
Journal of Machine Learning Research 23 (2022) 1-59 Submitted 6/20; Revised 12/21; Published 2/22

Distributed Bayesian Varying Coefficient Modeling Using a
Gaussian Process Prior

Rajarshi Guhaniyogi rajguhaniyogi@tamu.edu
Department of Statistics
Texas A & M University
College Station, TX 77843-3143, USA

Cheng Li stalic@nus.edu.sg
Department of Statistics and Data Science
National University of Singapore
Singapore 117546, Singapore

Terrance D. Savitsky savitsky.terrance@bls.gov
U.S. Bureau of Labor Statistics
Office of Survey Methods Research
Washington, DC 20212, USA

Sanvesh Srivastava sanvesh-srivastava@uiowa.edu

Department of Statistics and Actuarial Science

University of Iowa

Iowa City, IA 52242, USA

Editor: Robert McCulloch

Abstract

Varying coefficient models (VCMs) are widely used for estimating nonlinear regression
functions for functional data. Their Bayesian variants using Gaussian process priors on
the functional coefficients, however, have received limited attention in massive data appli-
cations, mainly due to the prohibitively slow posterior computations using Markov chain
Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer
Bayesian approach. We first create a large number of data subsamples with much smaller
sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data
augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally,
we aggregate the MCMC-based estimates of subset posteriors into a single Aggregated
Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to
the true posterior distribution. Theoretically, we derive minimax optimal posterior conver-
gence rates for the AMC posteriors of both the varying coefficients and the mean regression
function. We provide quantification on the orders of subset sample sizes and the number of
subsets. The empirical results show that the combination schemes that satisfy our theoret-
ical assumptions, including the AMC posterior, have better estimation performance than
their main competitors across diverse simulations and in a real data analysis.
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1. Introduction

We first introduce the motivation of studying Bayesian varying coefficient models with a
Gaussian process prior for massive data applications. Then, we outline our main contribu-
tions in this work and discuss the related literature.

1.1 Varying Coefficient Models Using a GP Prior

VCMs are a flexible and popular extension of the linear regression model (Hastie and Tib-
shirani, 1993), in which the regression coefficients can be smooth functions that capture
nonlinear dependence of the response function on the covariates. VCMs are extensively
used in practice, including time-series (Chen and Tsay, 1993; Cai et al., 2000), longitudinal
(Wu et al., 1998; Ruppert et al., 2003), spatial (Gelfand et al., 2003), and spatiotemporal
data analysis (Lu et al., 2009). Bayesian VCMs combine the flexibility of nonparametric
models and the interpretability of parametric models and provide uncertainty estimates
in inference and predictions via MCMC draws from the posterior distribution; therefore,
they are well-suited for the Bayesian analysis of massive time-series, healthcare, and spa-
tial/spatiotemporal databases.

We focus on Bayesian VCMs in which the varying coefficients are assigned a multivariate
GP prior. Without loss of generality, we assume that all functional variables (responses or
covariates) are defined on the d-dimensional indexing space [0, 1]d (d ∈ N). The index is
time and d = 1 in purely times series applications, whereas d = 2 and the index is a spatial
location in purely spatial applications. The two indices are combined in spatiotemporal
applications, where d = 3 and the index is a space-time tuple. More generally, for a sample
of indexes {ui : i = 1, . . . , n} (n ∈ N) from [0, 1]d, we observe the si-dimensional ith response
vector y(ui) ∈ Rsi (si ∈ N) and the matrix of ith covariate functions X(ui) ∈ Rsi×p, where
p ∈ N is the number of covariates. We consider a VCM with the form

y(ui) = X(ui)β(ui) + ε(ui), ε(ui)
ind∼ N

(
0, τ2Isi

)
, i = 1, . . . , n, (1)

where β(u) = {β1(u), . . . , βp(u)}T ∈ Rp for u ∈ [0, 1]d is the vector of varying regression
coefficients, 0 and Is are a zero vector and an identity matrix of dimension s, and ε(ui) ∈ Rsi
(i = 1, . . . , n) are idiosyncratic normal errors. The responses in (1) are allowed to have
different dimensions, but si = s for every i (s ∈ N) in a typical scientific application.

The VCM setup in (1) has advantages over its peers in the literature. For example,
the varying coefficients β(u) provide a more flexible and realistic modeling of responses
and predictors with space or space-time indices, so they perform better in practice than
fitting deterministic trends in covariates, such as polynomial regression (Gelfand et al.,
2003). There are some methods for modeling the varying coefficients β(u) for u ∈ [0, 1]d in
(1), but we use a multivariate GP prior distribution on β(u); see Section 2 for a detailed
description. In fact, VCMs in the existing literature typically rely on basis expansions using
local polynomials, P-splines, and trees for modeling the varying coefficients β(u) (Li and
Racine, 2007; Marx, 2010; Berger et al., 2019). The specification of the number of basis
functions or the height of the tree and the choice of knots or split locations is usually difficult
in practice. In comparison, Bayesian inference using GP priors only requires a tuning-free
prior specification for the covariance parameters. Even low-dimensional structures in the
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data are conveniently modeled using a GP prior projected on a moderately large number
of inducing points (Quiñonero-Candela and Rasmussen, 2005).

While the VCM in (1) with a GP prior on β(u) has such advantages in the modeling
of structured data, there are several practical considerations, including inefficient posterior
computations, that have severely restricted its application in massive data settings. Pos-
terior sampling involving GPs are already prohibitively slow if the sample size is large. In
fact, the cost per MCMC iteration for updating β(u) scales as O(p2n2) for storage and
O(p3n3) for computations. As a result, the simple posterior sampling scheme for inference
in (1) using Gibbs and slice sampling as originally proposed in Gelfand et al. (2003) be-
comes infeasible in practice. Even with the low-rank GP approximation techniques using
r inducing points (Quiñonero-Candela and Rasmussen, 2005; Álvarez et al., 2012), one can
only reduce the cost per MCMC iteration from O(n3p3) to O(npr2) (Álvarez and Lawrence,
2011). Furthermore, r is chosen to be sufficiently large, typically of the order O{(log n)d},
to achieve satisfactory approximation accuracy (Burt et al., 2019). The use of deep GP
priors in (1) further worsens the computational burden and cannot be used in practice
(Damianou and Lawrence, 2013; Duvenaud et al., 2014). Finally, variational inference has
been widely used in machine learning for inference in applications based on VCMs with
multivariate GPs involving big data, but MCMC-based inference has remained relatively
unexplored in this context (Álvarez and Lawrence, 2011; Álvarez et al., 2019; Yousefi et al.,
2019). MCMC based inference has the natural advantage of accurately characterizing the
uncertainty of inference and prediction in VCMs with functional data, having strong local
features. This is crucial in the spatio-temporal application of interest in Section 5.3, which
aims at understanding local features in the space-time varying relationship between sea sur-
face temperature and sea salinity for the Atlantic ocean based on large functional data. Our
posterior inference algorithm fills this gap, providing a scalable MCMC-based alternative.

Addressing the computational bottlenecks for the VCM in (1) with a GP prior on β(u),
we develop a three stage distributed Bayesian inferential approach for efficient computation
with functional response and covariates obtained at a large number of indices. The first stage
of the algorithm constructs k subsets by randomly selecting m samples without replacement
from the full data, where k is large and posterior computations with m is tractable. The sec-
ond step obtains k MCMC-based approximations of the full data posterior distribution by
fitting the VCM in (1) with a GP prior on β(u) on all the subsets in parallel. This step has
two main novelties. First, we compensate for the missing (1−m/n)-fraction of the full data
in each subset by appropriately modifying the subset likelihood. Second, we reformulate
the VCM in (1) with a GP prior on β(u) as a linear mixed-effects model using parameter
expansion. This leads to an MCMC algorithm that has closed-form full conditional distri-
butions for all the parameters, except those used for defining the covariance function of the
GP prior. We draw these parameters using elliptical slice sampling (ESS, Nishihara et al.,
2014), which bypasses the proposal tuning problems of Metropolis-Hastings algorithm. The
parameter expanded DA with the ESS step constitutes our DA-type algorithm for posterior
inference and predictions on the subsets.

The subset posterior computations are tractable because m� n and parameter updat-
ing is efficient due to the closed-from full conditionals; however, posterior computations a
subset condition on m samples only. The third stage of the algorithm develops a combina-
tion scheme that aggregates MCMC-based approximations of the true posterior distribution

3



Guhaniyogi, Li, Savitsky, Srivastava

from the k subsets into the AMC posterior, which uses information from all the n samples.
This step has several theoretical novelties. First, we identify regularity assumptions under
which the AMC posterior distributions of both the varying coefficients and the mean re-
gression function have minimax optimal posterior convergence rates in the L2 norm toward
their truth. Development of such guarantees in VCMs with multivariate latent GPs remains
an open problem since their proposal in Gelfand et al. (2003). Second, our results provide
quantification on the orders of the subset size m, the number of subsets k, and modifica-
tion of the subset likelihood according to the underlying smoothness of varying coefficients.
Finally, our theory only requires a weak condition on the combination scheme, so it encom-
passes a few existing combination methods, including the AMC posterior proposed in this
paper as well as the double parallel Monte Carlo (DPMC, Xue and Liang, 2019), Wasser-
stein posterior (WASP, Srivastava et al., 2015), and posterior interval estimation (PIE, Li
et al., 2017) algorithms. The minimax optimality of the AMC posterior distribution implies
that it can be used for principled Bayesian inference in massive data settings with very large
n if m and k are chosen appropriately.

1.2 Related Work

The theoretical and computational properties of frequentist estimation methods for VCMs
have been studied extensively. The theoretical results focus mainly on VCMs that use
local polynomial smoothing, regularized basis expansions, and boosted trees (Hastie and
Tibshirani, 1993; Fan and Zhang, 1999; Huang et al., 2002; Zhou and Hooker, 2019); see
Park et al. (2015) for a recent review. The software for fitting VCMs is also well-developed
(Wood, 2017). On the other hand, Bayesian VCMs have been widely applied to different
types of data (Gelfand et al., 2003; Bakar et al., 2015; Hamm et al., 2015; Datta et al.,
2016), but the literature on their theoretical properties is sparsely populated. Recently, Bai
et al. (2019) have studied the theoretical properties of Bayesian VCMs based on regular-
ized basis expansions; however, their model is different from the VCM with multivariate
GPs considered in this paper, and their main focus is on the high dimensional variable
selection problem, which is essentially different from our focus on applications with massive
n. Furthermore, frequentist properties of the posterior distribution of regression function
obtained using a univariate GP prior are known (van der Vaart and van Zanten, 2011), but
their extensions to a multivariate GP prior, similar to the one used for Bayesian inference
in (1), are non-trivial and have not been studied.

Furthermore, Bayesian VCMs with multivariate response functions have not been stud-
ied extensively in the literature. There are some extensions of factor models based on
independent GP priors that are used for modeling multivariate responses. One such exam-
ple is a spatial factor model (Ren and Banerjee, 2013) that is defined as

y(ui) = β(ui) + ε(ui), β(ui) = Lν(ui), y(ui) ∈ Rs, s ∈ N, ui ∈ [0, 1]2, (2)

for i = 1, . . . , n, where L is a p-by-q factor loading matrix and ν(·) = {ν1(·), . . . , νq(·)}T is a
vector of q spatial factors, all following mutually independent univariate GPs ν1(·), . . . , νq(·).
Gu and Shen (2020) and Ren and Banerjee (2013) also specify identifiability constraints on
L in (2) for valid frequentist estimation and Bayesian inference using MCMC, respectively.
Compared to (1), every y(ui) in (2) has the same dimension and the covariate matrix
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X(ui) is unobserved due to the unsupervised nature of the model. While we also propose
a very similar formulation of the varying coefficients β(u) using the linear model of co-
regionalization (LMC) approach, our main focus is posterior inference on the regression
coefficient β(u) and prediction of y(u) in (1), which does not require inference on L or ν(·).

