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ABSTRACT. We show that if L is a nullhomologous link in a 3-
manifold Y and X(Y, L) is a double cover of Y branched along L
then for each spin®-structure s on Y there is an inequality

dim HF (S(Y, L), 7*s; F2) > dim HF (Y, s;F>).

We discuss the relationship with the L-space conjecture and give some
other topological applications, as well as an analogous result for su-
tured Floer homology.
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1 INTRODUCTION

Heegaard Floer homology is a collection of invariants of low-dimensional ob-
jects: 3-manifolds, 4-manifolds, knots, and so on. Its most basic component is
HF which associates an Fa-vector space HF (Y,s) to a closed, connected, ori-
ented 3-manifold Y together with a spin®-structure s € spin®(Y’) [0Sz04b]. Our

main theorem concerns the behavior of ﬁ?(Y) under taking branched covers:

THEOREM 1.1. Let Y be a closed 3-manifold, L C'Y an oriented nullhomolo-
gous link of £ > 0 components with Seifert surface F, and s a spin®-structure
onY. Letw: X(Y,L) = Y be the double cover branched along L induced by the
Seifert surface F. Let m*s denote the pullback of s to X(Y, L) (Definition 4.4).
Then, there is a spectral sequence with E'-page given by

HF(S(Y, L), 7*s) @ H,(T* 1) @ F2[[0,07"]
converging to

HFE(Y,s') ® H.(T" ") @ F[[0,0"].

{s’|m*s'=7r*s}
In particular,

dim HF(S(Y,L),w*s) > > dimHF(Y,s).

{s'|m*s'=m*s}

Here, T°~! denotes the (¢ — 1)-dimensional torus, so H,(T*"!) is isomorphic
to the exterior algebra on £ — 1 generators. An oriented link L C Y is nullho-
mologous if [L] = 0 € H1(Y); we do not require each component to be null-
homologous. The pullback spin®-structure 7*s is explained in Definition 4.4.
Throughout this paper, Floer homology groups have coefficients in Fy or an
F2-module, and tensor products are over [F5 unless otherwise noted.

Theorem 1.1 is part of a growing literature on the behavior of Heegaard
Floer homology under various kinds of covers. Previously, Hendricks [Hen12]
used Seidel-Smith’s localization theorem for Lagrangian intersection Floer the-
ory [SS10] to prove a similar result for the knot Floer homology of the double
point set, as well as a spectral sequence for the Floer homology of 2-periodic
links in 3 [Hen15] (see also [HLS16,Boy18]). Lidman-Manolescu [LM18b] used
Manolescu’s homotopical refinement of monopole Floer homology [Man03] (see
also [LM18a]) to prove an analogue of Theorem 1.1 for unbranched p-fold regu-
lar covers between rational homology spheres. Lipshitz-Treumann [LT16] used
bordered Floer homology, Hochschild homology, and a Yoneda-type argument
to prove analogous results for certain 2-fold covers of 3-manifolds with b; > 0
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as well as for the knot Floer homology of knots with genus < 2. (See also
Remark 4.14.) Hendricks-Lipshitz-Sarkar [HLS16] deduced the special case
Y = 53 of Theorem 1.1 from Seidel-Smith’s localization theorem, and used it
to construct concordance invariants of knots.

Most recently, Large proved a generalization of Seidel-Smith’s localization the-
orem and used it to prove there are spectral sequences for the knot Floer ho-
mology of branched double covers and HF of ordinary double covers under less
restrictive hypotheses [Lar19]. We deduce Theorem 1.1 from Large’s localiza-
tion theorem. The main work is to check that the bundle-theoretic hypotheses
his result requires hold in the setting of HF of branched double covers (see
Section 3).

Theorem 1.1 has a number of corollaries. Recall that a rational homology
sphere Y is a (modulo-2) L-space if dim HF(Y) = |H1(Y)|, the minimum
possible dimension of ﬁ(Y); this is equivalent to HF.q(Y) = 0.

COROLLARY 1.2. Let L be a nullhomologous link in Y. If b1(X(Y, L)) <1 and
HEea(2(Y, L)) =0, then HRea(Y) = 0. In particular, if ©(Y, L) is an L-space
then Y is an L-space.

Ni points out that when restricting to non-torsion spin® structures, Corol-
lary 1.2 follows easily from the Thurston norm detection of Floer homology
without Theorem 1.1 and requires no constraints on b;.
Boyer-Gordon-Watson [BGW13] conjectured that an irreducible rational ho-
mology sphere Y is an L-space if and only if m1(Y) does not admit a left-
invariant total order. This is known as the L-space conjecture. By work
of Boyer-Rolfsen-Wiest [BRW05, Theorem 1.1], if 71(Y) does not admit a
left-invariant total order then neither does the fundamental group of any 3-
manifold Y’ which admits a non-zero degree map from Y. So, Corollary 1.2
provides some further evidence for Boyer-Gordon-Watson’s conjecture. In par-
ticular, we have:

COROLLARY 1.3. Let L be a nullhomologous link in an irreducible rational
homology sphere Y. If (Y, L) is an irreducible L-space and satisfies the L-
space conjecture, then so does 'Y .

Remark 1.4. Tt has also been conjectured that an irreducible rational homology
sphere Y is an L-space if and only if Y admits a co-orientable taut foliation.
Note that if Y admits a co-orientable taut foliation and K is transverse to the
foliation, then 3(Y, K) admits a co-orientable taut foliation as well. However,
there are nullhomologous knots which cannot be transverse to the foliation (e.g.
if the knot is nullhomotopic) and Theorem 1.1 still predicts that the branched
double cover should admit a co-orientable taut foliation if it is irreducible. It
would be interesting to see evidence of this through foliations.

Remark 1.5. We do not know if the restriction that L be nullhomologous in
Theorem 1.1 is necessary: in light of the L-space conjecture, perhaps the con-
dition that [L] = 0 € Hy(Y;Z/27Z) suffices. (This condition is needed to define
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584 K. HENDRICKS, T. LIDMAN, R. LIPSHITZ

a branched double cover at all.) The main step where we use that L is nullho-
mologous is the proof of Lemma 3.8, which is used to prove Proposition 3.1.

Theorem 1.1 also has some corollaries pertaining to the structure of Floer
homology.

COROLLARY 1.6. If dim HF (X(Y, L), n*s) = dim HF(Y,s) then the involu-
tion 7. on the Floer homology HF (X(Y, L), 7*s) of the branched double cover
18 the identity.

Remark 1.7. The above corollary does not require the use of the main theorem
if (Y, L) is an L-space or L is the Borromean knot in #2,59% x S'. We do
not know any examples satisfying the hypothesis of the corollary when Y has
non-trivial reduced Floer homology.

COROLLARY 1.8. Let Y be a homology sphere with a non-trivial surgery to S3.
Let K be a knot in' Y such that X(Y,K) is an L-space. Then'Y = S3 or the
Poincaré homology sphere.

Proof. Let Y be a homology sphere obtained by surgery on a knot in S3. By
work of Ghiggini [Ghi08] and Ozsvéath-Szabd [0Sz04al, either Y is not an L-
space, Y is the Poincaré homology sphere, or Y = S3 and K is the unknot. If Y’
is not an L-space, Corollary 1.2 implies that 3(Y, K') cannot be an L-space. O

Remark 1.9. If we additionally ask that K be a knot realizing the S2 surgery,
we obtain stronger constraints. If Y is S2, then K is unknotted by Gordon-
Luecke [GL89]. If Y is the Poincaré homology sphere, then by Ghiggini’s
theorem, K is the core of surgery on the right-handed trefoil, that is, the
singular fiber of order 5 in the unique Seifert fibered structure on the Poincaré
homology sphere. We can compute the double cover of 3(2, 3,5) branched over
the singular fiber of order 5: it is the Seifert fibered space S?(—1;1/3,1/3,2/5).
This manifold is not an L-space (see for example [LS07]). Hence, if K is a knot
in a homology sphere Y with a non-trivial surgery to S3 and branched double
cover an L-space then Y is S3 and K is the unknot.

Here is another application of the main theorem:

PRrROPOSITION 1.10. Let K be a knot in a prime homology sphere Y. Assume
that K has determinant 1 and is obtained from the unknot by a rational tangle
replacement. If X(Y, K) is an L-space then either K is isotopic to an unknot
or £T3 5 in an embedded B3.

We also prove an analogue of Theorem 1.1 for sutured Floer homology:

PROPOSITION 1.11. Let (M,v) be a balanced sutured manifold and L C M
a nullhomologous link with £ > 0 components, and let (X(M,L),5) denote
a double cover of M branched over L with the induced sutures. Then, there
is a spectral sequence with E' page SFH(X(M,L),7) ® H.(T*) @ F3[[0,071]
converging to SFH(M,~) ® H,(T*) @ Fo[[0,071]. In particular,

dim SFH(X(M, L),7) > dim SFH (M, ).
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Note that here we have H.(T*) instead of H,(T*"') as in Theorem 1.1.
Branched covers of sutured manifolds are discussed further in Section 5.1.
There is a relationship between Theorem 1.1 and the Smith conjecture [Smi39,
MB84]. Specifically, the Smith conjecture implies that Z/p-actions on S3 with
nonempty fixed sets are standard, so S2 is not the branched cover of any other 3-
manifold. Theorem 1.1 implies the weaker statement that if S is the branched
cover of Y then Y is an L-space integer homology sphere. Ozsvath-Szabé con-
jecture that the only irreducible integer homology sphere L-spaces are S® and
the Poincaré homology sphere [0Sz06, Section 1.5] (see also [HL16, Conjec-
ture 1]); this is sometimes referred to, somewhat drolly, as the Heegaard Floer
Poincaré Conjecture. Together with the Heegaard Floer Poincaré Conjecture,
Theorem 1.1 implies that if S or the Poincaré homology sphere is a branched
cover of Y then Y is itself a connect sum of copies of the Poincaré sphere.

