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Introduction: Although high-level synthesis (HLS) tools have
allowed software engineers to investigate FPGAs, they are slow
to synthesize and simulate, and they require users’ knowledge and
setup time. Using machine learning algorithms (ML) to predict
applications’ execution time and power consumption on FPGAs
can significantly speed up the process. Oneal et al. [1] used
random forest along with CPU code and its microarchitecture-
dependent runtime features to predict the performance and power
of FPGAs. However, they split benchmarks into several windows
of execution time (data points), which can be similar. Many similar
data points in the dataset result in a model that may not generalize
well for new applications. In this work, we propose a fast, accurate,
and generalizable method to predict the execution time, and power
consumption of applications on FPGAs using ensemble ML. Our
method uses CPU code and related features at three levels LLVM-
IR, source code, and dynamic runtime. We use cross-validation
and ensure that our method is accurate, robust, and generalizable.

Methodology: We used Legup 4.0 HLS tool for synthesizing
C/C++ benchmarks. We modified 19 benchmarks to work with
Legup: all 12 CHStone [2], three SHOC [3] and four Rodinia [4]
benchmarks. To collect the target metrics of execution time and
power consumption for each benchmark, we performed post place
and route synthesis using Quartus II, on the Verilog code generated
by Legup, as shown in Figure 1. We use CPU code and related
features at the source code, microarchitecture-independent [6],
and instruction-set-architecture independent (using LLVM IR [5])
levels, a total of 132 features, along with ML algorithms to
predict the power consumption and execution time on FPGAs.
The features are combined in one dataset that is cleaned and then
fed to our ML-based feature selection model. Feature selection
chooses features at different levels to achieve higher accuracy. The
selected features are fed to the metric prediction model as input
features along with the corresponding target performance/power
metrics. We use Python 3.6.9, and Scikit-learn 0.24 library.

Fig. 1: FPGA perforamnce and power prediction framework.
Features are reduced using the random forest (RF) algo-

rithm during the feature selection process. Then we used the
SelectKBest algorithm to rank the features and select the top
18 ranked features. After that, an exhaustive search is used to find
the best features for each ML algorithm. Because of the small
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dataset, to avoid overfitting we clustered the dataset into three
clusters based on the register-age, and store instructions features
as two of the highest-ranked features. We compared different
ML algorithms including linear and exponential regression (LR
& ER), RF, decision tree (DT), K-nearest neighbor (KNN), and
artificial neural network (ANN). We validated our results using
5-fold cross-validation, ensuring no overfitting for both feature
selection and prediction.

Results: Figure 2 shows the out-of-sample percent error of the
number of clock cycles (CC), clock period (CP), execution time
(ET), and power consumption (P) using exponential regression
as the most accurate algorithm. The results show a prediction
with percentage errors as low as 0.35%, 0.1%, 2%, and 0.2%
for CC, CP, ET, and P respectively. The average errors are 2.2%,
10.3%, 11.14%, and 2.7% respectively. Table I compares the
average error rate of 100 runs for different ML algorithms. It also
reports HLSPredict [1] results for our dataset using all Likwid
performance-monitoring-counter features and the RF algorithm.
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Fig. 2: Cycles, clock period, Execution time and power consumption error.

TABLE I: Average percentage errors of target features.
Algorithm Clock Period Total Power Clock Cycles

ER 10.35 2.67 2.20
LR 10.1 4.72 9.97
RF 20.47 8.47 203.15

ANN 107.42 58.6 48.42
KNN 17.97 8.68 517.34
DT 20.17 9.94 117.31

HLSP [1] 27.47 10.08 127.14
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