We now turn our focus to distributed Bayesian inference in (1). The strategy of modi-
fying the subset likelihoods for obtaining better uncertainty characterization in distributed
Bayesian inference for parametric models has been discussed in Minsker et al. (2017). Each
subset contains only m/n-fraction of the full data, so the posterior distribution computed
from the usual likelihood overestimates the uncertainty relative to the true posterior dis-
tribution. Thus, the modification of the subset likelihood is essential for accurate uncer-
tainty quantification in parametric models (Minsker et al., 2017); however, the subset like-
lihood modification strategy for parametric models cannot be straightforwardly applied for
Bayesian VCMs, due to the lack of any supporting theoretical result. One of our main con-
tributions is to identify the subset likelihood modification and to justify it through rigorous
theoretical results for VCMs; see Sections 3.2 and 4. If we use the asymptotic posterior L2-
risk of a combined posterior distribution for quantifying its performance, then the likelihood
modifications required for asymptotic optimality are different in the parametric models and
VCMs based on an “appropriately tuned” multivariate GP prior.

The AMC algorithm belongs to the class of divide-and-conquer (or distributed) methods
for Bayesian inference. These methods have been studied extensively for scalable Bayesian
inference in parametric models (Scott et al., 2016; Entezari et al., 2017; Minsker et al.,
2017; Li et al., 2017; Srivastava et al., 2018; Xue and Liang, 2019; Jordan et al., 2019) and
nonparametric regression using univariate GP priors (Zhang et al., 2015; Shang and Cheng,
2017; Shang et al., 2019; Szabó and van Zanten, 2019, 2020; Zhang and Williamson, 2019;
Guhaniyogi et al., 2017). Unfortunately, the literature fails to address distributed Bayesian
inference in (1) using multivariate GP priors, which is our main focus. All these methods
consist of three main steps: dividing the massive data set into smaller computationally
manageable subsets, performing statistical estimation on the subsets in parallel, and com-
bining the subset estimates into a global estimate, which is used as an alternative to the true
posterior distribution. Existing distributed Bayesian inference methods differ mainly in the
third step that computes the global estimate. Given some minimal requirements are met in
the combination step, our theoretical results can be used to obtain posterior convergence
rates for any of these combination schemes used for distributed Bayesian inference in (1).
We demonstrate that such requirements are indeed met by the combination schemes used
in the AMC, DPMC, PIE, and WASP algorithms.

2. Model Setup and Prior Specification

In this section, we describe the varying-coefficient model setup and its equivalent formulation
as a linear mixed-effects model. We then provide the prior specification and outline the main
data augmentation algorithm that is used to fit the model.

2.1 Model Reformulation

Consider a general VCM setup based on (1) with p predictors out of which q predictors
have varying coefficients such that p ≥ q. Without loss of generality, assume that the first q
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predictors have varying coefficients, so that β(u) = {βva(u), βnv}T in (1), where βva(u) ∈ Rq
for every u ∈ [0, 1]d and βnv ∈ Rp−q are the varying and non-varying coefficients blocks. For
performing Bayesian inference on β(·), a typical strategy is to assign multivariate GP prior
and Gaussian prior distributions on βva(·) and βnv, respectively, and obtain MCMC draws
from the posterior distribution of β(·) using (1).

The most important part of the prior specification is to choose a cross-covariance func-
tion for the multivariate GP prior on βva(·) that is flexible and leads to simple posterior
computations. Versatile constructions exist for specifying the cross covariance of βva(u)
(Gaspari and Cohn, 1999; Majumdar and Gelfand, 2007; Wackernagel, 2006; Zhang, 2007;
Genton and Kleiber, 2015; Bourotte et al., 2016). We, however, adopt the LMC tech-
nique (Álvarez et al., 2012) for inducing correlation among the components of βva(u) due
to its simplicity and relatively efficient computation. Under the LMC framework, we set
βva(·) = αva + Γν(·), where αva ∈ Rq, Γ ∈ Rq×q, and ν(u) = {ν1(u), . . . , νq(u)}T is a vector
of q independent GPs indexed by [0, 1]d with mean functions 0 and correlation functions
ρ1(·, ·), . . . , ρq(·, ·) with parameters θ1, . . . , θq, respectively. The independent GP priors on
ν1(·), . . . , νq(·) induces a multivariate GP prior on βva(·). Specifically, given αva, Γ, and
θ1, . . . , θq, βva(·) = αva + Γν(·) is a q-variate GP with mean function αva and covariance
function C(u, u′) defined as

C(u, u′) = Cov{Γν(u),Γν(u′)} =

q∑
a=1

Γaρa(u, u
′)ΓT

a =

q∑
a=1

Γa{R(u, u′)}aaΓT
a , (3)

where u, u′ ∈ [0, 1]d, Γa is the ath column of Γ, and R(u, u′) = diag{ρ1(u, u′), . . . , ρq(u, u
′)}

is a q-by-q diagonal matrix of correlations determined by θT = (θT
1 , . . . , θ

T
q ).

We now reformulate the VCM in (1) with a GP prior imposed on βva(·) using the LMC
technique as linear mixed-effects model. Define α = (αva, βnv)T ∈ Rp and Z(ui) ∈ Rsi×q to
be the matrix that includes the first q columns of X(ui) (i = 1, . . . , n). Reformulate (1) as

y(ui) = X(ui)α+ Z(ui)Γν(ui) + ε(ui), ν(·) ∼ GP{0, R(·, ·)}, i = 1, . . . , n, (4)

where R(·, ·) = diag{ρ1(·, ·), . . . , ρq(·, ·)} is the correlation “function” for ν(·). The models
in (1) and (4) are equivalent if we let βva(u) = αva+Γν(u) for all u ∈ [0, 1]d. The parameters
α and Γ in (4) cannot be estimated uniquely from the data {y(ui), X(ui) : i = 1, . . . , n} but
the vector {β(u1), . . . , β(un)} is still estimable if the design matrix formed by {X(ui) : i =
1, . . . , n} as the row blocks is of full column rank. The prior distributions on the unknown
parameters α,Γ, τ2, θ are spelled out in Section 2.2.

Many widely used models are obtained as special cases of (4). If ρa(u, u
′) = 1u=u′ for

every a, where 1u=u′ equals 1 if u = u′ and 0 otherwise, then we recover the linear-mixed
effects model using (4), where ΓΓT equals the covariance matrix of the random effects. If
si = 1, p = q, Γ is a diagonal matrix, and X(ui) = Z(ui), then (1) reduces to

y(ui) = X(ui){α+ Γν(ui)}+ ε(ui) ≡ X(ui)β(ui) + ε(ui), i = 1, . . . , n, (5)

where α and Γν(·) model the global and local effects, respectively, the diagonal entries of Γ
determine the scale of local effects, and β(·) is the p-by-1 varying coefficients vector. The
spatiotemporal varying coefficient model is a special case of (5) when u ∈ [0, 1]3 (Gelfand
et al., 2003; Gelfand and Banerjee, 2010). Finally, assuming u to be the time domain in (5)
yields a regression model for longitudinal data analysis.
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2.2 Prior Specification

The parameters (α,Γ, τ2) are jointly assigned a noninformative prior with density
p(α,Γ, τ2) ∝ 1/τ2. If γ represents the q2-dimensional vector formed by stacking the columns
of Γ, then this prior is a limiting case of the normal-inverse-gamma prior distribution on
{(α, γ), τ2}, where (p + q2)-variate normal prior distribution is assigned on (α, γ). We are
also not concerned with the identifiability of Γ or α since they are intermediate latent
variables enabling efficient estimation of βva(u) for every u ∈ [0, 1]d.

As far as the choice of ρa(·, ·) (a = 1, .., q) is concerned, two types of correlation functions
are used in this paper. The first one is the exponential correlation function defined as
ρa(u, u

′) = e−φa‖u−u
′‖2 for any u, u′ ∈ [0, 1]d, where φa > 0, ‖ · ‖2 is the Euclidean norm,

and θa = {φa} (a = 1, . . . , q). We also use Gneiting’s correlation function for varying
coefficient modeling of spatiotemporal data presented in Section 5.3, which is defined as

ρa(u, u
′) =

1

(ψa|t− t′|2 + 1)κa
e
− φa‖h−h′‖2

(ψa|t−t′|2+1)κa/2 , u, u′ ∈ [0, 1]3, (6)

where u = (h, t), u′ = (h′, t′) are space-time tuples, h, h′ ∈ [0, 1]2, t, t′ ∈ [0, 1], φa > 0,
ψa > 0, κa ∈ [0, 1], and θa = (φa, ψa, κa)

T (Gneiting, 2002). For the exponential correlation
function, we put a Uniform(c0a, c0a) prior on φa. The parameters φa, ψa, and κa are
assigned Uniform(c1a, c1a), Uniform(c2a, c2a), and Uniform(c3a, c3a) priors respectively for
the Gneting’s correlation function. The parameters for the uniform priors satisfy 0 < cia <
cia for i = 0, 1, 2 and 0 < c3a < c3a ≤ 1.

2.3 The DA-type Algorithm

The DA-type algorithm for posterior inference on β(·), τ2 and prediction of y(·) has six
parts. Let U∗ be a given subset of [0, 1]d where the draws of β(·) and y(·) are required,
D be the training data, and νn = {ν(u1), . . . , ν(un)}, where ν(ui) is defined in (4). The
first part of the DA-type algorithm is the Imputation (I) step that draws νn given D and
(α,Γ, τ2, θ). The second part of the DA-type algorithm is the Prediction (P) step that has
five sub parts. It uses the νn to draw (α,Γ, τ2, θ) given D and {β(u∗), y(u∗) : u∗ ∈ U∗} given
(α,Γ, τ2, θ). The I and P steps are repeated until convergence to the stationary distribution
of the Markov chain for (τ2, {β(u∗), y(u∗) : u∗ ∈ U∗}); see Appendix A for derivation of the
six parts and their analytic forms.

This DA-type algorithm is slow in moderately large data sets. The computational
complexity of the I step is O(n3p3) if we update multivariate GPs. Low rank GP methods
provide some computational relief, though the computational gain is not substantial if one
needs to maintain the inferential accuracy. The sparse iterative methods for sampling
from GPs lead to only marginal improvements because the number of iterations have to
be relatively large for guaranteeing accurate approximation (Chow and Saad, 2014). Due
to the slow I step, the DA-type algorithm using the full data is extremely inefficient in
applications with a large n. The next section presents an extension of the DA-type algorithm
using divide-and-conquer technique that overcomes these inefficiencies while retaining its
simplicity and numerical stability.
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3. Distributed Varying Coefficient Modeling Using a GP Prior

Our distributed model fitting of the Bayesian VCM consists of three steps described below.

3.1 First Step: Constructing Training Data Subsets

The first step of the distributed extension of the DA-type algorithm in Section 2.3 constructs
k subsets from the training data. The default scheme for constructing subsets is to randomly
sub-sample without replacement from the training data, ensuring that each subset provides
a reliable representation of the full data and all observations specific to a sample are on
the same subset. The size of a subset m is set to be moderately large so that p, q � m
and posterior computations are efficient on any subset. The “optimal choice” of k depends
on the smoothness of the regression function, which we study in Section 4. Let Dj be
the training data on subset j (j = 1, . . . , k), uji be the ith index in subset j, and y(uji),
X(uji), Z(uji) be the corresponding observations with dimensions sji, sji-by-p, sji-by-q, for
i = 1, . . . ,m. Similarly, the subset j versions of parameters (β, α,Γ, τ2, θ) are denoted by
(βj , αj ,Γj , τ

2
j , θj). The correlation function ρja equals ρa but replaces θa by θja. The GP

with with correlation function ρja is denoted as ν̃ja(·), and ν̃j(·) = {ν̃j1(·), . . . , ν̃jq(·)}T.
The VCM in (4) has a natural extension to subset j. For i = 1, . . . ,m,

y(uji) = X(uji)αj + Z(uji)Γj ν̃j(uji) + ε(uji),

ν̃ja(·) ∼ GP{0, ρja(·, ·)}, a = 1, . . . , q, ε(uji) ∼ N(0, τ2
j ), (7)

which reduces to the subset j extension of (1) if {βj(u)}va = (αj)va + Γj ν̃j(u), u ∈ [0, 1]d,
where βj(u) = [{βj(u)}va, (βj)nv] and αj = {(αj)va, (βj)nv} are represented in terms of their
varying and non-varying coefficients blocks. The prior distributions for (αj ,Γj , τ

2
j ) and θj

in (7) are the same as defined in Section 2.2 for (α,Γ, τ2) and θ, respectively. If we obtain
MCMC draws of the parameters and predictions using the likelihood in (7) on each subset
directly, then we condition on an (m/n)-fraction of the full data, resulting in wider credible
intervals for parameters than those obtained using the full data posterior distribution. The
next step fixes this problem by using a modified likelihood based on (7) that compensates
for the missing (1−m/n)-fraction of the full data.