It would be interesting to obtain a similar result in Seiberg-Witten theory, ex-
tending Lidman-Manolescu’s work [LM18b]. In particular, such a result would
perhaps entail studying Seiberg-Witten solutions on the orbifold quotient of the
branched double cover, and relating them with the underlying manifold. There
have been a number of other results on the Heegaard or Seiberg-Witten Floer
homology of branched covers with which it would also be interesting to com-
pare [Kan18b, Kanl8a, AKS20, KL.15, LRS18, LRS20]. In particular, perhaps
Lin-Ruberman-Saveliev’s techniques [LRS20] could lead to a Seiberg-Witten-
theoretic proof of Theorem 1.1.

This paper is organized as follows. Section 2 recalls Large’s localization theo-
rem and some background about K-theory and maps of stable vector bundles.
Section 3 verifies the main hypothesis for Large’s localization theorem, an iso-
morphism between the stable relative tangent and normal bundles to the fixed
sets. Section 4 verifies the remaining hypotheses and deduces Theorem 1.1.
Finally, Section 5 discusses applications of Theorem 1.1, as well as Proposi-
tion 1.11 for sutured Floer homology.
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2 BACKGROUND

2.1 POLARIZATION DATA
The following definitions are drawn from Large’s paper [Lar19, Section 3.2].

DEFINITION 2.1. Let (M, Lo, L1) be a symplectic manifold and two Lagrangian
submanifolds. A set of polarization data for (M, Lg,L1) is a triple p =

DOCUMENTA MATHEMATICA 27 (2022) 581-612



586 K. HENDRICKS, T. LIDMAN, R. LIPSHITZ

(E, Fy, F1) where

e F is a symplectic vector bundle over M

e F; is a Lagrangian subbundle of E|r, fori=0,1.

Given (M, Lo, L1) and p = (E, Fy, F1) a set of polarization data for (M, Lo, L1),
we may stabilize to obtain p  C = (E® C, Fy @R, F1 ©iR).

DEFINITION 2.2. Let p = (E, Fy, Fy) and p' = (E', F{, F]) be two sets of po-
larization data for (M, Lg,L1). An isomorphism of polarization data is an
isomorphism of symplectic vector bundles

a:E— FE

such that there are homotopies of Lagrangian subbundles of E'|1,, between a(F;)
and F| for i = 0,1 (so that the subbundles stay Lagrangian throughout the
homotopy). A stable isomorphism of polarization data between p and p’ is an

isomorphism of polarization data between p & C"™ and p’ & Q"/ for some n,n’.

One special case of this definition will be of particular importance. Suppose
(M, Lo, L1) is equipped with a symplectic involution preserving Ly and L; set-
wise. Let (Mﬁz,L’gm,L{h) denote the fixed sets under the involution. Then
there are two sets of polarization data for (Mﬁ“”,LgI,sz): the tangent po-
larization (TM#® TLI TLI®) consisting of the tangent bundles to M#® and
L and the normal polarization (NM#* N LI NL) consisting of the nor-
mal bundles to M ¢ M and L c L;.

DEFINITION 2.3. With notation as above, a stable tangent-normal isomorphism
is a stable isomorphism of polarization data between the tangent polarization
(TMﬁI,TLgZ,TLfZ) and the normal polarization (N M, NLgZ, NLjfZ).

2.2 LARGE’S LOCALIZATION THEOREM

The following is an immediate consequence of Large’s construction of equiv-
ariant Floer homology and its formal properties (including his localization iso-
morphism):

THEOREM 2.4. [Lar19] Suppose that

(L1) M is an exact symplectic manifold and convex at infinity, and Lo, L1
are exact Lagrangians such that either Ly and L1 are compact or M is a
symplectization near infinity and Lo and Ly are conical and disjoint near

nfinity;

(L2) T is a symplectic involution of M preserving the L; setwise, and
(Mfi= Lfg’:, Lffw) are the fized sets under T; and

DOCUMENTA MATHEMATICA 27 (2022) 581-612



INEQUALITIES FOR FLOER HOMOLOGY OF BRANCHED COVERS 587

(L3) there is a stable tangent-normal isomorphism between the data
(NMA* NLF NLEY and (TMPe T L TL").

Then there is an ungraded spectral sequence with FEi-page isomorphic to
HF (Lo, L) ®r, F2[[0,071] converging to HF (LY, L) @p, F[[0,071]. In par-
ticular, there is a rank inequality dimy, HF (Lo, L1) > dimg, HF(LJO%, L}fm)

Proof. This argument is essentially given by Large [Larl9, Proof of Theo-
rem 1.4]; we summarize it here. First, under the hypotheses (L1) and (L2),
Seidel-Smith [SS10, Section 3.2] couple the J-equation on (M, Lg, L1) to
Morse theory on RP* to construct Z/2Z-equivariant Floer homology groups
HFZS/SQZ(LO, Ly) and a spectral sequence

HF (Lo, L) ®, F2[[0]] = HF} 7%, (Lo, L1). (2.5)

(See also [HLS16] for an equivalent construction.) Under the same hypotheses,
Large uses a blow-up construction analogous to Kronheimer-Mrowka’s con-
struction of monopole Floer homology to define another equivariant cohomol-
ogy group HF%/gZ(LO, L1). He then shows [Lar19, Theorem 1.2 or Theorem 8.1]
that

HF 3y (Lo, L) ®py o) F2[[6]] 2 HF3 755 (Lo, L1). (2.6)

Given a set of polarization data p, under hypothesis (I.1) Large also constructs
a Floer homology twisted by p, HFy, (Lo, L1;p). In the special case that py
is the normal polarization for (M#®, L{}I, Ljfz), he shows [Lar19, Theorem 1.1]
that there is an isomorphism

HFf3 (Lo, Ly) ®p,j0) Fa[0, 07 = HFy, (L", L5 p). (2.7)

On the other hand, using what he calls the total Steenrod square (coming
from the Z/2Z-action on M x M exchanging the factors), he shows [Larl9,
Proposition 9.5] that for the tangent polarization pr,

HF o (L, L p7) =2 HF (LY, L") @, F[0,07']. (2.8)

(This uses the action filtration. In particular, exactness of the Lagrangians is
used here.) The existence of a tangent-normal isomorphism yields an isomor-
phism

HF (L4 147 pw) & HFy (LY L{" pr). (2.9)

Combining these formulas gives the spectral sequence. Finally, the rank in-
equality over Fy follows from the universal coefficient theorem, bearing in mind
that Fy and Fo[[f,07!] are fields. O

We note a minor refinement of Large’s result. Let P(Lg, L1) denote the space
of paths from Ly to L;. For x € LoN Ly there is a corresponding constant path
[x] € P(Lo,L1). Two points x,y € Ly N Ly can be connected by a Whitney
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disk if and only if [z] and [y] lie in the same component of P(Lg, L1). So, the
Floer complex CF(Lg, L1) decomposes as a direct sum

CF(Lo,L)= €D  CF(Lo, Li;s). (2.10)
semoP(Lo,L1)

The relevance for us is that, in Heegaard Floer homology, the path components
of P(T,,Tg) correspond to the spin®-structures on Y.
In the setting of Theorem 2.4, there is an inclusion map ¢: P(LJO%,LJFI) —
P(Lo, L1), inducing a set map v, : moP(LE", L) — 7o P(Lg, L1). The map ..
is typically neither injective nor surjective. Large’s invariant HF, (ng T LI p)
decomposes along 7o P(LF” | L) as

HF (LI LI p) = B HFw (L L pss) (2.11)
semo P(L", L")

and hence also as

HFW (L D0 = P P HFw(L L p;5). (2.12)

semoP(Lo,L1) se71(3)

Both the invariants HF 7, (Lo, L1) and HF57,;(Lo, L1) and the Seidel-Smith
spectral sequence (2.5) decompose along 7-orbits in moP (Lo, L1) as

SS/KM SS/KM
0PN (Lo by = @ HFDE M (Lo, LuB)  (213)
[aeﬂop(Lg,Ll)/T
P HF (Lo, L1;3) @, F2([0]] = HF3 /5, (Lo, L1; [3)). (2.14)
ESE

Further, the equivariant Steenrod square, which comes from Floer theory on
M x Mf® respects the decompositions (2.10) and (2.11), and the localization

isomorphism (2.7) respects the decompositions (2.12) and (2.13). (If 5 is not

fixed by 7 then HFZ/SQ/ZKM(LO, Ly;[s]) & HF (Lg, L1;5) for either representative

5 of [5] and, in particular, is f-torsion.)
So, we have:

PROPOSITION 2.15. Under the same hypotheses as Theorem 2.4, for each's €
moP (Lo, L1) there is a spectral sequence

HF(Lo, Li3) €2, Fal0,07] = @) HF(LE", If*:5) @, F[[0,07")
sy ()
and a rank inequality
dimg, HF (Lo, L135) > Y dimg, HF(L}", L{" ;).

s€ 1 (3)

DOCUMENTA MATHEMATICA 27 (2022) 581-612



INEQUALITIES FOR FLOER HOMOLOGY OF BRANCHED COVERS 589

2.3 K-THEORY AND MAPS OF STABLE VECTOR BUNDLES

In this section we recall some notions related to the K-theory of complex vec-
tor bundles. We consider bundles over a CW complex X which is homotopy
equivalent to a finite CW complex.

