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Abstract— Stress detection and monitoring is an active area
of research with important implications for an individual’s
personal, professional, and social health. Current approaches
for stress classification use traditional machine learning al-
gorithms trained on features computed from multiple sensor
modalities. These methods are data and computation-intensive,
rely on hand-crafted features, and lack reproducibility. These
limitations impede the practical use of stress detection and
classification systems in the real world. To overcome these short-
comings, we propose Stressalyzer, a novel stress classification
and personalization framework from single-modality sensor
data without feature computation and selection. Stressalyzer
uses only Electrodermal activity (EDA) sensor data while
providing competitive results compared to the state-of-the-
art techniques that use traditional machine learning models.
Our single-channel neural network-based model achieves a
classification accuracy of 92.9% and an f1 score of 0.89 for
binary stress classification. Our leave-one-subject-out analysis
establishes the subjective nature of stress and shows that
personalizing stress models using Stressalyzer significantly im-
proves the model performance. Without model personalization,
we found a performance decline in 40% of the subjects,
suggesting the need for model personalization.

I. INTRODUCTION

Stress describes bodily reactions to perceived physical
or psychological threats and is defined as the transition
from a calm state to an excited state triggering a cascade
of physiological responses [1], [2]. In the United States
of America, around 77% of people suffer from headaches
and insomnia related to stress. There has been a steady
increase in the number of people suffering from stress-related
issues each year [3]. Stress plays a critical role in many
health problems, such as depression, anxiety, high blood
pressure, heart attacks, and stroke [4]. Furthermore, stress
influences a person’s decision-making capability, attention
span, learning, and problem-solving capacity [5]. Therefore,
designing technologies that automatically infer moments of
stress from sensor data is vital in providing appropriate
interventions.

In this paper, we propose Stressalyzer - a novel stress
classification and personalization framework from single-
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modality sensor data without feature computation and selec-
tion. We use a Convolutional Neural Network (CNN) with
EDA data gathered using wearable devices for learning. Our
trained model is competitive with other state-of-the-art meth-
ods in terms of performance. At the same time, our proposed
approach does not suffer from many limitations inherent in
earlier studies, such as high computing complexity, complex
system design, and the burden of feature engineering and
selection. All the experiments and results presented in this
paper are fully reproducible with the code and data made
publicly available1.

A. Related Work

Traditionally, multiple sensor modalities or data streams
such as heart rate variability (HRV), body acceleration
(ACC), skin temperature, electrodermal activity (EDA),
blood volume pulse (BVP), respiration rate, and electro-
cardiogram (ECG) are used to compute a large number of
statistical and structural features to train stress classification
models. In [7], authors computed 67 features from 7 sensor
modalities to train a stress classification model with the
best accuracy of 92.28%. Authors in [4] used deep neural
networks (DNN) and 40 engineered features to achieve an
accuracy of 95.21%. In [5], authors used statistical fea-
tures and representations learned by a deep learning model
trained on EDA data as features to train Bayesian and
Tree-based stress classification models with an accuracy of
up to 92%. Motivated by the results from [7], authors in
[8] computed 195 features in time, frequency, entropy, and
wavelet domain from chest and wrist EDA data to train
the XGBoost algorithm with the highest f1-score of 0.89.
Furthermore, several studies explored using sensors other
than electrodermal activity for stress classification. In [9],
authors used data from the built-in smartphone accelerometer
sensor to identify activities that corresponded with stress
levels and achieved an accuracy of 71%. Additionally, in
[10], data from a commercial smartwatch were used for
binary stress classification with an accuracy of up to 83%.

B. Contributions

Using data from multiple sensors or channels and com-
puting a large number of features to train machine learning
algorithms for stress classification has several disadvantages:
(i) using many different sensors makes the system design
complicated, expensive, and difficult-to-deploy in everyday
living situations; (ii) a larger number of sensors translates
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into a larger amount of energy to operate the sensors.
Therefore, reducing the amounts of sensors improves the
battery lifetime of the wearable system; and (iii) the model
performance relies on the computed features, and choosing
the right features requires domain knowledge. Besides, com-
puting many complex features can make the classification
algorithm less efficient in terms of run-time, energy, and
memory. Furthermore, feature selection becomes an impor-
tant step to select the most meaningful features and adds an
extra processing step to an already complex machine learning
pipeline.

