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This paper deals with the Gaussian and bootstrap approximations to the
distribution of the max statistic in high dimensions. This statistic takes the
form of the maximum over components of the sum of independent random
vectors and its distribution plays a key role in many high-dimensional esti-
mation and testing problems. Using a novel iterative randomized Lindeberg
method, the paper derives new bounds for the distributional approximation
errors. These new bounds substantially improve upon existing ones and si-
multaneously allow for a larger class of bootstrap methods.

1. Introduction. Let X1, . . . ,Xn be independent random vectors in Rp such that
E[Xij ] = µj for all i= 1, . . . , n and j = 1, . . . , p, whereXij denotes the jth component of the
vector Xi. We are interested in approximating the distribution of the maximum coordinate of
the centered sample mean of X1, . . . ,Xn, i.e.,

(1) Tn = max
1≤j≤p

1√
n

n∑
i=1

(Xij − µj).

The distribution of Tn plays a particularly important role in many high-dimensional settings,
where p is potentially larger or much larger than n. For example, it appears in selecting the
regularization parameters for the Lasso estimator and the Dantzig selector ([12]), in carry-
ing out reality checks for data snooping and testing superior predictive ability ([42, 25]), in
constructing model confidence sets ([26]), in testing conditional and/or many unconditional
moment inequalities ([2, 19, 16, 31]), in multiple testing with the family-wise error rate con-
trol ([3]), in constructing simultaneous confidence intervals for high-dimensional parameters
([4]), in adaptive testing of regression and stochastic monotonicity ([20, 21]), in carrying out
inference on generalized instrumental variable models ([18]), and in constructing Lepski-type
procedures for adaptive estimation and inference in nonparametric problems ([13]); more ref-
erences can be found in [22] and especially in [3]. It is therefore of great interest to develop
methods for obtaining feasible and accurate approximations to the distribution of Tn, allow-
ing for the high-dimensional p� n case.

Toward this goal, the first three authors of this paper obtained the following Gaussian
approximation result in [12, 15]. Let G= (G1, . . . ,Gp)

′ be a Gaussian random vector in Rp
with mean µ= (µ1, . . . , µp)

′ and covariance matrix n−1
∑n

i=1 E[(Xi − µ)(Xi − µ)′] and let
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the critical value c1−α be the (1−α)th quantile of max1≤j≤pGj . Then under mild regularity
conditions,

(2)
∣∣∣P(Tn > c1−α)− α

∣∣∣≤C( log7(pn)

n

)1/6

,

where C is a constant that is independent of n and p. This result is important because the
right-hand side of the bound (2) depends on p only via the logarithm of p, and hence it shows
that the Gaussian approximation holds if log p= o(n1/7), which allows p to be much larger
than n. Besides, building upon this result, the same authors have proved bounds similar to (2)
for the critical values obtained by the Gaussian multiplier and empirical bootstraps in [15].

Gaussian approximation of the form (2) allows us to develop powerful inference methods
for high-dimensional data in applications discussed above and has stimulated further devel-
opments into dependent data [44, 43, 16], U -statistics [19, 10, 11], Malliavin calculus [20],
and homogeneous sums [29]. Despite such rapid developments, the literature has left much
to be desired on coherent understanding of sharpness of the bound (2) for the Gaussian or
bootstrap critical values since the first appearance of [15] in 2014 on arXiv. The problem can
be decomposed into two parts: (i) sharpness of the bound in terms of dependence on n and
(ii) sharpness of the bound in terms of dependence on p.

There are two important developments toward the question of sharpness of the bound (2)
that should be mentioned. First, Deng and Zhang [22] considered direct bootstrap approxi-
mation without taking the root of Gaussian approximation, and proved the following bound
for the critical value c1−α obtained by the empirical or third-order matching (or Mammen’s
[36]) multiplier bootstraps:

(3)
∣∣∣P(Tn > c1−α)− α

∣∣∣≤C( log5(pn)

n

)1/6

.

Their bound improves the power of the logs in the previous bound (2), showing that the
empirical and Mammen’s bootstraps are consistent to approximate the distribution of Tn if
log p = o(n1/5) instead of log p = o(n1/7). Second, the recent preprint by the fourth author
[30] shows that the same bound (3) indeed holds for the Gaussian critical value as well.

In turn, in this paper, we show that in fact a much larger improvement is possible: under
mild regularity conditions, we prove that

(4)
∣∣∣P(Tn > c1−α)− α

∣∣∣≤C( log5(pn)

n

)1/4

,

both for the Gaussian and bootstrap critical values c1−α. In comparison with the Gaussian
approximation result (2), our new bound improves not only the power of the logs but also
the power of the sample size n. Moreover, regarding the bootstrap types, we allow for not
only the empirical and third-order matching multiplier bootstrap methods, but also for general
multiplier bootstrap methods (with i.i.d weights), which match only two moments of the data,
such as the multiplier bootstrap methods with Gaussian and Rademacher weights.

We remark that several authors have recently pointed out that an additional structural
assumption on the covariance matrices of Xi’s can improve the bound (4). In partic-
ular, Fang and Koike [23] showed that the right-hand side of (4) can be improved to
C(log4(pn)/n)1/3 when the covariance matrices are non-degenerate and can be further im-
proved to C(log3(p)/n)1/2 logn when we additionally assume that Xi’s have log-concave
densities. The latter result is based on the fact that random vectors with log-concave densities
admit Stein kernels with sub-Weibull entries, which is established by Fathi in [24]. Moreover,
building on the important results by Lopes in [34] and Kuchibhotla and Rinaldo in [32], [17]
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showed that the bound C(log3(p)/n)1/2 logn can be achieved even without the assumption
of log-concave densities (non-degenerate covariance matrices are still required; [34] and [32]
were the first to obtain dependence on n via 1/

√
n in (4) without requiring log-concave den-

sities). In addition, Lopes, Lin and Müller [35] showed that the right-hand side of (4) can be
improved to Cn−1/2+δ for any δ > 0 when the coordinates of Xi’s have decaying variances.
Compared to these results, our bound requires neither non-degenerate covariance matrices
nor decaying variances.

In addition, we prove that if the distribution of the random vectors X1, . . . ,Xn is symmet-
ric around the mean, then even better approximation to the distribution of Tn is possible:

(5)
∣∣∣P(Tn > c1−α)− α

∣∣∣≤C( log3(pn)

n

)1/2

as long as the critical value c1−α is obtained via the multiplier bootstrap method with
Rademacher weights. This new bound makes Rademacher weights particularly appealing
in the high-dimensional settings, at least from a theoretical perspective.

We also consider bootstrap approximations with incremental factors, previously used by
Andrews and Shi in [1] in the context of testing conditional moment inequalities. Specifically,
for a small but fixed constant η > 0, called an incremental factor, we derive the following
bounds:

(6) P(Tn > c1−α + η)− α≤C
(

log3(pn)

n

)1/2

if c1−α is obtained via either the empirical or the third-order matching multiplier bootstrap
methods and

(7) P(Tn > c1−α + η)− α≤C
(

log5(pn)

n

)1/2

if c1−α is obtained via general multiplier bootstrap methods, where the constant C may de-
pend on η. Even though these are one-sided bounds, they are useful because they show that
in any test based on the statistic Tn, increasing the critical value c1−α by an incremental fac-
tor η may substantially reduce the sample complexity for over-rejection. Namely, assuming
log p & logn for simplicity, for the over-rejection probability to be less than or equal to a
given level 0 < ∆ < 1 − α, the empirical bootstrap or multiplier bootstrap (without incre-
mental factor) requires n & ∆−4 log5 p, while adding a constant incremental factor reduces
the sample complexity to n & (∆−2 log3 p) ∨ log5 p if we use the empirical or third-order
matching bootstrap. It is worth noting that, given that in high-dimensional settings, where p
is rapidly increasing together with n, c1−α is typically also getting large as we increase n,
adding an incremental factor η may not have a large impact on the power properties of the
test.

In fact, all our results apply to a more general version of the statistic Tn:

(8) Tn = max
1≤j≤p

1√
n

n∑
i=1

(Xij − µj + aj),

where a = (a1, . . . , ap)
′ is a vector in Rp, which reduces to (1) if we set a = 0p. In most

applications mentioned above, the former version (1) is sufficient but there are some applica-
tions where the more general version (8) is required; for example, the latter was used by Bai,
Shaikh, and Santos in [2] to extend the method of testing moment inequalities proposed in
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[38] for the case of a small number of inequalities to the case of a large number of inequali-
ties. For the rest of the paper, we will therefore work with the more general version (8) of the
statistic Tn. In addition, we emphasize that our results can be equally applied with

Tn = max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(Xij − µj + aj)

∣∣∣∣∣
by replacing the p-dimensional vectors Xi − µ+ a with the 2p-dimensional vectors whose
first p components are equal to Xi − µ+ a and the last p components are equal to −(Xi −
µ+ a).

