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Abstract— Missing data is a very common challenge in health
monitoring systems and one reason for that is that they are
largely dependent on different types of sensors. A critical
characteristic of the sensor-based prediction systems is their
dependency on hardware, which is prone to physical limita-
tions that add another layer of complexity to the algorithmic
component of the system. For instance, it might not be realistic
to assume that the prediction model has access to all sensors
at all times. This can happen in the real-world setup if one
or more sensors on a device malfunction or temporarily have
to be disabled due to power limitations. The consequence of
such a scenario is that the model faces “missing input data”
from those unavailable sensors at the deployment time, and
as a result, the quality of prediction can degrade significantly.
While the missing input data is a very well-known problem,
to the best of our knowledge, no study has been done to
efficiently minimize the performance drop when one or more
sensors may be unavailable for a significant amount of time.
The sensor failure problem investigated in this paper can
be viewed as a spatial missing data problem, which has not
been explored to date. In this work, we show that the naive
known methods of dealing with missing input data such as
zero-filling or mean-filling are not suitable for senors-based
prediction and we propose an algorithm that can reconstruct
the missing input data for unavailable sensors. Moreover, we
show that on the MobiAct, MotionSense, and MHEALTH
activity classification benchmarks, our proposed method can
outperform the baselines by large accuracy margins of 8.2%,
15.1%, and 11.6%, respectively.

I. INTRODUCTION

Compared to many other prediction problems, performing
predictions on sensor data can have additional challenges due
to the dependence on physical hardware. Notable examples
of such limitations can be power consumption or energy
budget, compute power, and, more importantly, dealing with
hardware malfunction at the deployment time. However,
while several works have studied the energy and compute
limitations to improve the efficiency and performance of such
prediction systems, not much has been done regarding the
more severe scenario where one or more sensors are not
accessible to the deployed model.

Suppose we have a prediction model that is designed and
trained to perform predictions using a specific number of
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Fig. 1. The consequence of missing a sensor on the MobiAct classification
benchmark. Left bar: prediction accuracy when both accelerometer and
gyroscope are present. Right bar: when the accelerometer is not available
and the data was imputed using the mean-filling method.

sensors. Then, the deployed model can potentially face one
of the following challenging situations:

• One or more sensors are not available due to hardware
problems.

• One or more sensors have been temporarily disabled to
reduce power consumption.

The absence of a sensor can significantly hurt the predic-
tion quality. Figure 1 illustrates this problem on the MobiAct
activity classification using accelerometer and gyroscope
sensors. When the model has access to both sensors, it can
reach the validation accuracy of 92.7%.

However, when the data from the accelerometer sensors
are missing, a common practice is to fill the data using
the average of the previously seen accelerometer data. This
is known as the mean-filling method or mean-imputation
method. Such a model gives the validation accuracy of
26.8%, which is significantly low, given that the MobiAct
benchmark has 6 activities, and a random prediction can
give accuracy of almost 16.6%, assuming the input data is
balanced.

In this work, we study the implications of the “missing
sensor data” for building a robust model that sustains its
performance when one or more sensors are not available.
More specifically, our contributions can be summarized as
follows:

1) We study an important challenge that sensor-based
prediction systems can face in the real world, namely,
the missing input data from unavailable sensors.

2) We show that the consequence of this problem is that
the prediction quality can degrade.

3) We propose a reconstruction algorithm that, at the
training time, learns the relationship between various
sensors’ data distributions and can reconstruct the
signal from a missing sensor at the test time.



4) We compare our proposed method with the common
practical baselines and show that it can outperform
those baselines by a large margin.

II. BACKGROUND AND RELATED WORK

Different wearable devices or smartphones may have dif-
ferent sensors. A user may be willing to keep a particular
sensor disabled from privacy concerns. If a machine learning
model is designed to work with a particular format of input
feature set, it will expect all these features to make an
inference. It may also be possible that the machine expects
triaxial sensor data whereas the input sensor is biaxial in
a particular situation or one axis is unavailable for some
reason [1]. Although works are being done to create adaptive
machine learning models, these are not particularly helpful in
our problem domain because they do not discuss the problem
of sensor failure or spatial data imputation with time-series
sensor data [2] [3].