Motivated by these drawbacks of multi-modal feature-
based stress classification algorithms, our stress classification
and personalization framework Stressalyzer uses 1D CNN
with single-channel raw EDA sensor segments as inputs and
learns the representations needed for classification without
feature computation and selection at training time. Our
primary objective is to implement a stress detection and
classification system using only the EDA data. The secondary
goal is to explore the personalization of stress models.
Perception and effects of stress are subjective. The same
external stimuli can have a varying degree of effect on
different individuals regarding stress and emotional arousal.
Hence, we also investigate whether stress detection algo-
rithms require personalization or not.

Fig. 1. Stressalyzer framework for stress classification and personalization.

II. STRESSALYZER DESIGN

We propose Stressalyzer, shown in Figure 1, for stress
classification and personalization using time-series sensor
data gathered with wearable sensors. Our approach has 3
main steps including modality selection, model construction,
and model personalization. Modality selection tackles the
problem of choosing the best modality for stress classifica-
tion. Heuristics based on domain knowledge and/or analytical
methods can guide modality selection. In model construc-
tion, we select and train an appropriate machine learning
algorithm for stress classification using the data from the
selected modality. The design requirements of the system
guide model selection. The purpose of model personalization
is to fine-tune a general stress classification model, obtained

during model construction, for a particular user so that the
model does not suffer from a drop in performance typically
observed in machine learning applications [13], [14].

A. Modality Selection

The physiological changes associated with stress and
emotional arousal are governed by the Autonomic Nervous
System (ANS). The ANS has two main components: the
Sympathetic Nervous System (SNS) and Parasympathetic
Nervous System (PNS). Both SNS and PNS affect different
bodily functions depending on a person’s emotional state.
During stressful episodes, a person undergoes many phys-
iological changes such as increased heart rate, increased
breathing rate, muscle tension, and sweating due to the
changes induced by the SNS and PNS autonomic branches.
Among all physiological signals, Electrodermal Activity
(EDA), which is the measure of skin conductance, is the most
sensitive to stress level due to the high correlation between
EDA and SNS [12]. Consequently, EDA lends itself as a
particular measure for stress because the SNS exclusively
innervates skin sweating. Many earlier works have also used
EDA, alone or together with other modalities, for stress
classification [5], [7], [9]. Because our goal here is to design
a one-channel stress monitoring approach, we select the EDA
modality for training and personalizing machine learning
model for stress classification.

B. Model Construction

Figure 2 shows a general architecture for a CNN model
used in Stressalyzer. A convolutional neural network (CNN)
is a representation learning algorithm capable of learning
local dependency and scale invariance in the input. The
associations between input and outputs are learned directly
from raw data without feature computation.

In a convolutional layer, the convolution operation is used
between the input and a weight matrix or kernel to assemble
complex features by learning smaller and simpler features.
The convolution operation slides the kernel over the input
and computes the dot product of the kernel and the portion
of the input segment to create a feature map. Having multiple
kernels in a convolutional layer gives multiple feature maps,
where each kernel looks for a specific type of concept in
the input. Complex feature maps are extracted by stacking
multiple convolutional layers on top of each other. The
kernel at earlier layers represents low-level features, and the
kernel in higher levels corresponds to more complex features.
Therefore, the output of a convolutional layer is multiple
feature maps corresponding to different kernels, and the
kernel can be thought of as a feature extractor and the feature
map as feature values. The feature maps are aggregated using
some pooling operation to obtain a single feature vector.
These feature vectors are the output of the convolutional
stack and are used as input for the dense stack where the
association between input sensor segments and output classes
are learned. The convolutional stack enables the network to
learn the hierarchy of features from the raw sensor data and



Fig. 2. General architecture of a 1D convolutional neural network used for time-series data. Input sensor segments of length l are passed through a
convolutional stack that learns sensor data representations. These representations act like features for the dense stack and enable the dense layers to learn
the associations between the input and output classes. The recognition layer handles the prediction of n output classes.

enable learning without traditional feature computation, and
selection [15].

In our analysis, due to the time-series nature of the EDA
data, we use 1−dimensional CNN architecture composed of
two convolutional layers with 100 filters and a kernel size
of 5 and 10 respectively. Convolution layers are followed by
a global max-pooling layer and two fully connected layers
with 128 and 64 neurons. We also have drop-out layers after
each fully connected layer with drop-out values 0.3 and 0.2.
The output layer has Softmax activation, and all other layers
have ReLU [11] activation.

