Submitted to the Annals of Statistics

IMPROVED CENTRAL LIMIT THEOREM AND BOOTSTRAP
APPROXIMATIONS IN HIGH DIMENSIONS

BY VICTOR CHERNOZHUOKOV!, DENIS CHETVERIKOV>" KENGO KATO> "
AND YUTA KOIKE**

1 Department of Economics and Operations Research Center, MIT, vchern @mit.edu
2 Department of Economics, UCLA, * chetverikov@econ.ucla.edu
3 Department of Statistics and Data Science, Cornell University, Tkk976@cornell.edu

4Department, Mathematics and Informatics Center and Graduate School of Mathematical Sciences, The University of Tokyo,
*kyuta@ms.u-tokyo.ac.jp

This paper deals with the Gaussian and bootstrap approximations to the
distribution of the max statistic in high dimensions. This statistic takes the
form of the maximum over components of the sum of independent random
vectors and its distribution plays a key role in many high-dimensional esti-
mation and testing problems. Using a novel iterative randomized Lindeberg
method, the paper derives new bounds for the distributional approximation
errors. These new bounds substantially improve upon existing ones and si-
multaneously allow for a larger class of bootstrap methods.

1. Introduction. Let X;,..., X, be independent random vectors in RP such that
E[X;;]=pjforalli=1,...,nand j =1,...,p, where X;; denotes the jth component of the
vector X;. We are interested in approximating the distribution of the maximum coordinate of
the centered sample mean of Xi,..., X, i.e.,

1 n

(1) Tnzlg%ﬁ;(&j — 1y)-
The distribution of T}, plays a particularly important role in many high-dimensional settings,
where p is potentially larger or much larger than n. For example, it appears in selecting the
regularization parameters for the Lasso estimator and the Dantzig selector ([12]), in carry-
ing out reality checks for data snooping and testing superior predictive ability ([42, 25]), in
constructing model confidence sets ([26]), in testing conditional and/or many unconditional
moment inequalities ([2, 19, 16, 31]), in multiple testing with the family-wise error rate con-
trol ([3]), in constructing simultaneous confidence intervals for high-dimensional parameters
([4]), in adaptive testing of regression and stochastic monotonicity ([20, 21]), in carrying out
inference on generalized instrumental variable models ([18]), and in constructing Lepski-type
procedures for adaptive estimation and inference in nonparametric problems ([13]); more ref-
erences can be found in [22] and especially in [3]. It is therefore of great interest to develop
methods for obtaining feasible and accurate approximations to the distribution of 7;,, allow-
ing for the high-dimensional p > n case.

Toward this goal, the first three authors of this paper obtained the following Gaussian
approximation result in [12, 15]. Let G = (G4, ...,G)p)’ be a Gaussian random vector in RP
with mean p = (pi1,. .., 1) and covariance matrix n= 2 >"" | E[(X; — u)(X; — p)'] and let
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the critical value ¢;_,, be the (1 — «)th quantile of max; <<, G;. Then under mild regularity
conditions,

7 /
@) P(T,>e1-0) — 0 s0<1°g7ff’”)> ,
where C' is a constant that is independent of n and p. This result is important because the
right-hand side of the bound (2) depends on p only via the logarithm of p, and hence it shows
that the Gaussian approximation holds if logp = o(nl/ 7), which allows p to be much larger
than n. Besides, building upon this result, the same authors have proved bounds similar to (2)
for the critical values obtained by the Gaussian multiplier and empirical bootstraps in [15].

Gaussian approximation of the form (2) allows us to develop powerful inference methods
for high-dimensional data in applications discussed above and has stimulated further devel-
opments into dependent data [44, 43, 16], U-statistics [19, 10, 11], Malliavin calculus [20],
and homogeneous sums [29]. Despite such rapid developments, the literature has left much
to be desired on coherent understanding of sharpness of the bound (2) for the Gaussian or
bootstrap critical values since the first appearance of [15] in 2014 on arXiv. The problem can
be decomposed into two parts: (i) sharpness of the bound in terms of dependence on n and
(ii) sharpness of the bound in terms of dependence on p.

There are two important developments toward the question of sharpness of the bound (2)
that should be mentioned. First, Deng and Zhang [22] considered direct bootstrap approxi-
mation without taking the root of Gaussian approximation, and proved the following bound
for the critical value c;_, obtained by the empirical or third-order matching (or Mammen’s
[36]) multiplier bootstraps:

log” (pn) ) V6

3) P(Tn>c1_a)—a) gc( p

Their bound improves the power of the logs in the previous bound (2), showing that the
empirical and Mammen’s bootstraps are consistent to approximate the distribution of 7;, if
logp = o(n'/5) instead of logp = o(n'/7). Second, the recent preprint by the fourth author
[30] shows that the same bound (3) indeed holds for the Gaussian critical value as well.

In turn, in this paper, we show that in fact a much larger improvement is possible: under
mild regularity conditions, we prove that

log” (pn) ) A

“4) P(Tn>01fa)—a) §C<
n

both for the Gaussian and bootstrap critical values ¢;_,,. In comparison with the Gaussian
approximation result (2), our new bound improves not only the power of the logs but also
the power of the sample size n. Moreover, regarding the bootstrap types, we allow for not
only the empirical and third-order matching multiplier bootstrap methods, but also for general
multiplier bootstrap methods (with i.i.d weights), which match only two moments of the data,
such as the multiplier bootstrap methods with Gaussian and Rademacher weights.

We remark that several authors have recently pointed out that an additional structural
assumption on the covariance matrices of X;’s can improve the bound (4). In partic-
ular, Fang and Koike [23] showed that the right-hand side of (4) can be improved to
C(log*(pn)/n)'/® when the covariance matrices are non-degenerate and can be further im-
proved to C(log®(p)/n)"/?1logn when we additionally assume that X;’s have log-concave
densities. The latter result is based on the fact that random vectors with log-concave densities
admit Stein kernels with sub-Weibull entries, which is established by Fathi in [24]. Moreover,
building on the important results by Lopes in [34] and Kuchibhotla and Rinaldo in [32], [17]
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showed that the bound C'(log®(p)/n)'/?logn can be achieved even without the assumption
of log-concave densities (non-degenerate covariance matrices are still required; [34] and [32]
were the first to obtain dependence on n via 1/+/n in (4) without requiring log-concave den-
sities). In addition, Lopes, Lin and Miiller [35] showed that the right-hand side of (4) can be
improved to Cn~'/2%9 for any § > 0 when the coordinates of X;’s have decaying variances.
Compared to these results, our bound requires neither non-degenerate covariance matrices
nor decaying variances.

In addition, we prove that if the distribution of the random vectors X7, ..., X, is symmet-
ric around the mean, then even better approximation to the distribution of 7}, is possible:
1/2
log®(pn
) P(T, > ¢1_a) — a’ <C (g(p)>
n

as long as the critical value c;_, is obtained via the multiplier bootstrap method with
Rademacher weights. This new bound makes Rademacher weights particularly appealing
in the high-dimensional settings, at least from a theoretical perspective.

We also consider bootstrap approximations with incremental factors, previously used by
Andrews and Shi in [1] in the context of testing conditional moment inequalities. Specifically,
for a small but fixed constant 7 > 0, called an incremental factor, we derive the following
bounds:

log®(pn) ) V2

(6) P(Tn>cla+n)—oz§0< -

if ¢1_4 1s obtained via either the empirical or the third-order matching multiplier bootstrap
methods and
5 /

7 P(T,>cl_a+n)—a<C <1ogT(me>
if ¢1_, is obtained via general multiplier bootstrap methods, where the constant C' may de-
pend on 7. Even though these are one-sided bounds, they are useful because they show that
in any test based on the statistic 7,,, increasing the critical value ¢;_,, by an incremental fac-
tor 17 may substantially reduce the sample complexity for over-rejection. Namely, assuming
log p 2 logn for simplicity, for the over-rejection probability to be less than or equal to a
given level 0 < A < 1 — «, the empirical bootstrap or multiplier bootstrap (without incre-
mental factor) requires n > A~*log® p, while adding a constant incremental factor reduces
the sample complexity to n > (A~2log® p) V log® p if we use the empirical or third-order
matching bootstrap. It is worth noting that, given that in high-dimensional settings, where p
is rapidly increasing together with n, c;_, is typically also getting large as we increase n,
adding an incremental factor 7 may not have a large impact on the power properties of the
test.

