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Deep neural network is a state-of-art method in modern science and technology. 
Much statistical literature have been devoted to understanding its performance in 
nonparametric estimation, whereas the results are suboptimal due to a redundant 
logarithmic sacrifice. In this paper, we show that such log-factors are not necessary. 
We derive upper bounds for the L2 minimax risk in nonparametric estimation. 
Sufficient conditions on network architectures are provided such that the upper 
bounds become optimal (without log-sacrifice). Our proof relies on an explicitly 
constructed network estimator based on tensor product B-splines. We also derive 
asymptotic distributions for the constructed network and a relating hypothesis 
testing procedure. The testing procedure is further proved as minimax optimal under 
suitable network architectures.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

With the remarkable development of modern technology, difficult learning problems can nowadays be 
tackled smartly via deep learning architectures. For instance, deep neural networks have led to impressive 
performance in fields such as computer vision, natural language processing, image/speech/audio recognition, 
social network filtering, machine translation, bioinformatics, drug design, medical image analysis, where they 
have demonstrated superior performance to human experts. The success of deep networks hinges on their 
rich expressiveness (see [3], [23], [22], [1], [28], [20] and [31,32]). Recently, deep networks have played an 
increasingly important role in statistics particularly in nonparametric curve fitting (see [15,11,16,18,24]). 
Applications of deep networks in other fields such as image processing or pattern recgnition include, to 
name a few, LeCun et al. [19], Deng et al. [4], Wan et al. [29], Gal and Ghahramani [9], etc.

* Corresponding author.
E-mail address: zshang@njit.edu (Z. Shang).
https://doi.org/10.1016/j.jmaa.2021.125561
0022-247X/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2021.125561
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2021.125561&domain=pdf
mailto:zshang@njit.edu
https://doi.org/10.1016/j.jmaa.2021.125561


2 R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561
A fundamental problem in statistical applications of deep networks is how accurate they can estimate 
a nonparametric regression function. To describe the problem, let us consider i.i.d. observations (Yi, Xi), 
i = 1, 2, . . . , n generated from the following nonparametric model:

Yi = f0(Xi) + εi, (1.1)

where Xi ∈ [0, 1]d are i.i.d. d-dimensional predictors for a fixed d ≥ 1, εi are i.i.d. random noise with 
E(εi) = 0 and V ar(εi) = τ2, f0 is an unknown function belonging to some function space H. For any L ∈ N

and p = (p1, . . . , pL) ∈ NL, let F(L, p) denote the collection of network functions from Rd to R consisting 
of L hidden layers with the lth layer including pl neurons. The problem of interest is to find an order Rn

that controls the L2 minimax risk:

inf
f̂∈F(L,p)

sup
f0∈H

Ef0

(
‖f̂ − f0‖2

L2

∣∣∣∣X) = OP (Rn), (1.2)

where X = {X1, . . . , Xn}, the infimum is taken over all estimators f̂ ∈ F(L, p), and Ef0 represents the 
expectation taken over the conditional distribution of Yi’s given Xi’s with Yi, Xi generated from model 
(1.1), and OP stands for stochastic boundedness, which will be formally defined at the end of Section 2. In 
other words, we are interested in the performance of the “best” network estimator in the “worst” scenario.

Existing results regarding (1.2) are sub-optimal. For instance, when H is a β-smooth Hölder class and 

L, p are properly selected, it has been argued that Rn = n− 2β
2β+d (log n)s for some constant s > 0; see Kohler 

and Krzyżak [15], Hamers and Kohler [11], Kohler and Krzyżak [16], Kohler and Mehnert [18], Schmidt-
Hieber [24], Suzuki [27], Farrell et al. [8], Liu et al. [21], Wang et al. [30]. Such results are mostly proved 
based on empirical processes techniques in which the logarithmic factors arise from the entropy bound of 
the neural network class. The aim of this paper is to fully remove the redundant logarithmic factors, i.e., 
under proper selections of L, p one actually has Rn = n− 2β

2β+d in (1.2). This means that neural network 
estimators can exactly achieve minimax estimation rate. Our proof relies on an explicitly constructed neural 
network through tensor product B-splines which is proved minimax optimal. One technical contribution of 
this paper is to show that tensor product B-splines can be effectively expressed by deep networks. Compared 
with other basis structures such as local Taylor expansions, e.g., Yarotsky [31] and Schmidt-Hieber [24], 
the tensor product B-splines framework is convenient to our theoretical analysis due to its rich statistical 
literature; see Huang [12] and Huang [13].

Some interesting byproducts are worth mentioning. First, we will derive the pointwise asymptotic distri-
bution of the constructed neural network estimator which will be useful to establish pointwise confidence 
interval. Second, the constructed neural network estimator will be further used as a test statistic which is 
proved optimal when L, p are properly selected. As far as we know, these are the first provably valid confi-
dence interval and test statistic based on neural networks in nonparametric regression. Third, the rate Rn

can be further improved when f0 satisfies additional structures. Specifically, we will show that Rn = n− 2β
2β+1

if f0 satisfies additive structure, i.e., f0 is a sum of univariate β-Hölder functions. Such rate is minimax 
according to Stone [25].

This paper is organized as follows. Section 2 includes some preliminaries on deep networks and defines 
some notation. In Section 3, we derive upper bounds for the minimax risk and investigate their optimality. 
Section 4 provides the proof of the main result, which covers the construction of (optimal) network and 
relates results on network approximation of tensor product B-splines. As by products, we also provide 
limiting distribution and optimal testing results in Section 5. We further study the additive model using 
network approximation in Section 6. The Appendix contains the proofs of relevant lemmas and a table 
indexing some important symbols used in the proof.
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2. Preliminaries and notation

In this section, we review some notion about deep networks and function spaces, as well as provide useful 
symbols or notation used throughout this paper. Throughout let σ denote the rectifier linear unit (ReLU) 
activation function, i.e., σ(x) = (x)+ for x ∈ R. For any real vectors v = (v1, . . . , vr)T and y = (y1, . . . , yr)T , 
we define the shift activation function σv(y) = (σ(y1 − v1), . . . , σ(yr − vr))T . Let p = (p1, . . . , pL) ∈ NL, 
and we say f ∈ F(L, p) if

f(x) = WL+1σvL
WLσvL−1 . . . W2σv1W1x, x ∈ Rd,

where vl ∈ Rpl is a shift vector and Wl ∈ Rpl×pl−1 is a weight matrix, and x represents the argument of f . 
We adopt the representation x = (x1, . . . , xd)T with xj being the jth component of x and the convention 
p0 = d and pL+1 = 1. For simplicity, we only consider fully connected networks and do not make any 
sparsity assumptions on the entries of vl and Wl.

Next let us review the concept of Hölder space. Let Ω = [0, 1]d denote the domain of the functions. 
For f defined on Ω, we define the supnorm, L2-norm and empirical norm of f by ‖f‖sup = supx∈Ω |f(x)|, 
‖f‖2

L2 =
∫

Ω f(x)2Q(x)dx and ‖f‖2
n = 1

n

∑n
i=1 f(Xi), respectively. Here Q(·) is the probability density for 

the predictor Xi’s. For any α = (α1, α2, . . . , αd) ∈ Nd, we denote |α| =
∑d

j=1 αj and ∂αf = ∂|α|f
∂x

α1
1 ...∂x

αd
d

whenever the partial derivative exists. For any β > 0 and F > 0, let Λβ(F, Ω) denote the ball of β-Hölder 
functions with radius F , i.e.,

Λβ(F, Ω) =
{

f : Ω → R

∣∣∣∣ ∑
α:|α|≤�β�

‖∂αf‖sup +
∑

α:|α|=�β�
sup

x1 �=x2∈Ω

|∂αf(x1) − ∂αf(x2)|
‖x1 − x2‖β−�β�

2
≤ F

}
,

in which �β� is the largest integer strictly smaller than β.
At the end, we need some notation for vector, matrix and asymptotic analysis. For vector v =

(v1, . . . , vp) ∈ Rp, let ‖v‖∞ = max1≤i≤p |vi| and ‖v‖2 =
√∑p

i=1 v2
i be its supnorm and Euclidean norm. 

Let λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a squared matrix. For two positive 
sequences an and bn, we define an 	 bn if there exist positive constants C1, C2 such that C1an ≤ bn ≤ C2an. 
We say a sequence of random variables Xn = OP (an) for some positive deterministic sequence an if for 
any ε > 0, there exists a constant Cε > 0 such that P (|Xn| ≥ Cεan) ≤ ε for all n ≥ 1. Finally, we denote 
Xn = oP (an) if limn→∞ P (|Xn| > εan) = 0 for any ε > 0.

3. Minimax neural network estimation

In this section, we derive an upper bound for the L2 minimax risk in the problem (1.2). The risk bound 
will be proved optimal under suitable circumstances. To simplify the expressions, we only consider networks 
with architecture (L, p(T )), where p(T ) := (T, . . . , T ) ∈ NL for any T ∈ N. In other words, we focus on 
networks with L hidden layers and each having T neurons. Our results hold under suitable conditions on L
and T as well as the following assumption on the design and model error.

Assumption A1. The probability density Q(x) of X is supported on Ω. There exists a constant c > 0 such 
that c−1 ≤ Q(x) ≤ c for any x ∈ Ω. The error terms εi’s are independent of Xi’s.

Theorem 1. Let Assumption A1 be satisfied. Suppose that L → ∞, T → ∞ and T log T = o(n) as n → ∞, 
then for any fixed constants β, F > 0, it follows that

inf̂ sup
β

Ef0

(
‖f̂ − f0‖2

L2

∣∣∣∣X) = OP

(
1
2β
d

+ T

n
+ T 2

L
d+k

)
, (3.1)
f∈F(L,p(T )) f0∈Λ (F,Ω) T 4
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where k is the smallest integer satisfying k ≥ max(β, 2). As a consequence, if T 	 n
d

2β+d and n
2β+2d
2β+d =

O(4
L

d+k ), then the following holds:

inf
f̂∈F(L,p(T ))

sup
f0∈Λβ(F,Ω)

Ef0

(
‖f̂ − f0‖2

L2

∣∣∣∣X) = OP (n− 2β
2β+d ).

The OP in Theorem 1 represents stochastic boundedness as defined at the end of Section 2, which 
involves some fixed constant. The constant term in OP relies on c (Assumption A1), β (smoothness of f0), 
k (auxiliary integer related to β), F (radius of function space), and d (dimension of the design point), and 
is free of n, T, L. We ignore the constant term as the focus of this paper is to investigate the impact of T, L
(network architecture) and n (sample size) on the minimax rate. Moreover, the choice T 	 n

d
2β+d would be 

satisfied if T = c0n
d

2β+d for some fixed constant c0 > 0.
Proof of Theorem 1 relies on an explicitly constructed network estimator based on tensor product B-

splines of order k, where k ≥ max(β, 2) is the constant specified in condition of Theorem 1. The minimax 
risk bound in (3.1) consists of three components T − 2β

d , n−1T, 4− L
d+k T 2 corresponding to the bias, variance 

and approximation error of the constructed network. The optimal risk bound is achieved through balancing 
the three terms. The approximation error of the constructed network decreases exponentially along with 
L. Networks constructed based on other methods such as local Taylor approximations ([31], [32] and [24]
have similar approximation performance. However, their statistical properties are more challenging to deal 
with due to the unbalanced eigenvalues of the corresponding basis matrix. In contrast, the eigenvalues of 
the tensor product B-spline basis matrix are known to have balanced orders, e.g., see de Boor [2], which 
plays an important role in deriving the risk bound. Also notice that the risk bound will blow out when L is 
fixed, which partially explains the superior performance of deep networks compared with shallow ones; see 
Eldan and Shamir [7].

4. Construction of optimal networks

In this section, we prove Theorem 1 by explicitly constructing a network estimator f̂net ∈ F(L, p(T ))
and deriving its risk bound. The construction process starts from a pilot estimator f̂pilot obtained under 
tensor product B-splines with order k ≥ max(β, 2). The tensor product B-spline basis functions are further 
approximated through explicitly constructed multi-layer networks, which will be aggregated to obtain the 
network estimator f̂net. The key step is to show that the discrepancies between the tensor product B-spline 
basis functions and the corresponding network approximations are reasonably small such that f̂net will 
perform similarly as f̂pilot, and thus, optimally.