C. Model Personalization

Perception and effects of stress are subjective. The same
external stimuli can have varying degrees of effect on differ-
ent individuals in terms of stress, and emotional arousal [1].
Furthermore, machine learning models trained on a general
dataset often suffer from performance decline when used in
personal settings [13], [14]. To deal with this challenge, we
use an online learning method to personalize the stress model
to a specific user. In the online learning scenario, a general
machine model M1 is retrained on data obtained from the
user while the model is in use. The model is retrained until
the performance of the personalized model, (M2), on the
user data is at an acceptable level. The model personalization
approach used in Stressalyzer is shown in Figure 3. The goal
of model personalization is to fine-tune a general model to
the characteristics of a user. Personalization is a repeating
process that continues until a given performance criterion is
met.

III. VALIDATION AND RESULTS

A. Dataset

The Wearable Stress and Affect Detection (WESAD)
dataset [7] is a publicly available dataset with ECG, EDA,
BVP, respiration (RESP), skin temperature (TEMP), and
motion (Acceleration) (ACC) sensor data obtained from
the RespiBan (chest-worn) and Empatica E4 (wrist-worn)
devices. The dataset was collected from 15 subjects (3
females) in a laboratory setting, and each subject experienced
three main affect conditions: baseline or normal (neutral
reading), stress (exposed to Tier Social Stress Test (TSST)),
and amusement (watching funny videos). In our analysis,

Fig. 3. Online learning scenario for personalization of machine learning
models.

we only use the EDA data from the Empatica E4 sampled at
4Hz. Approximately the length of the stressed condition was
10 minutes, amusement 6.5 minutes, and baseline situation
was 20 minutes.

B. Segmentation and Normalization

We segment the EDA data for the three affective states into
60 seconds overlapping windows with 50% overlap between
consecutive segments. We settled on the window size of 60
seconds because of available literature that has also used 60
seconds window size for the WESAD dataset [4]–[7]. Before
segmentation, we normalize the data for each subject using
the min-max normalization to spread the data in the range
of [0, 1]. After segmentation, we obtain 564 samples for the
not-stressed class, 311 samples for the stressed class, and
165 samples for the amusement class. Our analysis has not
used any method to deal with class imbalance, and machine
learning models are trained on the imbalance data for the
worst-case analysis.

C. Hyperparameters Tuning and Performance Metrics

The hyperparameters used in the CNN were selected after
a random search over a set of values. The CNN models were
trained for 200 epochs with a batch size of 32 and a fixed
learning rate of 0.001. Out of 876 samples in the dataset,
657 or 75% was included in the training set, and 219 or 25%
belonged to the test set. For bi-affective state classification,
data from the baseline (not-stress) and stressed classes were
used to create the training and test sets. For tri-affective state



classification, data for all three classes: baseline, stressed,
and amusement, was used to create the training and test sets.
We use accuracy, precision, recall, and f1-score to measure
the performance of the trained models on the training and
test sets.

D. Stress Classification
First, we present the results for the bi-affective state

classification, i.e., the binary case of stress Vs. not-stress
classification. The trained CNN model achieved the best
classification accuracy of 94.8% on the training set and
90.9% on the test set. Table I, shows the value of other
performance metrics.

TABLE I
RESULTS FOR THE BINARY STRESS CLASSIFICATION CASE: STRESS VS.

NOT-STRESS.

Dataset Accuracy Precision Recall f1-Score
Training Set 94.8% 0.96 0.88 0.92
Testing Set 90.9% 0.91 0.82 0.87

TABLE II
RESULTS FOR THE TERNARY STRESS CLASSIFICATION CASE: STRESS

VS. NOT-STRESS VS. AMUSEMENT

Dataset Accuracy Precision Recall f1-Score
Training Set 85.1% 0.83 0.79 0.80
Testing Set 82% 0.82 0.72 0.76

In the second case, we consider the tri-affective state
classification, a multi-class classification problem with 3
classes: stress, not-stress, and amusement. Table II shows
the values of performance metrics for this case. Note that
the performance of the CNN model has decreased in the tri-
affective case compared to the bi-affective case. We suspect
this is because the model does not have enough training
samples to distinguish between the three classes.

TABLE III
AVERAGE RESULTS AFTER 10-FOLD CROSS-VALIDATION FOR

BI-AFFECTIVE AND TRI-AFFECTIVE CASE.

Dataset Accuracy f1-Score

Bi-affective Training Set 93% 0.9
Testing Set 90% 0.86

Tri-affective Training Set 84% 0.79
Testing Set 80% 0.75

TABLE IV
COMPARISONS OF OUR CNN MODEL WITH CURRENT

STATE-OF-THE-ART METHODS.

