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Abstract—Detecting stress from wearable sensor data enables 
those struggling with unhealthy stress coping mechanisms to 
better manage their stress. Previous studies have investigated how 
mechanisms for detecting stress from sensor data can be 
optimized, comparing alternative algorithms and approaches to 
find the best possible outcome. One strategy to make these 
mechanisms more accessible is to reduce the number of sensors 
that wearable devices must support. Reducing the number of 
sensors will enable wearable devices to be a smaller size, require 
less battery, and last longer, making use of these wearable devices 
more accessible. To progress towards this more convenient stress 
detection mechanism, we investigate how learning algorithms 
perform on singular modalities and compare the outcome with 
results from multiple modalities. We found that singular 
modalities performed comparably or better than combined 
modalities on two stress-detection datasets, suggesting that there 
is promise for detecting stress with fewer sensor requirements. 
From the four modalities we tested, acceleration, blood volume 
pulse, and electrodermal activity, we saw acceleration and 
electrodermal activity to stand out in a few cases, but all modalities 
showed potential. Our results are acquired from testing with 
random holdout and leave-one-subject-out validation, using 
several machine learning techniques. Our results can inspire work 
on optimizing stress detection with singular modalities to make the 
benefits of these detection mechanisms more convenient.  
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I. INTRODUCTION 
In many individuals, stress can lead to unhealthy behaviors 

as they attempt to relieve that stress. Many individuals resort to 
harmful substances like alcohol to alleviate their stress. By 
finding better ways to recognize stress, we hope to improve the 
mechanisms by which we can lead individuals to healthier 
responses to their stress.   

 While it is feasible for a stress recognition system to 
yield high performance when multiple sensor modalities are 
available, [1], [2], this approach is often computationally 
expensive. Prioritizing and reducing the sensor modalities we 
use can reduce the necessary computational power of our 
recognition devices. Reducing the computational requirement 
can enable smaller devices that require less power to perform 

stress recognition. These smaller devices can be made less costly 
and can operate longer on a single charge, making them more 
appealing to the consumer. By investigating the performance of 
fewer modalities, we can find methods to effectively recognize 
stress with lighter data storage and computational power 
requirements. We anticipate that the results we find will lead to 
stress-recognizing devices that are cheaper and more accessible 
to those who could benefit from them. 

II. RELATED WORK 
Stress is a problem that exists in the lives of all people. As a 

result, researchers have investigated how well we can detect that 
stress in order to prevent it or advise individuals on how to deal 
with it. In one such study, Kyriakou et al. [3] used a rule-based 
mechanism with weights and critical values, based on 
electrodermal activity (galvanic skin response) and skin 
temperature, to detect stress. In this study, an aural stimulus was 
used to stimulate a stress response. These researchers found 
promising results toward detecting stress with rules that monitor 
electrodermal activity or skin temperature changes. In a similar 
study, Sagbas et al. [1] performed stress detection analysis based 
on smartphone keyboard typing behavior. They created an app 
that collected accelerometer, gyroscope, and touchscreen 
interaction data while users typed on their phone screens. This 
group then compared the results of supervised learning 
algorithms, including a decision tree, a Bayesian network, and a 
nearest-neighbor algorithm, to investigate how stress can be 
detected with smartphone sensors. While these studies examined 
different datasets, both found promising results detecting stress. 

 In our paper, we will perform analysis using the 
Wearable Stress and Affect Detection (WESAD) and the 
Alcohol and Drug Abuse Research Program (ADARP) datasets. 
The WESAD dataset has become very common within the realm 
of stress detection, as it contains public wearable sensor data in 
a simulated stress environment. Several previous works 
performed similar machine learning-based analyses on the 
WESAD dataset, with a goal of finding an optimal means of 
detecting stress. The purpose of the study by Bobade et al. [2] 
was to algorithmically identify the best-performing machine 
learning algorithm for these data among seven choices: random 
forest, decision tree, AdaBoost, kNN, linear discriminant 
analysis, SVM, and a deep network. They observed that the 
multi-layer neural network performed best on these data. In 
many of these stress detection investigations, researchers have 
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focused on electrodermal activity (EDA), or galvanic skin 
response (GSR), as an indicator or stress. Aqajari et al. focused 
on automatically and manually extracting features from the 
electrodermal activity data that yielded optimal predictive 
performance [4]. A similar study from Hsieh et al. [5] focused 
on how novel features could be extracted from electrodermal 
activity to optimize machine learning results. 