3.2 Second Step: Posterior Sampling on the Subsets

We now consider the inference on each subset using the DA-type algorithm based on Section
2.3 and (7). The GP realizations ν̃j(uj1), . . . , ν̃j(ujm) in (7) are looked upon as the “missing”
data, and marginalizing over them recovers the subset j version of (1) with a GP prior on
[{βj(uj1)}va, . . . , {βj(ujm)}va]. For a = 1, . . . , q, we let s̃j =

∑m
i=1 sji and define

ν̃ja = {ν̃a(uj1), . . . , ν̃a(ujm)}T ∈ Rm, ν̃j =
(
ν̃T
j1, . . . , ν̃

T
jq}
)T ∈ Rmq,

Γj = (Γj1, . . . ,Γjq), Γj1, . . . ,Γjq ∈ Rq,
Z̃ja = diag {Z(uj1)Γja, . . . , Z(ujm)Γja} ,
yj = {y(uj1)T, . . . , y(ujm)T}T , Xj = {X(uj1)T, . . . , X(ujm)T}T . (8)

If ν̃j is known, then the full conditional for drawing (αj ,Γj , τ
2
j ) given ν̃j , Dj is available

in closed-from; therefore, ν̃j is an auxiliary variable that simplifies the forms of the full
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conditionals if it is known and its marginalization preserves the Bayesian VCM with a GP
prior on {βj(·)}nv.

The I step of the DA-type algorithm on subset j uses this property of ν̃j for simplifying
the form of the modified likelihood. Assume that (αj ,Γj , τ

2
j , θj) are given. Let p(ν̃j |

Dj , αj ,Γj , τ2
j , θj) denote the conditional density of ν̃j given Dj and (αj ,Γj , τ

2
j , θj) based on

(7). Then, the I step

(a) draws ν̃j given Dj and (αj ,Γj , τ
2
j , θj) from Nmq(µν̃j ,Σν̃j ), where µν̃j and Σν̃j are defined

in terms of their blocks as

(µν̃j )a = RT
jaZ̃

T
ja

(
q∑
c=1

Z̃jcRjcZ̃
T
jc + τ2

j Is̃j

)−1

(yj −Xjαj), a = 1, . . . , q,

(Σν̃j )aa = Rja −RT
jaZ̃

T
ja

(
q∑
c=1

Z̃jcRjcZ̃
T
jc + τ2

j Is̃j

)−1

Z̃jaRja, a = 1, . . . , q,

(Σν̃j )ab = −RT
jaZ̃

T
ja

(
q∑
c=1

Z̃jcRjcZ̃
T
jc + τ2

j Is̃j

)−1

Z̃jbRjb, a 6= b ∈ {1, . . . , q},

(Rja)ii′ = ρja(uji, uji′), i, i′ = 1, . . . ,m, a = 1, . . . , q. (9)

If we substitute the I step draw of ν̃j in (7) and compute the likelihood of (αj ,Γj , τ
2
j , θj)

given (Dj , ν̃j), then this is equivalent to computing the likelihood of (αj ,Γj , τ
2
j , θj) after

marginalizing over ν̃j in (7) using Monte Carlo. Denote this Monte Carlo based likelihood
as Lj , and we use it as the likelihood of (αj ,Γj , τ

2
j , θj) given Dj in the P step.

The subset j draws (αj ,Γj , τ
2
j , θj) given Dj using a modified version of Lj . Since Dj

contains an (m/n)-fraction of the full data, we raise Lj to a power of δn, where δn is
a deterministic sequence dependent on n. Let Lδnj be this modified likelihood, and the
modification is equivalent to replicating Dj for δn-times. The power δn is chosen such
that Lδnj compensates for the missing (1−m/n)-fraction of the full data on subset j. The

modified posterior density for drawing (αj ,Γj , τ
2
j , θj) given Dj is defined as

πm(αj ,Γj , τ
2
j , θj | Dj) =

Lδnj p(αj ,Γj , τ
2
j ) p(θj)∫

Lδnj p(αj ,Γj , τ2
j ) p(θj) dαj dΓj dτ2

j dθj
, j = 1, . . . , k, (10)

where the denominator is finite due to the choice of prior distributions. The method of
raising subset likelihoods to a power is known as the stochastic approximation (Minsker
et al., 2014). We choose δn = n/m following the same choice in parametric models (Minsker
et al., 2014; Entezari et al., 2017; Li et al., 2017; Srivastava et al., 2018), which is equivalent
to replicating the subset data for n/m times, such that the subset posterior variances of
parameters are comparable to the full data posterior variance. The theoretical impact from
δn will be further discussed in Section 4.

The P step draws αj ,Γj , τ
2
j , and θj given (Dj , ν̃j) in a sequence of three steps using

(10). Define γj = (ΓT
j1, . . . ,Γ

T
jq)

T, the column-wise vectorization of Γj , bj = (αT
j , γ

T
j )T, and

Wj =
(
WT
j1, . . . ,W

T
jm

)T
, Wji = [Xji {ν̃1(uji), . . . , ν̃q(uji)} ⊗ Zji] ∈ Rsji×(p+q2), (11)

9
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for i = 1, . . . ,m, where Wj ∈ Rs̃j×(p+q2) and ⊗ is the Kronecker product. Then, the P step
draws αj ,Γj , τ

2
j , and θj as follows:

(b) draw τ2
j given ν̃j and Dj as

τ2
j ∼

δn ‖yj − ŷj‖22
χ2
δns̃j−p−q2

, ŷj = Wj(W
T
j Wj)

−1WT
j yj , (12)

where χ2
δns̃j−p−q2 is a chi-square random variable with δns̃j − p − q2 as its degrees of

freedom.

(c) draw bj = (αT
j , γ

T
j )T given τ2

j , ν̃j , and Dj from N{(WT
j Wj)

−1WT
j yj , τ

2
j (WT

j Wj)
−1}; and

(d) draw θj1, . . . , θjq given ν̃j and Dj using ESS (Algorithm 1 in Nishihara et al. 2014) with
the modified log-likelihood for θ1, . . . , θq defined as

logL(θj1, . . . , θjq) = −δnmq
2

log 2π − δn
2

q∑
a=1

log det(Rja)−
δn
2

q∑
a=1

ν̃T
jaR

−1
ja ν̃ja, (13)

where ν̃ja is defined in (8), Rja is a m-by-m matrix defined in (9) and depends on
θja. The form of the likelihood of θj1, . . . , θjq depends on the correlation functions of
the univariate GPs; see Appendix B for the exact details of the likelihood for the two
correlation functions used in this paper.

In most applications, the goal is to perform inference on β(u∗) and predict y(u∗) for
u∗ ∈ U∗, where U∗ = {u∗1, . . . , u∗l } is a known subset of [0, 1]d, also known as the testing set.
This is done by using the parameter draws from parts (b)–(d) in the P step as follows:

(e) draw ν∗ja = {νa(u∗1), . . . , νa(u
∗
l )}T given ν̃j , θj , and Dj from N(µ∗ja,Σ

∗
ja), where

µ∗ja = RT
ja∗R

−1
ja ν̃ja, Σ∗ja = Rja∗∗ −RT

ja∗R
−1
ja Rja∗,

(Rja∗∗)i′i′′ = ρja(u
∗
i′ , u

∗
i′′), (Rja∗)ii′ = ρja(ui, u

∗
i′), (14)

for a = 1, . . . , q, i′, i′′ = 1, . . . , l, and i = 1, . . . ,m, and set {βj(u∗)}nv = (αj)nv and
{βj(u∗)}va = (αj)va + Γjνj(u

∗), u∗ ∈ U∗; and

(f) draw yj(u
∗) given αj , Γj , τ

2
j , X(u∗), β(u∗) independently from N(µ∗yj , τ

2
j Is∗) for every

u∗ ∈ U∗, where µ∗yj = X(u∗)βj(u
∗) and s∗ is the dimension of y at u∗.

The I and P steps, including the parts (a)–(f), are run in parallel on the k subsets un-
til convergence of the Markov chain for (τ2

j , {βj(u∗), yj(u∗) : u∗ ∈ U∗}) to its stationary
distribution; see Appendix B for derivation of the six parts and their analytic forms.

The AMC sampler cycles through steps (a)–(f) on subset j to obtain posterior draws
of βj(u

∗), τ2
j , and yj(u

∗), u∗ ∈ U∗ (j = 1, . . . , k). Let T be the number of post-burnin
draws collected on every subset. Denote the parameter and prediction samples obtained

from subset j at the tth iteration as {β(t)
j (u∗), τ

2(t)
j , y

(t)
j (u∗)} (t = 1, . . . , T ; u ∈ U∗), which

are called the jth subset posterior draws. We assume that the marginal jth subset posterior

10
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draws for β, τ2, and y∗ follow their invariant distributions denoted as Πβ(· | Dj), Πτ2(· | Dj),
and Πy∗(· | Dj), which are called jth subset posterior distributions and their densities are
obtained using the joint density in (10). We develop next an algorithm for combining
the collection of k subset posterior draws such that the combined draw follows the AMC
posterior distribution that conditions on the full data.

3.3 Third Step: Aggregation of Subset Posterior Draws

We aggregate the subset posterior draws for β(·), y(·), and τ2 using centering and scaling op-

erations. Let β
∗(t)
j = {β(t)

j (u∗1), . . . , β
(t)
j (u∗l )}, y

∗(t)
j = {y(t)

j (u∗1), . . . , y
(t)
j (u∗l )}, and log τ

2(t)
j be

the tth draws for β(·), y(·), and log τ2 on subset j (j = 1, . . . , k). Let ξ ∈ {β(·), y(·), log τ2}
and ξ

(t)
j be its tth draw on subset j. Define the empirical mean vector and covariance matrix

of ξ draws on subset j as

µjξ =
1

T

T∑
t=1

ξ
(t)
j , Σjξ =

1

T

T∑
t=1

(
ξ

(t)
j − µjξ

)(
ξ

(t)
j − µjξ

)T

, j = 1, . . . , k. (15)

We now summarize the algorithm for obtaining draws from the AMC posterior using the
subset posterior draws. First, define the combined empirical mean and covariance matrix
for ξ draws using the subset posterior empirical means and covariance matrices in (15) as

µξ =
1

k

k∑
j=1

µjξ, Σξ =
1

k

k∑
j=1

Σjξ. (16)

Second, center and scale the jth subset posterior draws of ξ as

q
(t)
jξ = Σ

−1/2
jξ

(
ξ

(t)
j − µjξ

)
, t = 1, . . . , T ; j = 1, . . . , k. (17)

Third, rescale and recenter the ξ draws from all the subsets in (17) as

ξt′ = µξ + Σ
1/2
ξ q

(t)
jξ , t′ = t+ (j − 1)T ; j = 1, . . . , k, (18)

to obtain t′th draws from the AMC posterior distribution of ξ. The τ2 draws are obtained
by taking the exponential of draws from the AMC posterior of log τ2.

