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Abstract— The recent success of deep neural networks in
prediction tasks on wearable sensor data is evident. However,
in more practical online learning scenarios, where new data
arrive sequentially, neural networks suffer severely from the
“catastrophic forgetting“ problem. In real-world settings, given
a pre-trained model on the old data, when we collect new
data, it is practically infeasible to re-train the model on
both old and new data because the computational costs will
increase dramatically as more and more data arrive in time.
However, if we fine-tune the model only with the new data
because the new data might be different from the old data,
the neural network parameters will change to fit the new
data. As a result, the new parameters are no longer suitable
for the old data. This phenomenon is known as catastrophic
forgetting, and continual learning research aims to overcome this
problem with minimal computational costs. While most of the
continual learning research focuses on computer vision tasks,
implications of catastrophic forgetting in wearable computing
research and potential avenues to address this problem have
remained unexplored. To address this knowledge gap, we study
continual learning for activity recognition using wearable sensor
data. We show that the catastrophic forgetting problem is a
critical challenge for the real-world deployment of machine
learning models for wearable sensor data. Moreover, we show
that the catastrophic forgetting problem can be alleviated by
employing various training techniques.

I. INTRODUCTION

In recent years, Deep Neural Networks (DNN) have
demonstrated superior performance in various domains, from
natural language processing to computer vision and signal
processing. The utility of deep learning in medical field is
also well understood [1]. However, deep neural networks do
not learn “continually” as we humans do. In contrast, deep
neural networks learn in an “isolated” manner. For instance,
a typical activity recognition system will be trained on a
single dataset of multiple subjects, performing a specific
number of activities (i.e., classes). As soon as the training is
completed, the model will perform predictions on the sensor
data that have already been seen during the training time. In
contrast, humans are “lifelong” learners, and we accumulate
and retain knowledge from our previous experiences. The
goal of continual learning (lifelong learning) [2] is to mimic
this learning experience of humans for machines by modeling
the learning problem as a “sequence” of tasks or “stream” of
data that will arrive in time. Currently, deep neural networks
do not perform well in continual learning scenarios, and
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this is a major obstacle toward reaching Artificial General
Intelligence (AGI) [3].
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Fig. 1. Comparison of two different learning approaches to sequential
learning: multitask (joint) and fine-tuning.

Continual learning is a challenging problem since neural
networks suffer from the “catastrophic forgetting” prob-
lem [4]. Catastrophic forgetting happens because in continual
learning, the model is trained in an online manner, and the
training data distribution changes over time. For instance, the
sensor readings from two different subjects could have differ-
ent distributions even for the same activity. Consequently, the
previous parameters the model learned for previous subjects
will adapt to the new subject, but the new parameters are no
longer effective for the previous subjects. Even though this
is a significant challenge for the AI community, we still do
not understand the catastrophic problem clearly.

In this paper, we study continual learning in the context
of wearable sensor systems and in particular for activity
recognition in non-stationary environments due to sequential
nature of learning across users. In Section II, we discuss
approaches that one can take for continual learning of human
activities, and demonstrate the adverse impacts of catas-
trophic forgetting on the activity recognition performance.
In Section III, we study the continual learning and the
catastrophic forgetting problem, followed by proposed algo-
rithms that can alleviate catastrophic forgetting in Section IV.
Finally, in Section V we study the effectiveness of various
continual learning algorithms in the context of wearable
systems. Our contributions can be summarized as follows:

1) We study the continual learning problem motivated by
the practical challenges of deploying prediction models
on sensor data.

2) We study the effectiveness of state-of-the-art continual
learning algorithms for human activity recognition and
show that while these algorithms improve the perfor-



mance, they still have a significant gap to reach the
joint training accuracy.

II. MULTITASK TRAINING VS. FINE-TUNING

Figure 1 demonstrates the continual learning setup in hu-
man activity recognition systems. Assume a scenario where
we continually collect activity data from one subject at a
time, each performing the same set of activities. As stated
previously, one practical setup in continual learning is to
assume that data arrive as a sequence of tasks. Here, we
model the data collected from each subject as an individual
task. First, the model will be trained on the activities we
collect with the first subject. For the second subject, we can
pursue two different approaches:

1) Multitask (Joint): In multitask or joint training, the
model will be re-trained jointly on the old tasks (i.e.,
previous subjects) and new task (i.e., current subject).
This is shown in the top row of Figure 1.

2) Fine-tuning: In fine-tuning, the model will not be re-
trained on the old tasks (i.e., previous subjects) and
will only be fine-tuned using the data received for the
current task (i.e., current subject).

Let us discuss the implications of these two learning
approaches by comparing their performance and training
time. First, we compare the performance of multitask (MTL)
and fine-tuning (FT) on the PAMAP2 dataset [5], which
includes eight subjects1. We measure the performance using
the average validation accuracy of the model on all the tasks
trained up to each time. For instance, the validation accuracy
for task 1 is measured on the validation (test) set of subject
1, the accuracy for task 2 is measured on validation sets of
subject 1 and subject 2, and so on.