In fact, all our results apply to a more general version of the statistic 7}, :

1 n
8 T = 75 Xoio — (s D,
®) " glfgp\/ﬁi:l( ij = M+ aj)
where a = (aq,... ,ap)' is a vector in RP, which reduces to (1) if we set a = 0,,. In most

applications mentioned above, the former version (1) is sufficient but there are some applica-
tions where the more general version (8) is required; for example, the latter was used by Bai,
Shaikh, and Santos in [2] to extend the method of testing moment inequalities proposed in
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[38] for the case of a small number of inequalities to the case of a large number of inequali-
ties. For the rest of the paper, we will therefore work with the more general version (8) of the
statistic 7},. In addition, we emphasize that our results can be equally applied with

1 n
Tn= max | — E(Xij — 1+ aj)
i=
by replacing the p-dimensional vectors X; — i 4+ a with the 2p-dimensional vectors whose
first p components are equal to X; — p + a and the last p components are equal to —(X; —
w+a).

To prove (4), we develop a novel and iterative version of the randomized Lindeberg
method. A key feature of our approach is that we carry out a careful analysis of the coef-
ficients in the Taylor expansion underlying the Lindeberg method. In particular, we apply the
Lindeberg method iteratively in combination with an anti-concentration inequality for max-
ima of Gaussian processes to bound these coefficients, which substantially improves upon the
original randomized Lindeberg method proposed in [22]. In addition, we sharpen the Gaus-
sian approximation bounds for the multiplier processes developed in [30] using Stein’s ker-
nels. In turn, to prove (5), we establish a new connection between the Rademacher bootstrap
and the randomization tests, as discussed in [33], using a recent result from the computer sci-
ence literature on pseudo-random number generators by O’Donnell, Servedio, and Tan [37],
which provides an anti-concentration inequality for maxima of Rademacher processes. Fi-
nally, to prove error bounds (6) and (7), we apply the original randomized Lindeberg method
as developed in [22].

Finally, we conduct a small scale simulation study. Our simulation study shows that (i)
all bootstrap methods considered in this paper perform reasonably well in high dimensions;
(ii) for asymmetric distributions, the empirical and the third-order matching multiplier boot-
strap methods outperform the multiplier bootstrap methods with Gaussian and Rademacher
weights; and (iii) for symmetric distributions, the multiplier bootstrap with Rademacher
weights performs the best, which is consistent with Theorem 2.3 ahead. See the Supple-
mentary Material for details.

The rest of the paper is organized as follows. In the next section, we present our main re-
sults. In Section 3, we develop the iterative randomized Lindeberg method, which is the first
key component in deriving our main results. In Section 4, we provide new bounds for the
Gaussian approximations using Stein’s kernels, which is the second key component in deriv-
ing our main results. In Section 5, we give proofs of the main results. In the Supplemental
Material, we collect additional derivations and conduct a small simulation study.

1.1. Notation. For any vectors x,y € R? and any scalar c € R, we write x < y if z; < y;
for all j =1,...,p and write = + c to denote the vector in RP whose jth component is
xj+cforall j=1,...,p. Also, for any sequences of scalars {a,, },>1 and {b,, },>1 we write
an < by, if a, < Cb, for all n > 1 for some constant C'. Recall that, for any random variable
T and a constant v € (0, 1), the yth quantile of 7" is defined as inf{t € R: P(T' <t) > ~}.
Finally, we use the notation X1., = (X1,...,X,).

2. Main Results. In this section, we present our main results. We first formally define
all the critical values c;_, to be used throughout the paper. We then discuss the required
regularity conditions and present the results.
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2.1. Gaussian and Bootstrap Critical Values. First, define the Gaussian critical value

c§’_, as the (1 — a)th quantile of

G _
©) T = max (G +aj),

where G is a centered Gaussian random vector in RP with the covariance matrix
1 n
(10) EnanQEm&—uxxa—m%
1=

which coincides with the covariance matrix of \/n(X,, — ). Second, define the bootstrap
critical value ¢ as the (1 — )th quantile of the conditional distribution of

1
11 T = max X+a

(11 ngmﬁ;< J)

given the data X1, ..., X,,, where X7, ..., X" is a (not necessarily empirical) bootstrap sam-

ple. We consider the following types of the bootstrap:

* Empirical bootstrap: let X7, ..., X be a sequence of i.i.d. random variables sampled from
the uniform distribution on {X 1= X ey Xn— Xp}, where X, =n~! >, X; denotes
the sample mean of the data X1, ... ,Xn.

» Multiplier bootstrap: let ey, .. ., e, be a sequence of i.i.d. random variables with mean zero
and unit variance, referred to as weights, which are independent of X7,..., X,,. Define

X =ei(X;— X,) foralli=1,...,n

For the multiplier bootstrap, we will assume throughout the paper that the weights
ei,...,en are such that

e;=ej1+ el 2, where e; 1 and e; o are independent, e; 1 has

(12) the V (0 o?) distribution for some oe >0, and |e; o < 3.

Condition (12) is mild and covers many commonly used weights, such as:

* Gaussian weights: ¢; 1 ~ N(0,1) and e; 2 = 0.
* Rademacher weights: e; 1 =0 (i.e., 0, = 0) and P(e; o = £1) = 1/2.
* Mammen’s weights [36]: e; 1 = 0 and

P <ei,2 = 1i2\/5) = \/25\;%1

See Remark 2.1 for further discussion on Condition (12).
Occasionally, we will also consider the weights with unit third moment, namely,

(13) Ele}] =1, foralli=1,...,n

The weights satisfying Condition (13) correspond to the third-order matching multiplier boot-
strap mentioned in the Introduction. We note that Mammen’s weights satisfy both Conditions
(12) and (13), but neither Rademacher nor Gaussian weights satisfy Condition (13). See
Lemma I.3 in the Supplemental Material, where we provide a more general class of distribu-
tions for the weights satisfying both Conditions (12) and (13).

Before proceeding to the regularity conditions, we also note that the multiplier bootstrap
critical value ¢ with Gaussian weights can be regarded as a feasible version of the Gaus-
sian critical value ¢{’__,. Indeed, it is easy to see that the former can be alternatively defined
as the (1 — «)th quantile of the distribution of

G
T, = gjagp(Gg +aj),
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where G ~ N(0,, in) and %, is the empirical covariance matrix
n
(14) Sp=n"" (Xi— Xn)(Xi — X))
For brevity, we sometimes refer to both quantities as the Gaussian critical values.

REMARK 2.1 (On Condition (12)). Condition (12) is technical and can be weakened
depending on the moment conditions on X;. A key step in the proof of Theorem 2.2 is
to apply Theorem 3.1 ahead to approximate the conditional distribution of 7} with that of
the multiplier bootstrap statistic with weights following a Beta distribution that matches the
moments of e; up to the third order (to be precise, we first replace the Gaussian components
e;,1 by bounded weights in the proof of Theorem 2.2). Condition (12) will be used to verify
Conditions V, P, and B when we apply Theorem 3.1 there. If, e.g., X; are bounded by B,,
then the conclusion of Theorem 2.2 continues to hold for sub-exponential weights. Since
current Condition (12) already covers many commonly used bootstrap weights, however, we
do not pursue this generality of the weights to keep our presentation reasonable concise.

2.2. Regularity Conditions. First, observe that given the construction of the statistic 7,
in (8) and its Gaussian and bootstrap analogs in (9) and (11), it is without loss of generality
to assume that p; = 0 for all j =1,...,p, which is what we do for the rest of the paper.
Also, all our results follow immediately if n = 2, so we assume n > 3, which in particular
implies log(pn) > 1. In addition, since we are primarily interested in the case with large p,
we assume p > 2.