We focus particularly on maps between stable bundles. The main goal is to
recall that the set of homotopy classes of isomorphisms between stable bundles
is an affine copy of K!(X) and hence, under favorable conditions, there is a
Chern character isomorphism from this set to the odd cohomology of X.

DEFINITION 2.16. Let E, E’ be complex vector bundles over a base X. A stable
isomorphism from E to E’ is a bundle isomorphism

fiEoCY 5 EacCY

for some integer N. Stable isomorphisms compose in the obvious way.
Two stable isomorphisms f;: E & CNi — E' & CNi, i = 1,2, are homotopic if
there is an integer M > max{Ny, N2} and a homotopy between

1 ]ICMle ,fa ® ]ICMfNQ Ea Q]M — F' & QJM.

LetIso(E, E') denote the set of homotopy classes of stable isomorphisms from E
to E'.

DEFINITION 2.17. Let QO denote the trivial 0-dimensional wvector bundle
over X. Let E,E' be vector bundles over X so that Iso(E, E') # @. Given
[f] € Iso(E, E') and [g] € Iso(C°, C°) define [f *g] € Iso(E, E') as follows. The
map f is a bundle isomorphism E®CN — E'®C"Y and the map ¢ is a bundle
isomorphism CM — CM, for some integers M, N. Then [f*g] is the homotopy
class of the bundle isomorphism f®g: E®&CYN o CM 5 B aoC¥ oCM.

PRrOPOSITION 2.18. Let X be a CW complex homotopy equivalent to a fi-

nite CW complex. Then, given complex vector bundles E,E’ over X with
Iso(E, E') # @, Definition 2.17 defines an action of Iso(C°,C°) on Iso(E, E').
Further, this action makes Iso(E, E') into a torsor over Iso(C%, C").

Proof. The key point is that given a bundle £ and bundle isomorphisms k, £:
E"” — E” the bundle isomorphisms

kot, (kot)@l: E"®FE' — E'®E"

are homotopic. To see this, note that given an invertible 2 x 2 matrix A over C
there is an induced automorphism A: E” & E” — E” ® E”. The homotopy
between k @ ¢ and (ko ¢) ® 1 is given by

(DG )6 O =)
(cf. [Ati89)).
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Using this observation, if f/ = f ® Icx then [ @ g ~ f® g ® Iex. (Here, the
bundle E” in the key observation is a trivial bundle.) It follows easily that
[f] = [¢g] is independent of the choices of representatives f and g. Next, for
appropriate choices of representatives, [f] * ([g] * [h]) and ([f] * [¢]) * [h] agree
on the nose. It remains to see that for any pair of elements f,h € Iso(E, E’)
there is a g € Iso(C",C°) so that f*g = h.

Given [f] € Iso(E,E’), composition with f gives a bijection between the
Iso(C°, C°)-sets Iso(E, E) and Iso(E, E'). So, it suffices to prove freeness and
transitivity of the action in the case that [f],[h] € Iso(E, E).

We start with transitivity of the action. To keep notation simple, replace E
by its sum with a high-dimensional trivial bundle, so f,h: E — E. Choose a
bundle F so that E@ F is isomorphic to a trivial bundle CV. Let ¢: E®F =
C" be an isomorphism. Then we have isomorphisms

po(f@lp)od™, po(h@lp)og t:CY - CV.

Let
g=¢o(felp)ohalp)op : CY - CV.

We claim that f * g ~ h. Indeed, applying the key point above, we have

frg=(Ugdd)o(fef ' @lr)o(lg®h@®lr)o(l®d ")
~(Ig@g)o((fofloh)@lgdlr)o(lz®¢ )
=(g@¢)o(hdlgdlp)o(lsgdeé )
=h®Icw,

as desired.

Similarly, for freeness, suppose that [f]*[g] = [f]*[¢']. By stabilizing as needed,
we may assume that f % g and f % ¢’ are homotopic maps E @ CM — E@CM.
Let F be as above. Then

felreg~folrogd: EoFOoCY - EFoFaCY,

SO
[po(falr)@dg~po(flr))@g:CNacCM - CcVoCM.

Thus, composing both sides with (¢ o (f ®1p))~! @ Icw, the maps [N & g and
I¥ & g’ are homotopic, so [g] = [¢/]. This completes the proof. O

Remark 2.19. Here is an alternative understanding of Proposition 2.18.
The stable automorphisms of the trivial bundle over X are the same as
m1(Map(X, BU)), based at the constant map. The group of stable automor-
phisms of a nontrivial bundle is the fundamental group of a different path
component of Map(X, BU). Since BU is an h-space, all path components of
Map(X, BU) have isomorphic fundamental groups.
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We can extend the Chern character to stable isomorphisms. Recall that given
an automorphism f of the trivial bundle CV over X, the mapping cylin-
der Cyl(f) of f is a bundle over X x [0,1] equipped with a trivialization
of Cyl(f)|xxyo,1}- Specifically, Cyl(f) = ((QN x [0,1]) I QN)/ ~ where
(z,v,1) € CN x {1} is identified to (z, f(z)(v)) € CV, and the trivializations
over X x {0} and X are the standard ones. Equivalently, Cyl(f) is the trivial
bundle over X x [0, 1] where the trivializations over X x {0} and X x {1} are
the standard trivialization and f, respectively.

A (stable) trivialization of the relative bundle (Cyl(f), Cyl(f)|x x{o0,1}) is equiv-
alent to a (stable) homotopy between f and the identity map. Consequently,
the Chern character of Cyl(f) is an element

ch(f) € H***(X x [0,1], X x {0,1};Q) = H**"(SX;Q) = H*(X;Q)

and the map
ch: Iso(C%, C% ® Q — H*Y(X;Q)

is an isomorphism.
By Proposition 2.18, given an element [f] € Iso(E,E’), any other element
[h] € Iso(E, E') can be written as [h] = [f] * [g] for a unique [g] € Iso(C°, C).
Define

chy([1]) = ch([g]) € H*H(X; Q).

In particular, in the case E = E’ we can take f = I, and we have a canonical
choice of Chern character ch: Iso(E,E) — H°d4(X;Q). Here is an alterna-
tive description of the Chern character in this case. Given h € Iso(E,E)
the mapping torus 7T}, of h is a vector bundle over X x S'. The maps
X < X x S' - X and the canonical generator [S'] € H'(S!) identify
Heven(X X S1> o~ Heven(X> ey HOdd(X); the map HOdd(X) N Heven(X % S1>
is a — a x [S']. We have:

LEMMA 2.20. For h € Iso(E, E), the Chern character ch(h) is the image of the
Chern character of Ty, in H°4(X).

Proof. We first reduce to the case that F is the trivial bundle. Write h =% g,
where g € Iso(C%,C"). On the one hand, ch(h) = ch(g). On the other hand,
T}, is stably isomorphic to Tt & Ty, so ch(Tt & T,) = ch(Tt) + ch(T,). Since
Ty = E x S, ch(Ty) € H*V**(X) C H®*"(X x S'). Hence, the image of ch(7)
in H°44(X) vanishes, so the image of ch(T} & T,) is the same as the image of
ch(Ty).

So, it remains to show that for g € Iso(C", C°), the class ch(g) agrees with the
image of ch(7},). Fix a distinguished point 1 € S'. There is a commutative
diagram of bundles and trivializations

(Ty,2) ————— (Ty, Tyl x x 113) «— (Cyl(g), Cyl(g)|x x{0,1})
(X xS @) —— (X x SL, X x {1}) +— (X x [0,1], X x {0,1}).
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(In the top row, the entries Ty|x {1y and Cyl(g)|xx{o,1} are shorthand for
the fixed trivializations of these bundles.) Further, naturality of the cohomol-
ogy cross product, the definition of the fundamental class in cohomology, and
naturality of the Chern character give a commutative diagram

ch(Ty) «————— ch(Ty, Ty|x x {13) —— ch(Cyl(g9), Cyl(g)|x x 0,13)
m Mm m
HO™(X x §%;Q) «— H®(X x S', X x 1;Q) — H**"(X x [0,1], X x {0,1}; Q)

R

x[S1
X[S X[Ovl]

H*(X;Q)
The Chern character of g is the preimage of ch(Cyl(g), Cyl(g)|o,1) under the

right diagonal isomorphism. Thus, the left diagonal arrow sends the Chern
character of g to the Chern character of T}, as claimed. O

This Chern character map is natural in the following sense:

LEMMA 2.21. Let G: X — Y be a continuous map, E,E’ be complex vector
bundles over Y, and [f],[h] € Iso(E,E’). There are induced isomorphisms
[G* f],[G*h] € Iso(G*E,G*E'"). Then,

cha- £ ([G*h]) = G™ chy([h]).
In particular, if E = E’ then
ch([G*h]) = G™ ch([R]).
Proof. This is immediate from the definitions. O

Finally, the Chern character respects composition:

LEMMA 2.22. If [hq], [h2] € Iso(E, E) then
Ch([hg o hl]) = Ch(hl) + Ch(hg).