The AMC aggregation algorithm for subset posteriors bears close connections to a few
recently devised combination methods such as the Double Parallel Monte Carlo (DPMC,
Xue and Liang, 2019) and Wasserstein posterior (WASP, Xu and Srivastava, 2021). All
three algorithms agree on the combination of the subset posterior means but differ in their
approach to combining subset posterior covariance matrices. The scaling and re-scaling
steps are absent in DPMC because it relies on the asymptotic normality of subset posterior
distributions. On the other hand, the combination algorithms of AMC and WASP have the
same three steps, except the former and latter compute the combined covariance matrix
as the arithmetic and geometric means of subset posterior covariance matrices. The com-
putation of the geometric mean in WASP requires an iterative algorithm (Álvarez-Esteban
et al., 2016), so the AMC algorithm is computationally simpler. Finally, AMC, WASP

11
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and DPMC are applicable for aggregating posterior distributions of multivariate quantities,
whereas the PIE algorithm is developed for posterior distributions of scalar quantities only.

An important contribution of this article is to theoretically establish that any aggrega-
tion step of subset posteriors constructed in Step 2 with the modified data likelihood that
satisfies a simple assumption (see Assumption (A.6) in Section 4) will lead to an optimal
estimation of the regression function. We establish that this assumption is satisfied not only
by AMC, but also by DPMC, WASP and PIE aggregation methods for divide-and-conquer
Bayesian inference mentioned above.

4. Theoretical Properties of AMC

This section derives the posterior convergence rates for the varying coefficients and the
mean regression function for the three stage AMC framework under certain regularity as-
sumptions on the smoothness of the latent GPs. This setup allows the study of VCMs
with coefficients modeled using GPs with full-rank and low-rank covariance functions from
a common framework.

We first make the following assumption on n, k,m and the sampling scheme of index u.

(A.1) c1n ≤ km ≤ c2n for some constants 0 < c1 ≤ 1 ≤ c2. The sampled indices in the
full data {u1, . . . , un} and a single testing index u∗ are drawn independently from the
Lebesgue measure on [0, 1]d. The subset indexes {uj1, . . . , ujm : j = 1, . . . , k} are
drawn independently without replacement from {u1, . . . , un}.

For the VCM in (4), we simplify the model setup by first assuming that p = q and
X(·) ≡ Z(·); that is, every covariate function has a varying coefficient. The frequentist
minimax rates for Gaussian process model with s > 1 are unknown, so we only consider
the case where s = 1 because it enables direct comparison of our posterior convergence
rates with existing frequentist results. A fully Bayesian asymptotic theory involves the full
posterior distribution of α,Γ, τ2, θ and the latent GP realizations ν1(·), . . . , νq(·); however,
α and Γ are not identifiable, so their posteriors do not contract to any point mass as the
sample size n increases to infinity. Additionally, given that our indexing space [0, 1]d is fixed
and bounded, it is known that the length-scale parameters in θ are also not identifiable in
fixed-domain asymptotics (Zhang, 2004). To alleviate the technical difficulties from such
non-identifiable parameters, we make the following assumption:

(A.2) s = 1, p = q and X(·) ≡ Z(·). α, Γ, τ2, and θ are all fixed at their true values α0 = 0,
Γ0, τ2

0 , and θ0. Γ0 is a full-rank q× q matrix. The observed response function satisfies
y(u) = Z(u)Γ0ν0(u) + ε(u), E[ε(u)] = 0, Var[ε(u)] = τ2

0 , for all u ∈ [0, 1]d, where
ν0(·) = {ν01(·), . . . , ν0q(·)}T are the true latent functions.

Assuming α ≡ α0 = 0 is equivalent to assuming that α is fixed at any true value α0, since
we can always redefine y′(u) = y(u)−X(u)α0 and call y′(u) the response function. While
τ2 is assumed fixed in Assumption (A.2), it is possible to generalize our technical proofs
such that τ2 has a prior in a bounded interval [τ2, τ2] for some constants 0 < τ2 < τ2 <∞
(van der Vaart and van Zanten, 2008). For our theory on convergence rates, we only require
the error to have mean zero and variance τ2

0 , but do not require the true error distribution
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to be normal. In other words, our convergence theory also works when our model of normal
error is misspecified.

We now define some notations for the subset data. For i = 1, . . . ,m and j = 1, . . . , k,
let yj = {y(uj1), . . . , y(ujm)}T and εj = {ε(uj1), . . . , ε(ujm)}T. For a = 1, . . . , q, let
ν̃ja = {νa(uj1), . . . , νa(ujm)}T. We have assumed that θ is known, so θja = θa = θ0a

and ρa = ρja (a = 1, . . . , q). Since s = 1 and p = q, Z(·) is a q-dimensional row vector
of functions. For a = 1, . . . , q, let Γ0a be the ath column of Γ0 and Z̃a(·) = Z(·)Γ0. Let
Z̃(·) = Z(·)Γ0 = {Z̃1(·), . . . , Z̃q(·)}, which is still a q-dimensional row vector of functions,
and Z̃ja = {Z̃a(uj1), . . . , Z̃a(ujm)} for a = 1, . . . , q. With the stochastic approximation
described in Section 3.2, our “working model” of VCM on the jth subset data under As-
sumption (A.2) can be written as

yj =

q∑
a=1

Z̃jaν̃ja + εj , εj ∼ N
(

0,
τ2

0

δn
Im

)
, ν̃ja ∼ N

(
0, λ−1

n Rja
)
, (19)

where Rja is a m-by-m matrix with entries (Rja)ii′ = ρa(uji, uji′), i, i
′ ∈ {1, . . . ,m}, a =

1, . . . , q, and ρa has its parameter θa fixed at θ0a. δn = n/m is the same as used in the
stochastic approximation definition in Section 3.2. The stochastic approximation with δn =
n/m is crucial for ensuring that the AMC posterior of varying coefficients β(·) converges to
the truth at a polynomial rate of n rather than m, such that the AMC posterior can be a
valid approximation to the full data posterior, which converges at a polynomial rate of n.
In (19), we have also added an additional tuning parameter λn > 0 that only depends on n
and is only used for theory development. The value of λn helps offering minimax optimal
rate and is specified later in Theorem 1. In practice, we simply set λn = 1 that provides a
nearly optimal rate, and the model (19) becomes the same model as the VCM in (4). This
can also be seen in Theorem 1 and in the ensuing discussion.

We focus on the posterior convergence behavior of the varying coefficients β(·) = α0 +
Γ0ν(·) towards the truth β0(·) = α0 + Γ0ν0(·), as well as the mean function w(·) = Z(·)β(·)
towards the truth w0(·) = Z(·)β0(·). We introduce some concepts for reproducing kernel
Hilbert space (RKHS) that will be used for stating the assumptions on ν’s. Let L2(du) be
the class of all square-integrable functions on [0, 1]d with respect to the Lebesgue measure,
with the inner product given by 〈f, g〉L2(du) =

∫
[0,1]d f(u)g(u) du and the L2(du)-norm given

by ‖f‖22 = 〈f, f〉L2(du), for any generic f, g ∈ L2(du). For the correlation function ρa(·, ·)
with parameters θ0a, we assume that supu,u′∈[0,1]d ρa(u, u

′) <∞ (a = 1, . . . , q), which means
that all correlation functions are trace class kernels. For each a = 1, . . . , q, by the Mercer’s
theorem, there exists an orthonormal sequence of eigenfunctions {ϕah}∞h=1 in L2(du) with
eigenvalues µa1 ≥ µa2 ≥ . . . ≥ 0, such that

∫
[0,1]d ρa(·, u

′)ϕah(u′) du′ = µahϕah(·) for all

h = 1, 2, . . ., and ρa(u, u
′) =

∑∞
h=1 µahϕah(u)ϕah(u′) for any u, u′ ∈ [0, 1]d. The RKHS Ha

attached to the correlation function ρa is the space of all functions f ∈ L2(du) such that
the Ha-norm ‖f‖2Ha =

∑∞
h=1〈f, ϕah〉2L2(du)/µah <∞, for a = 1, . . . , q.

For two positive sequences {an}n≥1 and {bn}n≥1, the relation lim supn→∞ an/bn ≤ c for
some constant c > 0 is denoted by an . bn, or bn & an. If an . bn and bn . an, then we
say that an � bn.

We impose the following assumption on the eigenfunctions and eigenvalues of ρa (a =
1, . . . , q) as well as Z(·):
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(A.3) (i) There exists a constant Cϕ > 0 such that |ϕah(u)| ≤ Cϕ for all u ∈ [0, 1]d,
a = 1, . . . , q, and h = 1, 2, . . ..
(ii) The largest hth eigenvalue of ρ1, . . . , ρq, defined by µh∗ = maxa=1,...,q µah, satisfies
µh∗ . h−2v/d for every h = 1, 2, . . . and some constant v > d/2.

(A.4) For a = 1, . . . , q, the true latent functions satisfy ν0a ∈ Ha.

(A.5) |Za(u)| ≤ CZ for some finite constant CZ > 0 for all u ∈ [0, 1]d and a = 1, . . . , q. Let
h̄ = dn3d/(2v−d)e with v given in Assumption (A.3). For any u ∈ [0, 1]d, define the
qh̄-variate function

W (u) =
{
Z(u)Γ01ϕ11(u), . . . , Z(u)Γ01ϕ1h̄(u), . . . ,

Z(u)Γ0qϕq1(u), . . . , Z(u)Γ0qϕqh̄(u)
}T ∈ Rqh̄,

and the matrix Ω = Eu {W (u)W (u)T} ∈ Rqh̄×qh̄, where Eu is the expectation with
respect to the Lebesgue measure on [0, 1]d. Then, the smallest and the largest eigen-
values of Ω are bounded away from zero and infinity by constants.

Consider the covariance function

C(u, u′) =
n∑
h=0

ah cos(hπ|u− u′|) =
n∑
h=0

ah
{

cos(hπu) cos(hπu′) + sin(hπu) sin(hπu′)
}
,

for u, u′ ∈ [0, 1] with ah ≥ 0 for all h = 1, 2, . . . and
∑∞

h=1 ah < ∞, then by the Mercer’s
theorem, {ϕ0(u) = 1, ϕ2h−1(u) = cos(hπu), ϕ2h(u) = sin(hπu) : h = 1, 2, . . .} are the
eigenfunctions and {µ0 = a0, µ2h−1 = µ2h = ah : h = 1, 2, . . .} are the eigenvalues. In this
example, Assumption (A.3) (i) is satisfied since the trigonometric functions are uniformly
bounded by 1. The commonly used Matérn covariance function with smoothness parameter
κ takes the form C(u, u′) = 21−κ

Γ(κ)

(√
2κθ‖u− u′‖

)κ
Kκ

(√
2κθ‖u− u′‖

)
for u, u′ ∈ [0, 1]d,

where Γ(·) is the gamma function and Kκ is the modified Bessel function of the second
kind. Then Assumption (A.3) (i) is satisfied for Matérn with d = 1 and κ = 1/2 as the
eigenfunctions are again the trigonometric functions as shown in Section 3.4.1 of Van Trees
(2001). It is also known in the literature that the decay rate of eigenvalues for the Matérn
covariance function on [0, 1]d with smoothness parameter v satisfies Assumption (A.3) (ii)
with v = κ+ d/2 (Ritter et al., 1995; Schaback and Wendland, 2002; Santin and Schaback,
2016).

Assumption (A.4) assumes the smoothness of the true underlying functions
ν01(·), . . . , ν0q(·). Given the eigenvalue condition in Assumption (A.3), for any given set of
nonzero constants c1, . . . , cq, the RKHS attached to the covariance function

∑q
a=1 caρa(·, ·)

is norm equivalent to the v-smooth Sobolev space on [0, 1]d.

Assumption (A.5) is a technical condition that makes ν(·) estimable from subset data.
Similar conditions have been used in varying-coefficient modeling literature. For example,
in the VCMs based on basis expansions where the dimension increases with n, the bounded
eigenvalue condition in (A.5) is comparable to Condition (C1) in Wei et al. (2011) and
Assumption (A5) in Bai et al. (2019), both of which have imposed bounded eigenvalue con-
ditions on the covariance matrices involving the products of regressors and basis functions.
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Given the fixed full-rank Γ0 as in Assumption (A.2), combining subset draws of β(·)
using the method described in Section 3.3 is equivalent to combining subset draws of ν(·).
For a = 1, . . . , q, let νa(·) be a random function drawn from the AMC posterior of νa(·).
We need the following assumption for the combination scheme in AMC.