Figure 2 illustrates the catastrophic forgetting problem in
continual learning of human activity recognition. If we fine-
tune the model only on the new data, the performance drops
significantly as more and more tasks (subjects) arrive. The
reason is that at each time, we train the model only on the
latest subject, and the model fits the new data by minimizing
the classification loss on the data for that specific subject.
Consequently, if the distribution of the new training data (i.e.,
latest subject) is different from the old data (i.e., previous
subjects), the new parameters change so much that they
can no longer perform prediction on the data from previous
subjects. We refer to this problem as the “distribution shift“
problem, which is responsible for catastrophic forgetting.

In contrast to fine-tuning, we can approach the sequential
learning of multiple tasks using multitask (joint) training. In
this scenario, the distribution shift problem does not exist
because, at each time, the model will be trained on the old
data (i.e., previous subjects) and new data simultaneously.
Hence, the catastrophic forgetting does not happen, and as
we can see in Figure 2, the average accuracy of joint training
does not drop as opposed to fine-tuning approach. However,
joint training has a significant problem: it is practically
infeasible in a real-world setting. The reason is that when

1Experimental details are discussed in Section V.

1 2 3 4 5 6 7 8
Tasks Learned (Subjects)

60

70

80

90

V
al
id
at
io
n
A
cc
ur
ac
y

Method

Multitask

Finetune

Fig. 2. Evolution of the average accuracy in the continual learning
experience for multitask and joint training.
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Fig. 3. Comparison of the training time of the multitask and joint training
of the networks in Figure 2.

the model sees data for subject T , it needs to be trained on
the data for all previous subjects t where 1 ≤ t ≤ T and
hence the computation cost grows rapidly as more and more
data arrive. Figure 3 compares the computation cost of the
models in Figure 2 where the average training time of joint
training is about 12 times of fine-tuning.

The ultimate aim of continual learning is to achieve the
performance of multitask learning, with the training setting
of fine-tuning where at each time, the model does not have
access to the training data of previous tasks.

III. CONTINUAL LEARNING

A standard metric for success in Artificial Intelligence
(AI) is the ability to mimic human learning. For instance,
we typically measure different human skills, such as driving
a car or recognizing an image to develop an AI system
that can match these abilities given enough training data.
However, this measurement emphasizes the result (e.g.,
classification accuracy) and overlooks the fact that human
learning has a critical characteristic: learning through time.
Humans can gain new experiences while maintaining the
knowledge gained from previous experiences. This may be



the consequence of time moving only forward, and the
world is constantly changing. Hence, humans have evolved
to learn in such a non-stationary environment. Continual
learning aims to mimic this human ability to learn in non-
stationary environments. In this work, we follow a popular
categorization of non-stationary classification environments
in continual learning [6], [7]:

1) New Instances (NI): In this scenario, all classes are
shown in the first task while subsequent instances of
known classes become available over time.

2) New Classes (NC): Where new classes are available
so that the model should deal with the learning of new
classes without forgetting previously learned classes.
In the literature, this scenario is also known as Class
Incremental Learning.

3) New Instances & Classes (NIC): In this scenario,
each task can include both new instances of known
classes or completely new classes.

We note that there are other categorizations of continual
learning setups, such as dividing the environments into
task-based and task-agnostic depending on whether or not
boundaries between tasks are defined [8]. However, in the
context of human activity recognition using sensor data, we
use the more popular categorization of continual learning
scenarios.

IV. OVERCOMING CATASTROPHIC FORGETTING

With the significance of continual learning being known to
the AI community, the research on overcoming catastrophic
forgetting has rapidly accelerated in recent years. Continual
learning algorithms can be categorized into three types [9].

1) Regularization: These methods explicitly apply regu-
larization techniques to ensure parameters do not change too
much. For instance, Elastic Weight Consolidation (EWC)
[10] uses an estimate of second-order curvature of the
minima (i.e., neural network parameters after training on
each task) and include that information in the loss function
as a regularizer. However, regularization-based methods do
not perform as well as experience replay methods in practice.

2) Experience Replay: Experience Replay (ER) methods
build and store a memory of the knowledge learned so
far. This knowledge is mainly referred to as replay buffer
or episodic memory. In its simplest form, this knowledge
could be storing a few examples from previous tasks and
replaying/rehearsing them in addition to the new data at
each time. ER-Ringbuffer [11] is a popular approach that
stores a fixed amount of data points for each task, adds
them to the new data obtained for the current task, and trains
the model on the new dataset. Averaged Gradient Episodic
Memory proposes another form of storing knowledge (A-
GEM) [12]. Instead of storing raw examples, A-GEM stores
the gradient directions for previous tasks and uses it to
modify the gradient updates for the current task to ensure
that the new gradient is not in a direction that increases the
forgetting.

3) Parameter Isolation: Parameter isolation methods al-
locate different subsets of the parameters to each task. The
intuition is that if we can delegate each task’s learning to
a specific part of the model, we can avoid catastrophic
forgetting. Another perspective to these methods is by gat-
ing mechanisms that improve the stability and control the
plasticity by activating different gates (subsets of the model
parameters) for each task [13]. [14] proposes a bio-inspired
approach for a context-dependent gating for any specific task.