Our construction is different from Yarotsky [31] and Schmidt-Hieber [24], where the basis functions are 
obtained through local Taylor approximation. We find that the eigenvalue performance of the local Taylor 
basis matrix is difficult to quantify so that the corresponding pilot estimator cannot be used effectively. 
Instead, the pilot estimator based on tensor product B-splines is more convenient to deal with. Other basis 
such as wavelets or smoothing splines may also work but this will be explored elsewhere.

4.1. A pilot estimator through tensor product B-splines

In this subsection, we review tensor product B-splines and construct the corresponding pilot estimator. 
For any integer M ≥ 2, let 0 = t0 < t1 < · · · < tM−1 < tM = 1 be knots that form a partition of the 
unit interval. The definition of univariate B-splines of order k ≥ 2 depends on additional knots t−k+1 <

t−k+2 < . . . < t−1 < 0 and 1 < tM+1 < . . . < tM+k−1. Given knots t = (t−k+1, . . . , tM+k−1) ∈ RM+2k−1, 
the univariate B-spline basis functions of order k, denoted Bi,k(x), i = −k + 1, −k + 2, . . . , M − 1, can be 
defined inductively by Bi,s(x) for s = 2, 3, . . . , k. For s = 2 and −k + 1 ≤ i ≤ M + k − 3, define
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Bi,2(x) =

⎧⎪⎪⎨⎪⎪⎩
x−ti

ti+1−ti
, if x ∈ [ti, ti+1]

ti+2−x
ti+2−ti+1

, if x ∈ [ti+1, ti+2]
0, elsewhere

.

Suppose that Bi,s(x), i = −k + 1, . . . , M + k − s − 1 have been defined. We recursively define

Bi,s+1 = ai,sBi,s,t + bi,sBi+1,s,t, for i = −k + 1, −k + 2, . . . , M + k − s − 2, (4.1)

where

ai,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < ti

x−ti

ti+s−ti
, if ti ≤ x ≤ ti+s

0, if x > ti+s

, bi,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < tt+1

ti+s+1−x
ti+s+1−ti+1

, if ti+1 ≤ x ≤ ti+s+1

0, if x > ti+s+1

.

Proceeding with this construction, we can obtain Bi,k(x).
To approximate a multivariate function, we adopt the tensor product B-splines. Let Γ = {−k + 1, −k +

2, . . . , 0, 1, . . . , M − 1}d and q = |Γ| = (M + k − 1)d. For i = (i1, i2, . . . , id) ∈ Γ, we define Di,k(x) =∏d
j=1 Bij ,k(xj) and obtain the corresponding pilot estimator

f̂pilot(x) =
∑
i∈Γ

b̂iDi,k(x), (4.2)

where {b̂i, i ∈ Γ} are the basis coefficients obtained by the following least square estimation:

Ĉ := [̂bi]i∈Γ = arg min
bi,i∈Γ

n∑
i=1

(
Yi −

∑
i∈Γ

biDi,k(Xi)
)2

. (4.3)

4.2. Network approximation of tensor product B-splines

In this subsection, we approximate Di,k’s through multilayer neural networks. We first construct networks 
that approximate the univariate B-spline basis Bi,k’s, and then multiply these networks through a product 
network ✕s introduced by Yarotsky [31] to approximate the tensor product B-spline basis. Here, the product 
network ✕s(x1, x2, . . . , xs) is constructed to approximate the monomials 

∏s
j=1 xj . Unlike Yarotsky [31]

and Schmidt-Hieber [24], our construction proceeds in an inductive manner due to the intrinsic induction 
structure of B-splines.

To proceed, let us introduce some notation. For L, p0, . . . , pL+1 ∈ N, let us denote N N (L, (p0, p1, 
. . . , pL, pL+1)) as the class of p0-input-pL+1-output ReLU neural network functions of L hidden layers, 
with the jth layer consisting of pj nodes, for j = 1, . . . , L. In particular, with p0 = d and pL+1 = 1, 
N N (L, (p0, p1, . . . , pL, pL+1)) is equivalent to F(L, (p1, . . . , pL+1)). The following Propositions 1-3 quantify 
the approximation error of the product network ✕s.

Proposition 1. For any integer m ≥ 1, there exists SQ ∈ N N (2m, (1, 4, . . . , 4, 1)) such that

|SQ(x) − x2| ≤ 2−2m−2, for all x ∈ [0, 1].

Proof of Proposition 1. For s ≥ 1, let g, gs be functions taking values in [0, 1] defined as

g(x) =
{

2x, if 0 ≤ x < 1/2
2(1 − x), if 1/2 ≤ x ≥≤ 1

, gs = g ◦ g ◦ · · · g︸ ︷︷ ︸ .
s times
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x

x

g1

x x − g1(x)
4

g2

x − g1(x)
4 x −

∑2
s=1

gs (x)
4s

g3

x −
∑2

s=1
gs (x)

4s

SQ(x) = x −
∑3

s=1
gs (x)

4s

Fig. 1. Construction of SQ when m = 3. Clearly, SQ is a network of 6 hidden layers each consisting of at most 4 neurons. For 
general m, one just adds more layers to construct SQ while the number of neurons on each layer is still not exceeding 4.

It can be shown by induction that

gs(x) =
{

2s
(
x − 2k

s2

)
, if x ∈ [ 2k

2s , 2k+1
2s ]

2s
( 2k

2s − x
)

, if x ∈ [ 2k−1
2s , 2k

2s ]
.

Let hm(x) be the linear interpolation of h(x) = x2 at points k2−m, for k = 0, 1, . . . , 2m. Namely,

hm(x) = 2k + 1
2m

x − k(k + 1)
4m

, if x ∈ [k2−m, (k + 1)2−m].

By direct examinations, we have

|h(x) − hm(x)| ≤ 2−2m−2, for all x ∈ [0, 1].

Moreover, by induction, it can be shown that

hm−1(x) − hm(x) = gm(x)
4m

, for all x ∈ [0, 1].

The above equation and the fact that h0(x) = x lead to

hm(x) = x −
m∑

s=1

gs(x)
4s

.

Since g(x) = 2σ(x) − 4σ(x − 1
2 ) + 2σ(x − 1), g(x) is a neural network consisting of one hidden layer. Define 

SQ = hm, then SQ is a single-input-single-output neural network of 2m hidden layers, and each layer 
contains 4 neurons, i.e., SQ ∈ N N (2m, (1, 4, . . . , 4, 1)); see Fig. 1 for the case when m = 3. �
Proposition 2. For any integer m ≥ 1, there exists ✕2 ∈ N N (2m + 2, (2, 12, . . . , 12, 1)) such that

0 ≤ ✕2(x, y) ≤ 1,

∣∣∣∣✕2(x, y) − xy

∣∣∣∣ ≤ 4−m+1, for all x, y ∈ [0, 1],

Proof of Proposition 2. The proof is a modification of Yarotsky [31] to incorporate normalization. Observe 
that

xy = 2
(

x + y
)2

− 1
x2 − 1

y2.
2 2 2
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x

y

x

y

(x + y)/2

SQ

SQ

SQ

✕2(x, y)

Fig. 2. Construction of ✕2. Clearly, ✕2 has two more hidden layers than SQ. On each layer the number of neurons is at most three 
times the number of neurons on each layer of SQ, which is 12.

Each of the functions (x + y)/2, x, y can be realized by a network with one hidden layer. Let SQ denote the 
network function in Proposition 1. Then we get that for any 0 ≤ x, y ≤ 1,∣∣∣∣2SQ

(
x + y

2

)
− 1

2SQ(x) − 1
2SQ(y) − xy

∣∣∣∣ ≤ 4−m,

and

−4−m ≤ 2SQ

(
x + y

2

)
− 1

2SQ(x) − 1
2SQ(y) ≤ 1 + 4−m.

Based on the above inequality, we can define

✕2(x, y) =
2SQ

(
x+y

2

)
− 1

2SQ(x) − 1
2SQ(y) + 4−m

1 + 2 × 4−m
,

which will be guaranteed to take values in [0, 1]. Moreover, for any 0 ≤ x, y ≤ 1,

∣∣∣∣✕2(x, y) − xy

∣∣∣∣ ≤ 4 × 4−m

1 + 2 × 4−m
≤ 4−m+1.

Compared with SQ, ✕2 has two additional hidden layers with two inputs and at most 12 nodes in each 
hidden layer; see Fig. 2. Proof is complete. �
Proposition 3. For any integers m ≥ 1 and s ≥ 2, there exists a neural network function ✕s with (s −
1)(2m + 3) − 1 hidden layers and 10 + s nodes in each hidden layer such that for all x1, x2, . . . , xs ∈ [0, 1], 
0 ≤ ✕s(x1, x2, . . . , xs) ≤ 1. Moreover, if |x̃j − xj | ≤ δ with x̃j ∈ [0, 1] for j = 1, 2, . . . , s, then

∣∣∣∣✕s(x̃1, x̃2, . . . , x̃s) −
s∏

j=1
xj

∣∣∣∣ ≤ (s − 1)4−m+1 + sδ.

Proof of Proposition 3. Let δm = 4−m+1. Here we only prove the case when s = 3, and the case for s > 3
can be proved inductively. First we apply ✕2 to x1, x2 and then apply ✕2 to ✕2(x1, x2), x3. By triangle 
inequality, we have



8 R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561
x1

x2

x3

✕2

. . . x3

✕2 ✕3(x1, x2, x3)

Fig. 3. Construction of ✕s with s = 3. ✕3 links two ✕2 structures sequentially and adds one more hidden layer in the mid. The 
number of neurons on each hidden layer of ✕3 is at most 1 plus the number of neurons on each hidden layer of ✕2, which is 13.∣∣∣∣✕2

(
✕2(x1, x2), x3

)
− x1x2x3

∣∣∣∣ ≤
∣∣∣∣✕2

(
✕2(x1, x2), x3

)
− ✕2(x1, x2)x3

∣∣∣∣+ ∣∣∣∣✕2(x1, x2)x3 − x1x2x3

∣∣∣∣
≤ 4−m+1 + 4−m+1 ≤ 2 × 4−m+1.

In general, let ✕s(x1, x2, . . . , xs) = ✕2 (✕s−1(x1, x2, . . . , xs−1), xs) for s ≥ 3. By induction and triangle 
inequality, we have

∣∣∣∣✕s(x1, x2, . . . , xs) −
s∏

j=1
xj

∣∣∣∣ ≤ (s − 1)4−m+1.

The desired inequality follows from the trivial fact that | 
∏s

i=1 x̃i −
∏s

i=1 xi| ≤ sδ. Since we apply neural 
network ✕2 sequentially (s − 1) times and there are (s − 2) additional hidden layers to store ✕i(x1, . . . , xi)
and xi+1, . . . , xs for i = 2, . . . , s −1 (See Fig. 3), the total number of hidden layers is (s −1)(2m +2) +s −2 =
(s − 1)(2m + 3) − 1. Moreover, the number of nodes on each hidden layer is at most 12 + s − 2 = 10 + s, 
due to the fact that the first hidden layer has the most number of nodes. Proof is complete. �

Given Proposition 3, we are ready to approximate the kth order univariate B-spline basis Bi,k. Fixing in-
teger m ≥ 1, our method is based on the induction formula (4.1) which allows us to start from approximating 
Bi,2. Specifically, we approximate Bi,2 by B̃i,2 defined as

B̃i,2(x) = c1σ(x − ti) + c2σ(x − ti+1) + c3σ(x − ti+2),

where

c1 = 1
ti+1 − ti

, c2 = − ti+2 − ti

ti+2 − ti+1
c1, c3 = −(ti+2 − ti + 1)c1 − (ti+2 − ti+1 + 1)c2. (4.4)

The piecewise linear function B̃i,2 is exactly a neural network with one hidden layer consisting of three 
nodes. Suppose that we have constructed B̃i,s(x), a neural network approximation of Bi,s. Next we will 
approximate Bi,s+1. For −k + 1 ≤ i ≤ M + k − s − 1, we define piecewise linear functions

ãi,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < ti

x−ti

ti+s−ti
, if ti ≤ x ≤ ti+s

1, if x > t

, b̃i,s(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x < ti+1

ti+s+1−x
ti+s+1−ti+1

, if ti+1 ≤ x ≤ ti+s+1

0, if x > t

.

i+s i+s+1
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Fig. 4. Construction of B̃i,3 through induction. (a) and (b) demonstrate the architectures of the networks ãi,2 and b̃i,2. (c) demon-
strates the architecture of the network B̃i,2 with c1, c2, c3 defined in (4.4). (d) demonstrates the induction relationship between 
B̃i,3 and B̃i,2.

