become optimal (without log-sacrifice). Our proof relies on an explicitly
Tensor product B-splines constructed network estimator based on tensor product B-splines. We also derive
Optimal minimax risk bound asymptotic distributions for the constructed network and a relating hypothesis
Asymptotic distribution testing procedure. The testing procedure is further proved as minimax optimal under
Nonparametric testing suitable network architectures.
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1. Introduction

With the remarkable development of modern technology, difficult learning problems can nowadays be
tackled smartly via deep learning architectures. For instance, deep neural networks have led to impressive
performance in fields such as computer vision, natural language processing, image/speech/audio recognition,
social network filtering, machine translation, bioinformatics, drug design, medical image analysis, where they
have demonstrated superior performance to human experts. The success of deep networks hinges on their
rich expressiveness (see [3], [23], [22], [1], [28], [20] and [31,32]). Recently, deep networks have played an
increasingly important role in statistics particularly in nonparametric curve fitting (see [15,11,16,18,24]).
Applications of deep networks in other fields such as image processing or pattern recgnition include, to
name a few, LeCun et al. [19], Deng et al. [4], Wan et al. [29], Gal and Ghahramani [9], etc.
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A fundamental problem in statistical applications of deep networks is how accurate they can estimate
a nonparametric regression function. To describe the problem, let us consider i.i.d. observations (Y;, X;),
1=1,2,...,n generated from the following nonparametric model:

Y = fo(X) + €, (1.1)

where X; € [0,1]¢ are i.i.d. d-dimensional predictors for a fixed d > 1, ¢; are i.i.d. random noise with
E(e;) = 0 and Var(e;) = 72, fo is an unknown function belonging to some function space H. For any L € N
and p = (p1,...,pr) € NE let F(L,p) denote the collection of network functions from R? to R consisting
of L hidden layers with the /th layer including p; neurons. The problem of interest is to find an order R,
that controls the L? minimax risk:

_inf  sup Efo(Hf_fOH%?
feF(L,p) foeH

x) — 0p(Ry), (1.2)

where X = {Xj,...,X,}, the infimum is taken over all estimators ]? € F(L,p), and Ey, represents the
expectation taken over the conditional distribution of Y;’s given X;’s with Y;, X; generated from model
(1.1), and Op stands for stochastic boundedness, which will be formally defined at the end of Section 2. In
other words, we are interested in the performance of the “best” network estimator in the “worst” scenario.

Existing results regarding (1.2) are sub-optimal. For instance, when # is a S-smooth Holder class and
L, p are properly selected, it has been argued that R,, = n_% (logn)® for some constant s > 0; see Kohler
and Krzyzak [15], Hamers and Kohler [11], Kohler and Krzyzak [16], Kohler and Mehnert [18], Schmidt-
Hieber [24], Suzuki [27], Farrell et al. [8], Liu et al. [21], Wang et al. [30]. Such results are mostly proved
based on empirical processes techniques in which the logarithmic factors arise from the entropy bound of
the neural network class. The aim of this paper is to fully remove the redundant logarithmic factors, i.e.,
under proper selections of L,p one actually has R, = n_% in (1.2). This means that neural network
estimators can exactly achieve minimax estimation rate. Our proof relies on an explicitly constructed neural
network through tensor product B-splines which is proved minimax optimal. One technical contribution of
this paper is to show that tensor product B-splines can be effectively expressed by deep networks. Compared
with other basis structures such as local Taylor expansions, e.g., Yarotsky [31] and Schmidt-Hieber [24],
the tensor product B-splines framework is convenient to our theoretical analysis due to its rich statistical
literature; see Huang [12] and Huang [13].

Some interesting byproducts are worth mentioning. First, we will derive the pointwise asymptotic distri-
bution of the constructed neural network estimator which will be useful to establish pointwise confidence
interval. Second, the constructed neural network estimator will be further used as a test statistic which is
proved optimal when L, p are properly selected. As far as we know, these are the first provably valid confi-
dence interval and test statistic based on neural networks in nonparametric regression. Third, the rate R,
can be further improved when fj satisfies additional structures. Specifically, we will show that R,, = n~ T
if fo satisfies additive structure, i.e., fo is a sum of univariate S-Hoélder functions. Such rate is minimax
according to Stone [25].

This paper is organized as follows. Section 2 includes some preliminaries on deep networks and defines
some notation. In Section 3, we derive upper bounds for the minimax risk and investigate their optimality.
Section 4 provides the proof of the main result, which covers the construction of (optimal) network and
relates results on network approximation of tensor product B-splines. As by products, we also provide
limiting distribution and optimal testing results in Section 5. We further study the additive model using
network approximation in Section 6. The Appendix contains the proofs of relevant lemmas and a table
indexing some important symbols used in the proof.
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2. Preliminaries and notation

In this section, we review some notion about deep networks and function spaces, as well as provide useful
symbols or notation used throughout this paper. Throughout let o denote the rectifier linear unit (ReLU)
activation function, i.e., o(z) = (x) for x € R. For any real vectors v = (vy,...,v.)T andy = (y1,...,9,)7
we define the shift activation function oy(y) = (o(y1 — v1),...,0(yr —v,.))T. Let p = (p1,...,pr) € NE,

and we say f € F(L,p) if

)

f(x) =Wrii0v, Wroy, ... Waoy, Wix, x € RY,

where v; € R is a shift vector and W; € RP1*Pi-1 ig a weight matrix, and x represents the argument of f.
We adopt the representation x = (x1,...,24)7 with x; being the jth component of x and the convention
po = d and ppy; = 1. For simplicity, we only consider fully connected networks and do not make any
sparsity assumptions on the entries of v; and W;.

Next let us review the concept of Hélder space. Let © = [0,1]¢ denote the domain of the functions.
For f defined on €, we define the supnorm, L?-norm and empirical norm of f by ||f|lsup = Supxeq |f(X)|,
1£12: = [o f(x)?Q(x)dx and ||f||2 = L 3" | f(X;), respectively. Here Q(-) is the probability density for

gl
whenever the partial derivative exists. For any 3 > 0 and F > 0, let A®(F,Q) denote the ball of S-Holder
functions with radius F, i.e.,

the predictor X;’s. For any a = (a1, a9, ...,aq) € N% we denote |a| = Z?Zl o and 0%f =

Aﬁ(F,Q):{f:QaR

Z 0% fllsup + Z Sup 0% f (x1) *aﬁ"‘_j;,[(gjizﬂ < F},
2

a:la| <[ B] a:lal=|8] x17x2€€Q ||X1 — XQH

in which | 3] is the largest integer strictly smaller than j.

At the end, we need some notation for vector, matrix and asymptotic analysis. For vector v =
(v1,...,0p) € RP, let [[v]|oe = maxi<i<p [v;] and ||v|l2 = /> i, v7 be its supnorm and Euclidean norm.
Let Amin(-) and Apax(-) denote the smallest and largest eigenvalues of a squared matrix. For two positive
sequences a,, and b, , we define a,, < b,, if there exist positive constants C7, Cy such that Cia, < b, < Csa,.
We say a sequence of random variables X,, = Op(a,) for some positive deterministic sequence a,, if for
any € > 0, there exists a constant C. > 0 such that P(|X,| > Cea,) < € for all n > 1. Finally, we denote
X, =op(ay) if limy, 00 P(|Xn| > €ay) = 0 for any € > 0.

3. Minimax neural network estimation

In this section, we derive an upper bound for the L? minimax risk in the problem (1.2). The risk bound
will be proved optimal under suitable circumstances. To simplify the expressions, we only consider networks
with architecture (L, p(T)), where p(T) := (T,...,T) € N for any T € N. In other words, we focus on
networks with L hidden layers and each having 7" neurons. Our results hold under suitable conditions on L
and T as well as the following assumption on the design and model error.

Assumption Al. The probability density Q(x) of X is supported on €. There exists a constant ¢ > 0 such
that ¢! < Q(x) < ¢ for any x € Q. The error terms ¢;’s are independent of X;’s.

Theorem 1. Let Assumption Al be satisfied. Suppose that L — oo, T — oo and TlogT = o(n) as n — oo,
then for any fized constants B, F > 0, it follows that

1 T T2
X>0P<25++ L), (3.1)

T n 4d+k

_inf sup Efo<||f follz:
FeF(L,p(T)) foeAP(F,Q)




4 R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561

B d
where k is the smallest integer satisfying k > max(8,2). As a consequence, if T = nTF qnd n2erd =

O(4ﬁ), then the following holds:

Cmf swp Efo(|f—fo|%2
FEF(L,p(T)) foeAP (F,Q)

x) = Op(n~2%4),

The Op in Theorem 1 represents stochastic boundedness as defined at the end of Section 2, which
involves some fixed constant. The constant term in Op relies on ¢ (Assumption A1), 8 (smoothness of fj),
k (auxiliary integer related to ), F' (radius of function space), and d (dimension of the design point), and
is free of n, T, L. We ignore the constant term as the focus of this paper is to investigate the impact of T', L
(network architecture) and n (sample size) on the minimax rate. Moreover, the choice T' =< n7%a would be
satisfied if T' = conﬁid for some fixed constant ¢y > 0.