Second, let b; and by be some strictly positive constants such that by < by and let { B, },,>1
be a sequence of constants such that B,, > 1 for all n > 1. Here, the sequence { By, },,>1 can
diverge to infinity as the sample size n increases.

Condition E: Foralli=1,....nand j=1,...,p, we have
Elexp(|Xy|/Ba)] < 2

Condition M: Forall j =1,...,p, we have
1 n
2 2 4 2y
< EZE[X”] and ZE [X}] < B2b
i=1

Condition S: For all i =1,...,n, the distribution of X; is symmetric in the sense that X;
and —X; are identically distributed.

Condition E implies that the random variables X;; are sub-exponential with the Orlicz ;-
norm bounded by B,,; see [40] for details. The same sub-exponential condition was assumed
in e.g. [15] and [22]; see Condition (E.1) in [15] and (E.1) in [22]. The first part of Condition
M, which we refer to as the variance lower bound condition, requires that each component
of the random vectors X; is scaled properly. The variance lower bound condition is needed
to apply the anti-concentration inequalities (cf. Lemmas J.3 and J.4 in the Supplemental
Material) but can be dropped in Theorem 2.4 ahead. Also, at least for Theorems 2.1 and 2.2,
it can be relaxed by using Theorem 10 in [22]. However, to consistently state all the results,
we work with the present assumption. Given the first part, the second part of Condition M
holds if, for example, all random variables X;; are bounded by B,, andn~! Y7 | E[X 12]] <b3
for all j =1,...,p. Condition S means that the distribution of each X; is symmetric around
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the mean. Importantly, none of these conditions restrict the correlation matrices of X;, and
so our results do not follow from the classical results in empirical process theory.

In what follows, we will always maintain Conditions E and M and will assume Condition
S only in Theorem 2.3, which shows that imposing the symmetric distributions improves the
approximation bound for the multiplier bootstrap with Rademacher weights.

2.3. Main Results. We first present a non-asymptotic bound on the error of the Gaussian
approximation to the distribution of the statistic 77,:

THEOREM 2.1 (Gaussian Approximation). Suppose that Conditions E and M are satis-
fied. Then

B2 1og5<pn>)”4

(15) }P(Tn>ch_a)—oz]§C< >

where C' is a constant depending only on by and bs.
This result improves upon the bound in [30], who obtained a similar result with the rate

1/6 instead of 1/4. Since a € RP in the definition of 7T}, in (8) is arbitrary, the bound (15) can
be equivalently stated as

P(%é&-eA) —P(GeA)

where G ~ N (0,,%,,) and A is the class of all hyper-rectangles in R?, i.e. sets of the form

sup

21..5 1/4
AeA

n

A:{w:(wl,...,wp)’eRp: aljSwjgarjforalljzl,...,p},

for some constants —oo < a;; < a,; < oo with j =1,...,p. This gives a quantitative Central
Limit Theorem (CLT) over the hyper-rectangles in high dimensions.

The proof of Theorem 2.1, which is deferred to Section 5, is fairly complicated and goes
somewhat backward: (i) we first compare the conditional distribution of a third-order match-

ing bootstrap statistic 7;* with that of the Gaussian multiplier bootstrap statistic 7., and then

compare the conditional distribution of 7¢ with the distribution of 7. These two compar-
isons rely on the Gaussian approximation via Stein kernel (Theorem 4.1). Then, (ii) we use
the preceding comparison between 7)* and T to verify the anti-concentration for T* to in-
voke Theorem 3.1 and compare the conditional distribution of 7}, with the distribution of 7,.
The proof of Theorem 3.1 relies on a novel technique which we call the iterative randomized
Lindeberg method. The conclusion of Theorem 2.1 follows from combining the results in
Steps (i) and (ii) and the triangle inequality.

Comparison of the the Gaussian multiplier bootstrap statistic 7" with T relies on the
following Gaussian-to-Gaussian comparison inequality, which can be of independent interest
and whose proof is presented in Section 4 as a consequence of Theorem 4.1:

PROPOSITION 2.1 (Gaussian-to-Gaussian Comparison). If Zy and Zy are centered
Gaussian random vectors in RP with covariance matrices ¥' and Y2, respectively, and 2 s
such that 212‘]' >cforall j=1,...,pfor some constant c > 0, then

1/2
sup |P(Z1 <y)—P(Zy < y)‘ < C<A10g2p> ,
yeRP

where C'is a constant depending only on c and A = max;<; j<p |Ejl.k — E?k|



REMARK 2.2. Two comments on Proposition 2.1 are warranted. First, Proposition 2.1
improves upon Theorem 2 in [14], which shows that

sup
zeR

P <max Z1j < :U) -P <max Zoj < x) ‘ < C’<Alog2p>1/3,
1<i<p 1<j<p

under the same conditions. Second, the bound in this proposition is sharp in the sense that
there exists a constant ¢ > 0 such that for infinitely many values of p, there exist centered
Gaussian random vectors Z; and Z5 in RP such that the covariance matrix 22 of Z5 satisfies
E% =1forallj=1,...,pand

1/2
sup P(Z1§y)—P(22§y)‘Zc<A10g2p> :
yeRP

The latter claim is proven in Appendix C of the Supplemental Material. [

Comparison of the conditional distribution of the third-order matching bootstrap statis-
tic T* with that of 7, (Theorem 3.1) relies on the iterative randomized Lindeberg method.
An intuition behind the iterative randomized Lindeberg method goes as follows. Recall that,
for any smooth function g: RP — R and any two sequences of independent random vec-
tors X1q,...,X, and Y7,...,Y, in RP, in order to approximate E[g(X; + --- + X,,)] by
E[g(Y1 + --- + Y},)], the original Lindeberg method constructs an interpolation path from
Elg(X1 + -+ X,,)] to E[g(Y1 + --- + Y},)] by replacing X;’s with Y;’s one-by-one in a
given order and uses Taylor’s expansion to show that the change in the expectation at each
step is sufficiently small; see [8] for example. The randomized Lindeberg method, introduced
in [22], is similar to the original Lindeberg method but it replaces X;’s with Y;’s in a randomly
selected order. It turns out that this randomization may bring substantial benefits to the final
bound. In turn, to improve upon this version of the randomized Lindeberg method, we carry
out a careful analysis of the coefficients in the Taylor’s expansions underlying the method.
In particular, given that kth order coefficients take the form of E[g*)(Z; + - + Z,)], up
to some approximation error, where ¢(*) is a vector of the kth partial derivatives of g and
Z1,..., 4y 1s a sequence such that some of its elements are given by X;’s and others by Y;,
and using the fact that it is easier in our setting to bound E[¢®*) (Y] + --- 4+ Y},)], we ap-
ply the randomized Lindeberg method once again to approximate E[¢g(*¥)(Z; + --- + Z,,)] by
E[g®*) (Y] + --- 4+ Y,,)]. Here, since a new application of the method will bring new Taylor’s
coefficients, we apply the same method over and over again until the approximation error be-
comes sufficiently small. We demonstrate that this iterative use of the randomized Lindeberg
method gives further substantial benefits to the final bound. See also the discussion before
Lemma 3.1 concerning comparisons of the iterative randomized Lindeberg method with the
randomized Lindeberg method used in [22] and the related Slepian-Stein method used in our
earlier work [12, 15].

Our second main result gives a non-asymptotic bound on the deviation of the bootstrap
rejection probabilities P(7;, > ¢P ) from the nominal level « for the empirical and the
multiplier bootstrap methods:

THEOREM 2.2 (Bootstrap Approximation). Suppose that Conditions E and M are satis-
fied and that cﬂ o, I8 obtained via either the empirical bootstrap or the multiplier bootstrap
with weights satisfying (12). Then

B2log® (pn) ) A

(16) }P(Tn>c’19_a)—oz]§0< >

where C'is a constant depending only on by and bs.
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This theorem improves upon the bounds in [22], who obtained a similar result with the rate
1/6 instead of 1/4. In addition, we allow for a larger class of multiplier bootstrap methods. In
particular, we do not require the weights eq, ..., e, to satisfy (13). The proof of this theorem
is given in Section 5.