 Alongside the stress detection issue is the class 
imbalance issue, where the data are not uniformly distributed 
among classes. As humans are not stressed for a large portion of 
their daily lives, stress datasets collected outside of a lab have a 
high chance of being imbalanced. One study considered both 
data from inside and outside a lab to compare how stress could 
be detected in these disparate conditions [6]. In our own analysis 
of real-world data, we found that performance was poor when 
no steps were taken to address the class imbalance, so we had to 
address this issue. Recent work investigated various methods of 
mitigating imbalance in data, and created novel improvements 
to common strategies like undersampling and oversampling [7], 
[8], [9]. 

 Like these prior works, we investigate the issue of 
automated stress detection from wearable sensor data. Unlike 
many of these studies, which focus on trying to find the best 
ways to detect stress from wearable data, we focus on the 
performance of detecting stress with fewer modalities. Because 
the data classes are imbalanced, we compare some of the well-
known methods to resolve this issue as well. Our goal is to make 
stress detection more accessible and thus investigate how well 
we can detect stress with fewer sensor requirements and 
computational cost. 

III. DATASETS 
Our study analyzed stress detection based on two datasets, 

WESAD and Alcohol and Drug Abuse Research Program 
(ADARP). The WESAD dataset [10] was gathered in a lab 
setting. Subjects were put in several different situations to 
prompt them into stressful states. These situations were 
intermixed with other scripted behaviors. The ADARP data was 
collected from individuals suffering from alcohol use disorder 
outside of a lab setting, where stress was recorded on an 
Empatica E4 wearable band by the subject logging when they 
felt stress throughout the day (by tapping the push button on E4).  

 The WESAD dataset was gathered for the purpose of 
improving stress classification. Data were gathered from a total 
of 17 subjects. The subjects were graduate students at the 
institution of the researchers who created the data. Each subject 
was equipped with several sensors placed on the chest as well as 
on Empatica E4 wearable devices. The sensors from two of these 
subjects malfunctioned and were unusable, so only 15 of the 
subjects’ data are available. From these 15 subjects, the data 
from both the chest and wearable device sensors are available, 
but our testing focused only on the data from the wearable 
device sensors. The wearable device sensor modalities included 
accelerometer, electrodermal activity, blood volume pulse, and 
temperature. The subjects were put through several different 

 
1 All code for formatting, training algorithms, and evaluation 
can be found online at 

conditions: baseline, amusement, stress, and meditation. 
Baseline data were gathered for 20 minutes after the sensors 
were equipped and subjects were sitting or standing at tables 
with magazines provided for neutral reading to induce a neutral 
state. The amusement label data were gathered while subjects 
watched several funny videos. Stress conditions were created 
through the Trier Social Stress Test [11], consisting of a public 
speaking task and a mental arithmetic task. These tests were 
performed in front of a three-person panel of human-recourse 
specialists. The students were told to make a good impression 
on the panel to boost their career options (later the subjects were 
informed that the panel members were actually just researchers). 
The meditation condition was created by putting the subjects 
through a guided meditation. The meditation condition was 
initiated after both the amusement and stress conditions to calm 
the subjects. In our testing, we utilized the meditation, baseline, 
and stress conditions, to create stressed and non-stressed classes 
for training the learning algorithms. We used this dataset to 
evaluate whether single modalities would have comparable 
performance to multiple modalities using several different 
learning algorithms. 