In terms of ReLU activation function, we can rewrite the above as ãi,s(x) = 1
ti+s−ti

σ(x − ti) − 1
ti+s−ti

σ(x −
ti+s) and b̃i,s(x) = − 1

ti+s+1−ti+1
σ(x − ti+1) + 1

ti+s+1−ti
σ(x − ti+s+1) + 1, which implies that ãi,s and b̃i,s are 

exactly neural networks with one hidden layer consisting of two nodes (see Fig. 4). For i = −k + 1, . . . , M +
k − s − 2, we define

B̃i,s+1(x) =
✕2(ãi,s(x), B̃i,s(x)) + ✕2(̃bi,s(x), B̃i+1,s(x)) + 2 × 4−m+1 + 8s

7 4−m

1 + 4 × 4−m+1 + 8s

14 4−m+1 , for x ∈ [0, 1].

The ‘seemingly strange’ normalizing constant forces B̃i,s+1(x) to take values in [0, 1]. We repeat the above 
steps until we reach the construction of B̃i,k (see Fig. 4 for an illustration of such induction). We then 
approximate Bi,k by B̃i,k.

Finally, let us count the number of nodes in each hidden layer of B̃i,k. Suppose B̃i,k has Wk nodes in each 
hidden layer. Since B̃i,2 ∈ N N (1, (1, 3, 1)) for and ãi,s, ̃bi,s ∈ N N (1, (1, 2, 1)) for all i, s, we know W2 = 3. 
By Fig. 4(d) and Proposition 2, we show that W3 ≤ max{2 × 12, 2 × (2 + W2)} ≤ 2W2 + 28. By induction, 
we have that

Wk ≤ 2Wk−1 + 28 ≤ 2k−2(W2 + 28) − 28 ≤ 2k+3 (4.5)

We next approximate the tensor product B-spline basis Di,k(x) =
∏d

j=1 Bij ,k(xj) by

D̃i,k(x) = ✕d(B̃i1,k(x1), B̃i2,k(x2), . . . , B̃id,k(xd)), for each i = (i1, . . . , id) ∈ Γ.

Finally, parallelizing D̃i,k(x), i ∈ Γ according to (4.2), we construct f̂net as
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f̂net(x) =
∑
i∈Γ

b̂iD̃i,k(x), x ∈ Ω, (4.6)

where the coefficients b̂i’s are obtained in (4.3).
In comparing (4.2) with (4.6), if we can show that Di,k and D̃i,k are close enough, and b̂i’s are uniformly 

bounded, then one can expect that f̂net performs similarly to f̂pilot. A rich class of statistical results in 
literature enable us to efficiently analyze f̂pilot. In the rest of our analysis, we focus on cardinal B-splines 
for convenience.

4.3. Approximation error to B-spline basis

The goal of this subsection is to study the differences between Di,k’s and D̃i,k’s. Let i1, i2, . . . , iq be the 
elements of Γ, where q = (M + k − 1)d is the total number of tensor product spline basis functions. For 
simplicity, we define

Bk(x) = (B−k+1,k(x), B−k+2,k(x), . . . , BM−1,k(x))T ∈ RM−k+1,

Dk(x) = (Di1,k(x), Di2,k(x), . . . , Diq,k(x))T ∈ Rq,

B̃k(x) = (B̃−k+1,k(x), B̃−k+2,k(x), . . . , B̃M−1,k(x))T ∈ RM−k+1,

D̃k(x) = (D̃i1,k(x), D̃i2,k(x), . . . , D̃iq,k(x))T ∈ Rq.

Lemmas 1 and 2 bound the approximation errors of B̃k(·) and D̃k(·).

Lemma 1. Given integers k, M, m ≥ 2 and knots t−k+1 < t−k+2 < . . . < t0 < t1 < . . . < tM < tM+1 <

. . . < tM+k−1 such that t0 = 0, tM = 1, there exists a B̃k ∈ N N (k(2m +3), (1, 2k+4(M +2k), . . . , 2k+4(M +
2k), M + k − 1)) taking values in [0, 1], such that

sup
x∈[0,1]

‖B̃k(x) − Bk(x)‖∞ ≤ 8k

144−m.

Proof of Lemma 1. First we will approximate Bi,2, the linear B-spline, using ReLU neural network. Review 
that for i = −k + 1, . . . , M + k − 3,

Bi,2(x) =

⎧⎪⎪⎨⎪⎪⎩
x−ti

ti+1−ti
, if x ∈ [ti, ti+1]

ti+2−x
ti+2−ti+1

, if x ∈ [ti+1, ti+2]
0, elsewhere

.

It is easily verified that Bi,2(x) = c1σ(x − ti) + c2σ(x − ti+1) + c3σ(x − ti+2), where

c1 = 1
ti+1 − ti

, c2 = − ti+2 − ti

ti+2 − ti+1
c1, c3 = −(ti+2 − ti + 1)c1 − (ti+2 − ti+1 + 1)c2.

This implies that Bi,2 is exactly a ReLU neural network (hence, B̃i,2 = Bi,2) with approximation error 
δ2 = supx∈[0,1] |B̃i,2(x) − Bi,2(x)| = 0 for all −k + 1 ≤ i ≤ M + k − 3. Trivially, Bi,2 takes values in [0, 1].

Suppose that we have constructed a neural network approximation B̃i,s of Bi,s with approximation error 
δs = supx∈[0,1] |B̃i,s(x) − Bi,s(x)|. Moreover, 0 ≤ B̃i,s(x) ≤ 1 for all x ∈ [0, 1].

Now we will approximate Bi,s+1. By definition B-splines, we have

Bi,s+1(x) = x − ti
Bi,s(x) + ti+s+1 − x

Bi+1,s(x). (4.7)

ti+s − ti ti+s+1 − ti+1
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Let us recall the previously defined piecewise linear functions:

ai,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < ti

x−ti

ti+s−ti
, if ti ≤ x ≤ ti+s

0, if x > ti+s

, ãi,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < ti

x−ti

ti+s−ti
, if ti ≤ x ≤ ti+s

1, if x > ti+s

.

Notice that the first term of the right side of (4.7) is ai,sBi,s, which can be approximated by ✕2(ãi,s, B̃i,s). 
Clearly, ãi,s(x) = 1

ti+s−ti
σ(x − ti) + σ(x − ti+s), which also can be expressed as a ReLU neural network. 

Moreover, for any x ∈ [0, 1], it follows by Proposition 3 that∣∣∣∣✕2(ãi,s(x), B̃i,s(x)) − ai,s(x)Bi,s(x)
∣∣∣∣

≤
∣∣∣∣✕2(ãi,s(x), B̃i,s(x)) − ãi,s(x)B̃i,s(x)

∣∣∣∣+ ∣∣∣∣ai,s(x)Bi,s(x) − ãi,s(x)B̃i,s(x)
∣∣∣∣

≤ 4−m+1 + Bi,s(x)
∣∣∣∣ai,s(x) − ãi,s(x)

∣∣∣∣+ ãi,s(x)
∣∣∣∣Bi,s(x) − B̃i,s(x)

∣∣∣∣
≤ 4−m+1 + 0 + δs, (4.8)

where the last inequality follows by the fact that Bi,s is supported on [ti, ti+s]. Similarly, let us recall

bi,s(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < tt+1

ti+s+1−x
ti+s+1−ti+1

, if ti+1 ≤ x ≤ ti+s+1

0, if x > ti+s+1

, b̃i,s(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x < ti+1

ti+s+1−x
ti+s+1−ti+1

, if ti+1 ≤ x ≤ ti+s+1

0, if x > ti+s+1

.

Notice that the second term of the right side of (4.7) is bi,sBi+1,s. Similar to (4.8) we have, for any x ∈ [0, 1],∣∣∣∣✕2(̃bi,s(x), B̃i+1,s(x)) − bi,s(x)Bi+1,s(x)
∣∣∣∣ ≤ 4−m+1 + δs.

Now let us recursively define

B̃i,s+1(x) = ✕2(ãi,s(x), B̃i,s(x)) + ✕2(̃bi,s(x), B̃i+1,s(x)) + 2 × 4−m+1 + 2δs

1 + 4 × 4−m+1 + 4δs
,

which is a ReLU neural network taking values in [0, 1]. It is not difficult to verify that for any x ∈ [0, 1],∣∣∣∣B̃i,s+1(x) − Bi,s+1(x)
∣∣∣∣ ≤ 8 × 4−m+1 + 8δs

1 + 4 × 4−m+1 + 4δs
≤ 8 × 4−m+1 + 8δs.

Taking supremum on the left we get δs+1 ≤ 8 × 4−m+1 + 8δs. Using δ2 = 0, we can conclude δs ≤
8s

14 4−m − 32
7 4−m ≤ 8s

14 4−m for 2 ≤ s ≤ k. Deploy B̃i,k parallelly to construct the network B̃k.
To count the number hidden layers, we first notice that B̃i,2 ∈ N N (1, (1, 3, 1)) for and ãi,s, ̃bi,s ∈

N N (1, (1, 2, 1)) for all i, s by its construction right below Proposition 3. Moreover, from B̃i,2 to B̃i,k, 
we used the network ✕2 k − 2 times. Therefore, by Proposition 2, the number of hidden layers is at 
most (2m + 2)(k − 2) + k − 2 + 1, which is bounded by (2m + 3)k. Since in each hidden layer, at most 
we have M + 2k − 3 different B̃i,s’s, ãi,s’s and b̃i,s’s for s = 2, . . . , k. So by (4.5), at most, we have 
(2k+3 + 4)(M + 2k) ≤ 2k+4(M + 2k) nodes in each hidden layer. The proof is complete. �
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Lemma 2. Given integers k, M, m ≥ 2 and knots t−k+1 < t−k+2 < . . . < t0 < t1 < . . . < tM < tM+1 < . . . <

tM+k−1 with t0 = 0, tM = 1, there exists a D̃k ∈ N N ((2m +3)(k+d −1), (d, 2k+4d(M +2k)d, . . . , 2k+4d(M +
2k)d, (M + k − 1)d)) such that

sup
x∈Ω

∥∥∥∥D̃k(x) − Dk(x)
∥∥∥∥

∞
≤ [4(d − 1) + 8k]4−m.

Furthermore, each element of D̃k is in [0, 1].

Proof of Lemma 2. Let B̃k(x1), B̃k(x1), . . . , B̃k(xd) be the neural networks provided in Lemma 1, which 
satisfy |B̃i,k(x) − Bi,k(x)| ≤ δm, where δm = 8k4−m/14. For each (i1, i2, . . . , id) ∈ {−k + 1, −k +
2, . . . , 1, 2, . . . , M − 1}d, we apply the product network ✕d given in Proposition 3 to (B̃i1,k(x1), B̃i2,k(x2),
. . . , B̃id,k(xd)). According to Proposition 3, we have

∣∣∣∣✕d(B̃i1,k(x1), B̃i2,k(x2), . . . , B̃id,k(xd)) −
d∏

j=1
Bij ,k(xj)

∣∣∣∣ ≤ (d − 1)4−m+1 + dδm

≤ [4(d − 1) + 8k]4−m.