Our third main result gives a non-asymptotic bound on the deviation of the bootstrap
rejection probabilities from the nominal level for the multiplier bootstrap method with
Rademacher weights in the case of symmetric distributions:

THEOREM 2.3 (Rademacher Bootstrap Approximation in Symmetric Case). Suppose
that Conditions E, M, and S are satisfied and that cf_ o I8 obtained via the multiplier boot-
strap with Rademacher weights. Then

1/2
B2log®(pn)\ "/
n b

(17) [P (T, >cf ) — o gc(
where C' is a constant depending only on by and bs.

This theorem implies that the multiplier bootstrap with Rademacher weights is very accu-
rate in the symmetric case. To prove it, we note that under the assumption of symmetric distri-
butions, one can construct the randomization critical value ¢, such that P(T,, > cf ) =«
up to possible mass points in the distribution of 7;,. Thus, given that the critical value based
on the multiplier bootstrap with Rademacher weights turns out to be a feasible version of this
randomization critical value and the two are close to each other, (17) follows if we can show
that the distribution of 7, is not too concentrated. To this end, we use an anti-concentration
inequality for maxima of Rademacher processes derived in [37]. The proof of Theorem 2.3
is given in Appendix G of the Supplemental Material.

Our fourth and final result shows that one-sided bounds in the bootstrap approximation
can be substantially improved if we allow for incremental factors:

THEOREM 2.4 (Bootstrap Approximation with Incremental Factors). Suppose that Con-
ditions E and M are satisfied and let 1 > 0 be a constant that may depend on n and p. Then
there exists a constant C depending only by and by such that the following hold.

() If B2 log® (pn) <n and cﬁ o, IS obtained via either the empirical bootstrap or the multi-
plier bootstrap with weights satisfying (12) and (13), then we have

B2log®(pn) ) 2

P(Tn>c{3a+n)§a+0(1\/n4)< -

Gi) Ifn= Y0, E[X%] < bl forall j=1,...,p and P is obtained via the multiplier
bootstrap with weights satisfying (12), then

B2log®(pn)\ *
B

P> ol o) <at Cv )

Theorem 2.4 allows 7 to (slowly) decrease with n and/or p. For example, if we choose 1 ~
(logn)~!, then the over-rejection probability is of order n~Y%inn up to log factors, while
only requiring p to be logp = 0(n1/3/polylog(n)) in (i) and logp = o(n1/5/polylog(n)) in
(i) provided that B,, is bounded in n.

To prove this theorem, we use the randomized Lindeberg method but with an important
simplification that the incremental factor 17 now absorbs all the terms arising from smoothing
the functions of the form x — 1{max<;j<, z; > ¢}, which is used in the Lindeberg method.
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As discussed in the Introduction, Theorem 2.4 is useful if one is concerned with the finite-
sample over-rejection of tests based on the statistic 7}, as it says that adding an incremental
factor 7 to the critical value c?_a may substantially reduce over-rejection, with a minimal
effect on the power of the test. The proof of Theorem 2.4 is given in Appendix H of the
Supplemental Material.

We conclude this section with a few remarks on cases with polynomial moment condi-
tions and approximate sample means. First, while we maintain the sub-exponential condition
(Condition E) for X; throughout the main text, combining Theorems 2.1 and 2.2, and a simple
truncation argument, we are able to derive analogs of Gaussian and bootstrap approximation
results under polynomial moment conditions similar to e.g. Condition (E.1) in [15]. Those
additional results can be found in Appendix A of the Supplemental Material. Second, in many
applications (such as simultaneous inference for high-dimensional statistical models; cf. [5]),
the statistic 7}, can only be asymptotically approximated by the maximum coordinate of the
sample mean of independent random vectors. Also, those random vectors, often correspond-
ing to the influence functions, may not be directly observable but have to be estimated. We
emphasize here that all our results can be extended to such approximate sample mean cases
using the same arguments as those used in [3]; however, we have opted not to carry out the
extension here for brevity of the paper.

3. Iterative Randomized Lindeberg Method. In this section, we derive a distributional
approximation result, Theorem 3.1, using a novel proof technique, which we call the iterative
randomized Lindeberg method. We will use this result in Section 5 to prove our main results
on the Gaussian and bootstrap approximations in high dimensions, as stated in Section 2.

Let Vi,...,V,, Z1,..., Z, be a sequence of independent random vectors in R” such that
E[Vi;] =E[Z;j] =0forall i =1,...,nand j =1,...,p, where Vj; and Z;; denote the jth
components of V;; and Z;;, respectively. We will assume that these vectors obey the following
conditions:

Condition V: There exists a constant C,, > 0 such that forall j =1,...,p, we have
—ZE Vi+zl] <o.B2.

Condition P: There exists a constant Cy, > 1 such that for all i =1, ... ,n, we have

P(IVilloo V 1 Zilloc > CpBalog(pn)) < 1/n’.

Condition B: There exists a constant Cy, > 0 such that forall i =1, ..., n, we have

B[IVil% + 1Zil1%] < CoB§ log* (om).

Condition A: There exist constants C, > 0 and 6 > 0 such that for all (y,t) € RP x (0, 00),
we have

P (%;Ziéyﬂ) —P (\}ﬁ;zgy> <C, (t\/logp+5).

Note that the constants C,,, C),, Cy, and C,, appearing in these conditions are not supposed to
be dependent on their indices, e.g. C), here is not allowed to change with p; the indices are
introduced with the only goal to differentiate between the constants.

The following is the main result of this section:



IMPROVED CLT AND BOOTSTRAP IN HIGH DIMENSIONS 11

THEOREM 3.1 (Distributional Approximation via Iterative Randomized Lindeberg Method).
Suppose that Conditions V, P, B, and A are satisfied. In addition, suppose that

1 n
% 7 7. <
(18) 1%1',%);;; NG ;:1 (E[Vi;Vie] — E[Zi; Zik]) | < CruBny/log(pn)
and
1 ¢ 2 3
7} Vo Vel — 7.7 N <
(19) 1§I]r'71]3§(§p \/ﬁi:1 (E[V;]mkm,] E[ZZ]ZZkle]) < CpB;\/log (pn)

for some constant C,,. Then

R 1< B2log®(pn 1/
P(ﬁ;wgy)_la(ﬁ;zigy) §C<(i@)) H),

where C'is a constant depending only on C,,, C), Cy, Cq, and Cp,.

sup
yeRP

REMARK 3.1 (On Sharpness of Theorem 3.1). We do not claim sharpness of Theorem
3.1 in the high-dimensional case p > n (when p is fixed, the theorem is not sharp in view
of the classical Berry-Esseen bound). On one hand, classical Edgeworth expansions in the
low-dimensional case suggest that conditions like (19) should lead to better distributional
approximation results than the corresponding Gaussian approximation results, which we do
not observe in Theorem 3.1 since Theorem 2.1 gives the same dependence on both n and
p for the Gaussian approximation. On the other hand, to the best of our knowledge, there
exist no analogs of Edgeworth expansions in high dimensions. The question whether condi-
tions like (19) can be used to improve distributional approximations (relative to the Gaussian
approximations) thus remains open. L]

To prove this result, we will need additional notation. For all € € {0,1}", define

(20) oc=sup [P (SY,. <y)—P (5S¢ <y)
yERP

)

where
1 — 1 <&
SV =—N (eVi+(1—e)Z) and SZ=—Y Z.
| \/ﬁ; ﬁ;

We will replace e with a certain sequence of random vectors €, ... e € {0,1}", inde-
pendent of Vi,...,V,, Z1,...,Z,, and derive recursive bounds for p. for d =0,...,D,
which lead to the desired bound in Theorem 3.1. Such a sequence of random vectors
“,...,Pe {0,1}™ is constructed as follow:

s Set D = [4logn] + 1 and initialize € = (1,...,1).

e Let Uy,...,Up be a sequence of independent uniform [0, 1] random variables that are
independent of V1,...,V,,, Z1,..., Z,.

e Ford=1,...,D: conditionally on ¢! and Uy, ...,Up, set egl =0if e;-i_l =0, and gen-
erate {€d}icr,  with Iy 1 ={i=1,...,n: effl =1} asi.i.d. Bernoulli(Uy) random vari-
ables.