 The ADARP dataset [12] was collected with the goal 
of investigating the relationships between sensor data and self-
reported stress. Data were gathered from 11 subjects, 10 of 
whom were female. The subjects were adults seeking help at a 
facility for mental health. Inclusion criteria were that subjects 
must be age 18-65 years and have self-reported consuming four 
or more standard drinks (drinks containing roughly 14 grams of 
pure alcohol) in a single day 5 or more times in the previous 60 
days. Data were gathered from three sources: a daily diary of 
self-reported emotions, cravings, and stress (four times a day), 
sensor data from Empatica E4 wearable devices, and structured 
daily interviews for qualitative evaluation of alcohol use. This 
study produced data from the same four sensor modalities 
included in the WESAD dataset. We used these data in addition 
to the WESAD data to determine if single modalities could 
perform comparably to a combination of multiple modalities. 
Additionally, we want to determine whether predictive 
performance from lab-based data was comparable to data 
collected outside the lab. 

IV. METHODS 
To compare the four different sensor modalities available on 

the E4 wearable devices, acceleration, blood volume pulse, 
electrodermal activity, and temperature, we ran several tests on 
each modality from both datasets to determine which would 
yield the highest performance. To begin this process, we first 
preprocessed the datasets to make them compatible with our 
learning algorithms1. To format the WESAD dataset, we began 
by first separating out the wearable device data, as the chest 
sensor data are not relevant for our purposes. From the wearable 
device data, we removed data for the class labels that were not 
defined, should be ignored, or were categorized as 
“amusement.” With the remaining labels, we combined 
“baseline” and “meditation” categories to form a “nonstress” 
class and categorized the remaining data as the “stress” class. 
The changes to the label distribution can be seen in Figures 1 

https://github.com/RyanCHolder/Comparing-Single-
Modalities. 



and 2. We partitioned the remaining data into one-second 
windows with 50% overlap. The number of data instances in 
each window varied across modalities, as each modality was 
sampled at a different frequency (32 Hz for acceleration, 64 Hz 
for blood volume pulse, 4 Hz for electrodermal activity, and 4 
Hz for temperature). These windows were used as the training 
data for our learning algorithms.  

Fig. 1. WESAD label distribution for single subject before preprocessing. 

Fig. 2. WESAD label distribution for single subject after preprocessing. 

To format the ADARP data, we defined instances of the 
stress class to encompass all data occurring within 20 minutes 
(10 minutes in each direction) of the subject’s stress tags. All 
other nonstress data within an hour in each direction of that tag 
was removed, because the subject’s stress state during that 
period is unknown. The labeled data were formed into one-
minute windows with 50% overlap, creating the ADARP data 
that we used for training and testing the classifiers. The label 
distribution for a single subject from the ADARP dataset can be 
seen in Figure 3. 

Fig. 3. ADARP label distribution for single subject. 

An additional dataset was created for both WESAD and 
ADARP by extracting statistical features that describe each 
window of data. The statistical features were mean, median, 
minimum, maximum, standard deviation, skew, kurtosis, and 

interquartile range. We initially performed separate experiments 
with the raw data and the statistical features. We report results 
for only the raw data with the longer tests, as the performance 
using the statistical features was very similar to the performance 
using the raw data. These formatted datasets were used to train 
our learning algorithms. 

To classify stress in the datasets we compare three learning 
algorithms: k-nearest neighbors (KNN), decision tree (DT), and 
a convolutional neural network (CNN). The k-nearest neighbors 
classifier was trained with uniform weights, a Minkowski 
distance metric, and Euclidean distance for the Minkowski 
power parameter. The decision tree classifier was trained with 
Gini to measure split quality, choosing the best option at each 
split, no maximum depth (expanding until all leaves are pure), a 
minimum of two samples to split a node, one minimum sample 
to be considered a leaf node, an unlimited number of allowable 
leaf nodes, a minimum impurity decrease of zero, and a 
minimum impurity split of zero. 