Now we deploy ✕d(B̃i1,k(x1), B̃i2,k(x2), . . . , B̃id,k(xd)) parallelly to construct the network D̃k. Since we 
apply neural network Xd to output of B̃k, so the total number of hidden layers is at most k(2m + 3) + 1 +
(d − 1)(2m + 3) − 1 ≤ (2m + 3)(d + k). Since we parallelly apply q = (M + k − 1)d product networks ✕d, 
the number nodes in each hidden layer is bounded (10 + d)q, which is further bounded by d2k+4(M + 2k)d. 
This completes the proof. �

In Eckle and Schmidt-Hieber [6], the authors compare neural network methods with multivariate adaptive 
regression splines (MARS) by showing that any function expressed by MARS can be approximated by a 
sparse ReLU neural network with an arbitrarily small error. In contrast, Lemma 1 provides a quantitative 
error bound (in terms of network architecture) for fully connected ReLU neural network approximation 
of the spline basis. Soon after our work, Kohler et al. [17] independently obtain a relevant result about a 
quantitative connection between MARS and sparse neural network under smooth activation function.

To end this subsection, let us calculate the number of hidden layers and number of nodes in each hidden 
layer for f̂net defined in (4.6). Notice that to construct f̂net, we only need to add one more hidden layer to 
aggregate D̃i,k(x) and the coefficients b̂i. As a consequence, for any integers k, M, m ≥ 2, we can construct 
a network f̂net such that

f̂net ∈ F(L, p(T )), with L = (2m + 3)(k + d) + 1 and T = 2k+4d(M + 2k)d. (4.9)

By Proposition 3, we expect f̂net ≈ f̂pilot when m → ∞ (or equivalently L → ∞).

4.4. Asymptotic properties of the pilot estimator

In this subsection, we study the convergence rate of the pilot estimator in (4.2) and the bound of 
coefficients in (4.3). Let us define Φ = (Dk(X1), . . . , Dk(Xn))T ∈ Rn×q and Y = (Y1, . . . Yn)T . Therefore, 
the coefficients in (4.3) can be expressed as Ĉ = (ΦT Φ)−1ΦT Y, where the invertibility of the matrix ΦT Φ
is guaranteed by Lemma 6 below. Moreover, we denote Θn = {g(x)|g(x) = V T Dk(x) for V ∈ Rq} as the 
linear space spanned by the tenor product B-spline basis Dk’s. An additional assumption is to obtain the 
desired results, which is stated as follows.
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Assumption A2. The knots {ti, i = −k + 1, . . . , M + k − 1} have constant separation h = M−1. In the 
theoretical analysis, we require M → ∞ and h → 0.

Remark. Assumption A2 can be relaxed to maxi(ti+1 − ti)/ mini(ti+1 − ti) ≤ c for some constant c > 0, 
under which one needs to redefine the separation h = maxi(ti+1 − ti). Results in this section continue to 
hold. This is a standard assumption for B-spline literature; see Huang [12].

Based on Assumption A2, we can delivery some preliminary lemmas about the B-spline basis. In par-
ticular, Lemma 3 quantifies the approximation error of splines; Lemma 4 indicates the equivalence of the 
norms ‖ · ‖n and ‖ · ‖L2 ; Lemma 5 studies the upper and lower bounds of the eigenvalues for the tensor 
product B-spline basis matrix.

Lemma 3. For any f ∈ Λβ(F, Ω), suppose that Assumption A2 is satisfied with some integer k ≥ β. There 

exists a real sequence ci such that supx∈Ω

∣∣∣∣∑i∈Γ ciDi,k(x) − f(x)
∣∣∣∣ ≤ Af hβ and |ci| ≤ Af for all i ∈ Γ. Here 

Af > 0 is a constant only relying on F, β, k and ‖f‖sup. Moreover, it holds that supf∈Λβ(F,Ω)Af < ∞, where 
the upper bound only depends on F , β and k.

The proof of Lemma 3 requires borrowing some definition from Györfi et al. [10]. Hence, we defer its 
proof to the Appendix.

Lemma 4. Suppose Assumptions A1 and A2 hold with some integer k ≥ max(β, 2). Moreover, if the sequence 
h in Assumption A2 satisfies h = o(1) and log(h−1) = o(nhd), then

sup
g∈Θn

∣∣∣∣ ‖g‖2
n

‖g‖2
L2

− 1
∣∣∣∣ = oP (1).

Proof of Lemma 4. This is Lemma 2.3 in Huang [13]. �
Lemma 5. Suppose Assumptions A1 and A2 hold with some integer k ≥ max(β, 2). Let us define matrix 
B =

∫
Ω Dk(x)DT

k (x)Q(x)dx. Then the eigenvalues of B satisfy that

a1hd ≤ λmin(B) ≤ λmax(B) ≤ a2hd,

where 0 < a1 ≤ a2 < ∞ are constants relying on k and density function Q.

Proof of Lemma 5. It follows from de Boor [2, page 155] that for some constant λ > 1 depending on k, we 
have

λ−1h ≤ λmin

⎛⎝ 1∫
0

Bk(x)BT
k (x)dx

⎞⎠ ≤ λmax

⎛⎝ 1∫
0

Bk(x)BT
k (x)dx

⎞⎠ ≤ λh.

Notice that Dk(x)DT
k (x) = ⊗d

j=1Bk(xj)BT
k (xj) for any x = (x1, x2, . . . , xd)T ∈ [0, 1]d. Here ⊗ is the outer 

product operator. It follows that

∫
[0,1]d

Dk(x)DT
k (x)dx = ⊗d

j=1

1∫
0

Bk(xj)BT
k (xj)dxj .

By the property of tensor product of matrix, we have
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λmax

( ∫
[0,1]d

Dk(x)DT
k (x)dx

)
= λd

max

( 1∫
0

Bk(x)BT
k (x)dx

)
≤ λdhd,

λmin

( ∫
[0,1]d

Dk(x)DT
k (x)dx

)
= λd

min

( 1∫
0

Bk(x)BT
k (x)dx

)
≥ λ−dhd.

By Assumption A1, there exists a constant c > 1 such that c−1 ∫ g(x)dx ≤
∫

g(x)Q(x)dx ≤ c 
∫

g(x)dx for 
any integrable g, which leads to

CT

( ∫
[0,1]d

Dk(x)DT
k (x)Q(x)dx

)
CT =

∫
[0,1]d

|CT Dk(x)|2Q(x)dx

≤ c

∫
[0,1]d

|CT Dk(x)|2dx

≤ cλdhd, for all C ∈ Rq.

Therefore, we have λmax(B) ≤ a2hd with a2 = cλd. Similarly, we can show that the lower bound is valid 
with a1 = a−1

2 . Proof is complete. �
To proceed, we need to define the following event

Ωn =
{

a1hd/2 ≤ λmin(n−1ΦT Φ) ≤ λmax(n−1ΦT Φ) ≤ 2a2hd
}

∩
{

‖g‖2
L2/2 ≤ ‖g‖2

n ≤ 2‖g‖2
L2 , for all g ∈ Θn

}
, (4.10)

where a1, a2 are the constants introduced in Lemma 5. The following lemma reveals the probability of Ωn

approaches one as n diverges, which suggests we can focus our analysis on the event Ωn.

Lemma 6. Suppose Assumptions A1 and A2 hold with some integer k ≥ max(β, 2). Moreover, if the sequence 
h in Assumption A2 satisfies h = o(1) and log(h−1) = o(nhd), then it follows that limn→∞ P (Ωn) = 1.

Proof of Lemma 6. Notice that n−1ΦT Φ =
∑n

i=1 Dk(Xi)DT
k (Xi)/n. Let B̂ = n−1ΦT Φ and B =∫

Ω Dk(x)DT
k (x)Q(x)dx. It follows from Lemma 4 that

sup
u∈Rq

∣∣∣∣uT B̂u

uT Bu
− 1
∣∣∣∣ = sup

u∈Rq

∣∣∣∣ ∑n
i=1 |uT Dk(Xi)|2/n∫

Ω |uT Dk(x)|2Q(x)dx
− 1
∣∣∣∣

= sup
g∈Θn

∣∣∣∣ ‖g‖2
n

‖g‖2
L2

− 1
∣∣∣∣ = oP (1).

So the event

Kn =
{

sup
u∈Rq

∣∣∣∣uT B̂u

uT Bu
− 1
∣∣∣∣ ≤ min(a2, a1/2)

}
has probability approaching one. By Lemma 5, on the event Kn, it follows that

sup |uT B̂u| ≤ sup |uT Bu| + sup |uT B̂u − uT Bu|

‖u‖2=1 ‖u‖2=1 ‖u‖2=1
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≤ a2hd + sup
‖u‖2=1

∣∣∣∣uT B̂u

uT Bu
− 1
∣∣∣∣ sup

‖u‖2=1
|uT Bu|

≤ 2a2hd.

Similarly, we can show inf‖u‖2=1 |uT Au| ≥ a1hd/2, on the event Kn. Above argument and Lemma 4 together 
complete the proof. �

Based on the above lemmas, we are ready to provide the main result in this subsection, which provides 
the convergence rate of the pilot estimator and the bound of Ĉ.

Lemma 7. Suppose Assumptions A1 and A2 hold with some integer k ≥ max(β, 2). Moreover, if the sequence 
h in Assumption A2 satisfies h = o(1) and log(h−1) = o(nhd), then it follows that

sup
f0∈Λβ(F,Ω)

Ef0

{
‖f̂pilot − f0‖2

L2

∣∣∣∣X} = OP

(
h2β + 1

nhd

)
and

sup
f0∈Λβ(F,Ω)

Ef0

(
ĈT Ĉ

∣∣X) = OP (h−d).

Proof of Lemma 7. For any f0 ∈ Λβ(F, Ω), let f0 = (f0(X1), . . . , f0(Xn))T . Also let ε = (ε1, . . . , εn)T , 
f̂pilot = (f̂pilot(X1), . . . , f̂pilot(Xn))T . According to Lemma 3 and by k ≥ β, there exists a C =
(c1, c2, . . . , cq)T ∈ Rq such that for any x ∈ Ω, |CT Dk(x) − f0(x)| ≤ Af0hβ . For simplicity, we further 
define f∗(x) = CT Dk(x) and f∗ = (f∗(X1), . . . , f∗(Xn))�.

Notice that on the event Ωn, ΦT Φ is invertible. The least square algorithm (4.3) implies the following 
holds on event Ωn:

f̂pilot = Φ(ΦT Φ)−1ΦT Y = Φ(ΦT Φ)−1ΦT (ΦC + E + ε)

= ΦC + Φ(ΦT Φ)−1ΦT E + Φ(ΦT Φ)−1ΦT ε

= f∗ + Φ(ΦT Φ)−1ΦT E + Φ(ΦT Φ)−1ΦT ε, (4.11)

where E = (E1, E2, . . . , En)T ∈ Rn with Ei = f0(Xi) − CT Dk(Xi) = f0(Xi) − f∗(Xi). Furthermore, the 
above equation and Lemma 3 together imply that

‖f̂pilot − f∗‖2
n = 1

n
(f̂pilot − f∗)T (f̂pilot − f∗)

≤ 2
n

ET Φ(ΦT Φ)−1ΦT E + 2
n

εΦ(ΦT Φ)−1ΦT ε

≤ 2A2
f0

h2β + 2
n

εT Φ(ΦT Φ)−1ΦT ε.

By the fact that f̂pilot − f∗ ∈ Θn, it holds on event Ωn that

‖f̂pilot − f∗‖2
L2 ≤ 2‖f̂pilot − f∗‖2

n,

and

Ef0

(
εT Φ(ΦT Φ)−1ΦT ε

∣∣∣∣X) = Tr
(

Φ(ΦT Φ)−1ΦT

)
= q = (M + k − 1)d ≤ 2dh−d,
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which further implies that

Ef0

(
‖f̂pilot − f∗‖2

L2

∣∣∣∣X) ≤ 2Ef0

(
‖f̂pilot − f∗‖2

n

∣∣∣∣X) ≤ 4A2
f0

h2β + 2d+2

nhd
. (4.12)

By simple algebra, the above inequality implies that

Ef0

(
‖f̂pilot − f0‖2

L2

∣∣∣∣X) ≤ 2Ef0

(
‖f̂pilot − f∗‖2

L2

∣∣∣∣X)+ 2Ef0

(
‖f∗ − f0‖2

L2

∣∣∣∣X)

≤ 8A2
f0

h2β + 2d+3

nhd
+ 2‖f∗ − f0‖2

sup

= 2d+3

nhd
+ 10A2

f0
h2β , uniformly for all f0 ∈ Λβ(F, Ω).