Proof of Theorem 1 relies on an explicitly constructed network estimator based on tensor product B-
splines of order k, where k > max(f,2) is the constant specified in condition of Theorem 1. The minimax
risk bound in (3.1) consists of three components T‘¥,n_1T, 4 THET? corresponding to the bias, variance
and approximation error of the constructed network. The optimal risk bound is achieved through balancing
the three terms. The approximation error of the constructed network decreases exponentially along with
L. Networks constructed based on other methods such as local Taylor approximations ([31], [32] and [24]
have similar approximation performance. However, their statistical properties are more challenging to deal
with due to the unbalanced eigenvalues of the corresponding basis matrix. In contrast, the eigenvalues of
the tensor product B-spline basis matrix are known to have balanced orders, e.g., see de Boor [2], which
plays an important role in deriving the risk bound. Also notice that the risk bound will blow out when L is
fixed, which partially explains the superior performance of deep networks compared with shallow ones; see
Eldan and Shamir [7].

4. Construction of optimal networks

In this section, we prove Theorem 1 by explicitly constructing a network estimator ﬁlet e F(L,p(T))
and deriving its risk bound. The construction process starts from a pilot estimator J?pﬂot obtained under
tensor product B-splines with order & > max(,2). The tensor product B-spline basis functions are further
approximated through explicitly constructed multi-layer networks, which will be aggregated to obtain the
network estimator fnet. The key step is to show that the discrepancies between the tensor product B-spline
basis functions and the corresponding network approximations are reasonably small such that fnet will
perform similarly as fpﬂot, and thus, optimally.

Our construction is different from Yarotsky [31] and Schmidt-Hieber [24], where the basis functions are
obtained through local Taylor approximation. We find that the eigenvalue performance of the local Taylor
basis matrix is difficult to quantify so that the corresponding pilot estimator cannot be used effectively.
Instead, the pilot estimator based on tensor product B-splines is more convenient to deal with. Other basis
such as wavelets or smoothing splines may also work but this will be explored elsewhere.

4.1. A pilot estimator through tensor product B-splines

In this subsection, we review tensor product B-splines and construct the corresponding pilot estimator.
For any integer M > 2, let 0 = tg < t; < -+ < tp—1 < tpr = 1 be knots that form a partition of the
unit interval. The definition of univariate B-splines of order & > 2 depends on additional knots t_j11 <
tppo<...<t.ip<O0and1l <tyi1 <...<tpyip1. Given knots t = (t_py1,...,tarpp_1) € RMH2E-L
the univariate B-spline basis functions of order k, denoted B; y(z), i = -k +1,—k+2,...,M — 1, can be
defined inductively by B; s(x) for s =2,3,...,k. For s=2and —k+1 <i < M + k — 3, define
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_t’L .
tiil*ti’ ifx € [ti,ti+1}
tizo— .
Bia(x) = ﬁ7 if z € [ti1, tiga] -
0, elsewhere

Suppose that B; ¢(x), i = —k+1,...,M 4+ k — s — 1 have been defined. We recursively define

BZ',SJFI :aiysBiys,t+biysBi+1ys,t, for i = —k+1,—k+2,...7M+k—S—2, (41)
where
0, if x <t; 0, if x < ti+1
ais(x) = 2 it <@ <ty bis(2) = QIR it <@ <tigepn
0, if ¢ > tits 0, if z > titst1

Proceeding with this construction, we can obtain B; x(z).

To approximate a multivariate function, we adopt the tensor product B-splines. Let I' = {—-k + 1, -k +
2,...,0,1,....M -1} and ¢ = [I| = (M + k — 1)% For i = (i1,i2,...,iq) € ', we define Djx(x) =
H?:l B;, k(x;) and obtain the corresponding pilot estimator

Foitot (%) = ZgiDi,k(X), (4.2)

iel’

where {/b\i,i € I'} are the basis coefficients obtained by the following least square estimation:

C = [/b\i]ieF = al;g minz (Yz‘ - ZbiDi,k(Xi)> : (4.3)

Liel 555 iel
4.2. Network approximation of tensor product B-splines

In this subsection, we approximate Dj j’s through multilayer neural networks. We first construct networks
that approximate the univariate B-spline basis B; j’s, and then multiply these networks through a product
network X, introduced by Yarotsky [31] to approximate the tensor product B-spline basis. Here, the product
network Xg(z1,z2,...,2) is constructed to approximate the monomials szl z;. Unlike Yarotsky [31]
and Schmidt-Hieber [24], our construction proceeds in an inductive manner due to the intrinsic induction
structure of B-splines.

To proceed, let us introduce some notation. For L,pg,...,pr+1 € N, let us denote NN (L, (po,p1,

..yPL,PL+1)) as the class of po-input-pr41-output ReLU neural network functions of L hidden layers,
with the jth layer consisting of p; nodes, for j = 1,..., L. In particular, with py = d and pry; = 1,
NN (L, (po,p1;---,PL,Pr+1)) is equivalent to F(L, (p1,...,pr+1))- The following Propositions 1-3 quantify
the approximation error of the product network Xj.

Proposition 1. For any integer m > 1, there exists SQ € NN (2m, (1,4,...,4,1)) such that
1SQ(z) — %] <272™7 2 for all x € [0,1].

Proof of Proposition 1. For s > 1, let g, g; be functions taking values in [0, 1] defined as

o, ifo<z<1/2
g(x) =

gs=gogo--g.
21—=), if1/2<a><1’ ~ S———

s times
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B
2

SQz) =2~ 3:1

Fig. 1. Construction of SQ when m = 3. Clearly, SQ is a network of 6 hidden layers each consisting of at most 4 neurons. For
general m, one just adds more layers to construct SQ while the number of neurons on each layer is still not exceeding 4.

It can be shown by induction that

2% (x— 2k) | if g e [2E 2kEL)
gs(fE):{ ( 32) ; 2

. o
25(3—5—:5), itee] ];;1,2—’“]

Let h,,(x) be the linear interpolation of h(z) = 22 at points k2=™, for k = 0,1,...,2™. Namely,

2 1 1
Al REHD e e (b 1)2.

By direct examinations, we have
|h(z) — h(z)] < 27272 for all z € [0,1].
Moreover, by induction, it can be shown that

him—1(2) — hn () = g’Z—r(f), for all z € [0,1].

The above equation and the fact that ho(x) = x lead to

h(z) =2 — Z 984(?).
s=1

Since g(z) = 20(2) —4o(z — 1) + 20(x — 1), g(z) is a neural network consisting of one hidden layer. Define
SQ = hp,, then SQ is a single-input-single-output neural network of 2m hidden layers, and each layer
contains 4 neurons, i.e., SQ € NN (2m, (1,4,...,4,1)); see Fig. 1 for the case when m =3. 0O

Proposition 2. For any integer m > 1, there exists Xo € NN (2m + 2, (2,12,...,12,1)) such that

0§X2($7y) S 17 X2($,y)—$y §4—m+17 fOT’ all m,ye [07 1]7

Proof of Proposition 2. The proof is a modification of Yarotsky [31] to incorporate normalization. Observe
that

2
T+y 1 1
xy:2< B) ) —51'2__:(/2.
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(z+y)/2

(®)

X2($, y)

(®)

©

Fig. 2. Construction of Xs. Clearly, X2 has two more hidden layers than SQ. On each layer the number of neurons is at most three
times the number of neurons on each layer of SQ, which is 12.

Each of the functions (z + y)/2, z,y can be realized by a network with one hidden layer. Let SQ denote the
network function in Proposition 1. Then we get that for any 0 < z,y <1,

250(15) - 35Q0) - 3500 — v <47,

and

g < 25@(”6;”) ~ 25Q(a) — 35Qy) < 1447

Based on the above inequality, we can define

QSQ(%) 15Q() — 15Q(y) + 4

XQ(Q’J,:Z/) = 14+2x4—m )

which will be guaranteed to take values in [0, 1]. Moreover, for any 0 < z,y < 1,

4 x4=m

4m+1
*1+2><4 w S

’XQ(wvy) —xy

Compared with SQ, X5 has two additional hidden layers with two inputs and at most 12 nodes in each
hidden layer; see Fig. 2. Proof is complete. O

Proposition 3. For any integers m > 1 and s > 2, there exists a neural network function X with (s
1)(2m + 3) — 1 hidden layers and 10 + s nodes in each hidden layer such that for all x1,xa, ...,z € [0,1],
0 < Xy(z1,22,...,2s) < 1. Moreover, if |T; — x| < with z; € [0,1] for j =1,2,...,s, then

Xs(T1,Toy. .., Ts ij (s —1)4~™ ! 4 56

Proof of Proposition 3. Let 6,, = 4~™%!. Here we only prove the case when s = 3, and the case for s > 3
can be proved inductively. First we apply Xo to x1,22 and then apply Xy to Xo(z1,22),x5. By triangle
inequality, we have
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X3(z1, 22, 73)

[23]

Fig. 3. Construction of X; with s = 3. X3 links two X5 structures sequentially and adds one more hidden layer in the mid. The
number of neurons on each hidden layer of X3 is at most 1 plus the number of neurons on each hidden layer of X3, which is 13.

‘X2 <X2(1'17 T2), 563) — T1T273 + | Xa (21, z2) T3 — 17273

< ‘XQ <X2(9C1,332)7£U3) — Xo(z1, x2) 23

S 4—m+1 +4—m+1 S 2 % 4—m+1.