The convolutional neural network consisted of two 2D 
convolutional layers, the first containing 10 filters and the 
second 20, both with ‘same’ padding. The CNN was trained 
using ReLU (rectified linear unit) activation and a kernel size of 
five. The convolutional layers were followed by a singular unit 
dense layer with sigmoid activation for producing output. The 
convolutional model was compiled with binary cross-entropy as 
the loss function, Adam as the optimizer, and accuracy as the 
training metric. The model was trained with 10 epochs, a batch 
size of 30, and a 20% validation split. For learning on WESAD, 
the algorithms were trained with no class weighting. However, 
in resolving the class imbalance issue with the ADARP dataset, 
class weighting was used that we will describe later. 

V. EXPERIMENTAL CONDITIONS 
To gather results for each modality, we ran two varieties of 

tests. The first variety was a randomly selected train-test split 
from the combined data of all subjects. The split was chosen 
with 75% training data and 25% testing data. We chose this split 
to ensure plenty of data for training, and a portion of testing data 
large enough to avoid a biased sample. In our testing with this 
split we found algorithms to converge consistently on training 
data, as well as perform comparably on testing data. Each 
algorithm was trained with the training portion of the data for 
each modality individually for a total of 10 epochs. The trained 
models were used to predict class labels for the remaining 25% 
of the data, and these predictions were evaluated based on both 
accuracy and f1-score. The results for each iteration were 
averaged to produce an accuracy and f1-score for each modality 
and each learning algorithm.  

The second experiment we ran was a leave-one-subject-out 
test. For this experiment, we combined the data of all but one 
subject to form the training data and used the data of the left out 
subject as the testing set. This was run for one iteration per 
subject, where each subject was used as testing once. Each 
modality was trained individually on each algorithm for every 
iteration, and the resulting models were used to predict class 
labels for the remaining subject. Accuracy and f1-score were 
used to evaluate the predictions, and the average of these results 
for each iteration were computed to yield one accuracy and one 
f1-score value for each modality using each algorithm.  

 

 

 



These two varieties of experiments were run on both 
datasets; however, the balance between nonstress and stress 
classes in each dataset was very different. After our formatting, 
the WESAD exhibited a stress to nonstress ratio of 
approximately 1:3, while the ADARP dataset had a ratio of 
roughly 1:16. Because of the large imbalance in the ADARP 
data, we also added four class imbalance solutions to the above 
testing methods and tested those on the ADARP data. The 
solutions we used were majority class undersampling, minority 
class oversampling, class weighting, and a combination of the 
three methods. In the case of undersampling, we randomly 
selected a portion of nonstress data to include that was 
equivalent to the amount of stress data for each training set. In 
the case of oversampling, we used the Imbalanced-learn 
library’s Synthetic Minority Over-sampling Technique 
(SMOTE) [13] algorithm to generate synthetic data to create an 
equal amount of stress and nonstress data. For our weighting 
method, we set the class weights when training to 16 on the 
stress class, and 1 on the nonstress class. For our combination 
method, we performed undersampling in the same way as above, 
while selecting a portion of nonstress that was ten times the size 
of the stress class. We then performed oversampling on the 
resulting set to bring the stress class up to one-fourth the size of 
the nonstress class. With the new dataset, the learning 
algorithms were trained with the class weights set at four for the 
stress class and one for the nonstress class. In both the 
standalone weighting solution and the combined method, we 
only used the decision tree and convolutional neural network 
algorithms, as k-nearest neighbors does not support class 
weights as a parameter for its learning. We tested each of these 
class imbalance solutions using the same two testing varieties 
described above, using the adjusted dataset where applicable in 
place of the original data in the random sampled test, and 
creating the adjusted dataset at the beginning of each iteration 
for the leave-one-out test. 