Finally, the first statement follows by the uniform boundedness of Af0 over f0 ∈ Λβ(F, Ω) in Lemma 3 and 
P (Ωn) → 1 in Lemma 6.

Let us prove the second statement. According to Lemma 5, it follows that

‖f̂ − g∗‖2
L2 = (Ĉ − C)T

∫
Dk(x)DT

k (x)Q(x)dx(Ĉ − C)

≥ a1hd(Ĉ − C)T (Ĉ − C),

where a1 > 0 is the constant in Lemma 5. Taking conditional expectation and by (4.12), on event Ωn, we 
have

Ef0

(
(Ĉ − C)T (Ĉ − C)

∣∣∣∣X) ≤ Ef0

(
‖f̂pilot − f∗‖2

L2

∣∣∣∣X)
≤ a−1

1 2d+2A2
f0

(
h2β−d + 1

nh2d

)
, uniformly for all f0 ∈ Λβ(F, Ω),

which further leads to

Ef0

(
ĈT Ĉ

∣∣∣∣X) ≤ 2Ef0

(
(Ĉ − C)T (Ĉ − C)

∣∣∣∣X)+ 2CT C

≤ a−1
1 2d+3A2

f0

(
h2β−d + 1

nh2d

)
+ 2qA2

f0

≤ a−1
1 2d+3A2

f0

(
h2β−d + 1

nh2d

)
+ 2d+1h−dA2

f0

≤ a−1
1 2d+3A2

f0

(
h2β−d + 1

nh2d
+ h−d

)
≤ a−1

1 2d+4A2
f0

h−d, uniformly for all f0 ∈ Λβ(F, Ω),

where the last inequality holds by the fact h2β + n−1h−d = o(1). Finally, the second statement follows by 
the uniform boundedness of Af0 over f0 ∈ Λβ(F, Ω) in Lemma 3 and P (Ωn) → 1 in Lemma 6. Proof is 
complete. �
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4.5. Approximation error to the pilot estimator

The following Lemma 8 is the main technical result of this paper, based on which Theorem 1 will be 
proved.

Lemma 8. Suppose Assumptions A1 and A2 hold with some integer k ≥ max(β, 2) and diverging sequence 
M . Let m be diverging with respect to sample size n and F > 0 be a fixed constant. If Md log(M) = o(n), 
then the network function f̂net ∈ F(L, p(T )), with L = (2m +3)(k+d) +1 and T = 2k+4d(M +2k)d satisfies

sup
f0∈Λβ(F,Ω)

Ef0

{
sup
x∈Ω

|f̂net(x) − f̂pilot(x)|2
∣∣∣∣X} = OP (M2d4−2m).

Here the OP is in the sense of diverging m, M, n.

Proof of Lemma 8. By the notation in the proof of Lemma 7 and (4.11), we have

f̂pilot = Φ(ΦT Φ)−1ΦT Y = Φ(ΦT Φ)−1ΦT (ΦC + E + ε)

= ΦC + Φ(ΦT Φ)−1ΦT E + Φ(ΦT Φ)−1ΦT ε

= f0 − (I − Φ(ΦT Φ)−1ΦT )E + Φ(ΦT Φ)−1ΦT ε.

It follows from (4.2), (4.3) and (4.6) that f̂pilot(x) = ĈT Dk(x) and f̂net(x) = ĈT D̃k(x). Therefore, for any 
x ∈ Ω, we have

|f̂pilot(x) − f̂net(x)|2 =
∥∥ĈT

(
Dk(x) − D̃k(x)

)∥∥2
2

= ĈT Ĉ
(

Dk(x) − D̃k(x)
)T (

Dk(x) − D̃k(x)
)

≤ qĈT Ĉ sup
x∈[0,1]d

∥∥Dk(x) − D̃k(x)
∥∥2

∞ ≤ qĈT Ĉ[4(d − 1) + 8k]24−2m,

where the last inequality follows from Lemma 2. Following Lemma 7 and the fact q = |Γ| = (M + k − 1)d 	
h−d, we have

sup
f0∈Λβ(F,Ω)

Ef0

(
sup
x∈Ω

|f̂pilot(x) − f̂net(x)|2
∣∣∣∣X) ≤ q[4(k − 1) + 8k]24−2m sup

f0∈Λ(F,Ω)
E
(

ĈT Ĉ
∣∣X)

= OP (h−2d4−2m), (4.13)

which completes the proof by noticing that M 	 h−1. �
To the end of this section, let us complete the proof of Theorem 1. Combining Lemmas 7 and 8, we have

inf
f̂∈F(L,p(T ))

sup
f0∈Λβ(F,Ω)

Ef0

(
‖f̂ − f0‖2

L2 |X
)

≤ sup
f0∈Λβ(F,Ω)

Ef0

(
‖f̂net − f0‖2

L2 |X
)

≤ 2 sup
f0∈Λβ(F,Ω)

Ef0

(
‖f̂net − f̂pilot‖2

L2 |X
)

+ 2 sup
f0∈Λβ(F,Ω)

Ef0

(
‖f̂pilot − f0‖2

L2 |X
)

= OP

(
M−2β + Md

)
+ OP (M2d4−2m)
n
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= OP

(
T − 2β

d + T

n
+ T 24− L

k+d

)
where the fact that M 	 h−1, L = (2m + 3)(k + d) + 1 and T = 2k+4d(M + 2k)d is used. We would like to 
comment that Theorem 1 does not rely on Assumption A2, as we only need such f̂net exists.

5. Asymptotic distribution and optimal testing

In this subsection, we derive the asymptotic distribution for f̂net and a corresponding hypothesis testing 
procedure. Let us recall that the network function constructed in (4.9) satisfies

f̂net ∈ F(L, p(T )), with L = (2m + 3)(k + d) + 1 and T = 2k+4d(M + 2k)d,

where k is the order of tensor product B-spline basis, d is the dimension of explanatory variable X, M = h−1

is the inverse of knots separation distance, m is an integer characterizing the number of hidden layers of 
the network. All the results in this subsection are discussed when m, M, n diverge while assuming k, d are 
fixed constant.

Theorem 2 below establishes a pointwise asymptotic distribution for f̂net.

Theorem 2. Under the Assumptions A1 and A2, if k ≥ max(β, 2), n
1

2β+d = o(M), Md log(M) = o(n) and 
nMd = o(16m), then for any fixed point x ∈ Ω, we have

f̂net(x) − f0(x)√
DT

k (x)(ΦT Φ)−1Dk(x)
D−→ N(0, 1),

where Φ = (Dk(X1), Dk(X2), . . . , Dk(Xn))T ∈ Rn×q with q = (M + k − 1)d.

Proof of Theorem 2. By (4.9) and Assumption A2, we know M = h−1 and

f̂net ∈ F(L, p(T )), with L = (2m + 3)(k + d) + 1 and T = 2k+4d(M + 2k)d.

So the rate conditions are equivalent to hn
1

2β+d = o(1), log(h−1) = o(nhd) and n1/2h−d/2 = o(4m).
For fixed x ∈ Ω, let V (x) = DT

k (x)(ΦT Φ)−1Dk(x). By Huang [13, Theorems 3.1 and 5.2], it follows that

f̂pilot(x) − f0(x)√
V (x)

D−→ N(0, 1). (5.1)

It is well known that the tensor product B-spline basis satisfies 
∑q

s=1 Dis,k(x) = 1 for all x ∈ Ω (e.g., see 
Section 15 in Györfi et al. [10]). Given a point x ∈ Ω, let us denote Γx = {i ∈ Γ|Di,k(x) > 0}. By the 
construction of Di,k, there are only kd basis functions among Di1,k(x), . . . , Diq,k(x) with positive values, 
while the rest are all zero. Hence, it follows that |Γx| = kd. The above fact implies that 

∑
i∈Γx

Di,k(x) = 1
and DT

k (x)Dk(x) =
∑

i∈Γx
D2

i,k(x) ≥ |Γx|−1 = k−d, where the equality holds when Di,k(x) = |Γx|−1 for all 
i ∈ Γx.

Lemma 6 implies that with probability approaching 1, we have

V (x) = DT
k (x)(ΦT Φ)−1Dk(x)

≥ λmin((ΦT Φ)−1)Dk(x)T Dk(x)

= 1
T

Dk(x)T Dk(x)

λmax(Φ Φ)
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≥ 1
2a2nhd

Dk(x)T Dk(x) ≥ 1
2a2kdnhd

,

where a2 is the constant (4.10). By Lemma 8 we get that |f̂pilot(x) − f̂net(x)|2 = OP (h−2d4−2m). Therefore,

f̂pilot(x) − f̂net(x)√
V (x)

= OP (n1/2h−d/24−m) = oP (1). (5.2)

Theorem 2 follows by (5.1) and (5.2). This completes the proof. �
In practice, it is often of interest to test whether Yi and Xi are statistically independent, equivalently, to 

test f0 is constant. In what follows, we consider an elementary hypothesis testing problem: H0 : f0 = 0 vs. 
H1 : f �= 0. In general, one can subtract the constant from f0, or if the constant is unknown, subtract Ȳ from 
f0, and test the difference equals zero. Consider a test statistic Tn = ‖f̂net‖2

n, where ‖f‖2
n =

∑n
i=1 f(xi)2/n is 

the empirical norm. It should be mentioned that Tn relies on m, M since f̂net does. The following Theorem 3
is a byproduct of Lemma 8, which derives null distribution of Tn and analyzes its power under a sequence 
of local alternatives.

Theorem 3. Under the Assumptions A1 and A2, if k ≥ max(β, 2), n2Md = O(16m) and M 	 n
2

4β+d , then 
the following hold:

(i) Under H0 : f0 = 0, it follows that

nTn − q√
2q

D−→ N(0, 1), (5.3)

where q = (M + k − 1)d.
(ii) For any δ > 0, there exists a Cδ > 0 such that, under H1 : f = f0 with ‖f0‖n ≥ Cδn− 2β

4β+d , it holds 
that

P

(∣∣∣∣nTn − q√
2q

∣∣∣∣ > zα/2

)
≥ 1 − δ, (5.4)

where zα/2 is the 1 − α/2 upper percentile of standard normal variable.

Part (5.3) of Theorem 3 suggests a testing rule at significance α: reject H0 if and only if∣∣∣∣nTn − q√
2q

∣∣∣∣ ≥ zα/2.

Part (5.4) of Theorem 3 says that the power of Tn is at least 1 − δ provided that the null and alternative 

hypotheses are separated by Cδn− 2β
4β+d in terms of ‖ · ‖n-norm. The separation rate is optimal in the sense 

of Ingster [14].

Proof of Theorem 3. The proof consists of two steps. The first step is to establish the asymptotic distribu-
tion of the test statistic based f̂pilot, while the second step is to show that the test statistic Tn has the same 
limiting distribution. By (4.9) and Assumption A2, we know M = h−1and

f̂net ∈ F(L, p(T )), with L = (2m + 3)(k + d) + 1 and T = 2k+4d(M + 2k)d.

So the rate conditions are equivalent to nh−d/24−m = o(1) and h 	 n− 2
4β+d .
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Step 1: Using the notation in the proof of Lemma 8 and by (4.11), we have

f̂pilot = Φ(ΦT Φ)−1ΦT f0 + Φ(ΦT Φ)−1ΦT ε.

Under H0 : f0 = 0, it follows that f̂T
pilotf̂pilot = εT Φ(ΦT Φ)−1ΦT ε and

f̂T
pilotf̂pilot|X ∼ χ2(q),

where we used the fact that εi are i.i.d. normal and is free of X. Since q = (M + k − 1)d 	 h−d → ∞, we 
conclude from central limit theorem that

f̂T
pilotf̂pilot − q

√
2q

D−→ N(0, 1). (5.5)

Suppose that f0 satisfies ‖f0‖n ≥ Cδγn with γn = n− 2β
4β+d for some Cδ large enough. Then it follows that

f̂T
pilotf̂pilot = fT

0 Φ(ΦT Φ)−1ΦT f0 + 2fT
0 Φ(ΦT Φ)−1ΦT ε + εT Φ(ΦT Φ)−1ΦT ε ≡ S1 + 2S2 + S3.