(A.6) For any u ∈ [0, 1]d, for each a = 1, . . . , q, the AMC posterior mean and variance of
νa(u) satisfy

Eνa|y,u{νa(u)} =
1

k

k∑
j=1

Eν̃ja|yj ,uj{νja(u)}+Op

(
n−1/2

)
,

Varνa|y,u{νa(u)} ≤ c

k

k∑
j=1

Varν̃ja|yj ,uj{νja(u)}, (20)

for some constant c > 0, where Eν̃ja|yj ,uj and Varν̃ja|yj ,uj are the jth subset posterior
mean and variance of νa(·) given the jth subset data from (19), Eνa|y,u and Varνa|y,u
denote the AMC posterior mean and variance of νa(·) given the full data, and the term
Op
(
n−1/2

)
holds uniformly over all u ∈ [0, 1]d and all a = 1, . . . , q in the probability

of the observed data.

Assumption (A.6) imposes very weak conditions on the combination method for the
aggregated Bayesian posterior. It only requires that the AMC posterior mean is roughly
unbiased compared to the average of subset posterior means, and the AMC posterior vari-
ance to be upper bounded by the average of subset posterior variances. These relations
can be verified for many existing combination methods in the divide-and-conquer Bayes
literature for parametric models. In particular, the Op(n

−1/2) term in (20) is exactly zero
in parametric models for the PIE algorithm (Li et al., 2017), the Wasserstein posterior (Xu
and Srivastava, 2021), the DPMC posterior (Xue and Liang, 2019), and our proposed AMC
method. Furthermore, if the model is parametric, then in all four methods, the subset pos-
terior and the combined posterior variances satisfy Varνa|y,u{νa(u)} = n−1 I−1

0 +op(n
−1),

where I0 is a fixed information matrix that does not depend on n; see the theory in Li
et al. (2017), Xu and Srivastava (2021) and Xue and Liang (2019). Therefore, for para-
metric models, the combined posterior using either of these methods can recover the exact
asymptotic variance of the true posterior distribution after setting c = 1 and changing the
inequality to equality in (20). Based on these observations about the combined posterior
means and variances, it is expected that in the VCM setup, the rates of convergence of the
AMC, Wasserstein, and DPMC posterior distributions to the true posterior distribution
should be similar to each other.

The following theorem is our main result on the convergence rate in L2 norm of the
AMC posterior distribution for the varying coefficients and the mean regression function;
see Appendix C for the proof. Although the convergence results are presented for the AMC
posterior distribution, they are not unique to the AMC posterior. Rather, they hold for any
other combined posterior distribution that is built under the three step framework described
in Sections 3.1, 3.2 and 3.3, with the combination step following Assumption (A.6), including
the Wasserstein posterior and the DPMC posterior.
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Theorem 1 Suppose that Assumptions (A.1)–(A.6) hold for the VCM in (19). Let β(·) =
α0 + Γ0ν(·) and w(·) = Z(·)β(·), where ν(·) = {ν1(·), . . . , νq(·)}T is a q-variate random
function drawn from the AMC posterior of ν(·). Let Eu∗, Ey,u, and Eβ|y,u be the expectations
with respect to the distribution of testing point u∗, the true data generating distribution
(with randomness from yji and uji, j = 1, . . . , k and i = 1, . . . ,m), and the AMC posterior
distribution of the varying coefficients β(·) given the full data.

(i) If λn = 1 and m & n(d/v)+η for some constant η ∈
(
0, v−d

v

]
, then the AMC posterior

satisfies

Eu∗ Ey,u Eβ|y,u
∥∥β(u∗)− β0(u∗)

∥∥2

2
. n−(2v−d)/(2v),

and Eu∗ Ey,u Eβ|y,u {w(u∗)− w0(u∗)}2 . n−(2v−d)/(2v),

(ii) If λn � nd/(2v+d) and m & n2d/(2v+d)+η for some constant η ∈
(

0, 2v−d
2v+d

]
, then the AMC

posterior satisfies

Eu∗ Ey,u Eβ|y,u
∥∥β(u∗)− β0(u∗)

∥∥2

2
. n−2v/(2v+d),

and Eu∗ Ey,u Eβ|y,u {w(u∗)− w0(u∗)}2 . n−2v/(2v+d).

Theorem 1 gives the upper bounds for the posterior convergence rates of both the q-
dimensional varying coefficients and the mean regression function in the L2 norm. To the
best of our knowledge, such convergence result for varying coefficients β(·) is new in the
literature of Bayesian varying-coefficient models with multivariate latent GPs. Theorem 1
provides theoretical guarantees for the distributed extension of VCM proposed in Gelfand
et al. (2003), which is developed in Section 3 and scales to massive data settings.

When the tuning parameter λn is chosen appropriately as in Theorem 1 (ii), the AMC
posterior of the varying coefficients β(·) converges to the underlying truth in the L2 norm at
the rate n−v/(2v+d). This rate is known as the minimax optimal posterior convergence rate
in the L2 norm for the simple Gaussian process regression (van der Vaart and van Zanten,
2011). In the extreme case of m = n and k = 1, Theorem 1 also implies that the rate
n−v/(2v+d) is the convergence rate of the full data posterior distribution of β(·); therefore,
we have shown that the AMC posterior from our distributed Bayesian method can quantify
the posterior uncertainty in the same order as the full data posterior. If tuning from λn is
not available (that is, λn = 1), then Theorem 1 (i) shows that the AMC posterior converges
in the L2 norm at least at the rate n−(2v−d)/(4v), which is slightly slower than the optimal
rate in part (ii). Furthermore, Theorem 1 also gives sufficient conditions for the subset size
m in the two scenarios. For part (i), the order of m is m & n(d/v)+η, which is meaningful
when v > d since m ≤ n. Since Assumption (A.1) says that mk and n have the same order,
this implies that the number of subsets k can increase no faster than n(v−d)/v. For part (ii),
the order of m is m & n2d/(2v+d)+η and this works for all v > d/2 as in Assumption (A.3).
As a result, the number of subsets k can increase no faster than n(2v−d)/(2v+d).

Our convergence rates in Theorem 1 are also comparable to similar theoretical results on
distributed Bayesian inference in non-parametric regression models using an univariate GP
(without a VCM formulation). This includes the recent works of Guhaniyogi et al. (2017)
and Szabó and van Zanten (2019). While Bai et al. (2019) have also shown the posterior
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contraction rates for the varying coefficients, their Bayesian model is based on basis series
expansion instead of multivariate latent GPs as in Gelfand et al. (2003) and our current
paper. Furthermore, their main focus is on high dimensional variable selection, which is
different from the big n problem considered here.

5. Experiments

This section evaluates the performance of methods based on the divide-and-conquer tech-
nique for inference and predictions in Bayesian VCMs using a simulation study and a real
data analysis. The simulation settings, including the details of data generation, competing
methods and the metrics for comparison are described in the first subsection. The second
subsection presents simulation results for different methods for a comprehensive compari-
son. The third subsection presents an application of the Bayesian spatiotemporal VCM to
a large dataset of sea surface temperature and salinity in the North Atlantic Ocean.

5.1 Setup

Data generation:

To assess performance of distributed methods, we design two simulation studies, referred
to as Simulation 1 and Simulation 2, with n = 3000 and n = 9000 samples, respectively.
The sample size in Simulation 1 is moderately large to ensure that posterior computation
of VCMs using the full data, although exorbitantly slow, are tractable and their results
serve as the benchmark. In both simulations, the cardinality of the set of indexes U∗, where
the function estimation and prediction are evaluated, is set at 300. Our simulation studies
consider d = 2, with sample indices u1, . . . , un, and the indices in the set U∗, u∗1, . . . , u∗300 are
simulated independently from the uniform distribution on [0, 1]2. Both simulations assume
p = 3 predictors, with all p predictors have varying coefficients, i.e., q = p = 3. We simulate
a bivariate response function at all indices (i.e., si = 2) using the varying coefficient model
(4) as

y(u) = X(u)β0(u) + ε(u), β0(·) = α0 + Γ0ν(·), u ∈ {u1, . . . , un, u
∗
1, . . . , u

∗
300}, (21)

where X(u)s are 2 × 3 predictor matrices at each index, with each of their entries is inde-
pendently simulated from N(0, 1). To construct the varying coefficients, entries of the 3×3
matrix Γ0 are independently simulated from uniform(0, 3) and αT

0 is fixed at (−2, 2,−2). The
components ν1(·), ν2(·), ν3(·) of the LMC coefficient vector ν(·) = (ν1(·), ν2(·), ν3(·))T, are
drawn from independent GPs with 0 mean and correlation functions ρa(u, u

′) = e−φa‖u−u
′‖2 ,

where φa = a for a = 1, 2, 3. ε(u)s are idiosyncratic errors following i.i.d. N(0, τ2). Both
simulations set the error variance τ2 at 0.1. Each simulation is replicated ten times.

Competing methods:

We compare the performance of AMC algorithm with two sets of competitors. The
first set of competitors include distributed Bayesian methods which follow the same three
step algorithm as AMC, with the main difference appearing in the third step involving the
subset posterior combination. As part of our comparison endeavor with such distributed
Bayesian methods, we include DPMC, PIE, WASP and CMC algorithms as competitors.
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For each of these competitors, we first create k subsets of sizes m = 500 and m = 1000,
using subsampling without replacement in both simulations and vary k as 10, 20 and 30, 60
in Simulations 1 and 2, respectively. Second, we use the DA-type algorithm developed in
Section 3.2 in parallel to obtain posterior samples of τ2, β(u∗), and y(u∗) for u∗ ∈ U∗ from all
the subsets. The sampling algorithm uses a sparse GP based on the FITC approximation
with r = 400 inducing points (Quiñonero-Candela and Rasmussen, 2005; Álvarez et al.,
2012). The imputation of ν̃j in part (a) of our DA-type algorithm is done using the Lanczos
algorithm of Chow and Saad (2014) for computational tractability. The sampling algorithm
in each subset runs for 10,000 iterations, and the Markov chain is thinned by collecting every
fifth posterior sample after discarding the first 5,000 posterior samples as burn-in. Finally,
we combine subset posterior samples for τ2, β(u∗), and y(u∗) for u∗ ∈ U∗ using CMC,
DPMC, WASP, PIE and the AMC algorithms (described in Section 3.3). The combination
steps of AMC, DPMC, WASP, and PIE satisfy the Assumption (A.6) in Section 4, so we
expect similar empirical performance for these four methods. In contrast, no such theoretical
guarantee exists for the performance of the CMC algorithm.

It is also instructive to compare performance of AMC posterior with the second set of
competitors which include the Bayesian VCMs on the full data. To this end, we compare
with the true posterior distribution computed using full data, which sets the performance
benchmark for the distributed methods. Since there is no open source implementation avail-
able for the Bayesian VCMs with bivariate response vector, we implement it by ourselves
following the DA-type algorithm discussed in Section 2.3. Additionally, Finley and Banerjee
(2020) offer spSVC in the spBayes R package for fitting spatial VCMs, which are special
cases of (1) with d = 2, and fits to our simulation settings. Unfortunately, the current
software support is limited to univariate responses in VCMs; hence we implement spSVC

function marginally on each component of the bivariate response vector, and refer to this
competitor as spSVC. Ignoring correlation between the two components in the bivariate re-
sponse will presumably lead to a loss in inferential accuracy of spSVC compared to the other
competitors. Both the DA-type algorithm of Section 2.3 and implementation of spSVC are
prohibitively slow when n = 9000, so we present their results only when n = 3000.