To prove (4), we develop a novel and iterative version of the randomized Lindeberg
method. A key feature of our approach is that we carry out a careful analysis of the coef-
ficients in the Taylor expansion underlying the Lindeberg method. In particular, we apply the
Lindeberg method iteratively in combination with an anti-concentration inequality for max-
ima of Gaussian processes to bound these coefficients, which substantially improves upon the
original randomized Lindeberg method proposed in [22]. In addition, we sharpen the Gaus-
sian approximation bounds for the multiplier processes developed in [30] using Stein’s ker-
nels. In turn, to prove (5), we establish a new connection between the Rademacher bootstrap
and the randomization tests, as discussed in [33], using a recent result from the computer sci-
ence literature on pseudo-random number generators by O’Donnell, Servedio, and Tan [37],
which provides an anti-concentration inequality for maxima of Rademacher processes. Fi-
nally, to prove error bounds (6) and (7), we apply the original randomized Lindeberg method
as developed in [22].

Finally, we conduct a small scale simulation study. Our simulation study shows that (i)
all bootstrap methods considered in this paper perform reasonably well in high dimensions;
(ii) for asymmetric distributions, the empirical and the third-order matching multiplier boot-
strap methods outperform the multiplier bootstrap methods with Gaussian and Rademacher
weights; and (iii) for symmetric distributions, the multiplier bootstrap with Rademacher
weights performs the best, which is consistent with Theorem 2.3 ahead. See the Supple-
mentary Material for details.

The rest of the paper is organized as follows. In the next section, we present our main re-
sults. In Section 3, we develop the iterative randomized Lindeberg method, which is the first
key component in deriving our main results. In Section 4, we provide new bounds for the
Gaussian approximations using Stein’s kernels, which is the second key component in deriv-
ing our main results. In Section 5, we give proofs of the main results. In the Supplemental
Material, we collect additional derivations and conduct a small simulation study.

1.1. Notation. For any vectors x, y ∈Rp and any scalar c ∈R, we write x≤ y if xj ≤ yj
for all j = 1, . . . , p and write x + c to denote the vector in Rp whose jth component is
xj + c for all j = 1, . . . , p. Also, for any sequences of scalars {an}n≥1 and {bn}n≥1 we write
an . bn if an ≤Cbn for all n≥ 1 for some constant C . Recall that, for any random variable
T and a constant γ ∈ (0,1), the γth quantile of T is defined as inf{t ∈ R : P(T ≤ t) ≥ γ}.
Finally, we use the notation X1:n = (X1, . . . ,Xn).

2. Main Results. In this section, we present our main results. We first formally define
all the critical values c1−α to be used throughout the paper. We then discuss the required
regularity conditions and present the results.
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2.1. Gaussian and Bootstrap Critical Values. First, define the Gaussian critical value
cG1−α as the (1− α)th quantile of

(9) TGn = max
1≤j≤p

(Gj + aj),

where G is a centered Gaussian random vector in Rp with the covariance matrix

(10) Σn =
1

n

n∑
i=1

E[(Xi − µ)(Xi − µ)′],

which coincides with the covariance matrix of
√
n(X̄n − µ). Second, define the bootstrap

critical value cB1−α as the (1− α)th quantile of the conditional distribution of

(11) T ∗n = max
1≤j≤p

1√
n

n∑
i=1

(X∗ij + aj)

given the data X1, . . . ,Xn, where X∗1 , . . . ,X
∗
n is a (not necessarily empirical) bootstrap sam-

ple. We consider the following types of the bootstrap:

• Empirical bootstrap: let X∗1 , . . . ,X
∗
n be a sequence of i.i.d. random variables sampled from

the uniform distribution on {X1− X̄n, . . . ,Xn− X̄n}, where X̄n = n−1
∑n

i=1Xi denotes
the sample mean of the data X1, . . . ,Xn.

• Multiplier bootstrap: let e1, . . . , en be a sequence of i.i.d. random variables with mean zero
and unit variance, referred to as weights, which are independent of X1, . . . ,Xn. Define
X∗i = ei(Xi − X̄n) for all i= 1, . . . , n.

For the multiplier bootstrap, we will assume throughout the paper that the weights
e1, . . . , en are such that

(12)
ei = ei,1 + ei,2, where ei,1 and ei,2 are independent, ei,1 has
the N(0, σ2e) distribution for some σe ≥ 0, and |ei,2| ≤ 3.

Condition (12) is mild and covers many commonly used weights, such as:

• Gaussian weights: ei,1 ∼N(0,1) and ei,2 = 0.
• Rademacher weights: ei,1 = 0 (i.e., σe = 0) and P(ei,2 =±1) = 1/2.
• Mammen’s weights [36]: ei,1 = 0 and

P

(
ei,2 =

1±
√

5

2

)
=

√
5∓ 1

2
√

5
.

See Remark 2.1 for further discussion on Condition (12).
Occasionally, we will also consider the weights with unit third moment, namely,

(13) E[e3i ] = 1, for all i= 1, . . . , n.

The weights satisfying Condition (13) correspond to the third-order matching multiplier boot-
strap mentioned in the Introduction. We note that Mammen’s weights satisfy both Conditions
(12) and (13), but neither Rademacher nor Gaussian weights satisfy Condition (13). See
Lemma I.3 in the Supplemental Material, where we provide a more general class of distribu-
tions for the weights satisfying both Conditions (12) and (13).

Before proceeding to the regularity conditions, we also note that the multiplier bootstrap
critical value cB1−α with Gaussian weights can be regarded as a feasible version of the Gaus-
sian critical value cG1−α. Indeed, it is easy to see that the former can be alternatively defined
as the (1− α)th quantile of the distribution of

T Ĝn = max
1≤j≤p

(Ĝj + aj),
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where Ĝ∼N(0p, Σ̂n) and Σ̂n is the empirical covariance matrix

(14) Σ̂n = n−1
n∑
i=1

(Xi − X̄n)(Xi − X̄n)′.

For brevity, we sometimes refer to both quantities as the Gaussian critical values.

REMARK 2.1 (On Condition (12)). Condition (12) is technical and can be weakened
depending on the moment conditions on Xi. A key step in the proof of Theorem 2.2 is
to apply Theorem 3.1 ahead to approximate the conditional distribution of T ∗n with that of
the multiplier bootstrap statistic with weights following a Beta distribution that matches the
moments of ei up to the third order (to be precise, we first replace the Gaussian components
ei,1 by bounded weights in the proof of Theorem 2.2). Condition (12) will be used to verify
Conditions V, P, and B when we apply Theorem 3.1 there. If, e.g., Xi are bounded by Bn,
then the conclusion of Theorem 2.2 continues to hold for sub-exponential weights. Since
current Condition (12) already covers many commonly used bootstrap weights, however, we
do not pursue this generality of the weights to keep our presentation reasonable concise.

2.2. Regularity Conditions. First, observe that given the construction of the statistic Tn
in (8) and its Gaussian and bootstrap analogs in (9) and (11), it is without loss of generality
to assume that µj = 0 for all j = 1, . . . , p, which is what we do for the rest of the paper.
Also, all our results follow immediately if n = 2, so we assume n ≥ 3, which in particular
implies log(pn) ≥ 1. In addition, since we are primarily interested in the case with large p,
we assume p≥ 2.

Second, let b1 and b2 be some strictly positive constants such that b1 ≤ b2 and let {Bn}n≥1
be a sequence of constants such that Bn ≥ 1 for all n≥ 1. Here, the sequence {Bn}n≥1 can
diverge to infinity as the sample size n increases.

Condition E: For all i= 1, . . . , n and j = 1, . . . , p, we have

E[exp(|Xij |/Bn)]≤ 2.

Condition M: For all j = 1, . . . , p, we have

b21 ≤
1

n

n∑
i=1

E[X2
ij ] and

1

n

n∑
i=1

E[X4
ij ]≤B2

nb
2
2.

Condition S: For all i = 1, . . . , n, the distribution of Xi is symmetric in the sense that Xi

and −Xi are identically distributed.

Condition E implies that the random variables Xij are sub-exponential with the Orlicz ψ1-
norm bounded by Bn; see [40] for details. The same sub-exponential condition was assumed
in e.g. [15] and [22]; see Condition (E.1) in [15] and (E.1) in [22]. The first part of Condition
M, which we refer to as the variance lower bound condition, requires that each component
of the random vectors Xi is scaled properly. The variance lower bound condition is needed
to apply the anti-concentration inequalities (cf. Lemmas J.3 and J.4 in the Supplemental
Material) but can be dropped in Theorem 2.4 ahead. Also, at least for Theorems 2.1 and 2.2,
it can be relaxed by using Theorem 10 in [22]. However, to consistently state all the results,
we work with the present assumption. Given the first part, the second part of Condition M
holds if, for example, all random variablesXij are bounded byBn and n−1

∑n
i=1 E[X2

ij ]≤ b22
for all j = 1, . . . , p. Condition S means that the distribution of each Xi is symmetric around
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the mean. Importantly, none of these conditions restrict the correlation matrices of Xi, and
so our results do not follow from the classical results in empirical process theory.