In general, let X;(z1,29,...,25) = Xo (Xs—1(21,22,...,25-1),xs) for s > 3. By induction and triangle
inequality, we have

< (s—1)47mH,

S
Xs(z1,22,...,2s) — H zj
j=1

The desired inequality follows from the trivial fact that |[[;_, Z; — [[;_, #:] < sd. Since we apply neural
network Xs sequentially (s — 1) times and there are (s — 2) additional hidden layers to store X;(z1,...,2;)
and Z;41,...,2s fori =2,...,s—1 (See Fig. 3), the total number of hidden layers is (s —1)(2m+2)+s—2 =
(s —1)(2m + 3) — 1. Moreover, the number of nodes on each hidden layer is at most 12 +s — 2 = 10 + s,
due to the fact that the first hidden layer has the most number of nodes. Proof is complete. O

Given Proposition 3, we are ready to approximate the kth order univariate B-spline basis B; ;. Fixing in-
teger m > 1, our method is based on the induction formula (4.1) which allows us to start from approximating
B; 5. Specifically, we approximate B; » by B; 2 defined as

B; 2(1‘) = 010'(33 — ti) + CQO‘(Q? — ti+1> + 030'(,7} — ti+2),

)

where

1 tivo — t;
Q= ——, Cy = —Mq, C3 — —(ti+2 — ti + 1)61 — (tH_g — ti+1 + 1)62. (44)
tit1 — L tit2 — lit1

The piecewise linear function Ei,Q is exactly a neural network with one hidden layer consisting of three
nodes. Suppose that we have constructed B; s(z), a neural network approximation of B;s. Next we will
approximate B; s41. For —k+1 <i¢ < M + k — s — 1, we define piecewise linear functions

0, if o <t; 1, if x < tit1

- — —t; : — tits41—T :
ai,s(z) = t::{»s_ti’ ift; <o <tiys, bis(z)= m, iftip1 <o <tipsir -

1, if z > tits 0, if z > Titst1
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1 R S
tiyo—ti tiyz—t;
(o)
1 1
tira—ts Tirs—1t;

b

Fig. 4. Construction of éi,;; through induction. (a) and (b) demonstrate the architectures of the networks @; » and b; 5. (c) demon-
strates the architecture of the network B; 2 with c¢1, c2, cs defined in (4.4). (d) demonstrates the induction relationship between
§7’q3 and é,‘,’Q.

In terms of ReLU activation function, we can rewrite the above as a; s(z) = H%t_a(a; —t;) — H%t_a(ac -
tivs) and b; s(z) = —ma(:ﬁ —tip1) + ﬁa(m —tiys+1) + 1, which implies that a@; s and b; 5 are
exactly neural networks with one hidden layer consisting of two nodes (see Fig. 4). For i = —k+1,..., M+

k — s — 2, we define

B _ Xo(@1,0(2), Bia(2)) + Xa(bis (). Biga(w)) +2 x 47 4 G4
ist1(2) = 144 x 4—m+1 4 %4—m+1

, for z €10,1].

The ‘seemingly strange’ normalizing constant forces §i15+1(x) to take values in [0, 1]. We repeat the above
steps until we reach the construction of Ezk (see Fig. 4 for an illustration of such induction). We then
approximate B; j by Ezk

Finally, let us count the number of nodes in each hidden layer of El k. Suppose Ezk has W}, nodes in each
hidden layer. Since Ei’g e NN(1,(1,3,1)) for and Zii,s,zi,s e NN(1,(1,2,1)) for all 4, s, we know Wy = 3.
By Fig. 4(d) and Proposition 2, we show that W5 < max{2 x 12,2 x (2 + W3)} < 2W; + 28. By induction,
we have that

Wi < 2W_1 4 28 < 28F72(W, + 28) — 28 < 2F+3 (4.5)

We next approximate the tensor product B-spline basis D; j(x) = szl By, k(x;) by

D; 1 (%) = Xa(Bi, x(x1), Biy x(x2), ..., Biy (x4)), for each i= (i, ..., iq) €.

Finally, parallelizing ﬁi,k(x),i € I' according to (4.2), we construct fnet as
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fnet Zb D HARS Q, (46)

iel’

where the coefficients b;’s are obtained in (4.3).

In comparing (4.2) with (4.6), if we can show that D; j and Dy i,k are close enough, and by’s are uniformly
bounded, then one can expect that fnet performs similarly to fpllot A rich class of statistical results in
literature enable us to efficiently analyze fpllot. In the rest of our analysis, we focus on cardinal B-splines
for convenience.

4.8. Approzimation error to B-spline basis
The goal of this subsection is to study the differences between Dj; ;’s and lN)i,k’s. Let i;,i2,...,1; be the

elements of T', where ¢ = (M + k — 1)¢ is the total number of tensor product spline basis functions. For
simplicity, we define

o)

k() = (B_gr1x(2), Bogror(x), ..., Byr_1(x))" € RM7FHL
Dy(x) = (Du, ( )s 12,k( X), . ,qu,k(x))T € RY,
(z) = (B- 1,k (), B_ ka2k(T), .. EM—l,k(x))TERM”““,
(x) = (D

i1, k( ) 12,k( ) 7D1q,k(x))T € RY.

kX

Slwe R

k(X
Lemmas 1 and 2 bound the approximation errors of By (-) and Dy(-).

Lemma 1. Given integers k,M,m > 2 and knots t 41 < t_py2 < ... < tg < t1 < ... <ty <typ <
. <tyir_1 such that to = 0,tar = 1, there exists a B, € NN (k(2m+3), (1, 284 (M +2k), ..., 2F4(M +
2k), M + k — 1)) taking values in [0,1], such that

~ gk
sup || B (2) = Br(2)leo < 774
z€[0,1]

Proof of Lemma 1. First we will approximate B; 2, the linear B-spline, using ReLU neural network. Review
that fori = —-k+1,...,M + k — 3,

tj_:iltl s ifx e [ti, ti+1]
tivo— .
Bjo(z) = ﬁ, if © € [tiz1,tita) -
0, elsewhere

It is easily verified that B; 2(x) = cio(x —t;) + coo(x — ti41) + c3o(x — ti42), where

1 tivo — t;
Co =~y = —(tiva — ti + 1)er — (figa — tig1 + L)ea

= ———
tig1 —ti tito — tit1

This implies that B; s is exactly a ReLU neural network (hence, ELQ = B, ) with approximation error
02 = SUP,e(o,1 |Bio(x) — Bio(z)] = 0 for all =k +1 < i < M + k — 3. Trivially, B, » takes values in [0, 1].
Suppose that we have constructed a neural network approximation EH of B; ¢ with approximation error
s = SUPgeo 1] |§Zs(x) — B, s(z)|. Moreover, 0 < Em(x) <1 for all z € [0,1].
Now we will approximate B; sy1. By definition B-splines, we have

x —t; ti —x
Bisi1(z) = —— B (x) + — "B, 1 ,(2). (4.7)
Livs — U Liysy1 — tit1
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Let us recall the previously defined piecewise linear functions:

0, if x <t 0, if x <t
ai,s(z) = ti‘:fti, ift; <o <tiys, Gis(z)= t;:fti, ift; <o <tis.
0, if x > ti+s 17 if x > ti+s

Notice that the first term of the right side of (4.7) is a; sB;,s, which can be approximated by Xa(@; s, Bi,s)-

Clearly, a; s(z) = Tl_ta(x —t;) + o(z — tit+s), which also can be expressed as a ReLU neural network.

Moreover, for any = € [0, 1], it follows by Proposition 3 that

\xz@- o(2), Bia(2)) — aua(a) Bia(e)

)

< ’XQ(ai,s(x),Bz',s(x)) - 5i,s($)Bi,s($) ai,s(fﬂ)Bi,s(x) - 51‘,3(%)31',5(%)

<47 4 B ((w)|ais(w) — @i s(2)| + @ s(2) | Bis(z) — Bi ()

<47™H 40 44, (4.8)

where the last inequality follows by the fact that B; , is supported on [¢;,t;+s]. Similarly, let us recall

0, if v < ti+1 1, if z < tit1
bit o1 —1 . Y . ittt —: .
bis(r) = § 280, it S@ Stipepns bis(@) = § 58T it <@ St
0, if x > Titst1 0, if x> Titst1

Notice that the second term of the right side of (4.7) is b; sB;11 5. Similar to (4.8) we have, for any z € [0, 1],

Xo(bis(2), Bis1,s(x)) = bis(2)Big1,s(x)| < 47™H 6,

Now let us recursively define

5  Xo(@is(x), Bis(x)) + Xo(bis(x), Biyr1,s(x)) +2 x 471 426,
is+1(2) = 1+ 4 x 4—m+1 4 45, ’

which is a ReLU neural network taking values in [0, 1]. It is not difficult to verify that for any = € [0, 1],

~ ] x 4—m+l 8d,
Bis41(x) = Bisya(z)| < . ha

<8 x47mF 485,
S Traxa iy, =0 8

Taking supremum on the left we get §,41 < 8 x 4~™F1 4 85,. Using d» = 0, we can conclude J, <
847m — 324=m < 847™ for 2 < s < k. Deploy B ;. parallelly to construct the network By.