More generally, given bundles Ey, Ea, E3 and maps [f1], [h1] € Iso(E1, Es) and
[f2], [h2] € Iso(Es, E3) we have

chpyof, ([h2 0 hu]) = chy, ([7n]) + chy, ([ha])-
Proof. We prove the more general statement; the special case follows by taking
f1 = fo =1 Write [h1] = [f1 * ¢1] and [he] = [f2 * g2]. As in the beginning of
the proof of Proposition 2.18, [hz o h1] = [(f2 o f1) * g1 * g=]. Hence
Chf20f1([h2 © hl]) = Ch(gl * 92)'
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It is immediate from the construction of the Chern character for maps of trivial
bundles and additivity of the usual Chern character for complex vector bundles
that for g1,92 € ISO(QO,QO), ch(g1 * g2) = ch(g1) + ch(g2). The result follows.

O

Remark 2.23. Since the inclusion of the unitary group into the symplectic group
is a homotopy equivalence, the K-theory of complex vector bundles is the same
as the K-theory of symplectic vector bundles. In particular, one can take the
Chern character of symplectic vector bundles and isomorphisms between them,
and the results of this section hold in the symplectic case as well.

3 THE STABLE TANGENT-NORMAL ISOMORPHISM

Let H = (X4, e, 3, z,w) be a doubly-pointed Heegaard diagram for a nullho-
mologous knot K in a 3-manifold Y, 7: 3(Y, K) — Y a double cover of YV
branched along K, and K = 7-1(Y). There is an induced doubly-pointed Hee-
gaard diagram H = (f]gg, a,é,z, w) for (X(Y, K), I~() as follows. Viewing X as
a subset of Y, ¥ = 7~ (X). The preimage of a (respectively 8) is a collection
of 2g circles @ (respectively B) in f], and the preimage of z (respectively w) is
a point z (respectively w) in 3.

The covering involution 7: $(Y, K) — %(Y, K) induces an involution 7 of H. A
complex structure on ¥ induces a T-equivariant complex structure on f], which

makes Sym?(%) into a smooth complex manifold. The involution 7 induces a
smooth involution of Sym?? (%), by

T({x1, ... x2g}) = {7(x1), ..., 7(m2g)}.
The goal of this section is to prove:

PROPOSITION 3.1. Let H = (X,, o, 8, z,w) be a doubly-pointed Heegaard di-

agram_for a nullhomologous knot K in a closed 3-manifold Y and let H =
(X, &, B3,Z,w) be the branched double cover of H, which is a doubly-pointed

Heegaard diagram for (3(Y,K),K). Then there is a stable tangent-normal
isomorphism

(T Sym®(2\ {z})f=, TTL", T’H‘gz) = (N Sym* (2 \ {z})f*, NTL", qugz).
We start by noting that the fixed set of the involution is familiar:

LEMMA 3.2. There is a T-equivariant Kihler form on Sym? (X \ {Z}) and
a Kihler form on Sym?(S\ {z}), so that the fized set Sym?9 (% \ {z})f= is
symplectomorphic to Sym? (X\{z}), and the symplectomorphism takes the fized
sets (T’;z, 'H‘gz) of the Lagrangian tori to the Lagrangian tori T, and Tg.

Proof. The proof is the same as the analogous result for branched double covers
of genus 0 multi-pointed Heegaard diagrams for links in S3 [Hen12, Section 4
and Appendix A]. O
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LEMMA 3.3. Let \/f:1 St be a bouguet of circles. Choose coordinates on each S}

such that the wedge point is 1 € St C C. Then SymT(\/f:1 S} deformation
retracts onto its subspace

k
{(zl, S, 2k) € H S} | at most r coordinates satisfy z; # 1}.
i=1

In particular, if r > k, Symr(\/f:1 S}) is homotopy equivalent to the k-torus
Hle Sk, while if r < k, then SymT(\/f:1 S}) is homotopy equivalent to the
r-skeleton of the k-torus Hle S with respect to the standard product CW
decomposition of the torus.

Proof. The map Sym”(S') — S' given by multiplication {z1,...,2.}
z1 -z is a homotopy equivalence (see, e.g., the proof of [Hen12, Lemma 5.1]
or, for the essence of the argument, [Hat02, Example 4K.4]). Work of
Ong [Ong03] (see also [Hen12, Lemma 5.1]) shows that this map can be used to
construct the desired deformation retract from Symr(\/f:1 S} to the r-skeleton
of the torus. O

COROLLARY 3.4. Given a complex vector bundle E — Sym?(3 \ {z}), the
Chern character map ch: Iso(E, E) — H°(Sym?(2\{z}); Q) (Section 2.3) is
injective with image H°(Sym?(2\{2}); Z) and hence induces an isomorphism

ch: Iso(E, E) — H°W(Sym? (X \ {z}); Z).

Proof. If X is a wedge sum of spheres then the Chern character map is an
isomorphism K°(X) — He(X) [May99, pp. 212]. So, since the Chern
character map under consideration is induced from the usual Chern character
map on the suspension of X, the result follows from Lemma 3.3 and the fact
that the suspension of a skeleton of a torus is a wedge sum of spheres. o

Given a doubly-pointed Heegaard diagram (X, e, 3, z, w) for a nullhomologous
knot K, with branched double cover diagram (X, &, 3,7z, w), Large [Larl9,
Proposition 10.2] constructed a stable tangent-normal isomorphism

@y : (T Sym?(2\ {Z,@})=, TTE", T'JTgI)
= (N Sym? (2 \ {2, @})fie, NTS, qugf). (3.5)

Eventually, we will modify ®; so that it extends over {w} x Sym?~*(X), without
changing ®; on ng and ’]I’gz (up to homotopy). As a first step we have:

LEMMA 3.6. There is a stable isomorphism of complex vector bundles

®y: TSym? (X \ {Z})* = N Sym? (T \ {z})/*.
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Proof. Let E be a disk in ¥ containing z and w, so that ¥\ E is a deformation
retract of ¥\ {z}. Let Y be the image of Sym? (X \ E) in Sym?¥ (X \ {Z,w} ).
Large’s isomorphism ®; restricts to an isomorphism 7Y ~ NY. Since Y is a

deformation retract of 3\ {Z}, this implies the existence of the isomorphism ®s.
o

Note that, in the proof of Lemma 3.6, since F may intersect the a- and -
curves, we have no control over ®; on T']TgI and T'H‘gm.

Remark 3.7. One can alternately prove Lemma 3.6 by using Macdonald’s com-
putation of the Chern classes of symmetric products of surfaces [Mac62], along
with the fact that over spaces with torsion-free cohomology the Chern classes
of a vector bundle determine its stable isomorphism class.

LEMMA 3.8. Let V be a closed tubular neighborhood of {w} xSym?™(X\{z}) €
Sym?(X\ {z}). Consider the commutative diagram

G

H*(Sym?(2\ {z})) —— H*(Sym? (2 \ {2, w}))

| | T

H*(V) H*(0V) H*(T,) ® H*(Tp)

where G is the kernel of the map H*(Sym?(X\ {z,w})) = H*(T,) ® H*(Ts)
(so the diagonal line is exact). Given any class a € H*(Sym?(X\ {z,w})) there
is a class b € G so that the image of a+b in H*(OV') is in the image of H*(V).

Proof. Let v C ¥\{z,w} be a small circle around w. Since K is nullhomologous
there is a class ¢ € HY(Z \ {z,w}) so that c([a;]) = ¢([B:]) = O for all i and
¢([y]) = 1. Specifically, since K is nullhomologous, K bounds a Seifert surface F
in Y. The Poincaré-Lefschetz dual PD([F]) € H}(Y \ K) evaluates to 1 on a
meridian of K. Since each «; and $; is nullhomologous in Y \ K (they bound
disks), PD([F]) evaluates to 0 on [oy;] and [3;]. Hence, the image of PD[F] in
HY(X\ {#z,w}) is the desired class c.

Projection to {w} x Sym? (X \ {z}) gives a homotopy equivalence V =
Sym?~(X\ {z}). Further, since the restriction of ¢;(T Sym?(X\ {2})) to {w} x
Sym?~1 (X \ {2}) is exactly ¢y (T Sym?~ ' (2 \ {2})) [Mac62, Formula 14.5], the
normal bundle to {w} x Sym? ™! (£\{z}) is trivial so OV 2 Sym9 ™ (2\ {z})x S™.
(The restriction of the cohomology class n € H? appearing in MacDonald’s
formula to the symmetric product of ¥\ {z} vanishes.) From Lemma 3.3, the
cohomology H*(SymY (X \ {z,w})) vanishes for i > g — 1 and the inclusion
map Sym? " (X \ {z,w})) < Sym? (X \ {z,w})) induces an isomorphism on H'’
for i < g — 1. By a small abuse of notation, let ¢ denote the image of the class
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ce HY(Z\ {z,w}) in H(Sym™ (X \ {2, w})) under this string of isomorphisms
for any n. We thus have a diagram

H*(Sym?~ (3 {z,w}))®* H*(Sym? (2 \ {z,w}))®?