In what follows, we will always maintain Conditions E and M and will assume Condition
S only in Theorem 2.3, which shows that imposing the symmetric distributions improves the
approximation bound for the multiplier bootstrap with Rademacher weights.

2.3. Main Results. We first present a non-asymptotic bound on the error of the Gaussian
approximation to the distribution of the statistic Tn:

THEOREM 2.1 (Gaussian Approximation). Suppose that Conditions E and M are satis-
fied. Then

(15)
∣∣P (Tn > cG1−α

)
− α

∣∣≤C(B2
n log5(pn)

n

)1/4

,

where C is a constant depending only on b1 and b2.

This result improves upon the bound in [30], who obtained a similar result with the rate
1/6 instead of 1/4. Since a ∈Rp in the definition of Tn in (8) is arbitrary, the bound (15) can
be equivalently stated as

sup
A∈A

∣∣∣∣∣P
(

1√
n

n∑
i=1

Xi ∈A

)
−P(G ∈A)

∣∣∣∣∣≤C
(
B2
n log5(pn)

n

)1/4

,

where G∼N(0p,Σn) and A is the class of all hyper-rectangles in Rp, i.e. sets of the form

A=
{
w = (w1, . . . ,wp)

′ ∈Rp : alj ≤wj ≤ arj for all j = 1, . . . , p
}
,

for some constants −∞≤ alj ≤ arj ≤∞ with j = 1, . . . , p. This gives a quantitative Central
Limit Theorem (CLT) over the hyper-rectangles in high dimensions.

The proof of Theorem 2.1, which is deferred to Section 5, is fairly complicated and goes
somewhat backward: (i) we first compare the conditional distribution of a third-order match-
ing bootstrap statistic T ∗n with that of the Gaussian multiplier bootstrap statistic T Ĝn , and then
compare the conditional distribution of T Ĝn with the distribution of TGn . These two compar-
isons rely on the Gaussian approximation via Stein kernel (Theorem 4.1). Then, (ii) we use
the preceding comparison between T ∗n and TGn to verify the anti-concentration for T ∗n to in-
voke Theorem 3.1 and compare the conditional distribution of T ∗n with the distribution of Tn.
The proof of Theorem 3.1 relies on a novel technique which we call the iterative randomized
Lindeberg method. The conclusion of Theorem 2.1 follows from combining the results in
Steps (i) and (ii) and the triangle inequality.

Comparison of the the Gaussian multiplier bootstrap statistic T Ĝn with TGn relies on the
following Gaussian-to-Gaussian comparison inequality, which can be of independent interest
and whose proof is presented in Section 4 as a consequence of Theorem 4.1:

PROPOSITION 2.1 (Gaussian-to-Gaussian Comparison). If Z1 and Z2 are centered
Gaussian random vectors in Rp with covariance matrices Σ1 and Σ2, respectively, and Σ2 is
such that Σ2

jj ≥ c for all j = 1, . . . , p for some constant c > 0, then

sup
y∈Rp

∣∣∣P(Z1 ≤ y)−P(Z2 ≤ y)
∣∣∣≤C(∆ log2 p

)1/2
,

where C is a constant depending only on c and ∆ = max1≤j,k≤p |Σ1
jk −Σ2

jk|.
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REMARK 2.2. Two comments on Proposition 2.1 are warranted. First, Proposition 2.1
improves upon Theorem 2 in [14], which shows that

sup
x∈R

∣∣∣∣P(max
1≤j≤p

Z1j ≤ x
)
−P

(
max
1≤j≤p

Z2j ≤ x
)∣∣∣∣≤C(∆ log2 p

)1/3
,

under the same conditions. Second, the bound in this proposition is sharp in the sense that
there exists a constant c > 0 such that for infinitely many values of p, there exist centered
Gaussian random vectors Z1 and Z2 in Rp such that the covariance matrix Σ2 of Z2 satisfies
Σ2
jj = 1 for all j = 1, . . . , p and

sup
y∈Rp

∣∣∣P(Z1 ≤ y)−P(Z2 ≤ y)
∣∣∣≥ c(∆ log2 p

)1/2
.

The latter claim is proven in Appendix C of the Supplemental Material. �

Comparison of the conditional distribution of the third-order matching bootstrap statis-
tic T ∗n with that of Tn (Theorem 3.1) relies on the iterative randomized Lindeberg method.
An intuition behind the iterative randomized Lindeberg method goes as follows. Recall that,
for any smooth function g : Rp → R and any two sequences of independent random vec-
tors X1, . . . ,Xn and Y1, . . . , Yn in Rp, in order to approximate E[g(X1 + · · · + Xn)] by
E[g(Y1 + · · · + Yn)], the original Lindeberg method constructs an interpolation path from
E[g(X1 + · · · + Xn)] to E[g(Y1 + · · · + Yn)] by replacing Xi’s with Yi’s one-by-one in a
given order and uses Taylor’s expansion to show that the change in the expectation at each
step is sufficiently small; see [8] for example. The randomized Lindeberg method, introduced
in [22], is similar to the original Lindeberg method but it replacesXi’s with Yi’s in a randomly
selected order. It turns out that this randomization may bring substantial benefits to the final
bound. In turn, to improve upon this version of the randomized Lindeberg method, we carry
out a careful analysis of the coefficients in the Taylor’s expansions underlying the method.
In particular, given that kth order coefficients take the form of E[g(k)(Z1 + · · · + Zn)], up
to some approximation error, where g(k) is a vector of the kth partial derivatives of g and
Z1, . . . ,Zn is a sequence such that some of its elements are given by Xi’s and others by Yi,
and using the fact that it is easier in our setting to bound E[g(k)(Y1 + · · · + Yn)], we ap-
ply the randomized Lindeberg method once again to approximate E[g(k)(Z1 + · · ·+Zn)] by
E[g(k)(Y1 + · · ·+ Yn)]. Here, since a new application of the method will bring new Taylor’s
coefficients, we apply the same method over and over again until the approximation error be-
comes sufficiently small. We demonstrate that this iterative use of the randomized Lindeberg
method gives further substantial benefits to the final bound. See also the discussion before
Lemma 3.1 concerning comparisons of the iterative randomized Lindeberg method with the
randomized Lindeberg method used in [22] and the related Slepian-Stein method used in our
earlier work [12, 15].

Our second main result gives a non-asymptotic bound on the deviation of the bootstrap
rejection probabilities P(Tn > cB1−α) from the nominal level α for the empirical and the
multiplier bootstrap methods:

THEOREM 2.2 (Bootstrap Approximation). Suppose that Conditions E and M are satis-
fied and that cB1−α is obtained via either the empirical bootstrap or the multiplier bootstrap
with weights satisfying (12). Then

(16)
∣∣P (Tn > cB1−α

)
− α

∣∣≤C(B2
n log5(pn)

n

)1/4

,

where C is a constant depending only on b1 and b2.
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This theorem improves upon the bounds in [22], who obtained a similar result with the rate
1/6 instead of 1/4. In addition, we allow for a larger class of multiplier bootstrap methods. In
particular, we do not require the weights e1, . . . , en to satisfy (13). The proof of this theorem
is given in Section 5.

Our third main result gives a non-asymptotic bound on the deviation of the bootstrap
rejection probabilities from the nominal level for the multiplier bootstrap method with
Rademacher weights in the case of symmetric distributions:

THEOREM 2.3 (Rademacher Bootstrap Approximation in Symmetric Case). Suppose
that Conditions E, M, and S are satisfied and that cB1−α is obtained via the multiplier boot-
strap with Rademacher weights. Then

(17)
∣∣P (Tn > cB1−α

)
− α

∣∣≤C(B2
n log3(pn)

n

)1/2

,

where C is a constant depending only on b1 and b2.

This theorem implies that the multiplier bootstrap with Rademacher weights is very accu-
rate in the symmetric case. To prove it, we note that under the assumption of symmetric distri-
butions, one can construct the randomization critical value cR1−α such that P(Tn > cR1−α) = α,
up to possible mass points in the distribution of Tn. Thus, given that the critical value based
on the multiplier bootstrap with Rademacher weights turns out to be a feasible version of this
randomization critical value and the two are close to each other, (17) follows if we can show
that the distribution of Tn is not too concentrated. To this end, we use an anti-concentration
inequality for maxima of Rademacher processes derived in [37]. The proof of Theorem 2.3
is given in Appendix G of the Supplemental Material.

Our fourth and final result shows that one-sided bounds in the bootstrap approximation
can be substantially improved if we allow for incremental factors:

THEOREM 2.4 (Bootstrap Approximation with Incremental Factors). Suppose that Con-
ditions E and M are satisfied and let η > 0 be a constant that may depend on n and p. Then
there exists a constant C depending only b1 and b2 such that the following hold.