To count the number hidden layers, we first notice that Ei)g € NN(1,(1,3,1)) for and 51'75751‘,5 €
NN(1,(1,2,1)) for all i,s by its construction right below Proposition 3. Moreover, from Ei,g to Ei,k,
we used the network Xy k — 2 times. Therefore, by Proposition 2, the number of hidden layers is at
most (2m + 2)(k — 2) + k — 2 + 1, which is bounded by (2m + 3)k. Since in each hidden layer, at most
we have M + 2k — 3 different Em’s, a;.s’s and gi7s’s for s = 2,...,k. So by (4.5), at most, we have
(2F+3 4 4)(M + 2k) < 28+4(M + 2k) nodes in each hidden layer. The proof is complete. O
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Lemma 2. Given integers k, M,m > 2 and knots t _j41 <t_py2 < ... <to<t1 < ... <ty <tyt1 <...<
tarin—1 withto = 0,tyr = 1, there exists a Dy € NN ((2m~+3)(k+d—1), (d, 28T d(M +2k)?, ..., 2F+4d(M +
2k)% (M + k — 1)) such that

f)k(X) — Dk(X)

sup < [4(d—1)+8Fj4™™
xeN o
Furthermore, each element of Dy, is in [0,1].
Proof of Lemma 2. Let By (z1), Bi(21), ..., Bi(z4) be the neural networks provided in Lemma 1, which

satisfy |§1k(x) — Bix(z)| < 6, where §,, = 8%47™/14. For each (i1,ia,...,5q) € {—k + 1,—k +
2,...,1,2,...,M — 1}%, we apply the product network X, given in Proposition 3 to (B“ k(z1), Blzjk(ﬂh)
., Bi, k(x4)). According to Proposition 3, we have

Xa(Bi, 1(x1), Biy k(€2), - ., Biy 1(4)) < (d—1)4"" +ds,,

.,:]&

177
Jj=1

< [4(d —1) + 84~

Now we deploy Xd(gihk(m),éiz,k(@), .. .,Eid’k(xd)) parallelly to construct the network D;.. Since we
apply neural network X  to output of f’)k, so the total number of hidden layers is at most k(2m +3) + 1+
(d—1)(2m +3) —1 < (2m + 3)(d + k). Since we parallelly apply ¢ = (M + k — 1)¢ product networks X,
the number nodes in each hidden layer is bounded (10 + d)q, which is further bounded by d2¥+4(M + 2k)<.
This completes the proof. O

In Eckle and Schmidt-Hieber [6], the authors compare neural network methods with multivariate adaptive
regression splines (MARS) by showing that any function expressed by MARS can be approximated by a
sparse ReLU neural network with an arbitrarily small error. In contrast, Lemma 1 provides a quantitative
error bound (in terms of network architecture) for fully connected ReLU neural network approximation
of the spline basis. Soon after our work, Kohler et al. [17] independently obtain a relevant result about a
quantitative connection between MARS and sparse neural network under smooth activation function.

To end this subsection, let us calculate the number of hidden layers and number of nodes in each hidden
layer for fnet defined in (4.6). Notice that to construct fnet, we only need to add one more hidden layer to
aggregate DLk( x) and the coefficients Bi. As a consequence, for any integers k, M, m > 2, we can construct
a network ﬁlet such that

Faet € F(L,p(T)), with L = (2m +3)(k + d) + 1 and T = 2¥4d(M + 2k)°. (4.9)
By Proposition 3, we expect fnet ~ fpﬂot when m — oo (or equivalently L — c0).
4.4. Asymptotic properties of the pilot estimator

In this subsection, we study the convergence rate of the pilot estimator in (4.2) and the bound of
coefficients in (4.3). Let us define ® = (Dy(X1),...,Dp(X,))T € R"*% and Y = (Y1,...Y,)T. Therefore,
the coefficients in (4.3) can be expressed as C = (®T®)~1®dTY, where the invertibility of the matrix ®7'®
is guaranteed by Lemma 6 below. Moreover, we denote ©,, = {g(x)|g(x) = VI Dy(x) for V € R?} as the
linear space spanned by the tenor product B-spline basis Dy’s. An additional assumption is to obtain the
desired results, which is stated as follows.
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Assumption A2. The knots {t;,i = —k + 1,..., M + k — 1} have constant separation h = M~!. In the
theoretical analysis, we require M — oo and h — 0.

Remark. Assumption A2 can be relaxed to max;(t;41 — ¢;)/ min;(¢;+1 — t;) < ¢ for some constant ¢ > 0,
under which one needs to redefine the separation h = max;(t;+1 — t;). Results in this section continue to
hold. This is a standard assumption for B-spline literature; see Huang [12].

Based on Assumption A2, we can delivery some preliminary lemmas about the B-spline basis. In par-
ticular, Lemma 3 quantifies the approximation error of splines; Lemma 4 indicates the equivalence of the
norms || - ||, and || - ||z2; Lemma 5 studies the upper and lower bounds of the eigenvalues for the tensor
product B-spline basis matrix.

Lemma 3. For any f € AP(F,Q), suppose that Assumption A2 is satisfied with some integer k > (3. There
exists a real sequence ¢; such that supycq | Yoier ciDig(x) — f(x)| < Aph? and |¢i| < Ay for alli € T'. Here
Ay >0 is a constant only relying on F, B,k and | f||sup. Moreover, it holds that supscpspo)Af < 00, where

the upper bound only depends on F, 3 and k.

The proof of Lemma 3 requires borrowing some definition from Gyorfi et al. [10]. Hence, we defer its
proof to the Appendix.

Lemma 4. Suppose Assumptions A1 and A2 hold with some integer k > max(3,2). Moreover, if the sequence
h in Assumption A2 satisfies h = o(1) and log(h~™') = o(nh?), then

gl
lgll2.

sup
gEO,

— 1‘ = Op(l).
Proof of Lemma 4. This is Lemma 2.3 in Huang [13]. O

Lemma 5. Suppose Assumptions A1 and A2 hold with some integer k > max(8,2). Let us define matriz
B = [, Di(x )DT (x)Q(x)dx. Then the eigenvalues of B satisfy that

a1h? < Ain(B) < Amax(B) < azh,
where 0 < a1 < ag < 00 are constants relying on k and density function Q.

Proof of Lemma 5. It follows from de Boor [2, page 155] that for some constant A > 1 depending on k, we
have

1 1
AR < Ain /Bk(x)Bg(az)dm < Amax /Bk(x)B{(x)dx < \h.
0 0

Notice that Dy, (x)D} (x) = @7_, B (z;)Bf (x;) for any x = (x1,22,...,24)" € [0,1]%. Here ® is the outer
product operator. It follows that

1
/ Dy (x)Djf (x)dx = ® 1/Bk x;)BY (x;)dx;.
[0,1])4 0

By the property of tensor product of matrix, we have



14 R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561

Amax< / Dk(x)Df(X)dX) = Aﬁlax< /1 Bk(w)Bf(x)dx> < ne,
[0.1]¢ 0

1

Amm< / D, (x)D? (x)dx) = Aflnm< / Bk(z)B{(x)dx) > \"9pd,

[0,1)¢ 0

By Assumption A1, there exists a constant ¢ > 1 such that ¢! [ g(x)dx < [ g(x)Q(x)dx < ¢ [ g(x)dx for
any integrable g, which leads to

cT <[0!]d Dk(X)Dz(X)Q(X)dX) ol :[Ol]d |CTDk(X)|2Q(X)dx

<c / |CT Dy (x)|?dx
[0,1)¢

< eXpd, for all C € RY.

Therefore, we have Apax(B) < ash?® with ay = cA?. Similarly, we can show that the lower bound is valid
with a; = ay . Proof is complete. O

To proceed, we need to define the following event

Qn = {a1h?/2 < Apin (10T @) < Apax(n 107 D) < 24507}
N{llgllz=/2 < llgll < 2[lg7z, forall g € ©,}, (4.10)

where aq,as are the constants introduced in Lemma 5. The following lemma reveals the probability of €2,
approaches one as n diverges, which suggests we can focus our analysis on the event €,,.

Lemma 6. Suppose Assumptions A1 and A2 hold with some integer k > max(3,2). Moreover, if the sequence
h in Assumption A2 satisfies h = o(1) and log(h™') = o(nh?), then it follows that lim,_,., P(Q,) = 1.

Proof of Lemma 6. Notice that n~'®7® = Y7 D.(X;)D%(X;)/n. Let B = n~'®7® and B =
Jo Di(x)DE (x)Q(x)dx. It follows from Lemma 4 that

sup
u€RY

= sup

uTBu ‘
ueRa

uI'Bu

i D
fﬂ [uT Dy (x)]2Q(x)dx

lgll?,
llgll7-

— 1‘ = Op(l).
gEO,

So the event
uTBu
uTBu

K, = { sup
ueRa

- 1‘ < min(ag,a1/2)}
has probability approaching one. By Lemma 5, on the event K, it follows that

sup |uT]§u|§ sup |u'Bu| + sup \uT]/?\)ufuTBu|
llull2=1 llull2=1 llull2=1
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5

|
uTBu

< ash® + sup

flull2=1

< 2a2hd.

sup |u’Bul
llull2=1

Similarly, we can show inf)j,,—1 |u” Au| > a1h?/2, on the event K,,. Above argument and Lemma 4 together
complete the proof. O

Based on the above lemmas, we are ready to provide the main result in this subsection, which provides
the convergence rate of the pilot estimator and the bound of C.

Lemma 7. Suppose Assumptions A1 and A2 hold with some integer k > max(3,2). Moreover, if the sequence
h in Assumption A2 satisfies h = o(1) and log(h™') = o(nh?), then it follows that

1
Xp= h?P 4 —
G

sup Ey (C’\TG‘X) =Op(h™%).
fo€AP(F.Q)

s Ep, { Fotos — foll2
fo€EAB(F,Q)

and

Proof of Lemma 7. For any fo € AP(F,Q), let fy = (fo(X1),..., fo(Xn)T. Also let € = (e1,...,6,)7,
/f\pilot = (fpilot(X1),...,fpilot(xn))T. According to Lemma 3 and by k& > [, there exists a C' =
(c1,¢,...,¢q)T € RY such that for any x € Q, |CTDy(x) — fo(x)| < Ay hP. For simplicity, we further
define f*(x) = CTDy(x) and f* = (f*(X1),..., f*(Xu)".