It is not difficult to see that for each d = 1, ..., D, the random vector ¢ satisfies the following

properties:

(i) foralli=1,...,n, ¢ =0if =" =0, and
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(i) for Iz ={i= 1 JM: ed 1 =1}, the random variables {€d};c1,_, are exchangeable
conditional on €? and satisfy

1
(1) P ed=s|ed | =——— foralls=0,...,[I;_1]
e; i=s| T+ 1 [ g1

Indeed, to see that (21) holds, observe that, conditional on ¢! and Uy, Zie 1., e? follows
the binomial distribution with parameters |I;_1| and (success probability) Uy, so that

I 1
P Z 6?:8|6d71 = (’ d 1) / us(l—u)lld“'*sdu
5 0

i€l
_ <!-’d—1> st lgal—s)! 1
s ) (gl +1)! [Lgaf+1

Also, two properties (i) and (ii) ensure that S , — n~1/2 > i¢1, , Zi is the randomized Lin-

deberg interpolant between n /2 Zz‘eld,l V; and n—1/2 Zield,l Z;; see Lemma 1.2 and the
discussion at the beginning of Step 1 of the proof of Lemma 3.1.
Further, foralli=1,...,nand j,k,l=1,...,p, define

8Xjk_ [Vij Vir), 5@]kz E[Vi; Vir Vil

el =E[ZiiZal, €51 =EZij Zin Za).

1,
Foralln>1andd=0,...,D,let B, 14 and B,, 2 4 be some strictly positive constants, and
define the event A, by
1 n
. {133‘3;7, NG ; F(Ejk = E01)| < B d}

n

1
% Z Eg(gi‘,/jkl & jkz)

=1

ﬂ max <Bn24
1<5,k,1<p

The proof of Theorem 3.1 proceeds as follows. In Lemma 3.1 and Corollary 3.1, we estab-
lish a recursive inequality for E[g.a1{A4}], d=0,..., D. Next, we show in Lemma 3.2 that
E[o.r1{Ap}] is bounded by 1/n. Then, we use an induction argument backward to derive
a bound for E[o.01{Ao}]. Since €} =1 for all 4, this gives the claim of the theorem once we
appropriately choose the constants B,, 1 4 and B, » 4. The proof of Lemma 3.1 is long and is
given in Appendix D of the Supplemental Material.

The derivation of the recursive inequality is based on connecting S,/ v o With S7 Z by the
randomized Lindeberg method originally developed by [22]. A similar approach was used in
[12, 15] to connect SX o with G, where the Slepian—Stein method was applied instead. Unlike
the latter approach, the randomized Lindeberg method allows us to match the moments of
SX o and SZ up to the third order rather than the second order. This leads to improvement on
the power of log(pn) factors. In addition, we incorporate a smoothing effect induced by Z;
via Condition A into our argument. This along with the higher-order moment matching lead
to improvement on the power of the sample size n.

LEMMA 3.1. Suppose that Conditions V, P, B, and A are satisfied. Then for any d =
0,...,D — 1 and any constant ¢ > 0 such that

(22) CpBnglog?(pn) < Vn,
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we have on the event Ay,

- V0ogp

B?lqﬁﬁ‘log5 pn
0 S5 +6+#

!
+ (E[Q€d+1 | €] + % + 5)
Buiad*logp  Buoad®log’p  B2¢*log?(pn)
X 2 + = +
Vn n n

up to a constant depending only on C,, Cp, Cy, and C,,.

REMARK 3.2 (Choice of ¢). We will choose ¢ to depend on n via n'/* when applying
this lemma. u

COROLLARY 3.1. Suppose that all assumptions of Lemma 3.1 are satisfied. Then there
exists a constant K > 0 depending only on C,,, C,, and Cy, such that foralld =0, ...,D —1,
if By1as1 > Buia+ KBplog'?(pn) and Bnoap1 > Baoa + K B2log®?(pn), then for
any constant ¢ > 0 satisfying (22), we have

1 B264 1005 i
2 31002 2,473
(23) " <Bn,1,d¢ log p n By2,49° log” p N B2¢*log (pn)>
\/’ﬁ n n

up to a constant depending only on C,, C), Cy, and C,,.

PROOF. Since we assume throughout the paper that p > 2, the conclusion is trivial if
¢ < 1. We will therefore assume in the proof that ¢ > 1. In turn, ¢ > 1 together with (22)
imply that
(24) CyBplog?(pn) < v/n.

This condition will be useful in the proof.
Fixd=0,...,D — 1. Then, given that A; depends only on €%, we have by Lemma 3.1 that

I B2¢*1og® I
5\/°gp+5+ o) 02g (pn)+<E[ \/ogp+5>
¢ ¢
. (Bnp.a¢*logp +Bn,2,d¢3log2p +Bg¢410g3(pn)
Vn n n

up to a constant depending only on C,,, Cp,, C, and C,. Thus, given that (22) implies that
Vlogp/¢ > 1/n, the conclusion of the corollary will follow if we can show that

(25) E[ocar11{Aq}] < Elgea+11{Ag1}] + 4/n.
To this end, we first observe that , as g.a+1 € [0, 1],
Efoca+11{Aq}] = E[oear1 1{Ag}1{Ag41}] + Eloesr1 1{Aa} (1 — 1{Ags1})]
< Efoea11{Agy1}] + E[1{Aq}(1 — 1{Ag41})]
(26) =E[gcar1 1{Ag+1}] + P(Ag) — P(Ag N Ags1)
—P(As)(1-P(Aus1 [ A0))
< Elgea1 {Ag1}] +1 = P(Agpa | Ag).

E[Qed 1{Ad}]

Oed+1 1{Ad}] +
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Moreover, by Lemma 1.1 in the Supplemental Material, for all j,k=1,...,p and ¢t > 0, we

have

<2 nt” <2 < e )
< 2exp <2exp| ———5 |,
32 Zz 1( 1,5k gzZ]k)z 12801737%
where the second inequality follows from Condition V. Applying this inequality with ¢ =

8B,,1/6C, log(pn) and using the fact that

n

1

i=1

d+1
Z 52 gk T 1]k

zyk’ zgk)

max

<Bpi4 on Ay,
1<5,k<p

we have by the union bound that for any B,, 1 411 > By 1.4 + 1,

P Z d+1 o
1<j k<p jk z]k’)

In addition, foralli = 1,...,nand j,k,l = 1,...,p, setting V; = 1{||Vi| oo < C,Bnlog(pn)},
we have that

€ jkl’ < E[|VijVieVal] = [sz]Vszu@ + E[(l - ‘Z’)’Wj%‘k%l@

2
>Bn1d+1\«4d> p

27) < C, By, log(pn)E[|Vi; Virl] + (E[1 — VI)Y2(E[| Vi[5 Y2
< Gy By log(pn)E[|Vi; Vir) + C3/* B3 log™ (pn) /n?
and similarly
1EZ,1] < CoBylog(pn)E[| Zi; Zu]] + Cy/* B3 log® (pn) /n?

by Conditions P and B. Hence, by Condition V and (24), there exists a constant C' depending
only on C,, Cy, and Cj, such that

32 &

n -
=1

(& — E751a)? < OBy log® (pn).

