
Accurate Performance and Power Prediction for
FPGAs Using Machine Learning

Lina Sawalha Tawfiq Abuaita Martin Cowley Sergei Akhmatdinov Adam Dubs
Western Michigan University, Kalamazoo 49009

Email: {lina.sawalha, tawfiq.s.abuaita, martin.j.cowley, sergei.akhmatdinov, adam.p.dubs} @wmich.edu

Introduction: Although high-level synthesis (HLS) tools have
allowed software engineers to investigate FPGAs, they are slow
to synthesize and simulate, and they require users’ knowledge and
setup time. Using machine learning algorithms (ML) to predict
applications’ execution time and power consumption on FPGAs
can significantly speed up the process. Oneal et al. [1] used
random forest along with CPU code and its microarchitecture-
dependent runtime features to predict the performance and power
of FPGAs. However, they split benchmarks into several windows
of execution time (data points), which can be similar. Many similar
data points in the dataset result in a model that may not generalize
well for new applications. In this work, we propose a fast, accurate,
and generalizable method to predict the execution time, and power
consumption of applications on FPGAs using ensemble ML. Our
method uses CPU code and related features at three levels LLVM-
IR, source code, and dynamic runtime. We use cross-validation
and ensure that our method is accurate, robust, and generalizable.

Methodology: We used Legup 4.0 HLS tool for synthesizing
C/C++ benchmarks. We modified 19 benchmarks to work with
Legup: all 12 CHStone [2], three SHOC [3] and four Rodinia [4]
benchmarks. To collect the target metrics of execution time and
power consumption for each benchmark, we performed post place
and route synthesis using Quartus II, on the Verilog code generated
by Legup, as shown in Figure 1. We use CPU code and related
features at the source code, microarchitecture-independent [6],
and instruction-set-architecture independent (using LLVM IR [5])
levels, a total of 132 features, along with ML algorithms to
predict the power consumption and execution time on FPGAs.
The features are combined in one dataset that is cleaned and then
fed to our ML-based feature selection model. Feature selection
chooses features at different levels to achieve higher accuracy. The
selected features are fed to the metric prediction model as input
features along with the corresponding target performance/power
metrics. We use Python 3.6.9, and Scikit-learn 0.24 library.

Fig. 1: FPGA perforamnce and power prediction framework.
Features are reduced using the random forest (RF) algo-

rithm during the feature selection process. Then we used the
SelectKBest algorithm to rank the features and select the top
18 ranked features. After that, an exhaustive search is used to find
the best features for each ML algorithm. Because of the small

978-1-6654-8332-2/22/$31.00 ©2022 IEEE

dataset, to avoid overfitting we clustered the dataset into three
clusters based on the register-age, and store instructions features
as two of the highest-ranked features. We compared different
ML algorithms including linear and exponential regression (LR
& ER), RF, decision tree (DT), K-nearest neighbor (KNN), and
artificial neural network (ANN). We validated our results using
5-fold cross-validation, ensuring no overfitting for both feature
selection and prediction.

Results: Figure 2 shows the out-of-sample percent error of the
number of clock cycles (CC), clock period (CP), execution time
(ET), and power consumption (P) using exponential regression
as the most accurate algorithm. The results show a prediction
with percentage errors as low as 0.35%, 0.1%, 2%, and 0.2%
for CC, CP, ET, and P respectively. The average errors are 2.2%,
10.3%, 11.14%, and 2.7% respectively. Table I compares the
average error rate of 100 runs for different ML algorithms. It also
reports HLSPredict [1] results for our dataset using all Likwid
performance-monitoring-counter features and the RF algorithm.

0

5

10

15

20

25

Ch
sto
ne
 AD

PC
M

Ch
sto
ne
 AE
S

Ch
sto
ne
 BL
OW

FIS
H

Ch
sto
ne
 DF
AD
D

Ch
sto
ne
 DF
DI
V

Ch
sto
ne
 DF
MU

L

Ch
sto
ne
 DF
SIN

Ch
sto
ne
 GS
M

Ch
sto
ne
 JP
EG

Ch
sto
ne
 M
IPS

Ch
sto
ne
 M
OT
IO
N

Ch
sto
ne
 SH
A

Ro
din
ia
HO
TS
PO
T

Ro
din
ia
LU
D

Ro
din
ia
NW

Ro
din
ia
PA
TH
FIN
DE
R

SH
OC
 FF
T

SH
OC
 M
D

SH
OC
 RE
DU
CT
IO
N

Av
era
ge
 Er
ro
r

Pe
rc
en

ta
ge
 E
rr
or

Benchmarks

No. Cycles Clock Period Execution Time Power

Fig. 2: Cycles, clock period, Execution time and power consumption error.

TABLE I: Average percentage errors of target features.
Algorithm Clock Period Total Power Clock Cycles

ER 10.35 2.67 2.20
LR 10.1 4.72 9.97
RF 20.47 8.47 203.15

ANN 107.42 58.6 48.42
KNN 17.97 8.68 517.34
DT 20.17 9.94 117.31

HLSP [1] 27.47 10.08 127.14

Acknowledgement: This paper is based on work funded by NSF award no. 1821691.

REFERENCES
[1] K. O’Neal et al., “HLSPredict: Cross Platform Performance Prediction

for FPGA High-Level Synthesis,” in ICCAD, 2018, pp. 1–8.
[2] Y. Hara, et al., “Chstone: A benchmark program suite for practical

c-based high-level synthesis,” in ISCS, 2008, pp.1192–1195.
[3] V. Tipparaju, and J. S. Vetter, A. Danalis et al., “The scalable heterogeneous

computing (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop
on GPCGPU, 2010, pp. 63–74.

[4] K. Skadron, S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in IISWC, 2009, pp. 44–54.

[5] Y. S. Shao and D. Brooks, “ISA-independent workload characterization
and its implications for specialized architectures,” in ISPASS, 2013, pp.
245–255.

[6] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, 2007.