Notice that on the event ), ®T® is invertible. The least square algorithm (4.3) implies the following
holds on event €Q,,:

Erilor = (07 ®)13TY = &(d7 ) 16T (BC + E + €)
=0C + 3(d7D) 'OTE 4 d(dTP) 10T
="+ 0(@TP) 'O TE + ®(dTD) 1D e, (4.11)

where E = (Ey, Ea,...,E,)T € R" with E; = fo(X;) — CTDy(X;) = fo(X;i) — f*(X;). Furthermore, the
above equation and Lemma 3 together imply that

N * 1= * 3 *
1 fpitor = f717% = — (Epitor = £)" (Fpitor — £7)

2 2
“ET(070) 'O E + ~ed (0T ) 10T
n n

IN

2
<243 h*° 4+ =" (07 @) 0 e
n
By the fact that fpﬂot — f* € ©,, it holds on event 2, that

1 pitor = 1172 < 2l Fpitor — F7II5,

and

Ej, (eT<1>(<I>T<I>)—1<I>Te

X) = TY<<I>(<I>T<I>)_1<I>T> =q=M+k—-1)? <297
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which further implies that

2d+2

— (4.12)

sy (”fvﬂot — Illz X) < 2K/, (nfpﬂot - I x) <442 120 4

By simple algebra, the above inequality implies that

fo (Ilfpuot — follz- X) +2Ef, (llf* — follz- X)

X) < 9K, (nfpﬂot ST

9d+3
< 847 h25+w+2||f — follzup

2d+3

o +10A2 hQﬁ7 uniformly for all fo € AP(F,Q).

Finally, the first statement follows by the uniform boundedness of Ay, over fy € AS(F,Q) in Lemma 3 and
P(Q,) — 1 in Lemma 6.
Let us prove the second statement. According to Lemma 5, it follows that

17— g"2: = (@ — )T / D, (x)DY (x)Q(x)dx(C — C)
> ah(C — O)T(C - ©),

where a; > 0 is the constant in Lemma 5. Taking conditional expectation and by (4.12), on event Q,, we

)

ay 122 A7 (h25d +

have

~

Es, ((6 oy - c>\X) <Ej (nfpﬂot By

1
h2d>’ uniformly for all fo € A°(F,Q),
n

which further leads to

Ef, (6T5‘X) < 2Ey, ((6 —o)'(C - C)’X) +207C

1
—1d+3 42 ( 3,28—d 2
<aj 2 Af0<h +nh2d>—|—2qu

1
—16d+3 42 ( 128-d d+1p—d 42
a; 2 Afo(h +nh2d>+2 h™% A%,

1
—15d+3 42 [ 1,26—d —d
aj 2 Afo(h +nh2d+h )
a1_12d+4A20h*d, uniformly for all fo € AP(F,Q),
where the last inequality holds by the fact h?% + n='h=? = o(1). Finally, the second statement follows by

the uniform boundedness of Ay, over fo € A?(F,() in Lemma 3 and P(f,) — 1 in Lemma 6. Proof is
complete. O
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4.5. Approximation error to the pilot estimator

The following Lemma 8 is the main technical result of this paper, based on which Theorem 1 will be
proved.

Lemma 8. Suppose Assumptions Al and A2 hold with some integer k > max(8,2) and diverging sequence
M. Let m be diverging with respect to sample size n and F > 0 be a fived constant. If M%log(M) = o(n),
then, the network function fre; € F(L,p(T)), with L = (2m+3)(k+d)+1 and T = 2*+4d(M +2k)? satisfies

sup Ej, {sup \ﬁwt(x) — fpilot(x)|2’X} = Op(M2d4_2m).
Fo€AB(F,Q) x€Q

Here the Op is in the sense of diverging m, M, n.
Proof of Lemma 8. By the notation in the proof of Lemma 7 and (4.11), we have

Foilor = ®(®7®)10TY = (0T ®) 1T (BC + E + €)
=dC+®(@"®) 'O"E+ (@7 0) "o
=f)— (I - &(@70) 'dT)E + &(0Td) 1T,

It follows from (4.2), (4.3) and (4.6) that ﬁ,ilot(x) = éTDk(x) and ﬁlet(x) = éTf)k(x) Therefore, for any
x € ), we have

[Fottor (%) = Fuer0)|2 = [|CT (Di(x) = Di(x)) [
= CTC (Dk(x) - f)k(x)) (Dk(x) - f)k(x))

<¢CTC sup |Dp(x) — Di(x)|%, < qCTCA(d 1) + 842472,
x€[0,1]4

where the last inequality follows from Lemma 2. Following Lemma 7 and the fact ¢ = |T'| = (M +k — 1)? <
h~=%, we have

sup Efo(sumfpﬂot() Fret(x >|\ )<q[4<k1>+8k1242m sup E (CTC[X)
FfoEAB(F,Q) xEQ foEA(F,Q)

= Op(h=20472m), (4.13)

which completes the proof by noticing that M =< h~™1. O

To the end of this section, let us complete the proof of Theorem 1. Combining Lemmas 7 and 8, we have

if s Efo<f—f0||2L2|X>

FEF(L.p(T)) foeAs (F.Q)

< sup Ey (||fnet_f0|%2|x>

FoEAB(F,Q)

<2 sw Efo(|fnctfpﬂot|i2|x>+2 sup Ef0<||fpnotfo%z|X)

fo€AP(F.Q) foeAP(F.Q)

Mé
=0p (M_2B + —> + OP(M2d4_2m)
n
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_2 T _ L
= OP(T T+ =+ T4 k+d>
n

where the fact that M < h™!, L = 2m +3)(k +d) + 1 and T = 28*4d(M + 2k)¢ is used. We would like to
comment that Theorem 1 does not rely on Assumption A2, as we only need such f,et exists.

5. Asymptotic distribution and optimal testing

In this subsection, we derive the asymptotic distribution for J/‘;et and a corresponding hypothesis testing
procedure. Let us recall that the network function constructed in (4.9) satisfies

Foot € F(L,p(T)), with L = (2m + 3)(k + d) + 1 and T = 28+44(M + 2k)?,

where k is the order of tensor product B-spline basis, d is the dimension of explanatory variable X, M = h~!
is the inverse of knots separation distance, m is an integer characterizing the number of hidden layers of
the network. All the results in this subsection are discussed when m, M, n diverge while assuming k, d are
fixed constant.

Theorem 2 below establishes a pointwise asymptotic distribution for fnet.

Theorem 2. Under the Assumptions Al and A2, if k > max(f,2), n7r = o(M), M¥log(M) = o(n) and
nM? = o(16™), then for any fived point x € Q, we have

Fret(x) = fo(x)
\/DT (T ®)~1D),(x)

2, N(0,1),

where ® = (Dy,(X1), Di(Xa2),...,Dp(X,))T € R 9 with ¢ = (M + k — 1)%.
Proof of Theorem 2. By (4.9) and Assumption A2, we know M = h~! and
Faet € F(L,p(T)), with L= (2m+3)(k+d) + 1 and T = 2"T4d(M + 2k)%.

So the rate conditions are equivalent to hn7rd = o(1), log(h~1) = o(nh?) and n'/2h=4/% = o(4™).
For fixed x € Q, let V(x) = D} (x)(®7®)'Dj(x). By Huang [13, Theorems 3.1 and 5.2], it follows that

Foilot (%) — fo(x)

i L N(0,1). (5.1)

It is well known that the tensor product B-spline basis satisfies > ¢_| D;_ x(x) = 1 for all x € Q (e.g., see
Section 15 in Gyorfi et al. [10]). Given a point x € €2, let us denote I'x = {i € I'|D; x(x) > 0}. By the
construction of Dy, there are only k* basis functions among Dj, x(x), ..., D;, x(x) with positive values,
while the rest are all zero. Hence, it follows that |Tx| = k¢. The above fact implies that > ier, Dik(x) =1
and D (x)Dy(x) = Y icp, D7 (%) > [Dx| 71 = k=%, where the equality holds when Dj 4 (x) = [T | ™" for all
ielk.

Lemma 6 implies that with probability approaching 1, we have

iel'x

V(x) = Df (x)(878) Dy (x)
> Ain((27®) 1Dy (x)7 Dy (x)
L Dy (x)TDi(x)

max(q)T(D)
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1
>
~ 2asnhd

1
Dw("Du(x) 2 5 pa

where ag is the constant (4.10). By Lemma 8 we get that \j/;ﬂot(x) - fnet(x)|2 = Op(h=294=2m)_ Therefore,

,]/(;ilot (X) - .]/c;let (X)
V(x)

= Op(n'/?h=424=™) = 0p(1). (5.2)

Theorem 2 follows by (5.1) and (5.2). This completes the proof. O

In practice, it is often of interest to test whether Y; and X, are statistically independent, equivalently, to
test fo is constant. In what follows, we consider an elementary hypothesis testing problem: Hy : fo = 0 vs.
H; : f # 0. In general, one can subtract the constant from fo, or if the constant is unknown, subtract ¥ from
fo, and test the difference equals zero. Consider a test statistic T), = || fnet||2, where || f||2 = S f(xi)?/nis
the empirical norm. It should be mentioned that T,, relies on m, M since fnet does. The following Theorem 3
is a byproduct of Lemma 8, which derives null distribution of T}, and analyzes its power under a sequence
of local alternatives.

Theorem 3. Under the Assumptions A1 and A2, if k > max(3,2), n?M? = O(16™) and M =< nﬁ, then
the following hold:

(i) Under Hy : fo =0, it follows that

nTn —dq

Ni L, N0, 1), (5.3)

where ¢ = (M + k — 1),
(ii) For any § > 0, there exists a Cs > 0 such that, under Hy : f = fo with || folln > C’(;nf‘lg%, it holds

that
o L
=

where zq /2 is the 1 — a/2 upper percentile of standard normal variable.