Comparison metrics:

The point estimation of the varying coefficients and predictions at U∗ from all methods
are compared using mean square error (MSE), and mean square prediction error (MSPE),
respectively. Further, the coverage and length of 95% credible and predictive intervals (CIs,
PIs) from the competing methods help assessing uncertainty in function estimation and in
prediction, respectively. Let β0(u∗) = {β01(u∗), . . . , β0p(u

∗)}, y(u∗) = {y1(u∗), . . . , ys(u
∗)}

be the true values of β(·), y(·) at u∗, where p and s are their dimensions and u∗ ∈ U∗ ⊂ [0, 1]d.
Let β̂(u∗), ŷ(u∗) be the posterior means of β(u∗), y(u∗), respectively. Then, the MSE in
estimating β(·) and MSPE in predicting y(·) are defined as

MSE =
1

| U∗ |

| U∗ |∑
i=1

p∑
j=1

{β̂j(u∗i )− β0j(u
∗
i )}2,

MSPE =
1

| U∗ |

| U∗ |∑
i=1

s∑
j=1

{ŷj(u∗i )− yj(u∗i )}2. (22)
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We evaluate point-wise coverage and length of the 95% CIs and PIs obtained from the
posterior distributions of β(·) and y(·), respectively, for every u ∈ U∗, for all competitors.
As discussed before, the simulation settings assume s = 2, p = 2, and | U∗ | = 300. Let
ESSDA be the effective sample size of any DA-type algorithm that runs for TDA hours, where
DA can signify any of the competitors discussed above. Then, following Johndrow et al.
(2019), we define the computational efficiency of a DA-type algorithm, including spSVC,
AMC, CMC, DPMC, WASP, or the full data posterior (referred to as the true posterior) as

Computational EfficiencyDA = log2 ESSDA/TDA, (23)

where ESSDA is computed using the coda R package (Plummer, 2003). We do not compute
(23) for the PIE combination algorithm since it is not designed to provide MCMC samples
for the parameters.

5.2 Simulated Data Analysis

Table 1 and 2 show the performance of all methods in terms of estimating the true varying
coefficient β0(·) and prediction of y(·), respectively. As expected, the empirical performance
of combined posterior obtained using AMC, WASP, PIE, and DPMC are very similar in
terms of all the comparison metrics. Specifically, for both Simulation 1 and 2, they yield
similar MSE, MSPE, close to nominal coverage and similar length of 95% CIs and PIs, which
validates Theorem 1 empirically. The true posterior being the gold standard, achieves little
lower MSE and a bit narrower 95% CIs and PIs than its distributed competitors; how-
ever, the computational efficiency of the true posterior is much smaller than that of AMC,
WASP, PIE, and DPMC because it requires much longer to finish an iteration compared
to its divide-and-conquer competitors. Increasing the size of each subset m leads to better
inference, where as varying the number of subsets k with a fixed value of m does not seem to
have much impact on the inference. Among the distributed methods, the CI and PI lengths
are slightly larger for PIE, perhaps due to the marginal combination of subset posterior
distributions. Although WASP shows marginally narrower 95% CIs and PIs compared to
AMC and DPMC (all maintaining close to the nominal coverage), the subset posterior
combination step of AMC and DPMC are much more computationally convenient. On the
other hand, the CI and PI lengths of CMC are very small compared to that of the WASP,
which results in poor coverage for every m and n and deteriorates as k increases. Except
CMC, all other methods show similar performance for inference on the error variance τ2

(Table 3). We also find the performance of spSVC to be excellent in predicting y(u∗)s, but
becomes extremely poor in inference on β(u∗)s. The poor performance of spSVC in inference
on β(u∗)s is mainly because the marginal model ignores the dependence between y1(·) and
y2(·). On the other hand, spSVC shows excellent performance in predicting y(u∗)s because
the marginal spSVC model still uses three GPs for predicting y1(·) and y2(·).

AMC, DPMC, PIE, and WASP satisfy Assumption (A.6) on the combination of subset
posterior distributions, whereas CMC does not; therefore, we conclude that methods that
satisfy our theoretical assumptions show superior empirical performance. Furthermore, the
AMC and DPMC combination algorithms are the simplest among the distributed competi-
tors that offer combination of subset posteriors of all parameters jointly. Hence, they are
simple and computationally convenient alternatives to the full data posterior distribution
in Bayesian VCMs for massive data.
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Table 1: Summary of the results for inference on β(·). The CI coverage and their lengths
are averaged across 10 simulation replications, dimensions, and u ∈ U∗. A ‘-’ for the true
posterior and spSVC corresponding to n = 9000 indicates that the results are missing due to
intractable posterior computations. On the other hand, ‘-’ in reporting the computational
efficiency for PIE is due to the lack of definition.

n = 3000
Coverage at 95% Nominal Level 95% CI Length
m = 500 m = 1000 m = 500 m = 1000

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20
True Posterior 0.96 2.53
Marginal spSVC 0.27 3.22

AMC 0.97 0.97 0.96 0.97 3.18 3.19 2.88 2.89
PIE 0.97 0.97 0.96 0.97 3.24 3.24 3.02 2.91

CMC 0.56 0.42 0.57 0.39 1.10 0.79 1.09 0.67
WASP 0.96 0.96 0.96 0.96 3.06 3.06 2.78 2.78
DPMC 0.97 0.97 0.96 0.97 3.19 3.20 2.89 2.89

MSE Computational Efficiency
True Posterior 0.40 2.10
Marginal spSVC 7.24 6.68

AMC 0.56 0.56 0.48 0.48 9.02 8.41 8.79 8.37
PIE 0.57 0.57 0.52 0.48 - - - -

CMC 0.56 0.56 0.51 0.48 4.70 4.56 4.27 2.60
WASP 0.57 0.57 0.49 0.48 9.02 8.41 8.79 8.37
DPMC 0.57 0.57 0.49 0.48 9.02 8.41 8.79 8.36

n = 9000
Coverage at 95% Nominal Level 95% CI Length
m = 500 m = 1000 m = 500 m = 1000

k = 30 k = 60 k = 30 k = 60 k = 30 k = 60 k = 30 k = 60
True Posterior - -
Marginal spSVC - -

AMC 0.98 0.98 0.98 0.98 3.04 3.05 2.75 2.75
PIE 0.98 0.98 0.98 0.98 3.07 3.08 2.77 2.77

CMC 0.34 0.25 0.34 0.24 0.58 0.41 0.52 0.37
WASP 0.97 0.97 0.97 0.97 2.91 2.92 2.64 2.63
DPMC 0.98 0.98 0.98 0.98 3.05 3.06 2.75 2.75

MSE Computational Efficiency
True Posterior - -

AMC 0.45 0.45 0.38 0.38 10.40 9.67 9.94 9.70
PIE 0.46 0.46 0.39 0.39 - - - -

CMC 0.45 0.45 0.39 0.39 5.76 4.03 5.47 4.01
WASP 0.45 0.45 0.38 0.38 10.40 9.67 9.94 9.70
DPMC 0.45 0.45 0.38 0.38 10.40 9.67 9.94 9.70

5.3 Real Data Analysis

We illustrate the performance of the combined posterior distributions obtained using AMC,
DPMC, PIE, WASP or CMC combination technique for the space-time varying coefficient
modeling, where the indices are u = (h, t) with h and t denoting the spatial locations
and time points of the response and covariates. VCMs are widely used in a variety of
spatial applications, mostly without the temporal dimension; see, for example, Wheeler and
Calder (2007); Finley et al. (2014); Banerjee and Johnson (2006). On the contrary, their
applications in large data settings are limited, perhaps due to the demanding computations.
This section specifically considers the problem of capturing the spatio-temporal association
(with uncertainties) between the sea surface temperature (SST) and sea surface salinity
(SSS) in the Atlantic Ocean between 0◦ − 70◦ north latitudes and 0◦ − 80◦ west longitudes
using the spatiotemporal VCM. This implies that si = 1, p = 2, d = 3, and the space-time
tuples lie in a fixed and bounded domain for the spatiotemporal model based on (1). The
data on SST and SSS are obtained from the Hadley center observations under the met office
in UK (www.metoffice.gov.uk/hadobs, more description available in Kennedy et al. (2011)).
We specifically consider 72000 space-time observations on SST and SSS over the 12 months
in 2018 and randomly set aside | U∗ | = 600 space-time tuples for prediction, which form
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Table 2: Summary of the results for y(·) prediction. The PI coverage and their lengths
are averaged across 10 simulation replications, dimensions a = 1, 2, and u ∈ U∗. A ‘-’
for the true posterior and spSVC corresponding to n = 9000 indicates that the results are
missing due to intractable posterior computations. On the other hand, ‘-’ in reporting the
computational efficiency for PIE is due to the lack of definition.

n = 3000
Coverage at 95% Nominal Level 95% PI Length
m = 500 m = 1000 m = 500 m = 1000

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20
True Posterior 0.96 4.11
Marginal spSVC 1.00 1.66

AMC 0.97 0.97 0.96 0.96 5.05 5.05 4.61 4.62
PIE 0.97 0.97 0.97 0.96 5.12 5.11 4.81 4.65

CMC 0.55 0.42 0.57 0.39 1.75 1.25 1.73 1.08
WASP 0.96 0.96 0.95 0.95 4.87 4.86 4.46 4.46
DPMC 0.97 0.97 0.96 0.96 5.06 5.06 4.61 4.63

MSPE Computational Efficiency
True Posterior 1.30 2.10
Marginal spSVC 0.03 6.67

AMC 1.79 1.76 1.53 1.54 9.02 8.41 8.79 8.37
PIE 1.82 1.79 1.67 1.55 - - - -

CMC 1.78 1.75 1.65 1.53 5.72 4.10 5.55 4.11
WASP 1.79 1.76 1.53 1.54 9.02 8.41 8.79 8.37
DPMC 1.79 1.76 1.53 1.54 9.02 8.41 8.79 8.37

n = 9000
Coverage at 95% Nominal Level 95% PI Length
m = 500 m = 1000 m = 500 m = 1000

k = 30 k = 60 k = 30 k = 60 k = 30 k = 60 k = 30 k = 60
True Posterior - -
Marginal spSVC - -

AMC 0.98 0.98 0.97 0.97 4.80 4.82 4.39 4.38
PIE 0.97 0.97 0.97 0.97 4.85 4.87 4.42 4.42

CMC 0.33 0.24 0.32 0.23 0.92 0.65 0.83 0.58
WASP 0.96 0.96 0.96 0.96 4.62 4.63 4.23 4.22
DPMC 0.98 0.98 0.97 0.97 4.82 4.84 4.40 4.39

MSPE Computational Efficiency
True Posterior - -
Marginal spSVC - -

AMC 1.41 1.40 1.22 1.21 10.40 9.67 9.94 9.70
PIE 1.45 1.45 1.25 1.24 - - - -

CMC 1.40 1.40 1.23 1.23 5.76 4.03 5.47 4.02
WASP 1.41 1.40 1.22 1.21 10.40 9.67 9.94 9.70
DPMC 1.41 1.40 1.22 1.21 10.40 9.67 9.94 9.70

Table 3: The 95% credible intervals for inference on τ2. The lower and upper ends of CIs
are averaged across 10 simulation replications.

n = 3000
m = 500 m = 1000

k = 10 k = 20 k = 10 k = 20
True Posterior (0.0891, 0.1067)
Marginal spSVC (0.0975, 0.1141)

AMC (0.0707, 0.103) (0.0695, 0.1016) (0.0778, 0.1323) (0.0798, 0.1041)
PIE (0.0717, 0.1037) (0.0703, 0.1021) (0.0821, 0.1316) (0.0801, 0.1042)

CMC (0.0799, 0.0909) (0.0802, 0.0881) (0.0878, 0.0982) (0.0884, 0.094)
WASP (0.0708, 0.1029) (0.0696, 0.1016) (0.0799, 0.1268) (0.0799, 0.1041)
DPMC (0.0707, 0.1031) (0.0695, 0.1017) (0.0778, 0.1347) (0.0798, 0.1041)

n = 9000
m = 500 m = 1000

k = 30 k = 60 k = 30 k = 60
True Posterior -
Marginal spSVC -

AMC (0.0709, 0.103) (0.0704, 0.1022) (0.0799, 0.1038) (0.0795, 0.1031)
PIE (0.0718, 0.1037) (0.0713, 0.1029) (0.0803, 0.1041) (0.0799, 0.1034)

CMC (0.0819, 0.0879) (0.0821, 0.0864) (0.0887, 0.0932) (0.0888, 0.0919)
WASP (0.071, 0.1029) (0.0704, 0.1021) (0.08, 0.1038) (0.0795, 0.1031)
DPMC (0.0709, 0.103) (0.0704, 0.1022) (0.0799, 0.1037) (0.0795, 0.1031)

the set U∗ of size 600. Full scale Bayesian inference of spatio-temporal VCMs with data at
this scale is extremely challenging and has been sparsely dealt with in the literature.
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The global association between SST and SSS is well established in the fields of Oceanog-
raphy and Geophysics (Millero et al., 1998; Key et al., 2004; Lee et al., 2006). In fact, salinity
influences the depth to which water masses sink and how far they extend through the ocean.
The location and depth of these water masses controls how heat are transported between
the tropics and high latitudes. Both SST and SSS are also key in understanding how oceans
interact with the atmosphere. Monsoons are driven by exchanges at the air-ocean bound-
ary, affecting almost half of the world’s human population each year. Likewise, El Niño has
profound effects on humankind and is, to an unknown extent, governed by ocean salinity
and temperature. Earlier work with nonlinear regression models to ascertain relationships
between SST and SSS (Xiong et al., 2013; Becker and Pauly, 1996) reveal significant posi-
tive association between these two climate indicators. Although some of these prior studies
reveal such associations to be spatially varying (Weldeab et al., 2006), there is still a dearth
of model based analysis of spatio-temporally varying associations between SST and SSS.