(i) If B2
n log5(pn)≤ n and cB1−α is obtained via either the empirical bootstrap or the multi-

plier bootstrap with weights satisfying (12) and (13), then we have

P(Tn > cB1−α + η)≤ α+C(1∨ η−4)
(
B2
n log3(pn)

n

)1/2

.

(ii) If n−1
∑n

i=1 E[X2
ij ] ≤ b22 for all j = 1, . . . , p and cB1−α is obtained via the multiplier

bootstrap with weights satisfying (12), then

P(Tn > cB1−α + η)≤ α+C(1∨ η−4)
(
B2
n log5(pn)

n

)1/2

.

Theorem 2.4 allows η to (slowly) decrease with n and/or p. For example, if we choose η ∼
(logn)−1, then the over-rejection probability is of order n−1/2 in n up to log factors, while
only requiring p to be log p= o

(
n1/3/polylog(n)

)
in (i) and log p= o

(
n1/5/polylog(n)

)
in

(ii) provided that Bn is bounded in n.
To prove this theorem, we use the randomized Lindeberg method but with an important

simplification that the incremental factor η now absorbs all the terms arising from smoothing
the functions of the form x 7→ 1{max1≤j≤p xj > c}, which is used in the Lindeberg method.
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As discussed in the Introduction, Theorem 2.4 is useful if one is concerned with the finite-
sample over-rejection of tests based on the statistic Tn as it says that adding an incremental
factor η to the critical value cB1−α may substantially reduce over-rejection, with a minimal
effect on the power of the test. The proof of Theorem 2.4 is given in Appendix H of the
Supplemental Material.

We conclude this section with a few remarks on cases with polynomial moment condi-
tions and approximate sample means. First, while we maintain the sub-exponential condition
(Condition E) forXi throughout the main text, combining Theorems 2.1 and 2.2, and a simple
truncation argument, we are able to derive analogs of Gaussian and bootstrap approximation
results under polynomial moment conditions similar to e.g. Condition (E.1) in [15]. Those
additional results can be found in Appendix A of the Supplemental Material. Second, in many
applications (such as simultaneous inference for high-dimensional statistical models; cf. [5]),
the statistic Tn can only be asymptotically approximated by the maximum coordinate of the
sample mean of independent random vectors. Also, those random vectors, often correspond-
ing to the influence functions, may not be directly observable but have to be estimated. We
emphasize here that all our results can be extended to such approximate sample mean cases
using the same arguments as those used in [3]; however, we have opted not to carry out the
extension here for brevity of the paper.

3. Iterative Randomized Lindeberg Method. In this section, we derive a distributional
approximation result, Theorem 3.1, using a novel proof technique, which we call the iterative
randomized Lindeberg method. We will use this result in Section 5 to prove our main results
on the Gaussian and bootstrap approximations in high dimensions, as stated in Section 2.

Let V1, . . . , Vn,Z1, . . . ,Zn be a sequence of independent random vectors in Rp such that
E[Vij ] = E[Zij ] = 0 for all i = 1, . . . , n and j = 1, . . . , p, where Vij and Zij denote the jth
components of Vij andZij , respectively. We will assume that these vectors obey the following
conditions:

Condition V: There exists a constant Cv > 0 such that for all j = 1, . . . , p, we have

1

n

n∑
i=1

E
[
V 4
ij +Z4

ij

]
≤CvB2

n.

Condition P: There exists a constant Cp ≥ 1 such that for all i= 1, . . . , n, we have

P
(
‖Vi‖∞ ∨ ‖Zi‖∞ >CpBn log(pn)

)
≤ 1/n4.

Condition B: There exists a constant Cb > 0 such that for all i= 1, . . . , n, we have

E
[
‖Vi‖8∞ + ‖Zi‖8∞

]
≤CbB8

n log8(pn).

Condition A: There exist constants Ca > 0 and δ ≥ 0 such that for all (y, t) ∈Rp × (0,∞),
we have

P

(
1√
n

n∑
i=1

Zi ≤ y+ t

)
−P

(
1√
n

n∑
i=1

Zi ≤ y

)
≤Ca

(
t
√

log p+ δ
)
.

Note that the constants Cv , Cp, Cb, and Ca appearing in these conditions are not supposed to
be dependent on their indices, e.g. Cp here is not allowed to change with p; the indices are
introduced with the only goal to differentiate between the constants.

The following is the main result of this section:
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THEOREM 3.1 (Distributional Approximation via Iterative Randomized Lindeberg Method).
Suppose that Conditions V, P, B, and A are satisfied. In addition, suppose that

(18) max
1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(E[VijVik]−E[ZijZik])

∣∣∣∣∣≤CmBn√log(pn)

and

(19) max
1≤j,k,l≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(E[VijVikVil]−E[ZijZikZil])

∣∣∣∣∣≤CmB2
n

√
log3(pn)

for some constant Cm. Then

sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

Vi ≤ y

)
−P

(
1√
n

n∑
i=1

Zi ≤ y

)∣∣∣∣∣≤C
((

B2
n log5(pn)

n

)1/4

+ δ

)
,

where C is a constant depending only on Cv , Cp, Cb, Ca, and Cm.

REMARK 3.1 (On Sharpness of Theorem 3.1). We do not claim sharpness of Theorem
3.1 in the high-dimensional case p� n (when p is fixed, the theorem is not sharp in view
of the classical Berry-Esseen bound). On one hand, classical Edgeworth expansions in the
low-dimensional case suggest that conditions like (19) should lead to better distributional
approximation results than the corresponding Gaussian approximation results, which we do
not observe in Theorem 3.1 since Theorem 2.1 gives the same dependence on both n and
p for the Gaussian approximation. On the other hand, to the best of our knowledge, there
exist no analogs of Edgeworth expansions in high dimensions. The question whether condi-
tions like (19) can be used to improve distributional approximations (relative to the Gaussian
approximations) thus remains open. �

To prove this result, we will need additional notation. For all ε ∈ {0,1}n, define

(20) %ε = sup
y∈Rp

∣∣P (SVn,ε ≤ y)−P
(
SZn ≤ y

)∣∣ ,
where

SVn,ε =
1√
n

n∑
i=1

(εiVi + (1− εi)Zi) and SZn =
1√
n

n∑
i=1

Zi.

We will replace ε with a certain sequence of random vectors ε0, . . . , εD ∈ {0,1}n, inde-
pendent of V1, . . . , Vn,Z1, . . . ,Zn, and derive recursive bounds for ρεd for d = 0, . . . ,D,
which lead to the desired bound in Theorem 3.1. Such a sequence of random vectors
ε0, . . . , εD ∈ {0,1}n is constructed as follow:

• Set D = [4 logn] + 1 and initialize ε0 = (1, . . . ,1).
• Let U1, . . . ,UD be a sequence of independent uniform [0,1] random variables that are

independent of V1, . . . , Vn,Z1, . . . ,Zn.
• For d= 1, . . . ,D: conditionally on εd−1 and U1, . . . ,UD , set εdi = 0 if εd−1i = 0, and gen-

erate {εdi }i∈Id−1
with Id−1 = {i= 1, . . . , n : εd−1i = 1} as i.i.d. Bernoulli(Ud) random vari-

ables.

It is not difficult to see that for each d= 1, . . . ,D, the random vector εd satisfies the following
properties:

(i) for all i= 1, . . . , n, εdi = 0 if εd−1i = 0, and
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(ii) for Id−1 = {i= 1, . . . , n : εd−1i = 1}, the random variables {εdi }i∈Id−1
are exchangeable

conditional on εd−1 and satisfy

(21) P

 ∑
i∈Id−1

εdi = s | εd−1
=

1

|Id−1|+ 1
, for all s= 0, . . . , |Id−1|.

Indeed, to see that (21) holds, observe that, conditional on εd−1 and Ud,
∑

i∈Id−1
εdi follows

the binomial distribution with parameters |Id−1| and (success probability) Ud, so that

P

 ∑
i∈Id−1

εdi = s | εd−1
=

(
|Id−1|
s

)∫ 1

0
us(1− u)|Id−1|−sdu

=

(
|Id−1|
s

)
s!(|Id−1| − s)!
(|Id−1|+ 1)!

=
1

|Id−1|+ 1
.

Also, two properties (i) and (ii) ensure that SVn,εd − n
−1/2∑

i/∈Id−1
Zi is the randomized Lin-

deberg interpolant between n−1/2
∑

i∈Id−1
Vi and n−1/2

∑
i∈Id−1

Zi; see Lemma I.2 and the
discussion at the beginning of Step 1 of the proof of Lemma 3.1.

Further, for all i= 1, . . . , n and j, k, l= 1, . . . , p, define

EVi,jk = E[VijVik], EVi,jkl = E[VijVikVil],

EZi,jk = E[ZijZik], EZi,jkl = E[ZijZikZil].