Thus, by the same argument as above, for all j, k:,l =1,...,pand t >0,
1
Pl|— £ ed

<2 i <9 < r )
<2exp| — <2exp| ———F—5-—" |-
32 Z?:l(gi‘,/jkl - 55;‘161)2 CBp log® (pn)

Applying this inequality with ¢ = v/3C'B2 log®?(pn) shows that for any Bpn2d+1 > Bnod+
t, we have

P max
1<4,k,1<p

Thus, 1 — P(Ag41 | Ag) < 4/n, which in combination with (26) implies (25) and completes
the proof. [

n

d+1
Z (51 gkl zgkl

i=1

1jkl zgkl)

n

1
e € =)

=1

3

SRR

(pn)? =

2p
> B 2.d+1 ’Ad> <
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LEMMA 3.2.  Forany constant ¢ > 0 such that (22) holds, we have E[p.0 1{Ap}] <1/n.

PROOF. Recall that D = [4logn] + 1 and note that g.» = 0 if ¢” = (0,...,0)". Moreover,
by Markov’s inequality,

P(eP #£(0,. .. (Z D>1> <E

DS ] 5|3l -

=1

St S

=1

n n

=K <

1
2D — 2410gn — E’

where the equalities on the second line follow from (21). Hence,

E[oo 1{Ap}] < E[ocn] < P(e” #(0,...,0)") < 1/n,

as desired. n

PROOF OF THEOREM 3.1. Throughout the proof, we will assume that
(28) C;B,% log®(pn) <n

since otherwise the conclusion of the theorem is trivial.
Let K be the constant from Corollary 3.1 and for all d =0,..., D, define

(29) Byia=Ci(d+1)Bylog?(pn) and Bgq=Ci(d+1)B2log?(pn),

where C1 = C,,, + K, so that Ag holds by (18) and (19) and, in addition, the requirements of
Corollary 3.1 on B,, 1 ¢ and B,, 5 4 also hold.
Now, foralld =0,..., D, define

1/4
fd—inf{mZL E[gedl{Ad}]§x<<Bgloi5(pm> —|—5>}.

Note that f; < co because g.« < 1. Then, forall d =0,..., D — 1, apply Corollary 3.1 with

nl/4

By 1og® 4 (pn) ((d + 1) fa1) /3

which satisfies the required condition (22) since we assume (28). Since

B2gylog® (pn) _log?(pn) _log'/*(pn) _ C,Bi*1og'/*(pn)

O=¢q=

n2 =T, =T A = nl/a
C Cpvlogp 1 <B2 10g5(pn)>1/4
d+1 R TR B
< VD < (a1 fa) P (22

By,,1,495310gp o Gild+1)
v T ((d+ 1) fara)?
By,2,4¢5log” p V Biigglog’(pn) _ C1V1
n n = far

we have by Corollary 3.1

1/4
Bloe 1 {A2)) < O (£33 + (d+1)%9 +1) ((Bibg%’“)) N 5>

n

and
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for some constant C3 > 1 depending only on C,, Cp,, Cj, Cy, and Cp,. Hence,
fa gcg(fjﬁ F(d+1)23 1), foralld=0,...,D —1.

Here, we have fp =1 by Lemma 3.2 since B,, > 1 by assumption. Therefore, by a simple
induction argument, we conclude that there exists a constant C' > 1 depending only on Cy
such that

fa<C(d+1), foralld=0,...,D.

In particular, it follows that

1/4
QEOI{AO} :E[Qeol{AO}] <C ((Bgllog%n)) +5) _

n

Since Ay holds by construction, so that 1{.4¢} = 1, the desired bound follows by combining
this inequality and the definition of g.o. [

4. Stein Kernels and Gaussian Approximation. Let CZ(RP) be the class of twice con-
tinuously differentiable functions ¢ on RP such that ¢ and all its partial derivatives up to the
second order are bounded where p > 2. Let V' be a centered random vector in RP and assume
that there exists a measurable function 7 : R? — RP*P such that

P P
> E@jp(V)Vi] = Edjre(V)ir(V)]
j=1 Gk=1

for all ¢ € CZ(IRP). This function 7 is called a Stein kernel for the random vector V. Also,
let Z be a centered Gaussian random vector in RP with covariance matrix .

THEOREM 4.1 (Gaussian Approximation via Stein Kernels). If Y;; > ¢ for all j =
1,...,p and some constant ¢ > 0, then

P(V<y) -P(Z< y)’ < C<A10g2p)1/2,

sup
yERP

where C'is a constant depending only on c and A = E [maxi<;j p<p |Tjr (V) — Xji|] -
REMARK 4.1. This theorem improves upon Proposition 4.1 in [29], which shows that

sup

P(V<y)-P(Z< y)‘ < C(Alog2p> v
yERP

under the same conditions. n

Theorem 4.1 is proven in Appendix E of the Supplemental Material. It has two important
corollaries. The first is Proposition 2.1, a sharp Gaussian-to-Gaussian comparison inequality
stated in Section 2:

PROOF OF PROPOSITION 2.1. If V is a centered Gaussian random vector, then by the
multivariate Stein identity, its Stein kernel coincides with its covariance matrix. Hence, The-

orem 4.1 immediately implies the conclusion of Proposition 2.1. (]

Second, combining Theorem 4.1 with Lemma 4.6 in [30] gives the following result:
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COROLLARY 4.1 (Multiplier-Bootstrap-to-Gaussian Comparison). Let aq,...,a, be
vectors in RP such that

1 1 o
min — E a?- >c and max — E afj < B?
i=1 i=1

1<i<pn 1<ji<pn
for some constants ¢, B > 0. Also, let €1, ..., be independent N (0,1) random variables.
Moreover, for some constants o, 3 > 0, let e1, . . ., e, be independent standardized Beta(c, [3)
random variables so that
(30) Ele;] =0 and E[e?|=1, foralli=1,...,n.

Then, for the random vectors

1 — 1 «
V:—E s d Zzii s
\/ﬁ - €;a; an \/ﬁ — €iay4
we have

31 sup

B2 log5p 1/4
yERP > ’

n

P(Vﬁy)—P(ZSy)‘ §C<
where C' is a constant depending only on ¢, o and f.

PROOF. Recall that 1) ~ Beta(«, 3) has density function f, g(x) oc 2% 1(1 — x)?~1 for
x €[0,1], mean = a/(a+ ), and variance 02 = a3/((a+ 8)?(a+ 5 +1)). By definition,
the common distribution of the random variables ey, . . ., e, equals that of (n — u)/o.
Define

(@)=~ - o' o

f(x) f(z)
where f(z) = 0 fug(0x + p) for z € (— £, 1) is the density function of (n — 1) /0. From

L’ Hospital’s rule, there exists a constant C de%ending only on « and 3 such that |7(x)| < C4
forall 2 € (— £, 12). Also, by integration by parts, E[e1¢(e1)] = E[¢/(e1)7(e1)] for any

continuously differentiable function ¢: R — R. Then, by Lemma 4.6 in [30], a Stein kernel
7V for the random vector V' satisfies

L T En)

log

E | max < Oy

1<5,k<p n

1 n
TX@'(V) - E Zaijaik
i=1

for some constant Cs depending only on C. The desired conclusion (31) follows from com-
bining this bound with Theorem 4.1 and observing that E[Z; Z;] = n~1 Y| a;ja;, for all
5L k=1,...,p. [

5. Proofs of Theorems 2.1 and 2.2. In this section, we provide proofs of Theorems
2.1 and 2.2. Proofs of Theorems 2.3 and 2.4 will be given in Appendices G and H of the
Supplemental Material. To simplify notation, we write

27,50 1/4 273
5, = (Bn log (pn)> and v, — 1) Zalog” ()

n n

Our proof strategy for Theorems 2.1 and 2.2 is summarized as follows. First, we consider
the multiplier bootstrap statistic 7,7 with the weights e; constructed from the standardized
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Beta(a, ) distribution and parameters « and 3 chosen so that E[e?] = 1. Thanks to Corollary
4.1 and Proposition 2.1, we have Gaussian approximation to this statistic with the rate 9,,.
This implies that Condition A in Section 3 is satisfied with Z; = ¢;(X; — X,,) and § = §,, due
to the Gaussian anti-concentration inequality in Lemma J.3 of the Supplemental Material.
In turn, the latter allows us to invoke Theorem 3.1, which gives the approximation to 7;, by
T with the rate &,,. (Note that having E[e3] = 1 is important here since otherwise Theorem
3.1 would give a slower approximation rate.) Combining this result with the aforementioned
Gaussian approximation for 7);, we obtain the Gaussian approximation for 7;, with the rate
Op. This is done in Lemma 5.3 and gives Theorem 2.1.