"*W J(z,y)Hz-‘chy
H*(Sym? ™' (2 \ {}))%” H*(Sym?(X\ {z, w}))
H*(V)®? = H*(0V)

(z,y)—i"z+cUiy

where the map labeled =~ is an isomorphism for * < ¢ (and the target van-
ishes for * > ¢g), and the maps i* are induced by the inclusion 9V — V and
Sym?~ (S \ {z w}) — Sym? = (2 {z}).

We claim that if we invert the arrow labeled = in the degrees where it is an
isomorphism, the diagram commutes. This is a consequence of Lemma 3.3,
as follows. Let Si,...,S53, be a collection of 2g circles in X\ {2z} such that

the punctured surface ¥ \ {2} deformation retracts onto \/>2, S}, the surface

%\ {z,w} deformation retracts onto (\/2, S}) V v, and the inclusion map
Y\ {z,w} — X\ {z} goes by filling in a disk D., containing w whose boundary

is 7.
Lemma 3.3 shows that Sym? (X \ {z}) deformation retracts onto the g-skeleton

{(zl, ..., 22g) €51 X -+ x Sy, | 2 # 1 for at most 7 coordinates}

of Hfi 1S}, However, for this argument we wish to apply a milder de-
formation retraction, starting with the fact that ¥ \ {z} deformation re-

tracts onto (\/1211 Sll) V D,. The same argument as Lemma 3.3 shows that
Sym? ((\/fil S}) % D'y) deformation retracts onto

{(zl, coyZ2g41) €8] X -+ x Sy, X Dy | z; # 1 for at most r coordinates}.
This deformation retraction takes the subspace Sym? (3 \ {z,w}) onto
{(zl, Coy22g41) €8] X oo x Sy, x (Do \ {w}) | 2 # 1 for at most r coords.}

which itself deformation retracts onto the g-skeleton of (H?i 1 S}) x 7. Fur-

thermore, it carries V' to the product of the g — 1 skeleton of H?il S} with D,,

and 9V onto the product of the g — 1 skeleton of H?il S} with 4. It is now sim-
ple to see from this description of the spaces in terms of tori that the diagram
above commutes.
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Write the image of a in H*(9V) as i*a; +cUi*ay for some ay,az € H*(V). Let
a, € H*(Sym? (X \ {z})) be a preimage of a; under the isomorphism. Since
the top horizontal map is an isomorphism whenever H*(Sym? ™" (2\ {z, w})) (or
equivalently H*(V)) is non-zero, there are elements a@; € H*(Sym?(X\ {z,w}))
mapping to i*a;. Take b = —cUas € H*(Sym?(X\ {z,w})). Since ¢|o, and ¢|g,
vanish, b lies in the kernel G. The image of a +b € H*(Sym?(Z \ {z,w})) in
H*(0V) is the same as the image of a; € H*(V). This proves the result. [

Proof of Proposition 3.1. The composition
®y ' o @y TSym™(E\ {Z,@})™ — TSym™ (2 \ {Z, @}
is an element of
Iso(T Sym™ (2 \ {Z, @})®, T Sym™ (2 \ {Z, w})"").

Identify Sym? (X \ {z, w}) with Sym?/(2\ {Z,@}) as in Lemma 3.2 and let
a = ch[®; ' o ®] € HoM(Sym? (2 \ {z,w})) (see Section 2.3 and Remark 2.23).
By Lemma 3.8, there exists b € H°9(Sym? (X \ {z,w})) such that b is in the
kernel of the map H*(Sym?(X\ {z,w})) = H*(To)® H*(Ts) and the image of
a+bin H*(0V) is in the image of the map H*(V) — H*(9V). By Corollary 3.4,
b = ch[®3] for some

O3 € Iso(T Sym™ (S \ {Z, @}) ™, T Sym? (S \ {7, w})™).

Functoriality of the Chern character implies that ch[®3| ;e o] = 0. Hence, the
restriction ®3|ppis o 1s stably homotopic to the identity isomorphism. Like-

wise, @3 iz o s stably homotopic to the identity isomorphism.
]

®C
Consider

Dy 0@y 0By TSym™ (T )\ {Z, @} — T'Sym (2 \ {Z, @})™.

Since ch[®; ! o ®; 0 ®3] = ch[®;* 0 ®1] 4 ch[®3] = a+b and the Chern character
is functorial, we see that ch[(®; ' o ®; 0 ®3)|gy] is the image of a+b in H* (V)
and therefore lies in the image of the bottom horizontal map in the following
commutative diagram:

(@2_1 o @y 0 B3)|ov

” T
Iso(TV,TV) Iso(TV]av, TV |ov)
ch | & ch | &
HOdd(V) Hodd (av)
(7 [\
(a+b)|y i ch((®;" 0 @1 0 ®3)[5v).
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Corollary 3.4 implies that the vertical maps in this diagram are isomorphisms,
so the isomorphism (@' o ®; o ®3)|sy extends over V. There is therefore an
extension

®4: TSym™ (S () - TSym™ (£ \ {7}

of @51 o ®; o &3. Our final isomorphism ®5 is the composition
®5 = By 0 By : TSym?9 (T \ {ZH)* — N Sym?(\ {z})*.

This map ®5 agrees with ®; o ®3 away from the divisor {w} x Sym?™(%).
Since the restriction of ®3 to T']TgI ® C is homotopic to the identity and there
is a homotopy of Lagrangian subbundles from <I>1(TT§Z) to N ng, there is a
homotopy of Lagrangian subbundles from @5 (T'H‘gm) to N 'H‘gx, and similarly for
T’]I”gw. Therefore the map @5 is the desired stable tangent-normal isomorphism

(T Sym?9(2\ {z})/=, 71, T’ﬂ"g“”) >~ (N Sym* (2 )\ {z})f=, NTH", mrgw). O

4 PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1.1. We begin with the simplest version of
the spectral sequence, and then prove a spin®-refined statement in Section 4.1
and the generalization from knots to links in Section 4.2.

THEOREM 4.1. Let Y be a closed 3-manifold and K C'Y an oriented nullho-
mologous knot with Seifert surface F. Let w: X(Y, K) = Y be the double cover
branched along K induced by the Seifert surface F'. Then, there is a spectral
sequence with E'-page given by

HE(S(Y, K)) @ F2[[0,07"]
converging to .
HE(Y) @ Fo[[0,071].
In particular,

dim HF (2(Y, K)) > dim HF(Y).

Proof. Fix H = (2,4, o, 8, 2, w) a weakly admissible doubly-pointed Heegaard
diagram for a nullhomologous knot K in Y and let H = (igg, &,B,Z, w) de-
note a doubly-pointed Heegaard diagram for (3(Y, K), K ) obtained by taking
the branched double cover of H. By Proposition 4.2 below, H is also weakly

admissible. By Proposition 3.1, there is a stable tangent-normal isomorphism
(T Sym®(2\ {z})f=, TTL", Tqrgz) >~ (N Sym®* (2 \ {z})f*, NTL", qugﬂ”).

By Proposition 4.2 again, the remaining hypotheses of Theorem 2.4 are satis-
fied. So, Theorem 2.4 implies the result. O
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PROPOSITION 4.2. Let H = (3, «, B, z,w) be a Heegaard diagram for a null-

homologous knot K in a closed 3-manifold Y and let H= (ENJ,&,,B',E, w) be a
branched double cover of H. Assume that H is weakly admissible for all spin®-
structures. Then (X, &, 3,Z,w) is weakly admissible for all spin®-structures.
Further, there is a choice of symplectic form on Symg(i \ {z}) satisfying hy-
potheses (L1) and (L2) from Theorem 2.4 (and inducing the polarization data
studied in Section 3).

Proof. Weak admissibility is equivalent to the existence of an area form w on X
so that the signed area of every periodic domain with multiplicity 0 at z is
zero [0Sz04b, Lemma 4.12]. Since K is nullhomologous, every periodic domain
for (f], a, B) with multiplicity 0 at Z also has multiplicity 0 at w, and hence
projects to a periodic domain in ¥ with multiplicity 0 at z (and w). Hence, the
pullback @ of w (smoothed out at z and w) has the property that every periodic
domain with multiplicity 0 at z has signed area 0. In particular, (f], a, B, Z) is
also weakly admissible for all spin®-structures.

Perutz’s techniques [Per08, Section 7], as applied by Hendricks to the case of
punctured Heegaard surfaces [Hen12, Section 4], show that if ¢ is an exhausting

function on ¥\ {z} such that w = —ddC¢ and ¢ is the lift of ¢ to X\ {Z}, then
there is an equivariant smooth exhausting function ¢ on Sym?9(3\ {Z}) which
agrees with (5529 away from a neighborhood of the diagonal. In particular,
if @ = —dd®¢ is the symplectic form on ¥\ {Z}, then —dd®+ is an exact
equivariant symplectic form on M = Sym??(3 \ {Z}) which agrees with &*29
away from a neighborhood of the diagonal. This shows that M is an exact
symplectic manifold and convex at infinity. Further, if A = —d®¢ then —dd®y
has a primitive —d®1 that agrees with \*29 away from the diagonal.