For all n≥ 1 and d= 0, . . . ,D, let Bn,1,d and Bn,2,d be some strictly positive constants, and
define the event Ad by

Ad =

{
max

1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

εdi (EVi,jk −EZi,jk)

∣∣∣∣∣≤Bn,1,d
}

⋂{
max

1≤j,k,l≤p

∣∣∣∣∣ 1√
n

n∑
i=1

εdi (EVi,jkl −EZi,jkl)

∣∣∣∣∣≤Bn,2,d
}
.

The proof of Theorem 3.1 proceeds as follows. In Lemma 3.1 and Corollary 3.1, we estab-
lish a recursive inequality for E[%εd1{Ad}], d= 0, . . . ,D. Next, we show in Lemma 3.2 that
E[%εD1{AD}] is bounded by 1/n. Then, we use an induction argument backward to derive
a bound for E[%ε01{A0}]. Since ε0i = 1 for all i, this gives the claim of the theorem once we
appropriately choose the constants Bn,1,d and Bn,2,d. The proof of Lemma 3.1 is long and is
given in Appendix D of the Supplemental Material.

The derivation of the recursive inequality is based on connecting SVn,εd with SZn by the
randomized Lindeberg method originally developed by [22]. A similar approach was used in
[12, 15] to connect SVn,ε0 withG, where the Slepian–Stein method was applied instead. Unlike
the latter approach, the randomized Lindeberg method allows us to match the moments of
SVn,εd and SZn up to the third order rather than the second order. This leads to improvement on
the power of log(pn) factors. In addition, we incorporate a smoothing effect induced by Zi
via Condition A into our argument. This along with the higher-order moment matching lead
to improvement on the power of the sample size n.

LEMMA 3.1. Suppose that Conditions V, P, B, and A are satisfied. Then for any d =
0, . . . ,D− 1 and any constant φ > 0 such that

(22) CpBnφ log2(pn)≤
√
n,



IMPROVED CLT AND BOOTSTRAP IN HIGH DIMENSIONS 13

we have on the event Ad,

%εd .

√
log p

φ
+ δ +

B2
nφ

4 log5(pn)

n2
+

(
E[%εd+1 | εd] +

√
log p

φ
+ δ

)
×
(
Bn,1,dφ2 log p√

n
+
Bn,2,dφ3 log2 p

n
+
B2
nφ

4 log3(pn)

n

)
up to a constant depending only on Cv , Cp, Cb, and Ca.

REMARK 3.2 (Choice of φ). We will choose φ to depend on n via n1/4 when applying
this lemma. �

COROLLARY 3.1. Suppose that all assumptions of Lemma 3.1 are satisfied. Then there
exists a constant K > 0 depending only on Cv , Cp, and Cb such that for all d= 0, . . . ,D−1,
if Bn,1,d+1 ≥ Bn,1,d + KBn log1/2(pn) and Bn,2,d+1 ≥ Bn,2,d + KB2

n log3/2(pn), then for
any constant φ > 0 satisfying (22), we have

E[%εd1{Ad}] .
√

log p

φ
+ δ+

B2
nφ

4 log5(pn)

n2
+

(
E[%εd+11{Ad+1}] +

√
log p

φ
+ δ

)
×
(
Bn,1,dφ2 log p√

n
+
Bn,2,dφ3 log2 p

n
+
B2
nφ

4 log3(pn)

n

)
(23)

up to a constant depending only on Cv , Cp, Cb, and Ca.

PROOF. Since we assume throughout the paper that p ≥ 2, the conclusion is trivial if
φ < 1. We will therefore assume in the proof that φ ≥ 1. In turn, φ ≥ 1 together with (22)
imply that

(24) CpBn log2(pn)≤
√
n.

This condition will be useful in the proof.
Fix d= 0, . . . ,D−1. Then, given thatAd depends only on εd, we have by Lemma 3.1 that

E[%εd1{Ad}] .
√

log p

φ
+ δ +

B2
nφ

4 log5(pn)

n2
+

(
E[%εd+11{Ad}] +

√
log p

φ
+ δ

)
×
(
Bn,1,dφ2 log p√

n
+
Bn,2,dφ3 log2 p

n
+
B2
nφ

4 log3(pn)

n

)
up to a constant depending only on Cv , Cp, Cb, and Ca. Thus, given that (22) implies that√

log p/φ≥ 1/n, the conclusion of the corollary will follow if we can show that

(25) E[%εd+11{Ad}]≤ E[%εd+11{Ad+1}] + 4/n.

To this end, we first observe that , as %εd+1 ∈ [0,1],

E[%εd+11{Ad}] = E[%εd+11{Ad}1{Ad+1}] + E[%εd+11{Ad}(1− 1{Ad+1})]

≤ E[%εd+11{Ad+1}] + E[1{Ad}(1− 1{Ad+1})]

= E[%εd+11{Ad+1}] + P(Ad)−P(Ad ∩Ad+1)︸ ︷︷ ︸
=P(Ad)(1−P(Ad+1|Ad))

≤ E[%εd+11{Ad+1}] + 1−P(Ad+1 | Ad).

(26)
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Moreover, by Lemma I.1 in the Supplemental Material, for all j, k = 1, . . . , p and t > 0, we
have

P

(∣∣∣∣∣ 1√
n

n∑
i=1

εd+1
i (EVi,jk −EZi,jk)

∣∣∣∣∣>
∣∣∣∣∣ 1√
n

n∑
i=1

εdi (EVi,jk −EZi,jk)

∣∣∣∣∣+ t | εd
)

≤ 2 exp

(
− nt2

32
∑n

i=1(EVi,jk −EZi,jk)2

)
≤ 2 exp

(
− t2

128CvB2
n

)
,

where the second inequality follows from Condition V. Applying this inequality with t =
8Bn

√
6Cv log(pn) and using the fact that

max
1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

εdi (EVi,jk −EZi,jk)

∣∣∣∣∣≤Bn,1,d on Ad,

we have by the union bound that for any Bn,1,d+1 ≥Bn,1,d + t,

P

(
max

1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

εd+1
i (EVi,jk −EZi,jk)

∣∣∣∣∣> Bn,1,d+1 | Ad

)
≤ 2p2

(pn)3
≤ 2

n
.

In addition, for all i= 1, . . . , n and j, k, l= 1, . . . , p, setting Ṽi = 1{‖Vi‖∞ ≤CpBn log(pn)},
we have that

|EVi,jkl| ≤ E[|VijVikVil|] = E
[
Ṽi|VijVikVil|

]
+ E

[
(1− Ṽi)|VijVikVil|

]
≤CpBn log(pn)E[|VijVik|] + (E[1− Ṽi])1/2(E[‖Vi‖6∞])1/2

≤CpBn log(pn)E[|VijVik|] +C
3/8
b B3

n log3(pn)/n2

(27)

and similarly

|EZi,jkl| ≤CpBn log(pn)E[|ZijZik|] +C
3/8
b B3

n log3(pn)/n2

by Conditions P and B. Hence, by Condition V and (24), there exists a constant C depending
only on Cv , Cp, and Cb such that

32

n

n∑
i=1

(EVi,jkl −EZi,jkl)2 ≤CB4
n log2(pn).

Thus, by the same argument as above, for all j, k, l= 1, . . . , p and t > 0,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

εd+1
i (EVi,jkl −EZi,jkl)

∣∣∣∣∣>
∣∣∣∣∣ 1√
n

n∑
i=1

εdi (EVi,jkl −EZi,jkl)

∣∣∣∣∣+ t | εd
)

≤ 2 exp

(
− nt2

32
∑n

i=1(EVi,jkl −EZi,jkl)2

)
≤ 2 exp

(
− t2

CB4
n log2(pn)

)
.

Applying this inequality with t=
√

3CB2
n log3/2(pn) shows that for any Bn,2,d+1 ≥Bn,2,d+

t, we have

P

(
max

1≤j,k,l≤p

∣∣∣∣∣ 1√
n

n∑
i=1

εd+1
i (EVi,jkl −EZi,jkl)

∣∣∣∣∣> Bn,2,d+1 | Ad

)
≤ 2p3

(pn)3
≤ 2

n
.

Thus, 1−P(Ad+1 | Ad)≤ 4/n, which in combination with (26) implies (25) and completes
the proof. �
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LEMMA 3.2. For any constant φ > 0 such that (22) holds, we have E[%εD1{AD}]≤ 1/n.