By simple algebra, we show that

fT
0 (I − Φ(ΦT Φ)−1ΦT )f0 = (ΦC + E)T (I − Φ(ΦT Φ)−1ΦT )(ΦC + E)

= ET (I − Φ(ΦT Φ)−1ΦT )E

≤ ET E ≤ A2
f0

nh2β .

As a consequence it follows that

S1 = fT
0 f0 − fT

0 (I − Φ(ΦT Φ)−1ΦT )f0 ≥ C2
δ nγ2

n − A2
f0

nh2β = C2
δ n

d
4β+d − A2

f0
nh2β .

Since h = M−1 	 n− 2
4β+d , it follows that nh2β 	 n

d
4β+d . If we choose Cδ > 0 large enough, it implies that 

S1 = 1
2C2

δ n
d

4β+d , which leads to

S1√
2q

≥ 1
2
√

2q
C2

δ n
d

4β+d 	 1
2
√

2
C2

δ n
d

4β+d h
d
2 	 1

2
√

2
C2

δ and

√
S1

2q
→ 0.

Here the condition q = (M +k−1)d 	 h−d is used. So 
√

S1
2q ≤ 1

4Cδ

S1√
2q

for n large enough. Taking conditional 
expectation, we have

P
(
|S2|2 > C2

δ S1|X
)

= P (|Z| > Cδ) ≤ δ,

where Z is standard normal random variable and the last inequality holds with large Cδ. Therefore, we have 
that

P

(∣∣∣∣ f̂T
pilotf̂pilot − q

√
2q

∣∣∣∣ ≤ Zα/2

)
= P

(∣∣∣∣S3 − q√
2q

+ S1√
2q

+ 2S2

2q

∣∣∣∣ ≤ Zα/2

)
≤ P

(∣∣∣∣S3 − q√ + S1√ + 2S2√
∣∣∣∣ ≤ Zα/2, |S2| ≤ Cδ

√
S1

)
+ P

(
|S2| > Cδ

√
S1

)
. (5.6)
2q 2q 2q
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By the choice of Cδ, the second term in (5.6) is bounded by δ, while the first term yields following inequality:

P

(∣∣∣∣S3 − q√
2q

+ S1√
2q

+ 2S2√
2q

∣∣∣∣ ≤ Zα/2, |S2| ≤ Cδ

√
S1

)
= P

(
− Zα/2 − S1√

2q
− 2S2√

2q
≤ S3 − q√

2q
≤ Zα/2 − S1√

2q
− 2S2√

2q
, |S2| ≤ Cδ

√
S1

)
≤ P

(
− Zα/2 − S1√

2q
− 2Cδ

√
S1√

2q
≤ S3 − q√

2q
≤ Zα/2 − S1√

2q
+ 2Cδ

√
S1√

2q
, |S2| ≤ Cδ

√
S1

)
≤ P

(
− Zα/2 − 3S1

2
√

2q
≤ S3 − q√

2q
≤ Zα/2 − S1

2
√

2q

)
≤ P

(
S3 − q√

2q
≤ Zα/2 − C2

δ

2
√

2

)
.

Combining above and taking limit on both sides, it follows that

lim
n→∞

P

(∣∣∣∣ f̂T
pilotf̂pilot − q

√
2q

∣∣∣∣ ≤ Zα/2

)
≤ P

(
Z ≤ Zα/2 − C2

δ

2
√

2

)
≤ δ. (5.7)

Step 2: Observe that

n‖f̂net‖2
n − q√

2q
= n‖f̂pilot‖2

n − q√
2q

+ n‖f̂net‖2
n − n‖f̂pilot‖2

n√
2q

. (5.8)

By Lemma 7 and Lemma 8, both ‖f̂net − f̂pilot‖n and ‖f̂pilot − f0‖n are OP (1), and we have

|‖f̂net‖2
n − ‖f̂pilot‖2

n| = |‖f̂net‖n − ‖f̂pilot‖n| ×
(

‖f̂net‖n + ‖f̂pilot‖n

)
≤ ‖f̂net − f̂pilot‖n ×

(
‖f̂net − f̂pilot‖n + 2‖f̂pilot‖n

)
≤ ‖f̂net − f̂pilot‖n ×

(
‖f̂net − f̂pilot‖n + 2‖f̂pilot − f0‖n + 2‖f0‖n

)
= ‖f̂net − f̂pilot‖n × OP (1)

= OP (h−d4−m).

Therefore, the second term in (5.8) is of order OP (nh−d4−mq−1/2) = OP (nh−d/24−m) = oP (1), where we 
have used the fact q = (M + k − 1)d 	 h−d. The result then follows by (5.5) and (5.7). This completes the 
proof. �
6. Network approximation to additive model

The optimal rate in Theorem 1 suffers from the ‘curse’ of dimensionality. In this section, we show that 
this issue can be addressed when f0 has an additive structure. Specifically, let us consider the following 
function space:

Λβ
+(F, Ω) =

⎧⎨⎩f : Ω → R| f(x) = a +
d∑

j=1
gj(xj) with gj ∈ Λβj (F, [0, 1]) and

1∫
0

gj(x)dx = 0

⎫⎬⎭ ,

where F > 0 is the radius, and β = (β1, . . . , βd) ∈ (0, ∞)d are the degrees of smoothness for gj’s. Clearly, 
any f ∈ Λβ

+(F, Ω) has an expression f(x) = a +
∑d

gj(xj) with the jth additive component belonging 
j=1
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to the ball of univariate βj-Hölder functions with radius F . Moreover, the constraint 
∫ 1

0 gj,0(x)dx = 0 is to 
avoid identifiability issue.

Theorem 4. Let Assumption A1 be satisfied. Suppose that L → ∞, T → ∞ and T log T = o(n) as n → ∞, 
then for any fixed constant F > 0 and vector β = (β1, . . . , βd) ∈ (0, ∞)d, it follows that

inf
f̂∈F(L,p(T ))

sup
f0∈Λβ

+(F,Ω)
Ef0

(
‖f̂ − f0‖2

L2

∣∣∣∣X) = OP

(
1

T 2β∗ + T

n
+ T 2

2
L

1+k

)
,

where β∗ = min1≤j≤d βj, k is the smallest integer satisfying k ≥ max(β1, . . . , βd, 2), and the OP is in the 

sense that T, L, n are diverging. Hence, if T 	 n
1

2β∗+1 and n
2β∗+2
2β∗+1 = O(2

L
1+k ), then

inf
f̂∈F(L,p(T ))

sup
f0∈Λβ

+(F,Ω)
Ef0

(
‖f̂ − f0‖2

L2

∣∣∣∣X) = OP

(
n− 2β∗

2β∗+1

)
.

The rate n− 2β∗
2β∗+1 in Theorem 4 is optimal in nonparametric additive estimation. When β1 = · · · = βd = β, 

the rate simply becomes n− 2β
2β+1 whose optimality has been proved by Stone [25]. Otherwise, the optimal 

rate relies on the least order of smoothness of the d univariate functions.
The rest part of this section is devoted to proving Theorem 4. Throughout we keep in mind that the true 

regression function f0 admits an additive expression

f0(x) = f0(x1, . . . , xd) = α0 + g1,0(x1) + . . . + gd,0(xd),

where α0 is an unknown constant. Before proving the theorem, let us settle down some notation. For 
j = 1, 2, . . . , d, given integers Mj , kj ≥ 2 and knots t−kj+1,j < t−kj+2,j < . . . < t0,j < t1,j < . . . < tMj ,j <

tMj+1,j < . . . < tMj+kj+1,j with t0,j = 0, tMj ,0 = 1, let Bkj ,j(x) ∈ RMj+kj−1 denote the vector of univariate 
B-spline basis functions (with respect to variable xj). Since the collection of these univariate B-spline basis 
does not form a basis on the additive function space due to the sum-to-one condition, we instead use the 
following polynomial spline basis to approximate the additive components gj,0’s:

Pkj ,j(x) =
(

x, x2, . . . , xkj−1, (x − t1,j)kj−1
+ , . . . , (x − tMj−1,j)kj−1

+

)T

∈ RMj+kj−2, j = 1, . . . , d.

The central idea is the approximation f0(x1, . . . , xd) ≈ a +
∑d

j=1 W T
j Pkj ,j(xj) for some constants a ∈ R

and Wj ∈ RMj+kj−2. By least square estimation, an estimator of f0 is

f̂pilot(x1, . . . , xd) = â +
d∑

j=1
f̂j(xj) with f̂j(x) = Ŵ T

j Pkj ,j(x).

If we define the centralized estimator ĝj(x) = f̂j(x) −
∫ 1

0 f̂j(u)du, then it turns out to be a consistent 
estimator of gj,0; see Lemma 12, and we have

f̂pilot(x1, . . . , xd) = α̂ +
d∑

j=1
ĝj(xj) with α̂ = â +

d∑
j=1

1∫
0

f̂j(u)du. (6.1)

Note that Bkj ,j is the B-spline basis. So ĝj can be written as ĈT
j Bkj ,j(x) for some Ĉj ∈ RMj+kj−1, we 

define a neural network estimator g̃j(x) = ĈT
j B̃kj ,j(x) for j = 1, . . . , d and
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f̂net(x) = α̂ +
d∑

j=1
g̃j(xj). (6.2)

By similar argument as (4.9), for any integers kj , Mj , m ≥ 2, we can construct the network satisfying

f̂net ∈ F(L, p(T )) with L = (2m + 3) max
1≤j≤d

(kj + 1) + 1 and T =
d∑

j=1
2kj+4(Mj + 2kj). (6.3)

Moreover, the following notation plays a similar role as that in the proof of Theorem 1:

q+ = 1 +
d∑

j=1
(Mj + kj − 2),

P(x) = (1, PT
k1,1(x1), PT

k2,2(x2), . . . , PT
kd,d(xd))T ∈ Rq+ ,

Φ+ = (P(X1), P(X2), . . . , P(Xn))T ∈ Rn×q+ ,

Θ+
n = {f(x)|f(x) = a +

d∑
j=1

gj(xj) with a ∈ R, gj(x) = bT
j Pkj ,j(x),

1∫
0

gj(x)dx = 0 for some bj ∈ RMj+kj−2 and j = 1, . . . , d},

Ω+
n = {‖g‖2

L2/2 ≤ ‖g‖2
n ≤ 2‖g‖2

L2 , for all g ∈ Θ+
n }. (6.4)

To handle the additive model, we introduce a new norm of a function g as ‖g‖2 =
∫

Ω g2(x)dx. We would like 
to comment that another norm used in previous sections is ‖g‖2

L2 =
∫

Ω g2(x)Q(x)dx, which are equivalent 
to ‖ · ‖ under Assumption A1. Finally, we will need the following assumption during the proof, which is in 
the similar spirit of Assumption A2.

Assumption A3. For j = 1, . . . , d, the order of B-spline satisfies kj ≥ βj , and the knots {ti,j , i = −kj +
1, . . . , Mj + kj + 1} are equally separated by constant hj = M−1

j . In the analysis, we need Mj → ∞ and 
hj → 0 for all j = 1 . . . , d.

Proposition 4. Suppose that g0 is a constant function and g1 is a measurable function satisfying 
∫

Ω g1(x)dx =
0. Moreover, ‖g1‖sup ≤ K‖g1‖ for some constant K > 0. Then ‖g0 + g1‖sup ≤ (K + 2)‖g0 + g1‖.

Proof of Proposition 4. Observe that for any constant function g0, we have ‖g1‖ = ‖g1 + g0‖ = ‖g1‖2 + g2
0 . 