There can be different natures of missing data, e.g. i)
missing completely at random, ii) missing at random, or
iii) missing not at random [4]. To deal with them, we can
either remove the sample with missing features or we can
replace the missing cells with estimated values. Removing
the samples is not reasonable when there are a lot of missing
values. When estimating values for missing cells, we can
either consider a single value (single imputation method) or
consider multiple candidates for one cell and keep them all
(multiple imputation method) [5]. One such popular multiple
imputation method is MICE but it may not be reasonable on
massive datasets [6] [7]. Researchers have invented lots of
hand-crafted methods and also adopted learning algorithms
such as generative adversarial networks (GAN) for data
imputation [8] [9].

A challenge somewhat similar to missing data is noisy
data. Denoising autoencoders can effectively reduce noise
from images and improve prediction accuracy [10]. Convo-
lutional neural networks are also used for denoising images
[11] [12]. Convolutional networks have also been studied
in the context of adversarial attacks, transfer learning, and
the adaptation of wearable sensor-based systems [13] [14].
Moreover, convolutional networks have also been found ef-
fective in capturing necessary information for health-related
predictions, such as activity recognition and stress classifica-
tion [15] [16]. Our task of reconstructing missing sensor data
is highly inspired by the denoising autoencoders. However,
our work is different from all these works in terms of the
nature of the problem and the amount of missing data relative
to the amount of available data. In our research, we consider
situations when the amount of missing data can be as high as
50% of the feature set in a test case and we want to minimize
the accuracy drop with signal reconstructing neural networks.

III. METHODOLOGY

In this section, we discuss our methodology by first
giving a formal definition of our problem setup and then
discussing our proposed approach. In Section V, we evaluate
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Fig. 2. Schematic illustration of our problem setup where one sensor can
be unavailable at the test time.

the performance of our proposed method on several activity
recognition benchmarks.

A. Problem Setup

We assume a supervised learning classification scenario
where the goal is to train a model M using the training
dataset D = {(x1, y1), · · · , (xm, ym)} that includes m
input/output examples where each xi is a vector that contains
data from k sensors. In other words, we can write xi =
(S1, S2, · · · , Sk) where each Si represents the data from one
of the k sensors. In addition, each yi represents the correct
class label for each xi. After the training phase is finished,
we assume that during the test time, any of the k sensors
can become unavailable to the model, and since the model
assumes a vector of fixed size for input, our system has to
deal with the missing values.

For instance, assume we aim to train a neural network on
the human activity data using the accelerometer and gyro-
scope sensors, each with 3 axes. Then during the training,
we have access to the training dataset D = {(xi, yi)}mi=1

where each input example xi can be written as xi =
(ax, ay, az, gx, gy, gz) where ax, ay , and az represent the
values for the x-axis, y-axis and z-axis of the accelerom-
eter. Similarly, gx, gy , and gz represent the axes values
for the gyroscope. However, during the test time (i.e.,
inference time), one sensor may become unavailable due
to hardware limitations. For instance, if the accelerometer
becomes unavailable, the model sees examples in the form
of xi = (null, null, null, gx, gy, gz), where “null” represents
the missing inputs for the unavailable sensors. This has been
illustrated in Figure 2.

B. Reconstructing missing signals

We have stated in Section I that the trivial approaches
cannot provide us good results in prediction metrics. To
find a better method, we consider that among the sensors
(S1, S2, · · · , Sk), any one or more may be missing at the
testing time. Recall from Subsection III-A that M is our
classifier model. We want to get the highest possible accurate
predictions despite having missing data in our test set. To the
least, we will have to get a significant improvement over the
trivial (mean-fill or zero-fill) approaches.



Fig. 3. An illustration of reconstruction of the missing sensors with a
reconstructor. If the number of sensors in the system is k, we may need
2k − 2 such reconstructors to handle all possible scenarios.

Consider a scenario where p is the number of available
sensors (p ≤ k) and so k − p is the number of miss-
ing sensors. Suppose, (Sα1

, Sα2
, · · · , Sαp

) are present and
(Sβ1

, Sβ2
, · · · , Sβk−p

) are absent. Here 1 ≤ αi, βj ≤ k for
i = 1, 2, ..., p and j = 1, 2, .., k−p. Also {α1, α2, · · · , αp}∩
{β1, β2, · · · , βk−p} = ∅. In this case, we will need to
reconstruct the signals of the missing sensors using the
available sensors. As the total number of sensors is k, we can
have 2k − 2 possible situations to deal with. Because we do
not need any reconstruction if all sensors are available and we
cannot do anything if all the sensors are missing, that is why
we are excluding these two situations from our consideration.
So, if k = 5, we will need to create 25 − 2 = 30 different
reconstructor models for recreating the missing signals which
is manageable if the reconstructor models are not very deep
or complex. But if we were to keep 30 additional different
models for prediction, which may be very deep, complex, or
memory consuming, it would not be feasible for us in most
cases. We present the reconstruction in Figure 3.