PROOF. Recall that D = [4 logn] + 1 and note that %εD = 0 if εD = (0, . . . ,0)′. Moreover,
by Markov’s inequality,

P(εD 6= (0, . . . ,0)′) = P

(
n∑
i=1

εDi ≥ 1

)
≤ E

[
n∑
i=1

εDi

]
= E

[
E

[
n∑
i=1

εDi |
n∑
i=1

εD−1i

]]

= E

[
1

2

n∑
i=1

εD−1i

]
= · · ·= E

[
1

2D

n∑
i=1

ε0i

]
=

n

2D
≤ n

24 logn
≤ 1

n
,

where the equalities on the second line follow from (21). Hence,

E[%εD1{AD}]≤ E[%εD ]≤ P(εD 6= (0, . . . ,0)′)≤ 1/n,

as desired. �

PROOF OF THEOREM 3.1. Throughout the proof, we will assume that

(28) C4
pB

2
n log5(pn)≤ n

since otherwise the conclusion of the theorem is trivial.
Let K be the constant from Corollary 3.1 and for all d= 0, . . . ,D, define

(29) Bn,1,d =C1(d+ 1)Bn log1/2(pn) and Bn,2,d =C1(d+ 1)B2
n log3/2(pn),

where C1 =Cm +K , so that A0 holds by (18) and (19) and, in addition, the requirements of
Corollary 3.1 on Bn,1,d and Bn,2,d also hold.

Now, for all d= 0, . . . ,D, define

fd = inf

{
x≥ 1: E[%εd1{Ad}]≤ x

((
B2
n log5(pn)

n

)1/4

+ δ

)}
.

Note that fd <∞ because %εd ≤ 1. Then, for all d= 0, . . . ,D− 1, apply Corollary 3.1 with

φ= φd =
n1/4

B
1/2
n log3/4(pn)((d+ 1)fd+1)1/3

,

which satisfies the required condition (22) since we assume (28). Since

B2
nφ

4
d log5(pn)

n2
≤ log2(pn)

n
≤ log1/4(pn)

n1/4
≤ CpB

1/2
n log1/4(pn)

n1/4

≤ Cp
√

log p

φd
≤Cp((d+ 1)fd+1)

1/3

(
B2
n log5(pn)

n

)1/4

,

Bn,1,dφ2d log p√
n

≤ C1(d+ 1)

((d+ 1)fd+1)2/3
, and

Bn,2,dφ3d log2 p

n

∨ B2
nφ

4
d log3(pn)

n
≤ C1 ∨ 1

fd+1
,

we have by Corollary 3.1

E[ρεd1{Ad}]≤C2

(
f
2/3
d+1 + (d+ 1)2/3 + 1

)((B2
n log5(pn)

n

)1/4

+ δ

)



16

for some constant C2 ≥ 1 depending only on Cv , Cp, Cb, Ca, and Cm. Hence,

fd ≤C2

(
f
2/3
d+1 + (d+ 1)2/3 + 1

)
, for all d= 0, . . . ,D− 1.

Here, we have fD = 1 by Lemma 3.2 since Bn ≥ 1 by assumption. Therefore, by a simple
induction argument, we conclude that there exists a constant C ≥ 1 depending only on C2

such that

fd ≤C(d+ 1), for all d= 0, . . . ,D.

In particular, it follows that

%ε01{A0}= E[%ε01{A0}]≤C

((
B2
n log5(pn)

n

)1/4

+ δ

)
.

Since A0 holds by construction, so that 1{A0}= 1, the desired bound follows by combining
this inequality and the definition of %ε0 . �

4. Stein Kernels and Gaussian Approximation. Let C2
b (Rp) be the class of twice con-

tinuously differentiable functions ϕ on Rp such that ϕ and all its partial derivatives up to the
second order are bounded where p≥ 2. Let V be a centered random vector in Rp and assume
that there exists a measurable function τ : Rp→Rp×p such that

p∑
j=1

E[∂jϕ(V )Vj ] =

p∑
j,k=1

E[∂jkϕ(V )τjk(V )]

for all ϕ ∈ C2
b (Rp). This function τ is called a Stein kernel for the random vector V . Also,

let Z be a centered Gaussian random vector in Rp with covariance matrix Σ.

THEOREM 4.1 (Gaussian Approximation via Stein Kernels). If Σjj ≥ c for all j =
1, . . . , p and some constant c > 0, then

sup
y∈Rp

∣∣∣P(V ≤ y)−P(Z ≤ y)
∣∣∣≤C(∆ log2 p

)1/2
,

where C is a constant depending only on c and ∆ = E[max1≤j,k≤p |τjk(V )−Σjk|] .

REMARK 4.1. This theorem improves upon Proposition 4.1 in [29], which shows that

sup
y∈Rp

∣∣∣P(V ≤ y)−P(Z ≤ y)
∣∣∣≤C(∆ log2 p

)1/3
under the same conditions. �

Theorem 4.1 is proven in Appendix E of the Supplemental Material. It has two important
corollaries. The first is Proposition 2.1, a sharp Gaussian-to-Gaussian comparison inequality
stated in Section 2:

PROOF OF PROPOSITION 2.1. If V is a centered Gaussian random vector, then by the
multivariate Stein identity, its Stein kernel coincides with its covariance matrix. Hence, The-
orem 4.1 immediately implies the conclusion of Proposition 2.1. �

Second, combining Theorem 4.1 with Lemma 4.6 in [30] gives the following result:
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COROLLARY 4.1 (Multiplier-Bootstrap-to-Gaussian Comparison). Let a1, . . . , an be
vectors in Rp such that

min
1≤j≤p

1

n

n∑
i=1

a2ij ≥ c and max
1≤j≤p

1

n

n∑
i=1

a4ij ≤B2

for some constants c,B > 0. Also, let ε1, . . . , εn be independent N(0,1) random variables.
Moreover, for some constants α,β > 0, let e1, . . . , en be independent standardized Beta(α,β)
random variables so that

(30) E[ei] = 0 and E[e2i ] = 1, for all i= 1, . . . , n.

Then, for the random vectors

V =
1√
n

n∑
i=1

eiai and Z =
1√
n

n∑
i=1

εiai

we have

(31) sup
y∈Rp

∣∣∣P(V ≤ y)−P(Z ≤ y)
∣∣∣≤C(B2 log5 p

n

)1/4

,

where C is a constant depending only on c, α and β.

PROOF. Recall that η ∼ Beta(α,β) has density function fα,β(x) ∝ xα−1(1 − x)β−1 for
x ∈ [0,1], mean µ= α/(α+β), and variance σ2 = αβ/((α+β)2(α+β+1)). By definition,
the common distribution of the random variables e1, . . . , en equals that of (η− µ)/σ.

Define

τ(x) =−

∫ x
−µ/σ sf(s)ds

f(x)
=

∫ (1−µ)/σ
x sf(s)ds

f(x)
for x ∈

(
−µ
σ
,
1− µ
σ

)
,

where f(x) = σfα,β(σx+µ) for x ∈
(
− µ

σ ,
1−µ
σ

)
is the density function of (η−µ)/σ. From

L’Hospital’s rule, there exists a constant C1 depending only on α and β such that |τ(x)| ≤C1

for all x ∈
(
− µ

σ ,
1−µ
σ

)
. Also, by integration by parts, E[e1ϕ(e1)] = E[ϕ′(e1)τ(e1)] for any

continuously differentiable function ϕ : R→ R. Then, by Lemma 4.6 in [30], a Stein kernel
τV for the random vector V satisfies

E

[
max

1≤j,k≤p

∣∣∣∣∣τVjk(V )− 1

n

n∑
i=1

aijaik

∣∣∣∣∣
]
≤C2

√
log p

n
× max

1≤j≤p

√√√√ 1

n

n∑
i=1

a4ij

for some constant C2 depending only on C1. The desired conclusion (31) follows from com-
bining this bound with Theorem 4.1 and observing that E[ZjZk] = n−1

∑n
i=1 aijaik for all

j, k = 1, . . . , p. �

5. Proofs of Theorems 2.1 and 2.2. In this section, we provide proofs of Theorems
2.1 and 2.2. Proofs of Theorems 2.3 and 2.4 will be given in Appendices G and H of the
Supplemental Material. To simplify notation, we write

δn =

(
B2
n log5(pn)

n

)1/4

and υn =

√
B2
n log3(pn)

n
.

Our proof strategy for Theorems 2.1 and 2.2 is summarized as follows. First, we consider
the multiplier bootstrap statistic T ∗n with the weights ei constructed from the standardized
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Beta(α,β) distribution and parameters α and β chosen so that E[e3i ] = 1. Thanks to Corollary
4.1 and Proposition 2.1, we have Gaussian approximation to this statistic with the rate δn.
This implies that Condition A in Section 3 is satisfied with Zi = ei(Xi− X̄n) and δ = δn due
to the Gaussian anti-concentration inequality in Lemma J.3 of the Supplemental Material.
In turn, the latter allows us to invoke Theorem 3.1, which gives the approximation to Tn by
T ∗n with the rate δn. (Note that having E[e3i ] = 1 is important here since otherwise Theorem
3.1 would give a slower approximation rate.) Combining this result with the aforementioned
Gaussian approximation for T ∗n , we obtain the Gaussian approximation for Tn with the rate
δn. This is done in Lemma 5.3 and gives Theorem 2.1.