To create a baseline of comparison for our results on singular 
modalities, we also ran the same tests using a combination of all 
four modalities. To combine the modalities, we changed some 
of the data preprocessing to downsample each modality as 
needed to fit the same number of instances per window, which 
was necessary because of the differing sampling frequencies. 
This was performed by selecting the first value of every quarter 
of a second from each modality, resulting in no change in the 
electrodermal activity or temperature data, but reducing the 
quantity of data from both the accelerometer and blood volume 
pulse sensor values. We combined the resulting downsampled 
data into a singular dataset by concatenating all the sensor values 
together in each instance within each window. The resulting 
dataset was then run with the same random sample test, as well 
as the leave-one-out test. Because of the class imbalance in the 
ADARP data, we performed these tests with the same 
oversampling we performed on the singular modalities when 
testing combined modalities on the ADARP data, generating 
enough synthetic data to create equal proportions of stress and 
nonstress data. We choose to use oversampling rather than one 
of the other imbalance solutions when testing with all modalities 
because it was the best-performing solution we tested on 
singular modalities with the ADARP data. 

VI. RESULTS 
We can see that singular modalities showed promising 

performance on the WESAD dataset. The results from the 
statistical and raw features were very similar, so we focus on just 
the results of the raw data. While not all modalities performed 
close to the combined modalities, we can see in the random 
holdout validation that acceleration only decreased accuracy by 
0.0493 and f1-score by 0.1019 on average across all algorithms 
(see Figure 4). Electrodermal activity closely followed 
acceleration in the random holdout validation, with an accuracy 
decrease of 0.0689 and an f1-score decrease of 0.1387 from the 
combined modalities on average across all algorithms (see 
Figure 4). Similarly, on the leave-one-out validation, we saw 
electrodermal activity perform very strongly, outperforming the 
combined modalities by 0.0511 in accuracy, and 0.0950 in f1-
score on average across all algorithms (see Figure 5). We 
suspect that the combined modalities did not perform as well as 
electrodermal activity due to the decrease in training data 
because of downsampling, as well as an increase in features 
without a corresponding increase in data volume, both 
contributing to underfitting. Despite the potential of 
underfitting, we can clearly see the potential of singular 
modalities to yield performance similar to combined modalities. 

Fig. 4. Average performance of  3/4-1/4 validation on WESAD. 

Fig. 5. Average performance of  leave-one-subject-out validation on WESAD. 

From our testing on the ADARP dataset we saw results that 
also suggest singular modalities have potential to give 
performance similar to that of multiple combined modalities. 
Our results from oversampling were best out of all our class 
imbalance solutions, so we will focus on those results. In our 
random holdout testing, we found that all modalities performed 
similarly, and on average were short of the performance of the 
combined modalities by 0.0446 in accuracy and 0.0373 in f1-
score across all algorithms (see Figure 6). This result shows that 
in the dataset with significantly more data available (though still 

 

 



very imbalanced) singular modalities continue to show 
performance comparable to that of the combined modalities. Our 
leave-one-subject-out results were quite extreme, as on average 
the singular modalities outperformed the combined modalities 
by 0.2128 in accuracy and were short from the combined 
modalities by 0.2525 in f1-score (see Figure 7). These results 
show that our singular-modality algorithms were overfitting 
much more than our combined modality algorithms, however 
the high accuracies still show potential for accurately detecting 
stress states from singular modalities. We also suspect that the 
combined modalities may have performed worse in this case for 
similar reasons as in the WESAD testing, as downsampling to 
align the modalities greatly reduced the amount of training data 
and increasing the number of features without increasing the 
amount of data leads to underfitting. Summaries of the 
experimental results are provided in Tables 1 through 4. 

Fig. 6. Performance of  3/4-1/4 validation on ADARP with oversampling. 

Fig. 7. Performance of leave-one-subject-out validation on ADARP with 
oversampling. 

TABLE I.  3/4-1/4 VALIDATION WITH WESAD DATASET. 