‘ > za/2> >1-4, (5.4)

Part (5.3) of Theorem 3 suggests a testing rule at significance «: reject Hy if and only if

V2q |7

Part (5.4) of Theorem 3 says that the power of T, is at least 1 — § provided that the null and alternative

28
hypotheses are separated by Csn™ #+2 in terms of || - ||,-norm. The separation rate is optimal in the sense
of Ingster [14].

Proof of Theorem 3. The proof consists of two steps. The first step is to establish the asymptotic distribu-
tion of the test statistic based fpilot, While the second step is to show that the test statistic 7;, has the same
limiting distribution. By (4.9) and Assumption A2, we know M = h~land

faet € F(L,p(T)), with L= (2m+3)(k+d) + 1 and T = 2"T1d(M + 2k)%.

So the rate conditions are equivalent to nh~%/24=™ = o(1) and h < n~ .,
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Step 1: Using the notation in the proof of Lemma 8 and by (4.11), we have
Foitor = B(TD) 17, + B(OTD) 10 €.

Under Hy : fo = 0, it follows that £

L roiEpitor = €7 @(T®) 137 € and

/f‘\g;lot fpilOt |X ~ X2 (q) ’

where we used the fact that ¢; are i.i.d. normal and is free of X. Since ¢ = (M +k — 1) < h=% — oo, we
conclude from central limit theorem that

g
“%;qtq 2, N0, 1). (5.5)

Suppose that f satisfies || fo|ln > Csyn with v, = n_% for some Cj large enough. Then it follows that
pPp

£l o Boitor = £1 @(070) T10Tfy + 267 0(07 D) 10T e + 7 D(0T D) 0T e = S + 25, + S5

By simple algebra, we show that

f7 (1 —2(@"®) oMy = (2C + E)" (I — 2(¢" @) '9")(@C + E)
=ET(I-o@Td) 'oTE
<ETE < A} nh*.

As a consequence it follows that
Si = £ 6o — £ (I — D(DTD) Ty > C2ny? — A2 nh? = CZn75a — A% nh®P,

Since h=M~!' =<n~ 4B2+d, it follows that nh?® = n¥a. If we choose Cs > 0 large enough, it implies that
d
S = %C(?nwﬂi, which leads to

2 and é—>O.

Sy 1 1
> —C
22 ? 2

V20 2V

1
an‘lﬁid = —anwidh% =
2v/2

Here the condition ¢ = (M +k—1)% < h~¢ is used. So g—; < it j_Zl_q for n large enough. Taking conditional
expectation, we have

P (|S2* > C5511X) = P(|Z| > Cs) < 6,

where Z is standard normal random variable and the last inequality holds with large Cs. Therefore, we have
that

-,

2 oot — g
P pilot*P <7
( vag [T
Sg—q Sl 252
=P PLy 2o
< V2q +\/2q+ 2q |~ aﬂ)
<p(|By S22 1S < Os/Er ) + P(1S] > G5 /S (5.6)
< /2 N a/2, [02] < Csy/ o1 2 5V o1 |- .
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By the choice of Cs, the second term in (5.6) is bounded by §, while the first term yields following inequality:

Sy — S, 2§
IP’( j/_q \/1_ \/_2 a/2,|52|<05\/5>

Si 25 _Si—q_ Si 25, )
=P( -2, < <Z, So| < Cs5+/S1
< /2~ V24 V2q V24 /2~ NN T |52 s

S 2C5/ S - S 2C5+/ S

gIP(—Za/z \/1_ \5/_ < j/_q Doy — \/—1_ ;_ SQ|<05\/S>
351 Sg*q 1

<P - < I

_P< o2 =5 mq = T yag =0 2\/5)

Sg—q 02 )
<P <Z,
- ( V2 T 2= 2v/2

Combining above and taking limit on both sides, it follows that

?T /f\ilot —q C2
lim P W‘<Za ><P<Z<Za > <. 5.7
n—00 ( ‘/2(1 - /2] = - /2~ 2\/_ ( )
Step 2: Observe that
nHﬁlet”% —q_ n”f;ilot”% —q + "Hﬁ;et”% — nH]?pilotH%_ (5.8)

V24 V2 V2

By Lemma 7 and Lemma 8, both ”ﬁlet - ],c;)ilot”n and H.]/c;)ilot - fOHn are Op(l), and we have

|||fnct||% - ||fpilot”721| = H|fnct||n - prilot||n| X (”fnct”n + prilot”n)
< et = Foitolln (11 et = Fototlln + 21 Foto 1)
< ||fnet - fpilot”n X (anet - fpilot”n + 2||fpilot — fOHn + 2||f0||n)
= ||fnet - fpilot”n X OP(].)
= Op(h=t4—m),

Therefore, the second term in (5.8) is of order Op(nh~%4""¢=1/2) = Op(nh=%24=™) = 0p(1), where we
have used the fact ¢ = (M + k — 1)% < h=?. The result then follows by (5.5) and (5.7). This completes the
proof. O

6. Network approximation to additive model

The optimal rate in Theorem 1 suffers from the ‘curse’ of dimensionality. In this section, we show that
this issue can be addressed when fy has an additive structure. Specifically, let us consider the following

function space:

J 1
AE(F, D= Q=>R|f(x)=a+ Zgj(xj) with g; € A% (F,[0,1]) and /gj(m)da: =0/,
J=1 0

where F > 0 is the radius, and 8 = (51,...,84) € (0,00)% are the degrees of smoothness for g;’s. Clearly,
any f € Ai(F, Q) has an expression f(x) = a + Z?Zl gj(z;) with the jth additive component belonging
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to the ball of univariate 3;-Hélder functions with radius F'. Moreover, the constraint fol gjo(z)dxr =01is to
avoid identifiability issue.

Theorem 4. Let Assumption Al be satisfied. Suppose that L — oo, T — oo and TlogT = o(n) as n — oo,
then for any fived constant F > 0 and vector B = (B, ..., Bq4) € (0,00)%, it follows that

1 T T2
X)) =0p| ==+ —
)=or(gm+ 5+ )

where 8% = mini<;j<q B;, k is the smallest z’nteger satisfying k > max(B1, ..., Bq4,2), and the Op is in the

)
sense that T, L,n are diverging. Hence, if T =< n2s* 1 and ngﬁ*ﬁ =0(2 lik), then

x) = Op (n"557).

_2p*
The rate n~ 2671 in Theorem 4 is optimal in nonparametric additive estimation. When 5, = = Bq = B,
_28

it sup fo<|f ~ fol%

FeF(L,p(T)) §, €Al (F.Q)

inf sup ]Efo(||f_f0|%2

FEF(L.p(T)) foen? (F,Q)

the rate simply becomes n™ 26+1 whose optimality has been proved by Stone [25]. Otherwise, the optimal
rate relies on the least order of smoothness of the d univariate functions.

The rest part of this section is devoted to proving Theorem 4. Throughout we keep in mind that the true
regression function fp admits an additive expression

fox) = fo(z1,...,2q) = a0+ g10(x1) + ... + gao(za),

where  is an unknown constant. Before proving the theorem, let us settle down some notation. For
J=1,2,...,d, given integers M;, k; > 2 and knots ¢y, 115 <t _p,42; < ... <tlo; <t1; <...<tny,; <
ta41, < oo <tayakg41,y With to; = 0,t0,0 = 1, let By, () € RMi+ki=1 denote the vector of univariate
B-spline basis functions (with respect to variable z;). Since the collection of these univariate B-spline basis
does not form a basis on the additive function space due to the sum-to-one condition, we instead use the
following polynomial spline basis to approximate the additive components g; o’s:

T
- kj—1 kj—1 A E—2 .
PkJJ( ): (J,‘,.Z‘%...,.Tk" 1,(%‘—75173‘)_~_J ,...,(Z‘—th_Lj)_’_J ) ERMJ+kJ 2,]=1,...,d.

The central idea is the approximation fo(x1,...,24) =~ a + ijl WjTij,j(xj) for some constants a € R
and W; € RM;+ki=2 By least square estimation, an estimator of fq is

d
foitot (z1, ..., zq) =a+ Z (x;) with f]( ) = WjTij,j(:c).

If we define the centralized estimator g;(z) = fo fj w)du, then it turns out to be a consistent
estimator of g;o; see Lemma 12, and we have

d d 1
Foitot (1, . a) =@+ > Gi(;) with @ = Z/ (6.1)
j=1 Jj=1 0

Note that By, ; is the B-spline basis. So g; can be written as ajTBkjyj(m) for some @- € RMithi=1 we
define a neural network estimator g;(x) = 5JT]§kJ j(x)for j=1,...,d and
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d
fnct = a Z (62)

By similar argument as (4.9), for any integers k;, M;, m > 2, we can construct the network satisfying

d
Faet € F(L,p(T)) with L = (2m + 8) max (k; +1) + Land 7= Y25 (M, +2k).  (63)
j=1

Moreover, the following notation plays a similar role as that in the proof of Theorem 1:

d
g+ =1+ (Mj+k —2),
j=1
P(x) = (1, P, 1(21), Pk, 5(22), ..., P, g(a))T € RT,
q)+ = (P(X1)7P(X2)7 teey P(Xn))T € RanJra

d

OF = {f(X)If(x) =a+)_g;(z;) with a € R, g;(2) = b] Py, ;(x),
j=1

g;(x)dx = 0 for some b; € RMi+ =2 and j = 1,...,d},

—

QF

~ o

= {llgllz>/2 < llgll < 2llgllZ:, for all g € O} (6.4)

To handle the additive model, we introduce a new norm of a function g as || gH2 fQ g°(x)dz. We would like
to comment that another norm used in previous sections is ||g||7. = [, 9*( x)dx, Wthh are equivalent
to || - || under Assumption Al. Finally, we will need the following assumptlon durlng the proof, which is in
the similar spirit of Assumption A2.