Second, we consider the empirical bootstrap statistic T ∗n . Since we now have the Gaussian
approximation for Tn with the rate δn, it follows that Condition A is satisfied with Zi =Xi

and δ = δn. Hence, applying Theorem 3.1 with Vi = X∗i and Zi = Xi, we can verify the
empirical bootstrap approximation for Tn with the rate δn. This is done in Lemma 5.5 and
gives one part of Theorem 2.2.

Third, we consider the multiplier bootstrap statistic T ∗n with arbitrary weights ei satisfying
(12). By choosing parameters α and β appropriately, we can match the first three moments of
these weights by weights constructed from the standardized Beta(α,β) distribution. Thus, yet
another application of Theorem 3.1 allows us to link the distribution of any multiplier boot-
strap statistic to the distribution of the multiplier bootstrap statistic with weights constructed
from the standardized Beta(α,β) distribution and further, via Corollary 4.1 and Proposition
2.1, to the Gaussian distribution. This leads to the Gaussian approximation for the multiplier
bootstrap statistic T ∗n with the rate δn. This is done in Lemma 5.6 and gives the other part of
Theorem 2.2.

Before proceeding to the main body of the proofs, we present a few auxiliary results.

LEMMA 5.1. Suppose that Condition E is satisfied. Then

(32) max
1≤i≤n

‖Xi‖∞ ≤ 5Bn log(pn)

with probability at least 1− 1/(2n4). In addition,

max
1≤i≤n

E
[
‖Xi‖8∞

]
≤CB8

n log8(pn),

where C is a universal constant.

PROOF. By the union bound, Markov’s inequality, and Condition E, we have for any x > 0
that

P

(
max
1≤i≤n

max
1≤j≤p

|Xij |> x

)
≤ pn max

1≤i≤n
max
1≤j≤p

P(|Xij |> x)

≤ pn max
1≤i≤n

max
1≤j≤p

E[exp(|Xij |/Bn)]

exp(x/Bn)
≤ 2pn exp(−x/Bn).

Substituting here x= 5Bn log(pn) gives the first asserted claim. The second asserted claim
follows from combining Condition E, inequalities on page 95 in [39], and Lemma 2.2.2 in
[39]. �

LEMMA 5.2. Suppose that Conditions E and M are satisfied and set X̃i =Xi − X̄n for
all i = 1, . . . , n. Then there exist a universal constant c ∈ (0,1] and constants C > 0 and
n0 ∈N depending only on b1 and b2 such that for all n≥ n0, if the inequality

(33) B2
n log5(pn)≤ cn



IMPROVED CLT AND BOOTSTRAP IN HIGH DIMENSIONS 19

holds, then the following events hold jointly with probability at least 1− 1/n− 3υn:

b21
2
≤ 1

n

n∑
i=1

X̃2
ij and

1

n

n∑
i=1

X̃4
ij ≤ 2B2

nb
2
2, for all j = 1, . . . , p,(34)

max
1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(X̃ijX̃ik −E[XijXik])

∣∣∣∣∣≤CBn√log(pn),(35)

max
1≤j,k,l≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(X̃ijX̃ikX̃il −E[XijXikXil])

∣∣∣∣∣≤CB2
n

√
log3(pn).(36)

The proof of this lemma is rather standard but long, and so is deferred to Appendix F of
the Supplemental Material.

LEMMA 5.3. Suppose that Conditions E and M are satisfied. Then

(37) sup
x∈R
|P(Tn ≤ x)−P(TGn ≤ x)| ≤C

(
B2
n log5(pn)

n

)1/4

,

where C is a constant depending only on b1 and b2.

PROOF. Without loss of generality, we may assume that (33) holds and that n is large
enough so that n≥ n0 for n0 from Lemma 5.2, since otherwise the conclusion of the lemma is
trivial by taking C large enough. This will justify an application of Lemma 5.2 when needed.
In addition, by again taking C large enough, we may assume that 1/n4 + 2/n+ 3vn < 1.

Let An be the event that (32) and (34)–(36) hold jointly. By Lemmas 5.1 and 5.2,
P(An) ≥ 1 − 1/(2n4) − 1/n − 3vn > 0. Further, let e1, . . . , en be independent standard-
ized Beta(1/2,3/2) random variables, standardized in such a way that they have mean zero
and unit variance (cf. Corollary 4.1), that are independent of X1:n = (X1, . . . ,Xn). It is not
difficult to check that E[e3i ] = 1 for all i= 1, . . . , n.

Let T ∗n be the multiplier bootstrap statistic with weights e1, . . . , en. Condition on X1:n

such that An holds. Then, by Corollary 4.1 and the definition of An, we have

(38) sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

ei(Xi − X̄n)≤ y |X1:n

)
−P(Ĝ≤ y |X1:n)

∣∣∣∣∣≤C1δn,

while by Proposition 2.1, we have

sup
y∈Rp

|P(Ĝ≤ y |X1:n)−P(G≤ y)| ≤C2δn,

where C1 and C2 are constants depending only on b1 and b2.
Next, we shall invoke Theorem 3.1 to compare the distribution of Tn with the conditional

distribution of T ∗n . Formally, let Y1, . . . , Yn be independent copies of X1, . . . ,Xn that are
independent of X1:n, and define T ′n by Tn with Xi’s replaced by Yi’s. Then, P(Tn ≤ x) =
P(T ′n ≤ x |X1:n). Condition onX1:n such thatAn holds and apply Theorem 3.1 with Vi = Yi
and Zi = eiX̃i for all i= 1, . . . , n. Since E[ei] = 0 and E[e2i ] = E[e3i ] = 1 for all i= 1, . . . , n,
it is not difficult to see from the definition of An that Conditions V, P, and B, as well as
inequalities (18) and (19) of Theorem 3.1 are satisfied with appropriate constants Cv , Cp, Cb,
and Cm that depend only on b1, b2. It remains to verify Condition A in Theorem 3.1. Observe
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that for any y ∈Rp and t > 0,

P

(
1√
n

n∑
i=1

ei(Xi − X̄n)≤ y+ t |X1:n

)
≤ P

(
Ĝ≤ y+ t |X1:n

)
+C1δn (by (38))

≤ P
(
Ĝ≤ y |X1:n

)
+K1t

√
log p+C1δn (by Lemma J.3 and (34))

≤ P

(
1√
n

n∑
i=1

ei(Xi − X̄n)≤ y |X1:n

)
+K1t

√
log p+ 2C1δn, (by (38))

(39)

where K1 > 0 is a constant depending only on b1. Thus, applying Theorem 3.1, we conclude
that

sup
x∈R
|P(Tn ≤ x)−P(T ∗n ≤ x |X1:n)|= sup

x∈R
|P(T ′n ≤ x |X1:n)−P(T ∗n ≤ x |X1:n)| ≤C3δn

for some constant C3 depending only on b1 and b2. The asserted claim follows from these
bounds via the triangle inequality by noting that the left-hand side of (37) is non-stochastic,
so that if (37) holds with strictly positive probability (recall that P(An) > 0), then it holds
with probability one. �

LEMMA 5.4. Suppose that Conditions E and M are satisfied. Then for any y ∈ Rp and
t > 0,

P

(
1√
n

n∑
i=1

Xi ≤ y+ t

)
−P

(
1√
n

n∑
i=1

Xi ≤ y

)
≤C

(
t
√

log p+

(
B2
n log5(pn)

n

)1/4
)
,

where C is a constant depending only on b1 and b2.

PROOF. Fix y ∈Rp and t > 0. Then for some constant C depending only on b1 and b2,

P

(
1√
n

n∑
i=1

Xi ≤ y+ t

)
≤ P(G≤ y+ t) +Cδn ≤ P(G≤ y) +Ct

√
log p+Cδn

≤ P

(
1√
n

n∑
i=1

Xi ≤ y

)
+Ct

√
log p+ 2Cδn,

where the first and the third inequalities follow from Lemma 5.3 and the second from Lemma
J.3 of the Supplemental Material. This gives the asserted claim. �

LEMMA 5.5. Suppose that Conditions E and M are satisfied and that the random vari-
ables X∗1 , . . . ,X

∗
n are obtained via the empirical bootstrap. Then with probability at least

1− 2/n− 3υn, we have

sup
x∈R
|P (Tn ≤ x)−P (T ∗n ≤ x |X1:n)| ≤C

(
B2
n log5(pn)

n

)1/4

,

where C is a constant depending only on b1 and b2.