Method Model Type Modalities Channels Accuracy (%) f1-Score
[7] Feature All 10 93 0.9
[5] Feature Wrist EDA 1 91.6 -
[8] Feature Chest and Wrist EDA 2 − 0.89
[4] Feature All 10 95.21 0.94

Our’s Data Wrist EDA 1 92.85 0.89

Furthermore, to account for the variance in performance,
we conducted 10−fold cross-validation for both cases of

affective state classification. Table III shows the average
classification accuracy and f1-score for bi-affective and tri-
affective cases. Finally, we present comparisons of our results
with other state-of-the-art works on stress classification with
the WESAD dataset in table IV. WESAD dataset has the
following modalities ACC, Wrist EDA, Chest EDA, TEMP,
ECG, BVP, and RESP and all together 10 channels. All other
compared approaches, details in I-A, computes statistical or
representational features from sensor data to train machine
learning models. Our method does not need to compute
features, works with single channel raw wrist EDA sensor
data, and automatically learns the mapping between inputs
and outputs during train time. Using single channel EDA
data will make our system simple and less resource-hungry
in real-life applications. We found our proposed approach
competitive with state-of-the-art methods with the added
advantage of being data-driven without needing specialized
domain knowledge and lower resource requirements.

E. Personalization Analysis

Stress is subjective, and the same external stimuli can
have different effects on different individuals. To investigate
the subjective nature of stress and answer whether we need
personalized models for stress detection, we first present the
results of our leave-one-subject-out (LOSO) analysis on the
binary WESAD dataset. In LOSO analysis, data from one
subject is removed from the training set and kept as the
test set to evaluate the machine learning model trained on
data from all other subjects. To quantify performance decline,
we calculate the difference in the model’s accuracy on the
training and test set. If the difference is larger than δ = 5%,
we conclude that the subject needs personalization. Figures
4 and 5 shows the classification accuracy and f1-score of
the trained models on the test and training sets. The x-axis
represents the subject whose data was not included in the
training set and was used as the test set.

Fig. 4. Classification accuracy on the training and test sets for leave-one-
subject-out analysis. The x-axis represents the subject whose data was not
included in the training set and was used as the test set.

Out of 15 subjects, we observed a performance decline in
6 subjects, i.e., 40% of the total subjects. For the remaining
subjects (60%), the trained model performed better or similar
on the test set compared to the training set. In particular,



Fig. 5. f1-score on the training and test sets for the leave-one-subject-out
analysis to investigate the subjective nature of stress. The x-axis represents
the subject whose data was not included in the training set and was used
as the test set.

we see performance decline for subjects S1, S2, S6, S10,
S12, and S15. The decline in the model’s performance on
the test set is due to the inter-subject differences such as
physical characteristics, emotional endurance, stress manage-
ment skills, personality traits, and noise in the sensor data
present in the dataset. For example, subject S2 was looking
forward to stress conditions and was cheerful during data
collection. Hence, for individuals with different responses to
stress stimuli compared to the general outlook, the trained
model failed to capture the personal traits of the individual.
Next, to personalize stress models, we consider an online
learning scenario. We ignore other details of the online
learning paradigm, such as querying the user for labels and
use the subject’s data kept as the test set for retraining.
Starting from 1 sample from the test set, we successively
increase the number of samples used for retraining until
the performance on the remaining subject data is greater or
equal to that on the original training set. Table V shows the
number of samples needed for retraining and the final test
set accuracy. The personalized model performance on the
test set increased significantly after retraining, establishing
the subjective nature of stress and demonstrating the benefit
of personalizing stress models.

TABLE V
TEST SET ACCURACY AND NUMBER OF SAMPLES NEEDED TO

PERSONALIZE STRESS MODELS.

Subject Before
Personalization
Accuracy (%)

Re-training
Sample

Size

After
Personalization
Accuracy (%)

S1 76.8 43 96.4
S2 67.9 56 83.9
S6 84.5 40 98.3
S10 66.1 52 98.3
S12 55.9 42 94.9
S15 57.4 43 93.4

IV. CONCLUSION

We presented the development and evlaution of Stres-
salyzer, a novel stress classification and personalization

framework for single modality sensor data without feature
computation and selection. We used the EDA modality and
a CNN for stress classification. The trained model achieved
a binary stress classification accuracy of 90%, and we also
established the subjective nature of stress with our leave-one-
subject-out personalization analysis. We found a performance
decline in 6 (40%) of the subjects out of 15 total subjects
when a general stress classification model was evaluated on
the never-seen new subject data. We also showed that stress
models could be personalized to achieve on-par or better
performance for the new user using online learning. Our
approach is competitive with the state-of-the-art methods
while it does not suffer from disadvantages such as feature
computation and selection, multi-modal input data, and com-
plex system design, and is adaptable to include more sensor
modalities for performance improvement.
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