To establish that Ly = Ty and L; = TE are exact Lagrangians in M, we first
check that the curves &; and E ; are exact with respect to a suitable primitive of
& in 2\ {Z}. Consider the primitive A = —d®¢ of &. We will adjust A on ©\ {2}
so that for all 7, f&i A= f;éi X = 0, and then adjust —d®v correspondingly on
Sym?/(3\ {Z}). Reordering the §;, arrange that [a1],.. ., [dag], [B1),- - -, [Bx] €
H 1(§~]; Q) are linearly independent and

[Bis1l,-- - [B2g] € Span([dn],. .., [aag), [Bi1,-- -, [B]) € H1(3;Q).  (4.3)

There is a cohomology class [a] € Hl(i;R) so that for all : = 1,...,2g,
(la], [@]) = [5, A and for i = 1,....k, ([a],[3i]) = [5 A\ Choose a closed
1-form a representing [a] and let A’ = A — a. Then )\ is still a primitive of @
and fai N = ij N =0forl1<i<2gand1<j <k Weclaim that in fact

fE- N =0forj=k+1,...,2g as well. By Equation (4.3) there is a periodic
domain P with boundary

OP = my @] + - - + mag[dag] + na[B1] + -+ - + ni[Br] + plB;]
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for some mq,...,mag,n1,...,nk,p € Z, p # 0. By Stokes’ theorem,

p/~ X:/&—ml/ /\’f~~~—nk/~ N,
F P ay k

but by construction every term on the right-hand side vanishes.

Now, let [b] € HY(Sym?(Z \ {Z});R) be the image of the class [a] under the
isomorphism H!(Sym??($\ {Z});R) = H(X\ {Z};R) induced by the inclusion
5. < Sym?9(%), and let b be a closed 1-form representing [b]. Then —dCtyp—bis a
primitive for the symplectic form on Sym?? (i\{%}) and, from the computation
in the previous paragraph, the restriction of —d®y — b to Tg and TE is exact.
This concludes the proof. o

4.1 THE spin® REFINEMENT

In this section, we will refine Theorem 4.1 to respect spin® structures. First,
we must discuss spin® structures on branched covers.

DEFINITION 4.4. Let s be a spin®-structure on Y and w: (X(Y,K),K) — (Y, K)
be a double cover branched along a nullhomologous knot K. The pullback spin®-
structure 75 is characterized as follows. If K = 7= 1(K) denotes the double
point set then on $(Y, K) \ nbd(K), the map = is a local diffeomorphism, so
T((Y, K)\nbd(f()) = T (Y\nbd(K)). Thus, s € spin®(Y') induces a spin°®-
structure 75 on $(Y, K) \ nbd(K). The obstruction to extending 77*5|anbd(f()
over nbd(K) is 01(77*5|6nbd(1~()) = 7" c1(8|y ppacit)): which is the pullback of the
obstruction to extending s over nbd(K) and hence vanishes. Any two extensions
differ by a multiple of PD[f(] =0, so the extension of n*s to all of (Y, K) is
unique.

For the branched double cover of an (oriented) nullhomologous link L where
some components are homologically essential, the uniqueness step above fails.
For links, define s as follows. Identify a neighborhood of L with D? x L so
that the Seifert surface is given by [0,1) x {0} x L. Choose a vector field v on'Y
representing s, and so that in this neighborhood v is given by 0/00, where 0
18 a coordinate on L. In particular, v is positively tangent to L. From the
construction of the branched double cover, there is an induced vector field v on
S(Y,L) so that on X(Y,L) \ L, dn(¥) = v, and U is positively tangent to L.
Then 7*s is the spin®-structure represented by v.

It is immediate from the construction that, for knots, these two definitions of
m*s agree. It follows from Proposition 4.12 below that for links the second
construction is independent of the choice of v representing s. It also follows
that reversing the orientation of all components of L gives the same map 7*
on spin‘®-structures.

We note next that the definition of pullback spin® structures behaves well with
respect to the association of spin® structures to intersection points in Heegaard
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diagrams. Fix H = (X4, o, 3, z,w) a doubly-pointed Heegaard diagram for a
nullhomologous knot K in Y and let H = (f], a, B, Z,w) be a branched double
cover of ‘H, which is a doubly-pointed Heegaard diagram for (X(Y, K), K ). Re-
call that Ozsvath-Szabd [0Sz04b] gave an association s,: To NTg — spin®(Y).
For z € T, N Tp, we will sometimes write Z for the intersection point 7= (x)

in Tg N TE

LEMMA 4.5. Let K be a nullhomologous knot in' Y. Then for x € T, NTg, we
have 7*(s.(x)) = sz(7~(z)).

Proof. Choose a Morse function f on (Y, K) compatible with the doubly-
pointed Heegaard diagram (3, o, 3, z,w). Represent s.(x)|y\nba(x) by a non-
vanishing vector field by modifying Vf on Y \ nbd(XK) in a neighborhood of
the trajectories of Vf through x. Consider 7*f = f o7 and the induced ho-
mology class of vector field on X(Y, K) \ nbd(K). This class is precisely the
spin® structure on $(Y, K) \ nbd(K) corresponding to #. Now, define a spin®
structure on X(Y, K) by extending over $(Y, K) \ nbd(K). As discussed in
Definition 4.4, the extension is unique because K is nullhomologous. Hence,
this spin® structure is exactly sz(7~!(z)). However, this spin‘-structure is also
7*(s.(x)) as constructed in Definition 4.4. O

Remark 4.6. By Lemma 4.5, if we change the intersection point = for Y with-
out changing the corresponding spin® structure on Y, then the lifted elements
represent the same spin® structure on (Y, K). Another way to see this is as
follows. Given a Whitney disk u € ma(z,y) in Sym9(X \ {z}), this naturally
induces a Whitney disk @ € (%, 7) in Sym9(2\ {Z}) by u(q) = 7 (u(q)).

The alternative description of pullback spin® structures described in the proof

of Lemma 4.5 is also a useful viewpoint for studying the connection between
spin® structures and cohomology classes.

LEMMA 4.7. For K C Y a nullhomologous knot, the pullback spin® structure
satisfies

5 =78 (4.8)
(s +a)=7"(s) + 77 (a) (4.9)
c1(m*s) = ¥ eq(s). (4.10)

for any s € spin®(Y) and a € H*(Y).

Proof. (4.8) Recall that if v is a non-vanishing vector field corresponding to
a spin® structure s, then —v corresponds to 5. So, the claim follows easily
from Definition 4.4, since if v corresponds to s on Y, then ’U|y\nbd(K) cor-
responds to s|y\npd(x) on Y \ nbd(K), and 7T*’U|E(Y7K)\nbd(f() corresponds to

7r*5|E(Y,K)\nbd(I~() :
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(4.9) This is equivalent to showing that 7*(s' — s) = 7*s’ — 7*s. Let s and &’
be represented by z, 2’ € T, N Tg respectively, so

s:(2') = 5.(x) = PDle(x,2")],

and

53(2') — s3(T) = PDle(z,2")].
The transfer map 7' sends e(z,2') to €(Z,7'), ie., m'e(zx,2') = (T, 7). (If
we represent €(z,z’) by a l-manifold in ¥\ {z,w} then 7'e(x,2’) is the total
preimage of that 1-manifold.) It follows that

7 (s, (2") — 5,(x)) = 7*PD[e(z, 2")]
= PD[r'e(x, 2")]
= PDle(z,7")]
= (@) — 5:(7)

= 71'*(52(1'/)) - W*(sz(x))’

by Lemma 4.5.

(4.10) Recall that the first Chern class of a spin® structure t on a closed 3-
manifold can be computed by t —t. So, the claim follows from Equations (4.8)
and (4.9). O

We are now ready to state the spin®-refinement of Theorem 1.1.

PROPOSITION 4.11. LetY be a closed, connected, oriented 3-manifold, K CY a
nullhomologous knot, and s a spin®-structure on Y. Then, the spectral sequence
from Theorem 4.1 splits along T-invariant spin®-structures on (Y, K). In
particular, there is an inequality

dim HF(S(Y, K),7*s) > Y dim HF(Y,s).

T*s =T*s

Proof. Choose a doubly-pointed Heegaard diagram (X, «, 3, z,w) for K C Y
which is weakly admissible for all spin®-structures. As before, the fixed
point sets of the Z/2Z-action on (Sym?/ (X \ {z}), T4, T3) are identified with
(Sym?(X\ {z}), Ta, Tg). Under this identification, the map

tx: M P(Ta, Tg) = moP(Ta, Tp)

from Section 2.2 sends the constant path [z] associated to a point x € T, N Ty
to the constant path [~ (2)] associated to the point 7~ (z) € Tz N Tj.

Recall that two elements x,y € T,NTg have [z], [y] in the same path component
in P(T,,Tg) (inside Sym? (X \ {z})) if and only if s,(z) = s.(y) [0Sz04b,
Section 2]. Similarly, two elements Z,y € Tg NT5 have [z], [y] in the same path
component of P(Tg, TE) if and only if s3(Z) = s(¥). Finally, by Lemma 4.5,
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%5, (z) = sz(7~!(x)). Putting this all together, if an element of moP(Tq, Tp)
corresponds to &, then the image under ¢, corresponds to 7*s. (See Remark 4.6
for an alternate viewpoint.)