Assumption A3. For j = 1,...,d, the order of B-spline satisfies k; > §;, and the knots {t; ;,7 = —k; +
., M; + kj + 1} are equally separated by constant h; = Mj_l. In the analysis, we need M; — oo and
hj —0forallj=1...,d.

Proposition 4. Suppose that gq is a constant function and g1 is a measurable function satisfying fQ g1(x)dx =
0. Moreover, ||g1|lsup < Kl|g1]| for some constant K > 0. Then ||go + g1 sup < (K + 2)||go + g1l

Proof of Proposition 4. Observe that for any constant function go, we have ||g1]| = [|g1 + gol| = l|lg1||* + g2
Moreover, Assumption Al leads to that, for some ¢ > 1 and all g with ||g||2 < oo, it holds that ¢~1||g||? <
lgll22 < c|lg||*>. Therefore, we have

190 + 91llsup < llgollsup + [|91]lsup
< llgoll + K[|gu |
<llgo + g1l + llg1ll + Kllg1 + gol|
<llgo + g1l + llgr + goll + Kllg1 + gol|
< (K +2)[lg90 + g1l]-

Proof is complete. O
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Lemma 9. Suppose Assumptions Al and A3 hold with integers kj > max(f;,2). Moreover, if the sequences

in Assumption A3 satisfies nh? — 00 and hj — 0 for each j =1,2,...,d, then the following holds

gl
g1l

sup
geoy

- 1‘ — op(1),

where O is the function space defined in (4.10). As a consequence, it follows that P(Q}) — 1. Here Q0 is
the event defined in (4.10).

Proof of Lemma 9. Let g(x) = Zj 1 9;(x;), where g; satisfies fo gj(x)de =0 for j =1,...,d. By DeVore

and Lorentz [5, Theorem 5.1.2] we get that [|g;|[sup < Ajllg;[ with A; < h; /2 Direct examination shows
that

1/2 1/2 J 1/2

d d d
lglloup < S Mg o < S Ajllgsll < [ S 42 Slgl* | < (Y 42) (el
j=1

j=1 j=1 j=1 j=1

where the last inequality follows from Lemma 3.6 of Stone [26] and ¢y is a constant depending on d only.
Applying Proposition 4 and by Assumption A1, we obtain that

d 1/2 d 1/2
1 llup < ((chAi) +2)||f|2 < c((chAi) +2)||f%2, for all f € OF,
j=1 j=1

The dimension of O}, ¢4 < Z?zl(Mj +k-1)+1x Z?zl h;l. Therefore, by Lemma 2.3 in Huang [13]
and rate conditions given, we prove the result. 0O

Lemma 10. Suppose Assumptions Al and A3 hold with integers k; > max(f;,2). Moreover, if the sequences

in Assumption A3 satisfies nh? — 00 and h; — 0 for each j = 1,2,...,d, then on event 1}, <I>£<I>+ is
invertible.
Proof of Lemma 10. Let B = n~'®Td, and B = [P(x)P(x)TQ(x x)dx. For g(x) = uTP(x), we have

uTBu = ||g||2 and uTBu = ||g||2. On event Q:F, since B is posmve definite, B is also positive definite. Proof
is complete. O

Lemma 11. Suppose Assumptions A1 and A3 hold with integers k; > max(p;,2). Moreover, if the sequences

in Assumption A3 satisfies nh? — 00 and hj — 0 for each j =1,2,...,d, then the following holds uniformly
for all fo € A2 (F,Q) on event Q;f :

Es, (nfpﬂot ol

) <2003 o
n

Proof of Lemma 11. For any fy € AZ(F,Q), let fy = (fo(X1),. ., fo(Xn))T, € = (e1,.-.,€,)7, and Toilos =
(foitot (X1), -+« s foitot (Xn))T. According to Lemma 3 and the condition k; > max(ﬂj,2) for j =1,...,d,
there exists a vector W € R+ such that supycq [WTP(x) — fo(x)| < Z] 1Agi0 j , where the constant
Ay, o satisfies SUD, A% (F,[0,1]) Ay, , < oo. For simplicity, we further define f*(x) = WTP(x) and f* =

(f*(Xa),-n [ (X))
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By Lemma 10 and similar argument in (4.11), it follows on event Q. that

it = @4 (070, ) 10TY
=&, (10 ) T (@, W + E +¢)
=, W+ &, (070,) '@ E+ 0 (21D ) 10le
="+ 3, (010,) 1OTE+ & (&1 D) DT,

where E = fy — f*. As a consequence, we have

N * 1= * 3 *
||fpilot - f ”31 = E(fpilot —f )T(fpilot —f )

2 2
EET<I>+(<I>JTF<I>+)_1<I>IE + 53@(@{@)*@16

IA

2 2
—ETE + —6T<I>+(<I>£<I>+)_1<I>£e

| AN

ZAgmth —eT(I)+(<I)T<I>+) 1pTe
2
QdZAg Rt —eT<I>+(<I>T<I>+) 19T,

where we use the fact that <I>$<I>+ is invertible on Q;} by Lemma 10. By independence of € and @, it follows
that on event QF,

Eg, <eT<I>+(<I>{<I>+)1<1>£e

X) =Tr (o4 (@704 ) '0T) =q,.

Combining the above two inequalities and using the definition of QE, we show that

2 d+1 26; dqy
X><2 ZAQOJ o

Es, (nfpﬂot T x) <oE,, (nfpﬂot -

which further implies that

%)

X) 128, (|fo PR

Es, (nfpﬂm ~ foll2 X) < 2K, (nfpﬂm T

< 2d+2ZAg . jZB] 2d+1ZAg ohJQBJ

8
<2d+3ZAg . 36; 4 o4+
2 n

Proof is complete. 0O

Proposition 5. Under Assumption Al, if g(x) = a + ZJ 1 95(x;) with fo g;j(xz)dx = 0, then it follows that
lgll2: > ad(a® + ijl lgjl122), where the constant az > 0 only relies on the density Q.

Proof of Proposition 5. This is a direct consequence of Lemma 3.1 in Stone [26] and Assumption Al. O
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Lemma 12. Suppose Assumptions Al and A3 hold with integers k; > max(f;,2). Moreover, if the sequences
in Assumption A3 satisfies nh? — 00 and h; — 0 for each j =1,2,...,d, then the following statement hold
uniformly for all fo € A’i(F7 Q) on event Qf :

2 4G+ .
<g] 93, 0||L2|X> < a4ZAg ohsﬁ T? fO’I"_] = 1727"'7d7

s=1
and
Ey, (& — aol*X) <a4ZA p2oe 4 I
6] f gs,0 'S n
S=

where @ is the estimated coefficient defined in (6.1), and ag > 0 is an absolute constant relying on the
density function Q and d.

Proof of Lemma 12. Recall fyior(x) = CH‘ZJ Filzy) = a—|—Z] 19j(x;), where & = a+2j 1 fo fi(u
and g;(z) = fj fo fj u)du. By Assumption Al there exists a constant ¢ > 1 such that for any g,
! [ 9(x)dx < fQ 9(x)Q(x )dx < ¢ |, 9(x)dx. By Proposition 5 we have

| Foitot — foll32 = ||04*O‘0+Z —950)lI72

Jj=1

ll\a—ao+z — 950122

d
>c g [ a—aol+ ) g —
j=1

d
Zc_Qag |a—ao|2+2||§j_gj,0“%2 )
Jj=1

where ag is the constant in Proposition 5. By Lemma 11 and the above inequality, on event 7, the following
holds for any fy € AE_(F, Q):

d 802a_dq
L2|X) < c? asz d]Efo (prllot f0||L2|X> < ¢ as d2d+32A hZﬁS %’

gs,0 S
s=1

]Efo (ng

for j=1,2,...,d, and

- 8c?az*
E(la — ao2X) < ¢ a—d2d+3ZA p2Bs 4 2003 G
n

gs,0 S

Therefore, the desired results follow with a4 = c2a§d2d+3. Proof is complete. 0O
Given previous Lemmas, we are ready to prove Theorem 4. By Lemma 3, it holds that

sup |CT By, () — gj0(x)] < Ag, o hl)
z€[0,1]
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for some C; € RMithi~1 with [|C)llee < Ag,,. Let g; = C] By, ; for j = 1,...,d. Recall that g; can
be written as C’?Bkj,j(x) for some éj € RMitki=1 and the neural network approximating the additive
component is g;(z) = @Tﬁk”(x) according to (6.2).