PROOF. As before, we may assume that (33) holds and that n is large enough so that
n ≥ n0 for n0 from Lemma 5.2, since otherwise the conclusion of the lemma is trivial by
taking C large enough. This will justify an application of Lemma 5.2 when needed.
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Let Y1, . . . , Yn be vectors in Rp such that

(40) ‖Yi‖∞ ≤ 10Bn log(pn) for all i= 1, . . . , n,

(41) b21/2≤
1

n

n∑
i=1

Y 2
ij and

1

n

n∑
i=1

Y 4
ij ≤ 2B2

nb
2
2, for all j = 1, . . . , p,

(42) max
1≤j,k≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(YijYik −E[XijXik])

∣∣∣∣∣≤CmBn√log(pn),

and

(43) max
1≤j,k,l≤p

∣∣∣∣∣ 1√
n

n∑
i=1

(YijYikYil −E[XijXikXil])

∣∣∣∣∣≤CmB2
n

√
log3(pn),

where Cm is the constant C from Lemma 5.2. Also, let Y ∗1 , . . . , Y
∗
n be independent random

vectors with each Y ∗i having uniform distribution on {Y1, . . . , Yn}.
To prove the asserted claim, we will apply Theorem 3.1 with Vi = Y ∗i and Zi =Xi for all

i= 1, . . . , n. Conditions V, P, and B with constants Cv , Cp, and Cb depending only on b1 and
b2 follow immediately from Conditions E and M, Lemma 5.1, and the inequalities in (40)
and (41). Also, Condition A with δ = δn and Ca depending only on b1 and b2 follows from
Lemma 5.4. Hence, an application of Theorem 3.1 is justified if we can verify (18) and (19)
but these inequalities follow from (42) and (43) by noting that

1√
n

n∑
i=1

(E[VijVik]− YijYik) = 0 and
1√
n

n∑
i=1

(E[VijVikVil]− YijYikYil) = 0

for all j, k, l= 1, . . . , p. Now, applying Theorem 3.1 shows that for all y ∈Rp, we have∣∣∣∣∣P
(

1√
n

n∑
i=1

Vi ≤ y

)
−P

(
1√
n

n∑
i=1

Xi ≤ y

)∣∣∣∣∣≤K1

(
B2
n log5(pn)

n

)1/4

for some constant K1 depending only on b1, b2, and Cm. The asserted claim follows from
this bound by setting Yi =Xi− X̄n for all i= 1, . . . , n, and noting that in this case (40) holds
with probability at least 1− 1/(2n4) by Lemma 5.1 and (41), (42), and (43) hold jointly with
probability at least 1− 1/n− 3υn by Lemma 5.2. �

LEMMA 5.6. Suppose that Conditions E and M are satisfied and that the random vari-
ables X∗1 , . . . ,X

∗
n are obtained via the multiplier bootstrap with weights e1, . . . , en satisfying

(12). Then with probability at least 1− 2/n− 3vn, we have

sup
x∈R
|P(Tn ≤ x)−P(T ∗n ≤ x |X1:n)| ≤C

(
B2
n log5(pn)

n

)1/4

,

where C is a constant depending only on E[e31], b1 and b2.

REMARK 5.1. The constant C in this result depends on E[e31] continuously, and so we
can take C independent of E[e31] under the implicitly maintained assumption that (12) holds.

PROOF. As before, we may assume that (33) holds and that n is large enough so that
n ≥ n0 for n0 from Lemma 5.2, since otherwise the conclusion of the lemma is trivial by
taking C large enough. This will justify an application of Lemma 5.2 when needed.
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Let An be the event that (32) and (34)–(36) hold jointly. By Lemmas 5.1 and 5.2, we have
P(An)≥ 1− 2/n− 3υn. Moreover, by Proposition 2.1,

(44) sup
y∈Rp

|P(Ĝ≤ y |X1:n)−P(G≤ y)| ≤C1δn

on the event An, where C1 is a constant depending only on b1 and b2.
Next, we claim that the case with σe > 0 can be reduced to the case with σe = 0 (and

the constant 3 appearing in (12) replaced by some other universal constant). To prove this
claim, define random variables e′1, . . . , e

′
n as in Corollary 4.1 with α= β = 1 such that they

are independent of everything else. Then on the event An, by Corollary 4.1, we have that

sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

e′iX̃i ≤ y |X1:n

)
−P

(
1

σe
√
n

n∑
i=1

ei,1X̃i ≤ y |X1:n

)∣∣∣∣∣≤C2δn,

where X̃i =Xi − X̄n for all i= 1, . . . , n and C2 is a constant depending only on b1 and b2.
Therefore, noting that the sequences {ei,1}ni=1, {ei,2}ni=1, and {e′i}ni=1 are independent, we
have on An that

sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

eiX̃i ≤ y |X1:n

)
−P

(
1√
n

n∑
i=1

(σee
′
i + ei,2)X̃i ≤ y |X1:n

)∣∣∣∣∣
≤ E

[
sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

ei,1X̃i ≤ y |X1:n,{ei,2}ni=1

)

−P

(
1√
n

n∑
i=1

σee
′
iX̃i ≤ y |X1:n,{ei,2}ni=1

)∣∣∣∣∣ |X1:n

]
≤C2δn.

Thus, it suffices to prove the asserted claim with ei’s replaced by σee′i + ei,2’s, which are
bounded by a universal constant (note that σe ≤ 1 since ei has unit variance).

Further, define the function f : (0,1)→R by

f(α) =
2
√

2(1− 2α)

3
√
α(1− α)

, for all α ∈ (0,1).

One can directly check that f(α) is the skewness of the Beta(α,1− α) distribution for all
α ∈ (0,1). Since limα→0 f(α) =∞, limα→1 f(α) = −∞ and f is continuous, there is an
α∗ ∈ (0,1) satisfying f(α∗) = E[e31]. We define random variables ẽ1, . . . , ẽn as in Corollary
4.1 with α= α∗ and β = 1− α∗ such that they are independent of everything else. It is then
easy to check that E[ẽi] = 0, E[ẽ2i ] = 1, and E[ẽ3i ] = E[e3i ] for all i= 1, . . . , n. Also, applying
Corollary 4.1, we have on An that

(45) sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

ẽiX̃i ≤ y |X1:n

)
−P

(
Ĝ≤ y |X1:n

)∣∣∣∣∣≤C3δn,

where C3 is a constant depending only on α∗, b1 and b2.
We now apply Theorem 3.1 with Vi = eiX̃i and Zi = ẽiX̃i for all i= 1, . . . , n conditional

on X1:n on the event An. Conditions V, P, and B with Cv , Cp, and Cb depending only on α∗,
b1 and b2 follow immediately from the inequalities (32) and (34) and the boundedness of ei’s
and ẽi’s. Condition A with δ = δn follows from (45) and the derivation in (39). Moreover,
(18) and (19) are evident by construction. Thus, by Theorem 3.1, we have on An that

(46) sup
y∈Rp

∣∣∣∣∣P
(

1√
n

n∑
i=1

ẽiX̃i ≤ y |X1:n

)
−P

(
1√
n

n∑
i=1

eiX̃i ≤ y |X1:n

)∣∣∣∣∣≤C4δn,
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where C4 is a constant depending only on α∗, b1 and b2. The asserted claim now follows
from combining (44), (45), and (46) via the triangle inequality and using Lemma 5.3. �

We are now in the position to prove the main results from Section 2.

PROOF OF THEOREM 2.1. The asserted claim follows immediately from Lemma 5.3 by
applying (37) with x= cG1−α. �

PROOF OF THEOREM 2.2. Let C1, C2, and C3 be the constants C in Lemmas 5.4, 5.5,
and 5.6, respectively. Set

βn = (1∨C1 ∨C2 ∨C3)

(
B2
n log5(pn)

n

)1/4

.

By Lemmas 5.5 and 5.6, we have supx∈R |P(Tn ≤ x)−P(T ∗n ≤ x |X1:n)| ≤ βn with prob-
ability at least 1 − 2/n − 3υn. Hence, letting c1−γ be the (1 − γ)th quantile of Tn for all
γ ∈ (0,1), we have with the same probability that

P(T ∗n ≤ c1−α+βn
|X1:n)≥ P(Tn ≤ c1−α+βn

)− βn ≥ 1− α, and

P(T ∗n ≤ c1−α−3βn
|X1:n)≤ P(Tn ≤ c1−α−3βn

) + βn

≤ 1− α− 2βn +C1

(
B2
n log5(pn)

n

)1/4

< 1− α,

where the second inequality follows from Lemma 5.4. Therefore,

P(c1−α−3βn
< cB1−α ≤ c1−α+βn

)≥ 1− 2/n− 3υn ≥ 1− 5υn,

so that

P(Tn > cB1−α)≤ P(Tn > c1−α−3βn
) + 5υn ≤ α+ 3βn + 5υn ≤ α+ 8βn and

P(Tn > cB1−α)≥ P(Tn > c1−α+βn
)− 5υn

≥ α− βn −C1

(
B2
n log5(pn)

n

)1/4

− 5υn ≥ α− 7βn,

where the second inequality follows from Lemma 5.4. Combining these inequalities gives
the asserted claim. �
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