Thus, Proposition 2.15 (together with Propositions 3.1 and 4.2) implies the
desired splitting of spectral sequences and inequality

dim HF(S(Y, K),7*s) > Y dim HF(Y,s). 0

T*s' =T*s

4.2 FROM KNOTS TO LINKS

In this section, we use Ozsvath-Szabd’s knotification procedure to deduce The-
orem 1.1 for links with an arbitrary number of components from Proposi-
tion 4.11.

Suppose L C Y has two components L1, Ly. Let B; be a ball intersecting L;
in a trivial arc 4;. Note that Y#5? x S' can be produced by identifying the
boundary components of Y\ (B; U Bs) so that the endpoints of A; and As are
identified. The link (L1 \ A1)U (L2 \ A2) C Y#5? x St is the knotification of L.
More generally, the knotification of an ¢-component link is obtained by doing
this process £ — 1 times until a single component remains in Y#,_15% x S*.
We denote the knotification of L by kr. It turns out that the knotification
operation behaves well with respect to branched double covers. Letting t denote
the unique torsion spin® structure on #,_152 x S, we have:

PROPOSITION 4.12. Let L be a nullhomologous link in'Y with £ components and
let kg, be its knotification. Fix a Seifert surface F for L, let m: X(Y,L) - Y
denote the corresponding double cover of Y branched along L, and let L =
7= Y(L) be the double point set. Then, X(Y, L)#¢_15% x S* is homeomorphic
to B(Y#¢_15% x St k1) and the knotification of L is the preimage of kKr,.
Furthermore, given a spin® structure s on Y, the pullback of s#t under 7':
Z(Y#g_l;S’Q X Sl,HL) — Y#g_l;S’Q x St s (W*S)#t.

Proof. Recall that the branched double cover of a 3-ball over a trivial arc is
again a 3-ball and the double point set is a trivial arc. So, if B; and Bs are
small balls around points on two components of L then 7=(B;) and 7~ 1(By)
are small balls around points on two components of E, and knotifying L using
Bj and By corresponds to knotifying L using 7=!(B;) and 7= 1(Bs).

It remains to identify the spin® structures. For notational simplicity, we con-
sider the case of a 2-component link. Let B3 C Y be the union of By, By, and
an arc connecting them. A spin‘-structure s’ on Y #(S? x S1) is determined by
its restriction to Y \ Bz and the evaluation of ¢1(s’) on S? x {pt} = dB;. The
same remarks hold for 3(Y, L)#(S? x S'). Now, (7*s)#t and (7')* (s#t) agree
on Y \ By and {c; ((7*s)#t),[S?]) = 0. Since (n')*c1(s#t) = c1((7')* (s#t)),
we have (c1((7)*(s#1)),[S?]) = 0 also. It follows that the spin®-structures
(m*s)#t and (7')* (s#t) agree. O
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Proof of Theorem 1.1. This is immediate from Propositions 4.11 and 4.12 and
the Kiinneth theorem for HF' of connected sums. O

Remark 4.13. The spectral sequence from Theorem 1.1 is an invariant of (Y, K)
in the following sense. Given other choices in its construction (Heegaard di-
agrams, almost complex structures, and so on) there is an isomorphism be-
tween each page of the resulting spectral sequence. This follows from the fact
that the spectral sequence is isomorphic to Seidel-Smith’s spectral sequence for
equivariant Floer cohomology [SS10, Section 3.2] (and hence to the spectral
sequence one obtains by applying the techniques in [HLS16] to an equivariant
Heegaard diagram for the branched double cover) and the proof of the anal-
ogous result for HFK [HLS16, Corollary 1.10]. On the other hand, it is not
clear that the isomorphism between the E°°-page of the spectral sequence and
HF(Y) ® F3[[0,0~"] is independent of choices.

Remark 4.14. Theorem 1.1 allows one to recover a result about ordinary dou-
ble covers, by taking L to be the unknot and choosing an interesting Seifert
surface. Specifically, a double cover Y — Y is induced by a Z cover if the
corresponding element in H'(Y';Z/2Z) is the image of an element of H*(Y;Z).
In that case, the double cover is obtained by cutting Y along a closed, ori-
entable surface F' and gluing two copies of the result together. Let F’ be
the complement of a small disk in F, and U = 9F’. It is not hard to
see that the double cover branched along U with respect to the Seifert sur-
face F' is Y#(S? x S1). So, Theorem 1.1 gives a spectral sequence relating
HF(Y#(S% x S1)) = HF(Y) ® H.(S') and HF(Y). Such a spectral sequence
was obtained by different techniques by Lipshitz-Treumann [LT16, Theorem 3]
(for torsion spin®-structures); this construction gives another explanation of
the appearance of the H,(S!) factor. This spectral sequence was also proved
by Large [Larl9, Theorem 1.4], using his localization theorem; the argument
we have just given essentially reduces to his. (This remark was suggested to us
by the referee.)

5 APPLICATIONS

Proof of Corollary 1.2. First, recall that, by Poincaré duality, a non-zero de-
gree map f: N7y — Ny between closed, connected, oriented 3-manifolds in-
duces an injection on cohomology with rational coefficients. So, it follows
from Lemma 4.7 that if 7: £(Y,L) — Y is a branched double cover, then
s € spin®(Y) is torsion if and only if 7*s is. Also, of course, by (Nz2) < by (Ny).
Suppose that b1 (X(Y, L)) = 0, so b1(Y) = 0 as well. If HR.q(X(Y,L)) = 0,
then Theorem 1.1 implies that

1 = dim HF(S(Y, L), 7*s) > dim HF (Y, s) > 1
for all s € spin®(Y), so Hhea(Y) = 0. Hence, if (Y, L) is an L-space, so is Y.
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Next, suppose that b1 (3(Y,L)) = 1. If N is a 3-manifold with b, (N) = 1,
then HEeq(N) = 0 if and only if HF(N, t) = 0 for non-torsion t and
dim ﬁ(N ,t) = 2 for all torsion t. (Recall that 2 is the lower bound for
dim ﬁ(N ,t) for torsion t, regardless of whether HFeq is non-trivial.) We
now consider two cases: b1(Y) = 0 or b1(Y) = 1. First, assume b1 (Y) = 0.
By Theorem 1.1, we see that dimﬁ(Y,s) < 2 for all s € spin®(Y). Since
X(HF(Y,s)) = 1, we must in fact have dim HF(Y,s) = 1 for all s. This is
equivalent to HFeq(Y) = 0.

Finally, assume b1 (Y) = b1(X(Y, L)) = 1. As in the previous case, Theorem 1.1
guarantees

2 if 7*s is torsion

0 if 7*s is non-torsion.

dim HF (Y, s) < {

Since s is torsion if and only if 7*s is torsion, we have the desired constraints
on HF(Y) to guarantee that HFeq(Y) = 0. O

Proof of Corollary 1.6. In the Seidel-Smith spectral sequence (see Section 2.2),
the E' page is HF(S(Y, K), 7*s) ® Fa[[0,0~], and the d; differential is given
by (1 4+ 7.)0. If 7. was not the identity, the d; differential would not be
identically 0, and we would deduce that dim ﬁ(Y,S) is strictly less than
dim HF (2(Y, K), 7*s), contradicting Theorem 1.1. O

Proof of Proposition 1.10. Since K has determinant 1, (Y, K) is a homology
sphere. As K is obtained by a rational tangle replacement, % (Y, K) is obtained
by surgery on a knot J in X(Y,U) = Y#Y. Note that the surgery coefficient
must be 1/n for some n € Z to produce a homology sphere. Since %(Y, K)
is an L-space, Y is an L-space by Corollary 1.2, and so Y#Y is an L-space.
In what follows, recall that if Z is a homology sphere L-space and a surgery
Zo(P) is an L-space then |a| > 2g(P) — 1 (cf. [OSz11, Proposition 9.6]).
First, assume that |n| > 2, so by the previous remark ¢g(J) = 0, i.e., J is
unknotted in Y#Y. Therefore, (Y, K) is a homology sphere obtained by
surgery along an unknot in Y#Y', so (Y, K) is Y#Y as well. By a result of
Kim-Tollefson [KT80, Corollary 1], because Y is prime, the covering involution
on Y#Y is either a connected sum of involutions on Y or comes from taking the
branched double cover of an unknot in an embedded B3 in Y. We must rule out
the former. In order for a connected sum of involutions on Y to have a quotient
to Y, we must be able to write Y = %(Y, K’) and Y = X(S3, K"); again, we
are using the irreducibility of Y. If Y = S3, then K’ = K” = U and so K is
unknotted. If Y # S3, then Y cannot admit a self-map of degree 2. Indeed,
if Y is a prime L-space other than $3, then Y is the Poincaré homology sphere
or is hyperbolic [Eft18, HRW16]. The case of the Poincaré homology sphere
is handled by Boileau-Otal [BO91, Proposition 3.1] and the hyperbolic case
follows from supermultiplicativity of the Gromov norm, which is positive for
hyperbolic manifolds, under non-zero degree maps. Thus, in this case, K is
unknotted.
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Next, assume that n = +1. In this case, there are two options. The first
is that J is unknotted, and by the previous argument, so is K. The other
is that g(J) = 1. While a knot in S with a non-trivial L-space surgery is
fibered, a knot P in a homology sphere L-space Z with a non-trivial L-space
surgery has the property that P is fibered in some (not necessarily prime or
proper) connected-summand of Z. (The statement for knots in S® is due to
Ghiggini [Ghi08]. The statement for knots in arbitrary homology spheres with
irreducible exteriors follows from Ni’s work [Ni07, Theorem 1.1 and Proof of
Corollary 1.3].) Therefore, in our case, J is a genus one fibered knot in a
summand @ of Y#Y | which is necessarily a homology sphere L-space. Of
course, viewed as a knot in @, 1/n-surgery on J is again an L-space homology
sphere, since it is a summand of X(Y, K). By Baldwin’s work [Bal08], the only
homology sphere L-space, genus one fibered L-space knot pairs are (52, +7T5 3)
and F(X(2,3,5), F5), where F5 denotes the singular fiber of order 5, i.e. the
core of +1-surgery on T5 3. (Here, the signs are chosen based on the sign of n.)
Note that in the former case, 1/n-surgery produces +3(2,3,5), while in the
latter case, 1/n-surgery produces S3.