IV. EXPERIMENTAL SETUP

We need some datasets and experiments to test our
proposed method from Section III. A common prediction
task with sensor data is human activity recognition. In
this section, we describe our datasets, model architecture,
hyperparameters, validation method, etc.

A. Dataset

We choose three common and popular human activity
recognition datasets: MotionSense [17], MobiAct [18], and
MHEALTH [19] [20]. MHEALTH has time-series data from
three accelerometers, two gyroscopes, two magnetometer
sensors, and also 2-leads ECG signals. MotionSense and
MobiAct have an accelerometer, gyroscope, and a few other
device-motion features. However, we use the data from
only one tri-axial accelerometer sensor and one tri-axial
gyroscope sensor for each of those datasets and ignore the
other features for our experiments. So, we have six features
for each timestamp: readings of the x, y, and z axes of one
accelerometer sensor and one gyroscope sensor.

B. Preprocessing

We cannot always just feed the raw time-series data into
any machine learning model or neural network. Moreover,
we want to build models that will work in the same way for

TABLE I
DESCRIPTION OF THE DATASETS AND OUR PREPROCESSING

HYPERPARAMETERS

MobiAct MotionSense MHEALTH
Sampling frequency (Hz) 50a 50 50
Number of subjects 67 24 10
Number of activitiesb 6 6 13
Window size used 5.12 s 5.12 s 5.12 s
Window overlap 75% 75% 75%
Size of training setb 314 MB 204 MB 195 MB
aDownsampled from 200 Hz.
bAfter preprocessing.

all three datasets. So, we need to do some preprocessing as
described throughout this subsection.

1) Choosing the activities: Motionsense has six activities:
walking downstairs, walking upstairs, walking, jogging, sit-
ting, and standing. The MobiAct dataset has nine activities
of daily living but we choose the same six activities as
in MotionSense. The MHEALTH dataset has 12 activities:
“standing still, sitting and relaxing, lying down, walking,
climbing stairs, waist bends forward, frontal elevation of
arms, knee bending, cycling, jogging, running, jump front
and back”, and a null class activity [20]. We keep them all.

2) Creating windows: Our MobiAct dataset was initially
sampled at 200Hz. We downsample it to 50Hz. The other two
datasets are already in 50Hz. For every dataset, we pass the
input signal through a Butterworth filter to reduce the amount
of noise from the input signals. We choose 5.12 seconds
as the window size with 75% overlapping between adjacent
windows. Table I summarizes the information related to the
datasets and preprocessing.

C. Two-sensor classifier

Our research question deals with the situation where the
training set has no missing data but the test set may have
some missing data. We train a Convolutional Neural Network
(CNN) that takes accelerometer and gyroscope signals as in-
put and processes them through 1-dimensional convolutional
layers and predicts the correct activity. It is important to
note that we do not need a state-of-the-art classifier to test
our method. So, we find a model with reasonable accuracy
and try to reduce the accuracy drop with reconstructor when
a sensor is missing.

D. Resconstructor

As we have mentioned in Subsection III-B, we will need
2k−2 reconstructors for k sensors. For k = 2 (accelerometer
and gyroscope), we will need 22− 2 = 2 reconstructors. We
can achieve at least 92.7% validation accuracy on all three
datasets in human activity recognition problems with CNN,
as we can see in Table IV. So, CNN models are capable
of capturing information and extracting features from time-
series data. For this reason, we use CNN in our reconstruc-
tors. We use 16 1-dimensional convolutional filters in the first
layer and keep adding four filters of the same filter size in
every subsequent convolutional layer. We vary i) the number



Fig. 4. Pipeline of a two-sensor classifier with reconstructor.

Fig. 5. A sample illustration of reconstruction of a gyroscope signal using
an available accelerometer signal on the MobiAct dataset.

Fig. 6. A sample illustration of reconstruction of an accelerometer signal
using an available gyroscope signal on the MobiAct dataset.

of convolutional layers, ii) filter size, iii) the learning rate,
and iv) the number of epochs as hyperparameters as shown
in Table II to find the optimal reconstructors. The number of
convolutional layers has been kept small to minimize the risk
of the vanishing gradient problem. The best reconstructor is
the one that gets the maximum validation accuracy when the
available sensor signal and the reconstructed signal together
are fed to our classifier. We present the pipeline using a
reconstructor in Figure 4.