Moreover, Assumption A1 leads to that, for some c > 1 and all g with ‖g‖L2 < ∞, it holds that c−1‖g‖2 ≤
‖g‖2

L2 ≤ c‖g‖2. Therefore, we have

‖g0 + g1‖sup ≤ ‖g0‖sup + ‖g1‖sup

≤ ‖g0‖ + K‖g1‖

≤ ‖g0 + g1‖ + ‖g1‖ + K‖g1 + g0‖

≤ ‖g0 + g1‖ + ‖g1 + g0‖ + K‖g1 + g0‖

≤ (K + 2)‖g0 + g1‖.

Proof is complete. �
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Lemma 9. Suppose Assumptions A1 and A3 hold with integers kj ≥ max(βj , 2). Moreover, if the sequences 
in Assumption A3 satisfies nh2

j → ∞ and hj → 0 for each j = 1, 2, . . . , d, then the following holds

sup
g∈Θ+

n

∣∣∣∣ ‖g‖2
n

‖g‖2
L2

− 1
∣∣∣∣ = oP (1),

where Θ+
n is the function space defined in (4.10). As a consequence, it follows that P (Ω+

n ) → 1. Here Ω+
n is 

the event defined in (4.10).

Proof of Lemma 9. Let g(x) =
∑d

j=1 gj(xj), where gj satisfies 
∫ 1

0 gj(x)dx = 0 for j = 1, . . . , d. By DeVore 

and Lorentz [5, Theorem 5.1.2] we get that ‖gj‖sup ≤ Aj‖gj‖ with Aj 	 h
−1/2
j . Direct examination shows 

that

‖g‖sup ≤
d∑

j=1
‖gj‖sup ≤

d∑
j=1

Aj‖gj‖ ≤

⎛⎝ d∑
j=1

A2
j

⎞⎠1/2⎛⎝ d∑
j=1

‖gj‖2

⎞⎠1/2

≤

⎛⎝ d∑
j=1

A2
j

⎞⎠1/2 (
cd‖g‖2)1/2

,

where the last inequality follows from Lemma 3.6 of Stone [26] and cd is a constant depending on d only. 
Applying Proposition 4 and by Assumption A1, we obtain that

‖f‖sup ≤
((

cd

d∑
j=1

A2
j

)1/2

+ 2
)

‖f‖2 ≤ c

((
cd

d∑
j=1

A2
j

)1/2

+ 2
)

‖f‖2
L2 , for all f ∈ Θ+

n .

The dimension of Θ+
n , q+ ≤

∑d
j=1(Mj + kj − 1) + 1 	

∑d
j=1 h−1

j . Therefore, by Lemma 2.3 in Huang [13]
and rate conditions given, we prove the result. �
Lemma 10. Suppose Assumptions A1 and A3 hold with integers kj ≥ max(βj , 2). Moreover, if the sequences 
in Assumption A3 satisfies nh2

j → ∞ and hj → 0 for each j = 1, 2, . . . , d, then on event Ω+
n , ΦT

+Φ+ is 
invertible.

Proof of Lemma 10. Let B̂ = n−1ΦT
+Φ+ and B =

∫
P(x)P(x)T Q(x)dx. For g(x) = uT P(x), we have 

uT B̂u = ‖g‖2
n and uT Bu = ‖g‖2. On event Ω+

n , since B is positive definite, B̂ is also positive definite. Proof 
is complete. �
Lemma 11. Suppose Assumptions A1 and A3 hold with integers kj ≥ max(βj , 2). Moreover, if the sequences 
in Assumption A3 satisfies nh2

j → ∞ and hj → 0 for each j = 1, 2, . . . , d, then the following holds uniformly 

for all f0 ∈ Λβ
+(F, Ω) on event Ω+

n :

Ef0

(
‖f̂pilot − f0‖2

L2

∣∣∣∣X) ≤ 2d+3
d∑

j=1
A2

gj,0
h

2βj

j + 8q+

n
.

Proof of Lemma 11. For any f0 ∈ Λβ
+(F, Ω), let f0 = (f0(X1), . . . , f0(Xn))T , ε = (ε1, . . . , εn)T , and f̂pilot =

(f̂pilot(X1), . . . , f̂pilot(Xn))T . According to Lemma 3 and the condition kj ≥ max(βj , 2) for j = 1, . . . , d, 
there exists a vector W ∈ Rq+ such that supx∈Ω |W T P(x) − f0(x)| ≤

∑d
j=1 Agj,0h

βj

j , where the constant 
Agj,0 satisfies supgj,0∈Λβj (F,[0,1]) Agj,0 < ∞. For simplicity, we further define f∗(x) = W T P(x) and f∗ =
(f∗(X1), . . . , f∗(Xn))�.
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By Lemma 10 and similar argument in (4.11), it follows on event Ω+
n that

f̂pilot = Φ+(ΦT
+Φ+)−1ΦT

+Y

= Φ+(ΦT
+Φ+)−1ΦT

+(Φ+W + E + ε)

= Φ+W + Φ+(ΦT
+Φ+)−1ΦT

+E + Φ+(ΦT
+Φ+)−1ΦT

+ε

= f∗ + Φ+(ΦT
+Φ+)−1ΦT

+E + Φ+(ΦT
+Φ+)−1ΦT

+ε,

where E = f0 − f∗. As a consequence, we have

‖f̂pilot − f∗‖2
n = 1

n
(f̂pilot − f∗)T (f̂pilot − f∗)

≤ 2
n

ET Φ+(ΦT
+Φ+)−1ΦT

+E + 2
n

εT Φ+(ΦT
+Φ+)−1ΦT

+ε

≤ 2
n

ET E + 2
n

εT Φ+(ΦT
+Φ+)−1ΦT

+ε

≤ 2(
d∑

j=1
Agj,0h

βj

j )2 + 2
n

εT Φ+(ΦT
+Φ+)−1ΦT

+ε

≤ 2d
d∑

j=1
A2

gj,0
h

2βj

j + 2
n

εT Φ+(ΦT
+Φ+)−1ΦT

+ε,

where we use the fact that ΦT
+Φ+ is invertible on Ω+

n by Lemma 10. By independence of ε and Φ+, it follows 
that on event Ω+

n ,

Ef0

(
εT Φ+(ΦT

+Φ+)−1ΦT
+ε

∣∣∣∣X) = Tr
(
Φ+(ΦT

+Φ+)−1ΦT
+
)

= q+.

Combining the above two inequalities and using the definition of Ω+
N , we show that

Ef0

(
‖f̂pilot − f∗‖2

L2

∣∣∣∣X) ≤ 2Ef0

(
‖f̂pilot − f∗‖2

n

∣∣∣∣X) ≤ 2d+1
d∑

j=1
A2

gj,0
h

2βj

j + 4q+

n
,

which further implies that

Ef0

(
‖f̂pilot − f0‖2

L2

∣∣∣∣X) ≤ 2Ef0

(
‖f̂pilot − f∗‖2

L2

∣∣∣∣X)+ 2Ef0

(
‖f0 − f∗‖2

L2

∣∣∣∣X)

≤ 2d+2
d∑

j=1
A2

gj,0
h

2βj

j + 8q+

n
+ 2d+1

d∑
j=1

A2
gj,0

h
2βj

j

≤ 2d+3
d∑

j=1
A2

gj,0
h

2βj

j + 8q+

n
.

Proof is complete. �
Proposition 5. Under Assumption A1, if g(x) = a +

∑d
j=1 gj(xj) with 

∫ 1
0 gj(x)dx = 0, then it follows that 

‖g‖2
L2 ≥ ad

3(a2 +
∑d

j=1 ‖gj‖2
L2), where the constant a3 > 0 only relies on the density Q.

Proof of Proposition 5. This is a direct consequence of Lemma 3.1 in Stone [26] and Assumption A1. �
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Lemma 12. Suppose Assumptions A1 and A3 hold with integers kj ≥ max(βj , 2). Moreover, if the sequences 
in Assumption A3 satisfies nh2

j → ∞ and hj → 0 for each j = 1, 2, . . . , d, then the following statement hold 

uniformly for all f0 ∈ Λβ
+(F, Ω) on event Ω+

n :

Ef0

(
‖ĝj − gj,0‖2

L2 |X
)

≤ a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n
, for j = 1, 2, . . . , d,

and

Ef0(|α̂ − α0|2|X) ≤ a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n
,

where α̂ is the estimated coefficient defined in (6.1), and a4 > 0 is an absolute constant relying on the 
density function Q and d.

Proof of Lemma 12. Recall f̂pilot(x) = â+
∑d

j=1 f̂j(xj) = α̂ +
∑d

j=1 ĝj(xj), where α̂ = â+
∑d

j=1
∫ 1

0 f̂j(u)du

and ĝj(x) = f̂j(x) −
∫ 1

0 f̂j(u)du. By Assumption A1 there exists a constant c > 1 such that for any g, 
c−1 ∫

Ω g(x)dx ≤
∫

Ω g(x)Q(x)dx ≤ c 
∫

Ω g(x)dx. By Proposition 5 we have

‖f̂pilot − f0‖2
L2 = ‖α̂ − α0 +

d∑
j=1

(ĝj − gj,0)‖2
L2

≥ c−1‖α̂ − α0 +
d∑

j=1
(ĝj − gj,0)‖2

L2

≥ c−1ad
3

⎛⎝|α̂ − α0|2 +
d∑

j=1
‖ĝj − gj,0‖2

L2

⎞⎠
≥ c−2ad

3

⎛⎝|α̂ − α0|2 +
d∑

j=1
‖ĝj − gj,0‖2

L2

⎞⎠ ,

where a3 is the constant in Proposition 5. By Lemma 11 and the above inequality, on event Ω+
n , the following 

holds for any f0 ∈ Λβ
+(F, Ω):

Ef0

(
‖ĝj − gj,0‖2

L2 |X
)

≤ c2a−d
3 Ef0

(
‖f̂pilot − f0‖2

L2 |X
)

≤ c2a−d
3 2d+3

d∑
s=1

A2
gs,0

h2βs
s + 8c2a−d

3 q+

n
,

for j = 1, 2, . . . , d, and

E(|α̂ − α0|2|X) ≤ c2a−d
3 2d+3

d∑
s=1

A2
gs,0

h2βs
s + 8c2a−d

3 q+

n
.

Therefore, the desired results follow with a4 = c2a−d
3 2d+3. Proof is complete. �

Given previous Lemmas, we are ready to prove Theorem 4. By Lemma 3, it holds that

sup |CT
j Bkj ,j(x) − gj,0(x)| ≤ Agj,0h

βj

j

x∈[0,1]
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for some Cj ∈ RMj+kj−1 with ‖Cj‖∞ ≤ Agj,0 . Let g∗
j = CT

j Bkj ,j for j = 1, . . . , d. Recall that ĝj can 

be written as ĈT
j Bkj ,j(x) for some Ĉj ∈ RMj+kj−1 and the neural network approximating the additive 

component is g̃j(x) = ĈT
j B̃kj ,j(x) according to (6.2).

By Lemma 12, for any f0 ∈ Λβ
+(F, Ω) we have

Ef0

(
‖ĝj − gj,0‖2

L2 |X
)

≤ a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n
, for j = 1, 2, . . . , d,

Ef0

(
|α̂ − α0|2|X

)
≤ a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n
, (6.5)

where a4 is the constant in Lemma 12. By Lemma 5, for every j = 1, . . . , d we have

a1hj(Ĉj − Cj)T (Ĉj − Cj) ≤
∫

|ĈT
j Bkj ,j(xj) − CT

j Bkj ,j(xj)|2Q(x)dx

= ‖ĝj − g∗
j ‖2

≤ 2‖ĝj − gj,0‖2
L2 + 2‖g∗

j − gj,0‖2
L2 ,

which further implies that the following holds on Ω+
n :

Ef0

(
ĈT

j Ĉj |X
)

≤ 2CT
j Cj + 2Ef0

(
(Ĉj − Cj)T (Ĉj − Cj)|X

)
≤ 2q+A2

gj,0
+ 4a−1

1 h−1
j Ef0

(
‖ĝj − gj,0‖2

L2 |X
)

+ 4a−1
1 h−1

j Ef0

(
‖g∗

j − gj,0‖2
L2 |X

)
≤ 2q+A2

gj,0
+ 4a−1

1 h−1
j

(
a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n

)
+ 4a−1

1 h−1
j A2

gj,0
h

2βj

j

≤ (2A2
gj,0

+ 4a−1
1 a4)

(
q+ + q+

nhj

)
+ 4a−1

1 (a4 + 1)h−1
j

d∑
s=1

A2
gs,0

h2βs
s

≤ a6

(
d∑

v=1
A2

gv,0
+ a−1

1 a4

)(
q+ + h−1

j

d∑
s=1

h2βs
s

)
,

with a6 = 8 +8a−1
1 (a4+1). In the last inequality we have used nhj → ∞. Recall g̃j = ĈT

j B̃kj ,j(x). Therefore, 
Lemma 1 implies that the following holds on event Ω+

n : 8k

14 4−m

Ef0(‖g̃j − ĝj‖2
L2 |X) = Ef0

(
‖ĈT

j B̃kj ,j − ĈT
j Bkj ,j‖2

L2 |X
)

≤ (Mj + kj − 1)Ef0

(
ĈT

j Ĉj |X
)

sup
x∈[0,1]

‖B̃kj ,j(x) − Bkj ,j(x)‖2
∞

≤ a6

(
d∑

v=1
A2

gv,0
+ a−1

1 a4

)
64kj+1(Mj + kj − 1)

(
q+ + h−1

j

d∑
s=1

h2βs
s

)
16−m.