By Lemma 12, for any fo € Afi(F, Q) we have

49+ .
Es, (Ilg; — g],0||L2|X <a4ZA h%Ps 1 - —= forj=1,2,...,d,

gs,0'"S
s=1
Ey, (|1 — aof?|X) < a4 ZA p26s 4 240+ (6.5)
0 gs,0 'S n ?
s=1
where a4 is the constant in Lemma 12. By Lemma 5, for every j =1,...,d we have

arh;(C; — C;)"(C; - Cy) < /ICJTBkj,j(ﬂfj) — CI' By, j(z;)?Q(x)dx
- 16 - 911
< 2|95 — gj0llZ2 + 219 — giolliz,
which further implies that the following holds on Qf:
AT A T A T(A
Es, (CTCIX) <207C;+ 2Ky, ((C; - €)7 (€5 - C)IX)

<2qy A2 +4a7 h By, (195 — g5.001721X) +4ai by By, (lg) — g5.0l1721X)

< 29+A31,o +4a1_1hj_1<a4214 hzﬁg a47<L]+) +4a —1h 142 h2/31

gs,0 'S gj,0 7]

< (QAgj,o + 4a;1a4> <q+ + qT) + 4al a4 + 1 ;! ZAQ ohzﬂé
J

s=1

d
6 (z o ) ( e zhiﬁs) |
v=1

with ag = 84+8a; * (a4+1). In the last inequality we have used nh; — co. Recall g; = @Tﬁk] _j(z). Therefore,
Lemma 1 implies that the following holds on event . %4_’"

E (135 = Gil1321%) = Eg, (1167 B, — CT By, 513:IX)
< (Mj+k; = DEp, (C]TCj|X) s By, ;(x) = Bi, ()%
ze|0,
d
(Z Agv .+ a1—1a4> 647 T (M + kj — 1) (q+ + hj—l Z}@f%) 16—™
s=1

By the above inequality and (6.5), on event Q} we have
) < 2B, (195 — 95l1721X) + 2E 1, (1157 — gj.0/122/X)

d d
< 2ag (Z A2+ a;1a4> 6451 (M 4 k; — 1) <q+ +hy h§55> 16~™
v=1

IEfo (HEJ -

s=1
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asqy
As a consequence, on event 2.7 it follows that

d
E g, ([| faet = foll72[X) < 27E(|@ — aol*[X) +27 Y "E(/|g; — g5,0/171X)
j=1

G/4<ZA9 thﬂs 7)
d d
+24+14 Z (Z A2 +ay a4> 645 (M + kj — 1) <q+ +ht Zhiﬂs> 167"

v=1 s=1

gs,0 'S

dq
4od+1 Z A2 zﬁg a4 @49y
a4d h "

. d d - .
Since ¢ = > 5 (M; +k; — 1) < 375 My, hy < M, ! and Supg_ﬁoGAﬁj(F,[O,l])Agj,U < oo by Lemma 3,
taking supremum of the above inequality leads to

d d d
—~ — . 1»2
sup Ef0(||fnet—f0|§2|x)zop(§ M, 25])+OP(§ TJ)+OP(§ Mf42m).

foeAR (F.0) j=1 j=1 j=1

Using (6.3), we know L = (2m + 3)maxi<;j<a(k; +1) + 1 and T = Y7_; 25F4(M; + 2k;). The above
inequality further leads to

inf sup Efo(”fnet - f0||2L2|X) S sSup ]Efo(”fnet - f0||%2|X)
FEF(L.p(T)) foen? (F,Q) foeAR (F.Q)

T
=Op (T%* + =+ T242m).
n
We can always choose k; = |3]; +1 for j = 1,...,d. Therefore the integer k > max(f1,..., 34,2) implies

k > max(k1,...,kq,2) and L = (2m+ 3) maxi<j<q(k; +1)+1 < 2m(k+1) +3(k + 1) + 1. Substituting m
with L, we complete the proof.
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Appendix A
A.1. Proof of Lemma 3

In this subsection, we provide the proof of Lemma 3. For simplicity, we consider the case with d = 2.
The extension to the scenario with d > 2 can be done similarly.

Given integers k, M > 2 and knots t ;41 <t_pio < ...<top<t1 <...<ty <tys1 <...<tpmik-1
with g = 0,tpr = 1. Since d = 2, we can relabel the tensor product B-spline basis as B; y(x1)B; (z2), for
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(r1,22)T € Qand i, j=—k+1,...,M — 1. We would like to comment that the basis is denoted as Dk in
previous section. As a consequence, the function space spanned by B; i (z1)Bj 1 (x2) is defined as

M—-1

M-1
={f(x Z Z Cij 1;6(3:1)B]k(x2)|c”ERandX—(xl,xg) € Q}.

i=—k+1j=—k+1

Let us borrow some definition from the Section 15.1 in Gyorfi et al. [10]. Let C be the collection of
continuous function supported on €. A linear operator s : C — ©,, is called a quasi interpolant if

M—-1
Z Z K/’Lj zk xl)Bj,k:(xQ)a

i=—k+1j=—k+1

where k;;(f) is a constant depending only on the values of f in [t;,ti4x) X [t;,t;4%). Moreover, & is said to
have order k if xf = f for all polynomial f with the degrees of x1 and x5 not greater than k — 1.

Lemma A.1 (Theorem 15.2 of Gyorfi et al. [10]). Given integers k, M > 2 and knots t_j11 < t_pt2 <
<ty <ty < oo <ty <tygr < oo < targk—1 with tg = 0,tyr = 1. There exists a quasi interpolant
Kk : C — O, with order k such that

|kig (F)] < L sup [F ()]
XE[ti,ti+k) X [tj,tj+k)

Here Ly is a constant depending only on k but not on the knots.

We are ready to prove Lemma 3. Suppose f € AP(F,Q). For fixed u € [t;, titx) X [tj,tj+x), let us define
the following local Taylor polynomial:

x—u)*
Z Oaf(u)% for x € [tivti-&-k) X [tj,tj_,_k).
le< 8] '
By Taylor’s theorem, it follows that
1
= Y oW Z (x—u a/ HI19% (w4 t(x — u))dt.
|er|<| 5] ai=ls) 0
Suppose u = (uy,u2)?,x = (x1,22)" € [ti,tixr) X [tj,tj+x), then Assumption A2 implies that ||u — x|| <
2(kh)? < 2kh. Let us consider two cases of 3.
Case 1: If | 3] = 0, then p,(x) = f(u). By the definition of A®(F,(), it follows that
[f(x) = pu(x)] = [f(x) = f(w)] < Fllx —u]|? < F(2k)°h".

Case 2: If | 3] > 1, then f t)l81=1dt = 1/|3]. Therefore, we have

1
/ pylol-1
0

1
Bl 21 — 1| |72 — un | /(1—t>w—1F||t(x—u)uﬁ—wdt

al= 0

|f(x) — Z 'L—, (x —u) 9% f(u+t(x —u)) — % f(u)|dt
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1

<SPS Y G -l [ piar

la|=18] 0
<F Z kBIpLB (2kp) P14
lex|=18]

< P(|B8] +1)%(2k)° K.
Combining the above two cases, we show that

(%) = pu(x)| < F(1B] +1)*(2k)°R°,

for all x,u € [t;,tivx) X [tj,tj4x) and f € AP(F, Q). Since the operator & is linear, and p, (x) is a polynomial
with degrees of 1 and x5 not greater than |3]. Since k is an interpolant with order k¥ by Lemma A.1, and
Pu is a polynomial with degree at most | 3], the condition k£ > 5 implies that k—1 > |3]. As a consequence,
it follows that

M—-1 M—-1

W) —pall = S S wig(F — pu)Bis(wa) Bya(an)]

i=—k+1j=—k+1

M—-1 M-1
< Z Z |kij(f — pu)|Bix(21)Bjr(22)

i=—k41j=—k+1

< sup sup |kij (f — pu)l
CR1<i<M -1 —k+1<j<M—1

< sup sup Ly, sup lf (V) — pu(V)]

—EH1<Gi<KM -1 —k+1<j<M—1  VE[ti,tiyr)X[t; b 4x)

< LpF(1B] + 1)%(2k)Ph?  for all x € Q.

Combining the above inequality, we conclude that

[kf(x) = R < [RF(X) = pu(x)] + |pu(x) — f(x)]
f(x) = mpu(x¥)] + [pu(x) = f(x))
[/ (%) = pu(]| + |pu(x) = f(x)]

K
=|r
= |k
< (Lp + 1)F(|B] + 1)%(2k)’n?  for all x € Q.

Notice that «f(x) = E?ich jz\/i—ij Kij (f)Bik(21)Bjr(x2) = D icp ciDik(x), where ¢;’s is the sequence
ki;(f)’s after relabeling. Using Lemma A.1 again, we show that |¢;| < Li|| f(x)|sup. Clearly, we can choose

Ay = (L + DF([B] +1)*(2k)7 + Lie| £ () llsup,
which satisfies sup peps (o) Af < (L + 1) F([8] +1)*(2k)” + Ly F < 0o. The proof is complete.
A.2. Index of symbols
e k: the smallest integer satisfying k& > max(f,2) for Theorems 1-3 and k > max(fy,...,05q,2) for
Theorem 4.

e m: a diverging auxiliary variable for the number of hidden layers, which is related to the construction
of network product operator; see Lemma 2, (4.9) and (6.3).



R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561 31

e M: a diverging auxiliary variable for the number of nodes in each hidden layer, which is related to the
number of knots for B-spline basis; see Section 4.1 and (4.9).

e h: h=M"" knots separation distance; see Assumption A2.

e ¢ q= (M +k—1)% number of tensor product B-spline basis functions; see Section 4.1.

e O,: a function space spanned by tensor product B-spline basis; see Section 4.4.

e Q,: an event with probability approaching one; see (4.10).

e ai,a9: universal constants relying on k and the density @); see Lemma 5.

e ag3: a universal constant relying on the density @; see Proposition 5.

e ay: a universal constant relying on d and the density Q); see Lemma 12.

e kj: a fixed constant indicating the order of B-spline basis for additive model, which requires k; > 3;;
see Assumption A3.

e Mj: a diverging auxiliary variable for the number of nodes in each hidden layer for additive model,
which is related to the number of knots for B-spline basis; see Assumption A3 and (6.3).

o hj:hj =M ]71, knots separation distance for additive model; see Assumption A3.

e qriq=1+4 Z?zl(Mj + kj — 2), number of B-spline basis functions for additive model; see (6.4).

o O function space spanned by B-spline basis for additive model; see (6.4).

o Qf:an event with probability approaching one; see (6.4).
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