We simulate a situation as if we have an existing system
that we want to validate on data from unseen subjects. So we
separate the training and validation sets based on the subjects
as shown in Table III.

TABLE II
HYPERPARAMETERS FOR TRAINING THE RECONSTRUCTORS

Hyperparameter Possible values
number of convolutional layers 7, 9
filter size 10, 30, 40, 50
learning rate 0.001, 0.0001, 0.00001
number of epochs 10, 30, 50

TABLE III
SPLITTING TRAINING AND VALIDATION SETS

Dataset Training subject Ids Validation subject Ids
MotionSense 1 - 20 21 - 24

MobiAct 1 - 64 for sitting
1 - 57 otherwise

65 - 67 for sitting
58 - 67 otherwise

MHEALTH 1 - 9 10

TABLE IV
VALIDATION ACCURACIES(%) OF TWO-SENSOR CLASSIFIER IN

DIFFERENT SCENARIOS OF MISSING INPUT

MobiAct MotionSense MHEALTH
Both sensors
are present 92.7 94.5 93.7

Real accel with
zero-filled gyro 89.0 35.7 86.9

Real accel with
mean-filled gyro 88.9 35.8 86.6

Real accel with
reconstructed gyro 89.4 69.5 88.5

Real gyro with
zero-filled accel 34.3 76.0 9.9

Real gyro with
mean-filled accel 26.8 77.2 9.0

Real gyro with
reconstructed accel 50.3 73.6 31.4

Zero-fill (average) 61.7 55.9 48.4
Mean-fill (average) 57.9 56.5 47.8
Reconstructor (avg.) 69.9 71.6 60.0

V. RESULTS

In our experiments, we train classifiers with different
sets of hyperparameters and keep the one with the best
validation accuracy. Then we train reconstructors and find
the reconstructor that gives us the best validation accuracy on
data with missing sensors when used with the best classifier.
We again train classifiers, keep the best one, and find the
zero-fill and mean-fill accuracies on that classifier. Finally,
we normalize the validation accuracy of the reconstructor for
the best classifier that is used with the zero-fill and mean-
fill accuracies. We explained in Table III, how we created
the training and validation sets from our datasets. After the
training is done, we evaluate our models on the validation
sets and report them as the final results.

Our goal was to reduce the accuracy drop with reconstruc-
tors when one or more sensors are missing. If we look at Ta-
ble IV, we notice that on average the reconstructor is giving



us better validation accuracies on all three datasets. In some
cases, zero-fill and mean-fill can give us good accuracies too.
But the accuracy gain with the reconstructor over zero-fill or
mean-fill is visible in most cases. For instance, the average
validation accuracy using our reconstructor on the MobiAct
dataset is 69.9% whereas its closest competitor in the table
is zero-fill (61.7%). We hope that we can do even better with
the reconstructor with some fine-tuning. Also note that the
zero-fill and mean-fill produce almost similar results in most
cases, so we can say that taking the mean of sensor signals
instead of filling with zeros does not help that much.

Another important thing to remember is that we want
our reconstructors to generate sensor signals of reasonable
shapes. We can see in Figure 5 and Figure 6 that our recon-
structors are capable of generating realistic sensor signals for
the missing sensors. So, we can say that our reconstructors
work reasonably well in a two-sensor system and we can
extend it for an arbitrary number of sensors as long as it is
manageable.

VI. CONCLUSION

In this work, we have studied an important and practical
challenge in multi-sensor-based prediction models. More
specifically, we have studied the scenario where one or
more sensors can become unavailable during the inference
time of a deployed model. We have shown that the absence
of one sensor in a two-sensor-based prediction system can
significantly hurt the quality of predictions, and common
practices for dealing with the missing input data do not
perform well. To this end, we have proposed an algorithm
that learns to reconstruct the missing signals during the
training phase and using this algorithm in the test phase,
can improve the accuracy of predictions significantly.

We believe that our main contribution is the generic frame-
work and the demonstration that it is possible to employ it
to reduce the accuracy drop of a classifier on a two-sensor
system. In the future, we want to try our method on more
than two sensors and we also intend to test this approach on
low-quality datasets, where data are collected in uncontrolled
environments. Finally, we note that the challenge of missing
input data is very significant in sensor-based systems. While
our method outperforms the several standard methods for
data imputation, there is still room for improvement. We call
for future research on this important topic.
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