We note that a continual learning algorithm does not
necessarily belong to only one of the above categories. For
example, Mode Connectivity SGD (MC-SGD) [15] exploits
an important characteristic of multitask solution based on
low-loss linear paths in the parameter space. Moreover, MC-
SGD uses episodic memory to estimate any point loss in the
parameter space for previous tasks and adds this information
as a regularization term to the loss function.

V. EXPERIMENTS

In this section, we first introduce our experimental setup,
and in the second part, we study the effectiveness of state-
of-the-art continual learning algorithms for human activity
recognition.

A. Experimental Setup

1) Benchmark: We use the PAMAP2 [5] human activity
recognition dataset includes sensor readings of 8 subjects,
each performing 12 daily activities. In addition, three IMU
sensors were placed on the hand, chest, and ankle. We
have used only the IMUS sensors’ 3D acceleration and
gyroscope readings for our analysis. Moreover, we have
divided the time series into the 2.56s windows with 50%
overlap. In our experiments, we use the data collected from
each subject as a separate task. Each subject has different
physical characteristics that for the same activity, the sensor
readings are different enough for catastrophic forgetting to
happen. Finally, we used 25% of the data to measure test
(validation) accuracy and the rest for training.

B. Training Details

We used a standard neural network architecture of our
prediction model that includes two 1D convolutional layers,
each with 64 filters of length 5. After two convolutional
layers, we used one max-pooling layer of length 4 and one
fully connected layer with 200 neurons for classification.
All layers in the network use the ReLU activation function.
We use the Stochastic Gradient Descent (SGD) optimizer
with a learning rate of 0.01 and a momentum value of
0.8. We use CL-Gym [16] continual learning library for
implementation and training of our experiment on a 2.7
GHz Dual-Core Intel Core i5 on a MacBook Pro. We note
that while we only report results using the convolutional
network, catastrophic forgetting still happens regardless of
the choice of architecture. Finally, all the reported results are
the average of five runs using different random initialization.
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Fig. 4. Evolution of the average validation accuracy.

1) Evaluation: We evaluate each algorithm using two
common metrics used repeatedly in CL research [11], [12],
[15], [17]:

• Average Accuracy: defined as

1

T

T∑
j=1

aT,j (1)

Where T represents the number of tasks, and ai,j de-
notes the test accuracy on task j after the algorithm has
finished learning task i. The average accuracy measures
how well the network is able to predict the data from
all the tasks it has learned up to each time.

• Average Maximum Forgetting: defined as

1

T − 1

T−1∑
j=1

max
l∈{1,...,T−1}

(al,j − aT,j) (2)

Where T represents the number of tasks, and ai,j
denotes the test accuracy on task j after the algorithm
has finished learning task i. The average forgetting
shows the decrease in performance for each of the tasks
between their peak accuracy and their accuracy after the
learning experience is finished.

C. Comparison of Continual Learning Algorithms

We compare the effectiveness of state-of-the-art continual
learning algorithms in Figure 4 and Table I. Figure 4 shows
the evolution of the average accuracy for each algorithm
throughout the continual learning experience, similar to
Figure 2 introduced in Section I. While all algorithms can
outperform fine-tuning, we can see that they still have a
visible performance gap to the multitask training. However,
the best method (MC-SGD) can decrease the forgetting by
nearly 29% while with only double training time, which is
significantly lower than the multitask (joint) training time.
It is worth mentioning that MC-SGD is also the current
state-of-the-art continual learning algorithm on computer
vision tasks, which might hint that the advances in continual
learning in other domains can also improve the continual
performance time-series domain.

TABLE I
COMPARISON OF CONTINUAL LEARNING ALGORITHMS.

Method Average
Accuracy(%)

Average
Forgetting(%)

Average
Training Time (s)

Finetune 57.6 (± 2.02) 34.0 (± 3.09) 39.1

AGEM [12] 63.6 (± 1.81) 21.4 (± 1.89) 87.9
ER-Ring [11] 67.9 (± 1.6) 20.7 (± 1.76) 50.4
MCSGD [15] 75.4 (± 1.58) 5.0 (± 0.62) 81.1

Multitask 90.1 (± 0.77) 0.0 495.5

VI. CONCLUSION

Efficient deployment of machine learning models is a
fundamental problem for wearable systems. Besides the
challenges arising from limited energy and computation [18],
continual learning can also be viewed as an important
research problem that arises from a practical scenario where
the data arrives sequentially and re-training the model is
computationally expensive. We note that the implications of
continual learning problems go beyond wearable systems,
and catastrophic forgetting is a significant obstacle towards
reaching artificial general intelligence.

In this work, we have studied continual learning and
the catastrophic forgetting problem in the context of sensor
systems. We showed that while current continual learning
methods can alleviate the catastrophic forgetting, there is still
a visible gap between them and multitask training that calls
for further research on the intersection of continual learning
and wearable systems.
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