Second, we consider the empirical bootstrap statistic 7. Since we now have the Gaussian
approximation for 7}, with the rate d,,, it follows that Condition A is satisfied with Z; = X;
and d = 6,,. Hence, applying Theorem 3.1 with V; = X and Z; = X;, we can verify the
empirical bootstrap approximation for 7;, with the rate d,. This is done in Lemma 5.5 and
gives one part of Theorem 2.2.

Third, we consider the multiplier bootstrap statistic 7, with arbitrary weights e; satisfying
(12). By choosing parameters « and 3 appropriately, we can match the first three moments of
these weights by weights constructed from the standardized Beta(«,3) distribution. Thus, yet
another application of Theorem 3.1 allows us to link the distribution of any multiplier boot-
strap statistic to the distribution of the multiplier bootstrap statistic with weights constructed
from the standardized Beta(c,3) distribution and further, via Corollary 4.1 and Proposition
2.1, to the Gaussian distribution. This leads to the Gaussian approximation for the multiplier
bootstrap statistic 7 with the rate d,,. This is done in Lemma 5.6 and gives the other part of
Theorem 2.2.

Before proceeding to the main body of the proofs, we present a few auxiliary results.

LEMMA 5.1.  Suppose that Condition E is satisfied. Then

32 Xl <5B. 1
(32) 11;1%\\ illoo < 5Bplog(pn)

with probability at least 1 — 1/(2n*). In addition,

181 < OB8 o6
max E [|[X;]5] < CBlog® (pn),

where C'is a universal constant.

PROOF. By the union bound, Markov’s inequality, and Condition E, we have for any x > 0
that

P (max max |X;;| > x> <pn max max P(|X;;| > z)
1<i<n 1<j<p 1<i<n 1<5<p

Elexp(|Xi;]/Bn)]
< < - .
=PI T ep(@/By) Znexp(~o/B,)

Substituting here x = 5B,, log(pn) gives the first asserted claim. The second asserted claim
follows from combining Condition E, inequalities on page 95 in [39], and Lemma 2.2.2 in
[39]. n

LEMMA 5.2. Suppose that Conditions E and M are satisfied and set X,=X;,— X, for
all i = 1,...,n. Then there exist a universal constant c¢ € (0,1] and constants C > 0 and
ng € N depending only on by and by such that for all n > ny, if the inequality

(33) BZlog®(pn) < cn



IMPROVED CLT AND BOOTSTRAP IN HIGH DIMENSIONS 19

holds, then the following events hold jointly with probability at least 1 — 1/n — 3uvy,:

- 1= o4 9.9 .
(34) 2§n;_1 ; and n;_lXij§QBnb2, forallj=1,....p,
I & -~ =
X X <
(35) 12?%)21) \/ﬁiEZI(XU ik — B[Xi; Xik])| < CByp+/log(pn),
I S 55 2 /1.3
X X — X XA < )
(36) 131213}2{9 \/ﬁigl(XlekXd E[X;; X Xu])| < CB;4/log”(pn)

The proof of this lemma is rather standard but long, and so is deferred to Appendix F of
the Supplemental Material.

LEMMA 5.3.  Suppose that Conditions E and M are satisfied. Then

(B,% 1og5<pn>>”4

(37) sup|[P(T, <) — P(T <x)|<C
n

z€R

where C' is a constant depending only on by and bs.

PROOF. Without loss of generality, we may assume that (33) holds and that n is large
enough so that n > ng for ng from Lemma 5.2, since otherwise the conclusion of the lemma is
trivial by taking C' large enough. This will justify an application of Lemma 5.2 when needed.
In addition, by again taking C large enough, we may assume that 1/n* +2/n + 3v, < 1.

Let A, be the event that (32) and (34)—(36) hold jointly. By Lemmas 5.1 and 5.2,
P(A,) >1—1/(2n*) — 1/n — 3v, > 0. Further, let ey,...,e, be independent standard-
ized Beta(1/2,3/2) random variables, standardized in such a way that they have mean zero
and unit variance (cf. Corollary 4.1), that are independent of X1., = (X1,...,X,). It is not
difficult to check that E[e}] =1 foralli =1,...,n.

Let T be the multiplier bootstrap statistic with weights ey, ..., e,. Condition on Xj.,
such that A, holds. Then, by Corollary 4.1 and the definition of 4,,, we have

(38) sup
yeRP

S 015717

1 — _ A
P{— ’LXZ_XH < X:n -P < X:n
<\/ﬁ;€( )<yl X1 > (G <y| Xin)

while by Proposition 2.1, we have

sup [P(G <y | X1.,) — P(G <y)| < Cady,
yERP

where C and Cs are constants depending only on b; and bs.

Next, we shall invoke Theorem 3.1 to compare the distribution of 7}, with the conditional
distribution of 7). Formally, let Y1, ...,Y, be independent copies of X,...,X,, that are
independent of X;.,, and define 7, by T,, with X;’s replaced by Y;’s. Then, P(T,, < z) =
P(T] < x| Xj.,). Condition on X7, such that A, holds and apply Theorem 3.1 with V; =Y;
and Z; = ¢; X, foralli = 1,...,n. Since E[e;] = 0 and E[e?] = E[e}] = 1 foralli =1,...,n,
it is not difficult to see from the definition of A,, that Conditions V, P, and B, as well as
inequalities (18) and (19) of Theorem 3.1 are satisfied with appropriate constants C.,, Cp,, Cy,
and (), that depend only on by, by. It remains to verify Condition A in Theorem 3.1. Observe
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that for any y € RP and ¢ > 0,
(39)

1 & . 5
P (\/ﬁZei(Xi - Xn) §y+t\X1m> <P(G<y+t|Xim)+ a8y (by (39))
1=1

<P (G <vy| X1;n> + Kity/logp+ C10,, (by Lemma J.3 and (34))

1< _
< P <\/ﬁ Zez(Xz - Xn) < Y | Xl:n) + Klt V Ing + 20157L7 (by (38))
i=1

where K7 > 0 is a constant depending only on b;. Thus, applying Theorem 3.1, we conclude

that

sup [P(T,, <) — P(T; <@ | Xiip)| =sup [P(T}, <2 | Xi:) — P(T) < 2| Xin)| < O3
z€R x€ER

for some constant C'3 depending only on b; and bo. The asserted claim follows from these
bounds via the triangle inequality by noting that the left-hand side of (37) is non-stochastic,
so that if (37) holds with strictly positive probability (recall that P(.A,,) > 0), then it holds
with probability one. L]

LEMMA 5.4. Suppose that Conditions E and M are satisfied. Then for any y € RP and
t>0,

1 & 1 « B2 log®(pn) 1/4
Pl — Xi<y+t|-—-P|— X, <y | <C|t logp—i-(") ,

where C' is a constant depending only on by and bs.

PROOF. Fix y € RP and t > 0. Then for some constant C' depending only on b; and b,

(}Z‘figy t>SI(G§y+t)+C5n<P(G<Z/)+Ct logp + Coy,
n
i=1

<P <\1f E X; Sy) + Cty/logp 4+ 2C4,,
n
i=1

where the first and the third inequalities follow from Lemma 5.3 and the second from Lemma
J.3 of the Supplemental Material. This gives the asserted claim. [

LEMMA 5.5. Suppose that Conditions E and M are satisfied and that the random vari-
ables X7,..., X} are obtained via the empirical bootstrap. Then with probability at least
1 —2/n — 3v,, we have

sup|P(T,, <z)—P(T; <z| X1.,)|<C

z€R n

<B§‘; log®(pn) ) v

where C' is a constant depending only on by and bs.