We compare performance of the combined posterior obtained using AMC, DPMC,
WASP, PIE combination schemes (all following theoretically guaranteed optimal perfor-
mance) along with the other distributed competitor CMC, popularly used in the machine
learning literature for distributed inference with massive data. We have also attempted
to fit spatially varying coefficient model on the full data using the spSVC function in the
spBayes package in R; however, full data posterior computations using spSVC fails due to
the large sample size. Gneiting’s correlation function (6) is employed in the spatiotemporal
VCM due to its flexibility in modeling space-time correlations (Gneiting, 2002). The values
of k and m are set to be 400 and 2500, respectively, and the results for the distributed
methods follow from three step strategy described in Section 3. Because the true varying
coefficients are unknown, we only make assessment of point prediction and predictive uncer-
tainties for all the methods using MSPE and coverage of 95% PIs for the space-time tuples
in U∗, respectively. Computational efficiency of all methods are also reported.

Figure 1 presents the posterior mean of the spatially varying coefficient corresponding to
SSS in January, May and September for AMC, PIE, WASP and DPMC. From the equator
to the pole, the annual excess precipitation over evaporation increases, and thus salinity
decreases along with SST, with latitude. However, in lower latitude, due to the pronounced
salt accumulation as a result of excess heating and oceanic currents, SSS surges, which
results in lower β1(s) values. This trend becomes more prominent during the months of
summer or fall (columns 2 and 3). In general, SSS decreases in comparison with SST during
winter, except for the Brazilian coast, which shows lower coefficient values even in winter
due to the strong North Brazil Current (Weldeab et al., 2006). The increase in latitude
shows a considerable drop of SSS compared to SST leading to higher β1(s) values. The
estimates appear to be consistent over all the four combination approaches (AMC, WASP,
PIE and DPMC) following the three step algorithm.

Turning our attention to the predictive inference, Table 4 demonstrates comparable
point estimation and predictive uncertainties from AMC, PIE, WASP and DPMC com-
bination schemes. In contrast, the machine learning competitor CMC shows high MSPE
and considerably wider credible intervals at all space-time tuples. The computationally
efficiency metric for other methods also supercede CMC by a large margin. As a result,
the space-time varying coefficient figures corresponding to CMC also appear to be different
from the other competitors, and hence it has not been included under Figure 1. As a whole,
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the data analysis reinforces our findings on the three step divide and conquer approaches
with the theoretically guaranteed combination schemes AMC, DPMC, WASP and PIE as
simple, computationally efficient, flexible, and fully Bayesian inferential tools for inference
in large spatiotemporal data with the VCM model. We emphasize that the scalability of
all these approaches depend on the Bayesian VCM model fitted in each subset. Using more
computationally efficient variants of GPs for ν(·) in each subset, a much higher degree of
scalability is achievable.

Table 4: Summary of the results for prediction of sea surface temperature at 600 space-
time tuples using the spatio-temporal VCM fitted at each subset. The PI coverage and their
lengths are based on point-wise 95% predictive intervals and are averaged across the 600
space-time tuples. Computational efficiency for all methods are also reported. Omission of
computational efficiency for PIE is due to the lack of definition.

Coverage MSPE 95% PI Length Computational Efficiency

AMC 0.99 2.92 6.60 9.99
PIE 0.99 2.93 5.61 -

CMC 0.90 74.95 24.71 1.06
WASP 0.98 2.92 5.26 9.99
DPMC 0.99 2.92 6.53 10.09

6. Discussion

Bayesian varying coefficient models with multivariate Gaussian process prior on varying
coefficients are extremely popular in functional regression models with a wide variety of
applications, since they combine the flexibility of a nonparametric model and interpretabil-
ity of a linear regression model. Unfortunately, full scale Bayesian inference with VCMs
are relatively less explored with big data, due to the computation and storage becoming
prohibitively burdensome. This article proposes a three step distributed framework that
divides the data into (possibly) overlapping subsets, fits posterior inference with VCM in
each subset after appropriately modifying the subset likelihood, and finally aggregates in-
ference from subsets with a combination algorithm to derive a pseudo posterior distribution
that approximates the full posterior. This article is presumably the first approach to design
a principled distributed Bayesian algorithm on VCMs with large data. Additionally, we
claim threefold contribution in the literature of distributed Bayesian inference on VCMs.
First, we identify the modification required in subset posterior likelihoods and justify such
modification with rigorous theoretical guarantee. Second, a new subset posterior combina-
tion algorithm, referred to as the Aggregated Monte Carlo algorithm, is proposed. Unlike
a few other subset posterior combination algorithms proposed in the context of univariate
Gaussian process regression models, AMC jointly combines subset posterior of all parame-
ters and yet offers straightforward implementation. Finally, the major contribution of the
article becomes theoretically establishing minimax optimal convergence rate for the vary-
ing coefficients and regression mean function under the three stage distributed Bayesian
framework. The theoretical results explicitly offer the choices of k and m as functions of
n, smoothness of the fitted Gaussian process and the smoothness of the true varying co-
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Figure 1: The four rows represent space-time varying coefficient corresponding to the STVC
regression model with SST as the response and SSS as the predictor. Rows 1-4 correspond
to the coefficient maps from AMC, WASP, PIE and DPMC respectively. In each row,
columns 1, 2, 3 present coefficient maps in January, May and September respectively.
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efficients to guarantee optimal inference. Furthermore, the theoretical results are proved
under mild assumption on the subset posterior combination algorithm, which is found to
hold for DPMC, WASP and PIE, along with the proposed AMC algorithm. Simulation
studies demonstrate similar point estimation and prediction, along with close to nominal
coverage for all the distributed methods that satisfy theoretical assumptions. We fit space-
time varying coefficient models to delineate local variability, as well as seasonal variability
in the relationship between SST and SSS in the northern Atlantic ocean.

As a first attempt to principled distributed inference with VCMs, we employ FITC
approximation of the Gaussian process for each coefficient in every subset inference and
are able to seamlessly scale Bayesian VCMs for ∼ 105 observations, even with moderate
dimensional multivariate varying coefficients. As an immediate future work, we plan to
fit a more computationally convenient approximation to the GPs on varying coefficients
(Gramacy and Apley, 2015) to ameliorate scalability. On the theoretical front, our proof
techniques do not depend the normality of error terms in the VCM model. Our conjecture
is that if we assume the normal error assumption, then by using the techniques in van der
Vaart and van Zanten (2011), it is to possible to improve the rate in Theorem 1 to an
adaptive minimax optimal rate n−v/(2v+d) without the tuning parameter λn, and to relax
the function space from RKHS in Assumption (A.4) to the larger space of functions that
are less smooth. We leave this direction for future research.
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Appendix A. Draws from the True Posterior Distribution

Consider the linear mixed effects reformulation of the Bayesian VCM in (4) and the prior
distributions on (α,Γ, τ2, θ1, . . . , θq) again. Define total number of observations as s =∑n

i=1 si, Z̃a, νa, Ra (a = 1, . . . , q), and y, X, Z̃, R, ν, ε as follows:

Z̃a = diag{Z(u1)Γa, . . . , Z(un)Γa}, νT
a = {νa(u1), . . . , νa(un)}, νT = (νT

1 , . . . , ν
T
q ),

(Ra)ii′ = ρa(ui, ui′), i, i′ = 1, . . . , n, R = diag(R1, . . . , Rq), εT = (εT
1 , . . . , ε

T
n),

yT = {y(u1), . . . , y(un)}, XT = [X(u1)T, . . . , X(un)T], Z̃ = [Z̃1, . . . , Z̃q], (24)

where Z̃a, Ra, X, and Z are s-by-n, n-by-n, s-by-p, and s-by-nq matrices, respectively, R is
a nq-by-nq block diagonal matrix, and ν, νa, and y are nq-by-1, n-by-1, and s-by-1 vectors,
respectively. Using these definitions, the Bayesian VCM in (4) and the prior distributions
are re-written as

y = Xα+

q∑
a=1

Z̃aνa + ε = Z̃ν + ε, ε ∼ N(0, τ2I), νa ∼ N(0, Ra),

νa ∼ N(0, Ra), ν ∼ N(0, R), p(α,Γ, τ2) ∝ τ−2, p(θa) = Uniform(ca, ca), (25)

where the uniform distribution of θa is assumed to be component-wise if θa is a vector. In
this case, ca and ca are also vectors of the same dimension as θa. The prior distribution on
the latent variables ν and parameters α,Γ, τ2, θ1, . . . , θq are assumed to have the form

p(ν, α,Γ, τ2, θ1, . . . , θq) =

q∏
a=1

{p(νa | θa)p(θa)}p(α,Γ, τ2) ≡ p(ν, θ1, . . . , θq)p(α,Γ, τ
2). (26)

Our sampling algorithm for drawing β(·), y(·), and τ2 from their respective full data pos-
terior distributions is based on (25) and (26).

First, we derive the full conditional of ν. Assume that y, α,Γ, τ2, θ1, . . . , θq are given.
Using (25), the joint distribution of (y, ν) is an (s+ nq)-variate Gaussian distribution with
mean (Xα, 0), where 0 is an nq-by-1 vector, and covariance matrix C, where the blocks
corresponding to the marginal covariance matrices of y, ν, respectively, and their cross
covariance matrix are

(C)yy = Z̃RZ̃T + τ2I =

q∑
a=1

Z̃aRaZ̃
T
a + τ2I, (C)νν = R, (C)yν = Z̃R. (27)

This implies that ν given y, α,Γ, τ2, θ1, . . . , θq follows N(µν ,Σν), where

µν = RTZ̃T(C)−1
yy (y −Xα), Σν = R−RTZ̃T(C)−1

yy Z̃R. (28)

Second, we derive the full conditional of (α,Γ, τ2). Assuming y, ν are given, define

Wi = [X(ui), ν
T(ui)⊗ Z(ui)], i = 1, . . . , n, WT = [WT

1 , . . . ,W
T
n ], bT = (αT, γT), (29)

where γ is the column-wise vectorization of Γ. Rewrite the Bayesian VCM in (25) as

y = Wb+ ε, ε ∼ N(0, τ2I), p(b, τ2) ∝ τ−2. (30)
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If b̂ = (WTW )−1WTy is the least squares estimate of b and ŷ = Wb̂ is the mean estimate
of y based on b̂, then

p(τ2, b | y) ∝ 1

(τ2)s/2
exp

{
−(y −Wb)T(y −Wb)

2τ2

}
1

τ2

=
1

(τ2)s/2+1
exp

{
−(y − ŷ)T(y − ŷ) + (ŷ −Wb)T(ŷ −Wb)

2τ2

}
=

1

(τ2)s/2+1
exp

(
−‖y − ŷ‖

2
2

2τ2

)
exp

{
−(b̂− b)T(WTW )(b̂− b)

2τ2

}
. (31)

Marginalizing over b in (31) implies that

p(τ2 | y) ∝ 1

(τ2)(s−p−q2)/2+1
exp

(
−‖y − ŷ‖

2
2

2τ2

)
, τ2 | y, ν ∼ ‖y − ŷ‖

2
2

χ2
s−p−q2

, (32)

and (31) assuming τ2 is given implies that

p(b | y, τ2) ∝ exp

{
−(b̂− b)T(WTW )(b̂− b)

2τ2

}
, b | y, ν, τ2 ∼ N

{
b̂, τ2(WTW )−1

}
; (33)

therefore, (32) and (33) imply that the distribution of (b, τ2) given y lies in the Normal-
Inverse-Gamma family. The α draw corresponds to the first p elements of b and the remain-
ing elements of b are “un-vectorized” into the q-by-q matrix Γ.