In the first case, J is a copy of +75 3 contained in an embedded 3-ball in
Y#Y, and so (Y, K) = Y#Y# 4+ 3(2,3,5). Since Y is prime, it follows from
Kim-Tollefson [KT80, Corollary 1] that K must be a knot in an embedded
3-ball in Y with branched double cover +£%(2,3,5). (Here we are using that
¥(2,3,5) is not a branched or unbranched double cover of itself, which follows
from [BO91, Proposition 3.1].) By a result of Watson [Wat12, Theorem 6.2] K
is a copy of FT35 in an embedded B3 in Y. In the second case, we see that
the Poincaré homology sphere is a summand of Y#Y and hence of Y. Because
we assumed Y is irreducible, Y is the Poincaré homology sphere, and X(Y, K)
is one copy of the Poincaré homology sphere. Since there is no knot in the
Poincaré homology sphere whose branched double cover is again the Poincaré
homology sphere, this last case does not arise. O

Remark 5.1. If Y is not prime, similar characterizations can likely be obtained,
but it requires a more tedious analysis of the possible involutions on the relevant
3-manifolds.

Remark 5.2. Assuming the Heegaard Floer Poincaré conjecture, this propo-
sition can be proved without requiring the results from this paper, since the
involutions on $% and connected sums of the Poincaré homology sphere are
well understood.

5.1 ANALOGUE IN SUTURED FLOER HOMOLOGY

In this section we prove an analogue of Theorem 1.1 for sutured Floer homology.
Let (M,~) be a balanced sutured manifold and L C M a nullhomologous link
in the interior of M. Then, there is a natural sutured structure 7 on 9% (M, L):
the sutures are the preimage of the sutures of M under the covering map
m: O8(M, L) — OM, and the positive / negative regions Ry are the preimages
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of the positive / negative regions in M. Since x(EJr) =2x(R+) =2x(R-) =
X(R-), (3(M, L),7) is also balanced.

Proof of Proposition 1.11. For simplicity, we assume that K is a knot. The
extension from knots to links is analogous to the closed case.

By a doubly-pointed sutured Heegaard diagram for (M,~, K) we mean a sutured
Heegaard diagram (X, o, 3) for (M,~) together with a pair of points z,w €
Y\ (U @) so that (X \ nbd({z,w}), o, 8) is a sutured Heegaard diagram
for M \ nbd(K), with two meridional sutures around K. Call (¥, o, 3, 2, w)
admissible if the sutured Heegaard diagram (X \ nbd(z), e, 3) is admissible.
A simple Morse-theory argument shows that every knot in the interior of M
is represented by some doubly-pointed Heegaard diagram (compare [Juh06,
Proposition 2.3]). Further, any doubly-pointed Heegaard diagram can be made
weakly admissible by an isotopy of the a-circles (cf. [Juh06, Proposition 3.15]).
So, choose an admissible doubly-pointed sutured Heegaard diagram H =
(3, a,8,z,w) for K C (M,v). A Seifert surface for K transverse to ¥ in-
duces a branched double cover 3. of ¥, branched over {z,w}. If we let &, B, z,
and w be the preimages of a, 3, z, and w under the branched covering map
then (¥, &, 3,Z,w) is a doubly-pointed sutured Heegaard diagram represent-
ing K = 7~ 1(K) in (2(M, K),7). (This is clear, for example, by considering a
Morse-theoretic interpretation of sutured Heegaard diagrams.)

Let d be the number of a-circles in the Heegaard diagram H. We apply Large’s
theorem to prove Lemma 5.4 below, which yields a spectral sequence with
E' page the Floer homology HF(T5,Tj) ® F2[[0,0~'] computed in Sym??(X\
{Z}) and E*> page the Floer homology HF (T,,Ts) @ F2[[, 0] computed in
Sym?(X\ {2}).

Note that these Lagrangian Floer homologies are not describing the sutured
Floer homologies in the proposition. Given a balanced sutured manifold (Z, ),
define (Z°,1°) to be the balanced sutured manifold obtained by removing an
embedded 3-ball from M and adding an equatorial suture on the additional
2-sphere component in the boundary. So,

HF(Tz,T;) = SFH(S(M, K)°,5°)
HF(T,,Tg) = SFH(M®,~°).
The Kiinneth theorem for sutured Floer homology [Juh06, Proposition 9.15]

implies that

SFH(Z°,n°) = SFH(Z,n) ® H.(S"), (5.3)
which gives the desired result. o
LEMMA 5.4. Consider an admissible doubly-pointed sutured Heegaard diagram
(2, a, B, z,w) for K C (M,~), and let (3, &, 3,Z,w) be the associated diagram
for (X(M,K),~). Then, there is a spectral sequence with E'-page the Floer
homology HF (T, Tz) @ Fo[[0, 071 inside Sym?* (X \ {Z}) and E>-page the
Floer homology HF (T,, Tg) ® F[[0,071] inside Sym®? (X \ {z}).
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Proof. The proof that the symplectic hypotheses of Theorem 2.4 are satisfied
is similar to the proof of Proposition 4.2, and is left to the reader. It remains
to show that there is a tangent-normal isomorphism

(T Sym*($\ {2}), TTa, TTs) = (N Sym? (2 \ {z}), NT,, NTp).

The argument proceeds in two steps as in the closed case. First, Large’s argu-
ment [Larl9, Proof of Propositions 10.1 and 10.2] establishes an isomorphism

@y : (TSym*(2\ {w, 2}), TT,, TTs) = (N Sym® (X \ {w, 2}), NTo, NTjs).

Since z and w lie in the same component of ¥, as a special case we again get
an isomorphism

By: TSym?(\ {2}) = N Sym’(S\ {=})

which may not respect the tangent and normal bundles to the tori (cf.
Lemma 3.6).

We show that the first of these isomorphisms can be modified to extend this
over {w} x Sym? (X \ {z}). As in Section 3, the space ¥\ {z} deformation
retracts onto a wedge of circles, so by Lemma 3.3 any g-fold symmetric product
Symd(E \ {z}) has the homotopy type of a skeleton of a torus. It follows by
the same argument as Corollary 3.4 that the Chern character is an integral
isomorphism ch: Iso(E, E) — H°(Sym?(X \ {z})) for any complex vector
bundle E over Sym?(X\ {z}), and similarly for Sym®(X \ {z,w}). Lemma 3.8
still holds in this context, with the same proof. So, the proof of Proposition 3.1
applies to show that ®o0®, gives a tangent-normal isomorphism, as desired. 0

COROLLARY 5.5. Let (M,v) be a balanced sutured manifold and L C M a
nullhomologous link. If (M,~) is a taut sutured manifold and X(M, L) is irre-
ducible, then (X(M,L),7) is taut as well.

Proof. An irreducible balanced sutured manifold has non-vanishing sutured
Floer homology if and only if it is taut [Juh06, Proposition 9.18], [Juh08, The-
orem 1.4]. The theorem therefore follows from Proposition 1.11. O

COROLLARY 5.6. Let Y be a closed, connected, oriented 3-manifold, L C'Y a
link, and Q C Y \ L a link which is nullhomologous in' Y \ L. Let L be the
preimage of L inside X(Y, Q). Then, there is a rank inequality

dim HFL(X(Y,Q), L) > dim HFL(Y, L).

Here, if L is not nullhomologous, by EF\L(Y,L) we mean the sutured Floer
homology of Y \ nbd(L) with meridional sutures. For a more concrete case,
if Y = 83 and Q is an unknot, then this gives a rank inequality for the knot
Floer homology of certain 2-periodic links, which was proved by the first au-
thor. In this case, the condition that () be nullhomologous in the exterior of L
is equivalent to the quotient link having linking number 0 with the axis of
Symimetry.
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Proof. Let M denote the exterior of L and ~ consist of a pair of meridional
sutures for each toral boundary component, so SFH(M,~) =2 HFL(Y, L). Sim-

ilarly, SFH(X(M,Q),5) = HFL(X(Y,Q),L). Thus, the result follows from
Proposition 1.11, since @ is nullhomologous in M by assumption. O

Remark 5.7. Perhaps one could use Proposition 1.11 to recover classical the-
orems in equivariant 3-manifold topology for involutions (with suitable con-
straints on the branch set), such as the equivariant Dehn’s lemma [MYS8I,
Edm86].
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