PROOF. As before, we may assume that (33) holds and that n is large enough so that
n > ng for ng from Lemma 5.2, since otherwise the conclusion of the lemma is trivial by
taking C' large enough. This will justify an application of Lemma 5.2 when needed.
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Let Y7,...,Y, be vectors in RP such that

(40) |Yilloo <10Bjlog(pn) foralli=1,...,n,
1 1 «
(41) 1/2<=)"VZ and =) Vj<2B23, forallj=1,....p,
n n
i=1 i=1
1 n
(42) B E(Y;jyik — E[Xi; Xix])| < CrmBn/log(pn),
1=
and
1 n
@y max | ;mmm — E[X;j X Xa])| < CmBiy/log® (pn),
where C), is the constant C' from Lemma 5.2. Also, let Y7*,..., Y’ be independent random
vectors with each Y;* having uniform distribution on {Y7,...,Y,}.

To prove the asserted claim, we will apply Theorem 3.1 with V; =Y;* and Z; = X for all
t=1,...,n.Conditions V, P, and B with constants C,,, Cp,, and Cj, depending only on b; and
by follow immediately from Conditions E and M, Lemma 5.1, and the inequalities in (40)
and (41). Also, Condition A with § = §,, and C, depending only on b; and by follows from
Lemma 5.4. Hence, an application of Theorem 3.1 is justified if we can verify (18) and (19)
but these inequalities follow from (42) and (43) by noting that

1 « 1 «
n iZI(E[VijVik] —Y;;Yi) =0 and 7n ;(E[ijikviz] -Y;;YiYy) =0
forall j,k,l=1,...,p. Now, applying Theorem 3.1 shows that for all y € RP, we have
1 & 1 & B2 log®(pn) 1/
P—=YVi<y|-P[-=Y xi<y gm(“)
for some constant Ky depending only on by, b2, and C,,,. The asserted claim follows from

this bound by setting Y; = X; — X, foralli=1,...,n,and noting that in this case (40) holds
with probability at least 1 — 1/(2n%) by Lemma 5.1 and (41), (42), and (43) hold jointly with

probability at least 1 — 1/n — 3v,, by Lemma 5.2. n
LEMMA 5.6. Suppose that Conditions E and M are satisfied and that the random vari-
ables X7, ..., X, are obtained via the multiplier bootstrap with weights ey, . .. , e, satisfying
(12). Then with probability at least 1 — 2/n — 3vy,, we have
B2 1 5 1/4
sup [P(T, < 2) — P(T < 2| X1)| <C <nog(pn)> ,
z€R n

where C' is a constant depending only on E[e}], by and bs.

REMARK 5.1. The constant C' in this result depends on E[e3] continuously, and so we
can take C independent of E[e3] under the implicitly maintained assumption that (12) holds.

PROOF. As before, we may assume that (33) holds and that n is large enough so that
n > ng for ng from Lemma 5.2, since otherwise the conclusion of the lemma is trivial by
taking C' large enough. This will justify an application of Lemma 5.2 when needed.
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Let A, be the event that (32) and (34)—(36) hold jointly. By Lemmas 5.1 and 5.2, we have
P(A,) > 1—2/n — 3v,. Moreover, by Proposition 2.1,

(44) sup [P(G <y | X1n) —P(G <y)| < Cidn
y p
on the event A,,, where (' is a constant depending only on b; and b,.

Next, we claim that the case with o, > 0 can be reduced to the case with o, = 0 (and
the constant 3 appearing in (12) replaced by some other universal constant). To prove this
claim, define random variables €/, ..., e}, as in Corollary 4.1 with & = 8 = 1 such that they
are independent of everything else. Then on the event .A,,, by Corollary 4.1, we have that

1 — - 1 <& .
Pl — LX<yl Xy —P 12X <wy | Xy
(\/ﬁ;% i _y‘ 1.n> (Je\/ﬁ;@,l i _y| 1.n)

where )N(i =X, — X, foralli=1,...,n and C5 is a constant depending only on b; and bs.
Therefore, noting that the sequences {e; 1}, {e; 2}, and {e}}! ; are independent, we
have on A,, that

I o - 1 & .
Pl—=)) eXi<y|Xin|—P|—=) (0cei+e2)Xi<y| X1,
(2 ) (o

sup S 02 5717

yeR?

sup
yEeRP
1 n
<E|sup |[P| =) e 1X;<y|Xipn,{ei2}"
=~ [ygl@) (ﬁ; 7,1 z_y‘ 1:n { 7,,2}1_1)

1 <& .
-P (n > o Xi <yl Xim, {ei,z};u) ‘ | Xim| < Cabn.

vn i=1
Thus, it suffices to prove the asserted claim with e;’s replaced by aee; + €;2’s, which are
bounded by a universal constant (note that 0. < 1 since e; has unit variance).
Further, define the function f: (0,1) — R by
2v/2(1 — 2a)

f(a):m, forall a« € (0,1).

One can directly check that f(«) is the skewness of the Beta(a, 1 — «) distribution for all

€ (0,1). Since limy—0 f(a) = 00, limy—y1 f(or) = —o0 and f is continuous, there is an
a* € (0,1) satisfying f(a*) = E[e}]. We define random variables €1, ..., é, as in Corollary
4.1 with « = @* and § = 1 — o such that they are independent of everything else. It is then
easy to check that E[¢;] = 0, E[¢7] = 1, and E[¢}] = E[e}] forall i = 1,...,n. Also, applying
Corollary 4.1, we have on 4, that

I . - .
P<\/ﬁ;eiXi§y|X1:n>_P<G§y|X1:n>

where Cj is a constant depending only on o*, by and ba.

We now apply Theorem 3.1 with V; = ¢; X; and Z; = ¢; X; forall : =1, ...,n conditional
on Xj., on the event A4,,. Conditions V, P, and B with C,, C,, and C}, depending only on o,
b1 and by follow immediately from the inequalities (32) and (34) and the boundedness of e;’s
and ¢&;’s. Condition A with § = §,, follows from (45) and the derivation in (39). Moreover,
(18) and (19) are evident by construction. Thus, by Theorem 3.1, we have on A,, that

1 ~—_ - 1 — -
Pl—=) &Xi<y|Xin|-P|—=) eXi<y|Xi,
> ) (2

45) sup
yERP

S 0357L7

(46) sup
yERP

S 045717
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where Cj is a constant depending only on «*, b; and bs. The asserted claim now follows
from combining (44), (45), and (46) via the triangle inequality and using Lemma 5.3. =

We are now in the position to prove the main results from Section 2.

PROOF OF THEOREM 2.1. The asserted claim follows immediately from Lemma 5.3 by
applying (37) with z = cf_a. [

PROOF OF THEOREM 2.2. Let C1, C3, and C3 be the constants C' in Lemmas 5.4, 5.5,
and 5.6, respectively. Set

By log”(pn) ) v

n

ﬁn:(l\/cl\/CQ\/Cg,)(

By Lemmas 5.5 and 5.6, we have sup,.cg |P(T), < x) — P(T}; <z | X1.,)| < By, with prob-
ability at least 1 — 2/n — 3v,,. Hence, letting ¢;_-, be the (1 — v)th quantile of T;, for all
v € (0,1), we have with the same probability that

P(T; < Cl—a+8, ‘ Xl:n) > P(Tn < leaJrﬁn) - 571 >1- &, and
P(T;, <ci—a-38, | X1:n) <P(Th < ci—a-38,) + Bn

321 5 1/4
§1—a—25n+01<"0g(pn)> <1-—aq,
n

where the second inequality follows from Lemma 5.4. Therefore,
P(ci—a-38, < c?fa <cCloats,) >1—2/n—3v, >1—5uvy,,
so that

P(T, > cP ) <P(T,>c1_a_3p,) + 50, <a+36, +5u, <a+83, and

P(T,>cP ) >P(T, > CloatB,) — DUn

B log”(pn) > v

n

_5Un2a_7/8n7

204_671_01<

where the second inequality follows from Lemma 5.4. Combining these inequalities gives
the asserted claim. n
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