  Raw Data Statistical Features 
 Modality Accuracy F1-Score Accuracy F1-Score 

K
-N
ea
re
st
 

N
ei
gh
bo
rs
 ACC 0.9587 0.9146 0.9566 0.9140 

BVP 0.7974 0.5423 0.7582 0.4637 
EDA 0.9199 0.8394 0.8313 0.6474 
TEMP 0.8940 0.7865 0.7857 0.5414 
All 0.9871 0.9743   

D
ec
is
io
n 
Tr
ee
 

ACC 0.9427 0.8860 0.9479 0.8967 
BVP 0.7513 0.5102 0.7186 0.4481 
EDA 0.9115 0.8248 0.8500 0.7012 
TEMP 0.9212 0.8389 0.8094 0.5684 
All 0.9886 0.9775   

C
N
N
 

ACC 0.9099 0.8129   
BVP 0.7872 0.5018   
EDA 0.9209 0.8388   
TEMP 0.7584 0.2766   
All 0.9835 0.9673   

TABLE II.  LEAVE-ONE-SUBJECT-OUT VALIDATION WITH WESAD 
DATASET. 

  Raw Data Statistical Features 
 Modality Accuracy F1-Score Accuracy F1-Score 

K
-N
ea
re
st
 

N
ei
gh
bo
rs
 ACC 0.6528 0.2566 0.7331 0.4763 

BVP 0.7713 0.4831 0.7377 0.4177 
EDA 0.8975 0.7885 0.6815 0.3421 
TEMP 0.6463 0.3493 0.6633 0.3456 
All 0.8391 0.6812   

D
ec
is
io
n 
Tr
ee
 

ACC 0.6668 0.3685 0.7071 0.4164 
BVP 0.7271 0.4732 0.6947 0.4099 
EDA 0.8618 0.7293 0.6912 0.3976 
TEMP 0.6522 0.3621 0.6834 0.3316 
All 0.8508 0.6992   

C
N
N
 

ACC 0.6758 0.2052   
BVP 0.7573 0.4127   
EDA 0.9167 0.8229   
TEMP 0.6794 0.2667   
All 0.8328 0.6753   

TABLE III.  CLASS IMBALANCE STRATEGIES USING ADARP DATASET 
WITH 3/4-1/5 VALIDATION. 

  Under-
sampling 

Over- 
sampling Weighting Combination 

 Mod-
ality 

Acc-  
uracy 

F1-
Score 

Acc-
uracy 

F1-
Score 

Acc- 
uracy 

F1-
Score 

Acc-
uracy 

F1-
Score 

K
-N
ea
re
st
 

N
ei
gh

bo
rs
 ACC 0.6119 0.5743 0.8388 0.8607     

BVP 0.4943 0.5098 0.7006 0.7698     
EDA 0.5768 0.5388 0.8424 0.8629     
TEMP 0.5751 0.5736 0.8208 0.8475     
All   0.9043 0.9125     

De
ci
sio

n 
Tr
ee
 

ACC 0.6067 0.6039 0.8437 0.8495 0.8918 0.1631 0.8125 0.5454 
BVP 0.5142 0.5130 0.7740 0.7847 0.8830 0.0701 0.7659 0.4337 
EDA 0.5704 0.5676 0.8339 0.8395 0.8880 0.1191 0.8006 0.5176 
TEMP 0.5718 0.5714 0.8681 0.8721 0.8898 0.1162 0.8150 0.5521 
All   0.8757 0.8795     

CN
N
 

ACC 0.5473 0.5364 0.7185 0.7431 0.3705 0.1224 0.5457 0.4029 
BVP 0.5108 0.5088 0.8524 0.8574 0.7066 0.0987 0.7602 0.5156 
EDA 0.5409 0.5334 0.5857 0.6229 0.4481 0.1171 0.5149 0.3442 
TEMP 0.5803 0.5812 0.5800 0.6069 0.1758 0.1068 0.4461 0.3329 
All   0.6685 0.6992     

TABLE IV.  CLASS IMBALANCE STRATEGIES USING ADARP DATASET 
WITH LEAVE-ONE-SUBJECT-OUT VALIDATION. 