By the above inequality and (6.5), on event Ω+
n , we have

Ef0(‖g̃j − gj,0‖2
L2 |X) ≤ 2Ef0(‖g̃j − ĝj‖2

L2 |X) + 2Ef0(‖ĝj − gj,0‖2
L2 |X)

≤ 2a6

(
d∑

A2
gv,0

+ a−1
1 a4

)
64kj+1(Mj + kj − 1)

(
q+ + h−1

j

d∑
h2βs

s

)
16−m
v=1 s=1
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+2a4

d∑
s=1

A2
gs,0

h2βs
s + a4q+

n

As a consequence, on event Ω+
n , it follows that

Ef0(‖f̂net − f0‖2
L2 |X) ≤ 2dE(|α̂ − α0|2|X) + 2d

d∑
j=1

E(‖g̃j − gj,0‖2
L2 |X)

≤ 2da4

( d∑
s=1

A2
gs,0

h2βs
s + q+

n

)

+2d+1a6

d∑
j=1

(
d∑

v=1
A2

gv,0
+ a−1

1 a4

)
64kj+1(Mj + kj − 1)

(
q+ + h−1

j

d∑
s=1

h2βs
s

)
16−m

+2d+1a4d
d∑

s=1
A2

gs,0
h2βs

s + a4dq+

n
.

Since q+ =
∑d

j=1(Mj + kj − 1) 	
∑d

j=1 Mj , hj 	 M−1
j and supgj,0∈Λβj (F,[0,1]) Agj,0 < ∞ by Lemma 3, 

taking supremum of the above inequality leads to

sup
f0∈Λβ

+(F,Ω)
Ef0(‖f̂net − f0‖2

L2 |X) = OP

( d∑
j=1

M
−2βj

j

)
+ OP

( d∑
j=1

Mj

n

)
+ OP

( d∑
j=1

M2
j 4−2m

)
.

Using (6.3), we know L = (2m + 3) max1≤j≤d(kj + 1) + 1 and T =
∑d

j=1 2kj+4(Mj + 2kj). The above 
inequality further leads to

inf
f̂∈F(L,p(T ))

sup
f0∈Λβ

+(F,Ω)
Ef0(‖f̂net − f0‖2

L2 |X) ≤ sup
f0∈Λβ

+(F,Ω)
Ef0(‖f̂net − f0‖2

L2 |X)

= OP

(
T −2β∗ + T

n
+ T 24−2m

)
.

We can always choose kj = �β�j + 1 for j = 1, . . . , d. Therefore the integer k ≥ max(β1, . . . , βd, 2) implies 
k ≥ max(k1, . . . , kd, 2) and L = (2m + 3) max1≤j≤d(kj + 1) + 1 ≤ 2m(k + 1) + 3(k + 1) + 1. Substituting m
with L, we complete the proof.
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Appendix A

A.1. Proof of Lemma 3

In this subsection, we provide the proof of Lemma 3. For simplicity, we consider the case with d = 2. 
The extension to the scenario with d > 2 can be done similarly.

Given integers k, M ≥ 2 and knots t−k+1 < t−k+2 < . . . < t0 < t1 < . . . < tM < tM+1 < . . . < tM+k−1
with t0 = 0, tM = 1. Since d = 2, we can relabel the tensor product B-spline basis as Bi,k(x1)Bj,k(x2), for 
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(x1, x2)T ∈ Ω and i, j = −k + 1, . . . , M − 1. We would like to comment that the basis is denoted as Di,k in 
previous section. As a consequence, the function space spanned by Bi,k(x1)Bj,k(x2) is defined as

Θn = {f(x) =
M−1∑

i=−k+1

M−1∑
j=−k+1

cijBi,k(x1)Bj,k(x2)|cij ∈ R and x = (x1, x2)T ∈ Ω}.

Let us borrow some definition from the Section 15.1 in Györfi et al. [10]. Let C be the collection of 
continuous function supported on Ω. A linear operator κ : C → Θn is called a quasi interpolant if

κf(x) =
M−1∑

i=−k+1

M−1∑
j=−k+1

κij(f)Bi,k(x1)Bj,k(x2),

where κij(f) is a constant depending only on the values of f in [ti, ti+k) × [tj , tj+k). Moreover, κ is said to 
have order k if κf = f for all polynomial f with the degrees of x1 and x2 not greater than k − 1.

Lemma A.1 (Theorem 15.2 of Györfi et al. [10]). Given integers k, M ≥ 2 and knots t−k+1 < t−k+2 <

. . . < t0 < t1 < . . . < tM < tM+1 < . . . < tM+k−1 with t0 = 0, tM = 1. There exists a quasi interpolant 
κ : C → Θn with order k such that

|κij(f)| ≤ Lk sup
x∈[ti,ti+k)×[tj ,tj+k)

|f(x)|.

Here Lk is a constant depending only on k but not on the knots.

We are ready to prove Lemma 3. Suppose f ∈ Λβ(F, Ω). For fixed u ∈ [ti, ti+k) × [tj , tj+k), let us define 
the following local Taylor polynomial:

pu(x) =
∑

|α|≤�β�
∂αf(u) (x − u)α

α! for x ∈ [ti, ti+k) × [tj , tj+k).

By Taylor’s theorem, it follows that

f(x) =
∑

|α|<�β�
∂αf(u) (x − u)α

α! +
∑

|α|=�β�

�β�
α! (x − u)α

1∫
0

(1 − t)�β�−1∂αf(u + t(x − u))dt.

Suppose u = (u1, u2)T , x = (x1, x2)T ∈ [ti, ti+k) × [tj , tj+k), then Assumption A2 implies that ‖u − x‖ ≤√
2(kh)2 ≤ 2kh. Let us consider two cases of β.
Case 1: If �β� = 0, then pu(x) = f(u). By the definition of Λβ(F, Ω), it follows that

|f(x) − pu(x)| = |f(x) − f(u)| ≤ F‖x − u‖β ≤ F (2k)βhβ .

Case 2: If �β� ≥ 1, then 
∫ 1

0 (1 − t)�β�−1dt = 1/�β�. Therefore, we have

|f(x) − pu(x)| ≤
∑

|α|=�β�

∣∣∣∣�β�
α! (x − u)α

∣∣∣∣
1∫

0

(1 − t)�β�−1
∣∣∣∣∂αf(u + t(x − u)) − ∂αf(u)

∣∣∣∣dt

≤
∑

�β� |x1 − u1|α1 |x2 − u2|α2

1∫
(1 − t)�β�−1F‖t(x − u)‖β−�β�dt
|α|=�β� 0



30 R. Liu et al. / J. Math. Anal. Appl. 505 (2022) 125561
≤ F �β�
∑

|α|=�β�
(kh)α1(kh)α2‖x − u‖β−�β�

1∫
0

(1 − t)�β�−1dt

≤ F
∑

|α|=�β�
k�β�h�β�(2kh)β−�β�

≤ F (�β� + 1)2(2k)βhβ .

Combining the above two cases, we show that

|f(x) − pu(x)| ≤ F (�β� + 1)2(2k)βhβ ,

for all x, u ∈ [ti, ti+k) × [tj , tj+k) and f ∈ Λβ(F, Ω). Since the operator κ is linear, and pu(x) is a polynomial 
with degrees of x1 and x2 not greater than �β�. Since κ is an interpolant with order k by Lemma A.1, and 
pu is a polynomial with degree at most �β�, the condition k ≥ β implies that k −1 ≥ �β�. As a consequence, 
it follows that

|κ[f(x) − pu(x)]| = |
M−1∑

i=−k+1

M−1∑
j=−k+1

κij(f − pu)Bi,k(x1)Bj,k(x2)|

≤
M−1∑

i=−k+1

M−1∑
j=−k+1

|κij(f − pu)|Bi,k(x1)Bj,k(x2)

≤ sup
−k+1≤i≤M−1

sup
−k+1≤j≤M−1

|κij(f − pu)|

≤ sup
−k+1≤i≤M−1

sup
−k+1≤j≤M−1

Lk sup
v∈[ti,ti+k)×[tj ,tj+k)

|f(v) − pu(v)|

≤ LkF (�β� + 1)2(2k)βhβ for all x ∈ Ω.

Combining the above inequality, we conclude that

|κf(x) − f(x)| ≤ |κf(x) − pu(x)| + |pu(x) − f(x)|
= |κf(x) − κpu(x)| + |pu(x) − f(x)|
= |κ[f(x) − pu(x)]| + |pu(x) − f(x)|
≤ (Lk + 1)F (�β� + 1)2(2k)βhβ for all x ∈ Ω.

Notice that κf(x) =
∑M−1

i=−k+1
∑M−1

j=−k+1 κij(f)Bi,k(x1)Bj,k(x2) =
∑

i∈Γ ciDi,k(x), where ci’s is the sequence 
κij(f)’s after relabeling. Using Lemma A.1 again, we show that |ci| ≤ Lk‖f(x)‖sup. Clearly, we can choose

Af = (Lk + 1)F (�β� + 1)2(2k)β + Lk‖f(x)‖sup,

which satisfies supf∈Λβ(F,Ω) Af ≤ (Lk + 1)F (�β� + 1)2(2k)β + LkF < ∞. The proof is complete.

A.2. Index of symbols

• k: the smallest integer satisfying k ≥ max(β, 2) for Theorems 1–3 and k ≥ max(β1, . . . , βd, 2) for 
Theorem 4.

• m: a diverging auxiliary variable for the number of hidden layers, which is related to the construction 
of network product operator; see Lemma 2, (4.9) and (6.3).
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• M : a diverging auxiliary variable for the number of nodes in each hidden layer, which is related to the 
number of knots for B-spline basis; see Section 4.1 and (4.9).

• h: h = M−1, knots separation distance; see Assumption A2.
• q: q = (M + k − 1)d, number of tensor product B-spline basis functions; see Section 4.1.
• Θn: a function space spanned by tensor product B-spline basis; see Section 4.4.
• Ωn: an event with probability approaching one; see (4.10).
• a1, a2: universal constants relying on k and the density Q; see Lemma 5.
• a3: a universal constant relying on the density Q; see Proposition 5.
• a4: a universal constant relying on d and the density Q; see Lemma 12.
• kj : a fixed constant indicating the order of B-spline basis for additive model, which requires kj ≥ βj ; 

see Assumption A3.
• Mj : a diverging auxiliary variable for the number of nodes in each hidden layer for additive model, 

which is related to the number of knots for B-spline basis; see Assumption A3 and (6.3).
• hj : hj = M−1

j , knots separation distance for additive model; see Assumption A3.
• q+: q = 1 +

∑d
j=1(Mj + kj − 2), number of B-spline basis functions for additive model; see (6.4).

• Θ+
n : function space spanned by B-spline basis for additive model; see (6.4).

• Ω+
n : an event with probability approaching one; see (6.4).
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