  Under-
sampling 

Over-
sampling Weighting Combination 

 Mod-
ality 

Acc-  
uracy 

F1-
Score 

Acc-
uracy 

F1-
Score 

Acc- 
uracy 

F1-
Score 

Acc-
uracy 

F1-
Score 

K-
N
ea
re
st
 

N
ei
gh

bo
rs
 ACC 0.6536 0.1140 0.6625 0.1080     

BVP 0.4658 0.1075 0.4348 0.1066     
EDA 0.5547 0.1043 0.6608 0.0991     
TEMP 0.5218 0.1097 0.6452 0.1028     
All   0.4852 0.2571     

De
ci
sio

n 
Tr
ee
 

ACC 0.5631 0.1185 0.7066 0.1088 0.8588 0.0662 0.7641 0.0854 
BVP 0.4900 0.1088 0.6909 0.0922 0.8742 0.0603 0.7911 0.0796 
EDA 0.5043 0.1073 0.6898 0.0902 0.8388 0.0545 0.7675 0.0792 
TEMP 0.4965 0.1054 0.6318 0.0987 0.8652 0.0609 0.7729 0.0887 
All   0.5010 0.2740     

CN
N
 

ACC 0.6441 0.0977 0.7970 0.0835 0.6780 0.0915 0.9349 0.0000 
BVP 0.6473 0.1114 0.7933 0.0771 0.6410 0.0853 0.9349 0.0000 
EDA 0.8738 0.0768 0.8931 0.0533 0.5129 0.0856 0.9349 0.0000 
TEMP 0.8683 0.0537 0.8899 0.0324 0.3482 0.0715 0.9349 0.0000 
All   0.4994 0.4896     

 

 

 



VII. CONCLUSIONS AND FUTURE WORK 
The goal of our work was to investigate the predictive 

performance of individual sensor modalities in detecting stress 
states using machine learning techniques. To accomplish this, 
we compared performance of individual sensor modalities from 
two stress detection datasets, using several different machine 
learning techniques. Our results lead us to believe that there is 
potential for singular modalities to perform comparably to 
multiple modalities. Including more features and data available 
will certainly lead to higher performance; however, the 
performance in many cases of singular modalities were close to 
that of the combined modalities. We believe that our results 
provide evidence to support the hypothesis that singular 
modalities can predict stress at a high enough level to be used in 
place of multiple modalities to save on computational 
requirements.  

 While our work gives some preliminary evidence for 
the promise of reducing sensor modalities to save computational 
requirements to detect stress, there is still a lot more work that is 
necessary to refine the use of singular modalities in stress 
detection. Our work can be enhanced by testing a greater variety 
of algorithms. In particular, the structure of the convolutional 
neural network may be refined to improve performance, as these 
networks show promise of being the most powerful tool for 
processing time series data. Future work could test several 
convolutional architectures, as well as increasing depth and 
number of epochs to optimize the performance of singular 
modalities and compare to the performance of combined 
modalities to see if the results are comparable in a more 
optimized environment.  

 Future work can also be directed toward resolving the 
class imbalance problem that is common in stress detection 
datasets. Our oversampling solution did yield an increase in 
performance compared to learning from imbalanced data, but 
we believe that more can be done to refine how the class 
imbalance is addressed to give increased performance of both 
combined and singular modalities. We believe the class 
imbalance may have influenced our results, especially in our 
experiments that utilized the ADARP dataset. As class 
imbalance solutions improve, employing these solutions to 
adjust imbalanced datasets like the ADARP dataset can lead to 
results with less irregularity to better show how singular 
modalities perform against multiple modalities. 
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