Finally, we derive the ESS algorithm for drawing θ1, . . . , θq given ν. Using (26), we have
that

log p(θ1, . . . , θq | ν) ∝ −1

2

q∑
a=1

log |Ra(θa)| −
1

2

q∑
a=1

νT
aR
−1
a (θa)νa +

q∑
a=1

log 1ca≤θa≤ca , (34)

but ESS cannot be applied directly for sampling θ1, . . . , θq given ν due the range restric-
tions on θas imposed by the uniform prior distributions. We address this problem by first
transforming θ1, . . . , θq to θ1, . . . , θq as

θa = log
θa − ca
ca − θa

, θa = ca +
ca − ca

1 + e− θa
, (35)

where each θa ∈ (−∞,∞) and the mapping of θa to θa is done component-wise if θa is
a vector. The form is log p(θ1, . . . , θq | ν) in (34) is modified using the Jacobian of the
transform as

log p(θ1, . . . , θq | ν) ∝− 1

2

q∑
a=1

log |Ra(θa)| −
1

2

q∑
a=1

νT
aR
−1
a (θa)νa +

q∑
a=1

log(ca − ca)

+

q∑
a=1

log θa−2

q∑
a=1

log(1 + eθa). (36)
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The θas in (36) are supported on (−∞,∞), so we apply the ESS algorithm using the
proposal N(0, 4I) for (θ1, . . . , θq), where I is an identiy whose dimension is determined by
that of (θ1, . . . , θq); see Algorithm 1 in Nishihara et al. (2014).

In summary, the sampling algorithm for drawing from the posterior distribution of

(α,Γ, τ2, θ1, . . . , θq) starts from an initial value of parameters (α(0),Γ(0), τ2(0), θ
(0)
1 , . . . , θ

(0)
q )

and cycles through the following four steps for t = 0, 1, . . . ,∞:

(a) draw ν(t+1) given y, α(t),Γ(t), τ2(t), θ
(t)
1 , . . . , θ

(t)
q from N(µν ,Σν), where µν ,Σν are de-

fined in (28);

(b) draw τ2(t+1) given y, ν(t+1) using (32);

(c) draw (α(t+1), γ(t+1)) given y, ν(t+1), τ2(t+1) using (33) and the vectorization of γ(t+1)

is reversed to obtain Γ(t+1); and

(d) draw θ
(t+1)
1 , . . . , θ

(t+1)
q given ν(t+1) using ESS, the likelihood in (36), and the relation

between θa and θa in (35).

In practice, the interest also lies in drawing β(u∗) and y(u∗) for u∗ ∈ U∗, where U∗
is a known subset of [0, 1]d with l elements. This accomplished by the addition of two
extra steps after steps (a)–(d). Let ν∗a = {νa(u∗1), . . . , νa(u

∗
l )} (a = 1, . . . , q) and ν(u∗) =

{ν1(u∗), . . . , νq(u
∗)}, u∗ ∈ U∗. Then, the GP prior on νa(·) (a = 1, . . . , q) implies that the

ν∗a given νa and θa is drawn from N(µ∗a,Σ
∗
a), where

µ∗a = RT
a∗R

−1
a νa, Σ∗a = Ra∗∗ −RT

a∗R
−1
a Ra∗, a = 1, . . . , q,

(Ra∗)ii′ = ρa(ui, u
∗
i′), (Ra∗∗)i′i′′ = ρa(u

∗
i , u
∗
i′′), i = 1, . . . , n, i′, i′′ = 1, . . . , l. (37)

Given (α,Γ, τ2, θ1, . . . , θq) and u∗ ∈ U∗, the draws of β(u∗) is obtained as

β(u∗) = [{β(u∗)}T
va, {β(u∗)}T

nv]T, {β(u∗)}va = αva + Γν(u∗), {β(u∗)}nv = αnv, (38)

where nv,v correspond to the non-varying and varying coefficients indices, and the draw of
y(u∗) is obtained as

y(u∗) ∼ N(µy∗ , τ
2I), µy∗ = X(u∗)β(u∗); (39)

therefore, at the (t+1) iteration of the full data sampling algorithm, the following two steps
are added if U∗ and X(u∗) for every u∗ ∈ U∗ are known:

(e) draw ν
∗(t+1)
a given ν

(t+1)
a , θ

(t+1)
a using (37) (a = 1, . . . , q) and obtain β(u∗)(t+1) given

α(t+1), Γ(t+1), ν
∗(t+1)
a using (38) for every u∗ ∈ U∗; and

(f) draw y(u∗)(t+1) given X(u∗), β(u∗)(t+1), τ2(t+1) using (39) for every u∗ ∈ U∗.

We also take advantage of the low-rank structure in the covariance matrices if inducing
points are used defining the covariance functions of GP (Quiñonero-Candela and Rasmussen,
2005; Álvarez and Lawrence, 2011).
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Appendix B. Draws from the jth Subset Posterior Distribution

Consider the reformulation of (25) on subset j. Define total number of observations on
subset j as s̃j =

∑m
i=1 sji, Z̃ja, ν̃ja, Rja, yj , Xj , Z̃j , Rj , ν̃j , εj are the subset j counterparts

of Z̃a, νa, Ra, y, X, Z̃, R, ν, ε, where the dimensions of subset j variables are obtained by
replacing s by s̃j and n by m in their full data counterparts. Using these definitions, the
Bayesian VCM in on subset j and the prior distributions are re-written as

yj = Xjαj + Z̃j1ν̃j1 + · · ·+ Z̃jqν̃jq + εj = Z̃j ν̃j + εj , εj ∼ N(0, τ2
j I), ν̃ja ∼ N(0, Rja),

ν̃ja ∼ N(0, Rja), ν̃ ∼ N(0, Rj), p(αj ,Γj , τ
2
j ) ∝ τ−2

j , p(θaj) = Uniform(ca, ca). (40)

where the prior distributions on θjas remain unchanged. The prior distribution of the subset
j latent variables ν̃j and parameters αj ,Γj , τ

2
j , θj1, . . . , θjq also have the same form as in

(26)

p(ν̃j , αj ,Γj , τ
2
j , θj1, . . . , θjq) =

q∏
a=1

{p(ν̃ja | θja)p(θja)}p(αj ,Γj , τ2
j )

≡ p(ν̃j , θj1, . . . , θjq)p(αj ,Γj , τ2
j ). (41)

The sampling algorithm for drawing β(·), y(·), and τ2 from their respective subset j
posterior distributions is based on a modified form of (40) and (41). The conditional density
of (αj ,Γj , τ

2
j , θj1, . . . , θjq) given yj after stochastic approximation is defined following (10)

as

π(αj ,Γj , τ
2
j , θj1, . . . , θjq | yj) ∝ {p(yj | ν̃j , αj ,Γj , τ2

j )p(ν̃j , θj1, . . . , θjq)}δnp(αj ,Γj , τ2
j ), (42)

where p(ν̃j , θj1, . . . , θjq) is the subset j version of p(ν, θ1, . . . , θq) in (26). The model in (40)
implies that the joint distribution of (yj , ν̃j) given αj ,Γj , τ

2
j , θj1, . . . , θjq is an (s̃j + mq)-

variate Gaussian distribution with mean (Xjαj , 0), where 0 is an mq-by-1 vector, and
covariance matrix Cj , where the blocks corresponding to the marginal covariance matrices
of yj , ν̃j , respectively, and their cross covariance matrix are

(Cj)yjyj = Z̃jRjZ̃
T
j + τ2

j I =

q∑
a=1

Z̃jaRjaZ̃
T
ja + τ2

j I, (Cj)ν̃j ν̃j = Rj , (Cj)yj ν̃j = Z̃jRj .

(43)

This implies that ν̃j given yj , αj ,Γj , τ
2
j , θj1, . . . , θjq follows N(µν̃j ,Σν̃j ), where

µν̃j = RT
j Z̃

T
j (Cj)

−1
yjyj (yj −Xjαj), Σν̃j = Rj −RT

j Z̃
T
j (Cj)

−1
yjyj Z̃jRj . (44)

The conditional density of (αj ,Γj , τ
2
j ) given yj is obtained using (42). The subset j

counterpart of W and b in (29) are Wj and bT
j = (αT

j , γ
T
j ), where γj is the column-wise

vectorization of Γj . The conditional density in (42) together with (30) implies that

π(τ2
j , bj | yj) ∝

1

(τ2
j )s̃jδn/2

exp

{
−(yj −Wjbj)

T(yj −Wjbj)

2τ2
j /δn

}
1

τ2
j
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=
1

(τ2
j )s̃jδn/2+1

exp

{
−(yj − ŷj)T(yj − ŷj) + (ŷj −Wjbj)

T(ŷj −Wjbj)

2τ2
j /δn

}

=
1

(τ2
j )s̃jδn/2+1

exp

(
−δn‖yj − ŷj‖

2
2

2τ2
j

)
exp

{
−

(b̂j − bj)Tδn(WT
j Wj)(b̂j − bj)

2τ2
j

}
,

(45)

where b̂j = (WT
j Wj)

−1WT
j yj is the least squares estimate of bj and ŷj = Wj b̂j is the mean

estimate of yj based on b̂j . Marginalizing over bj in (45) implies that

π(τ2
j | yj) ∝

1

(τ2
j )(s̃jδn−p−q2)/2+1

exp

(
−δn‖yj − ŷj‖

2
2

2τ2
j

)
, τ2

j | yj ∼
δn‖yj − ŷj‖22
χ2
s̃jδn−p−q2

, (46)

and (45) assuming τ2
j is given implies that

π(bj | yj , τ2
j ) ∝ exp

{
−

(b̂j − bj)Tδn(WT
j Wj)(b̂j − bj)

2τ2
j

}
,

bj | yj , τ2
j ∼ N

{
b̂j ,

τ2
j

δn
(WT

j Wj)
−1

}
; (47)

therefore, (46) and (47) imply that the distribution of (bj , τ
2
j ) given yj lies in the Normal-

Inverse-Gamma family. The αj draw corresponds to the first p elements of bj and the
remaining elements of b are “un-vectorized” into the q-by-q matrix Γj .

Finally, the form of the full conditionals of θj1, . . . , θjq and β(u∗), y(u∗) for u∗ ∈ U∗
remain the same as in steps (d)–(f) of the sampling algorithm for drawing from the full
data posterior distribution, except the log likelihood for θj1, . . . , θjq is multiplied by a factor
δn in step (d). Let βj(u

∗), yj(u
∗), νj(u

∗) = {νj1(u∗), . . . , νjq(u
∗)}, and Rja∗, Rja∗∗, ν

∗
ja (a =

1, . . . , q) be the subset j counterparts of β(u∗), y(u∗), ν(u∗) and Ra∗, Ra∗∗, ν
∗
a . The full

conditional of νj in (42) implies that the conditional likelihood of θj1, . . . , θjq given ν̃j
remains unchanged after stochastic approximation. Similarly, the GP prior on νa(·) remains
unchanged except that θja replaces θa (a = 1, . . . , q). This implies that the steps for drawing
from the full conditionals of θj1, . . . , θjq and β(u∗), y(u∗) for u∗ ∈ U∗ have the same form
as in the steps (d)–(f).

In summary, the sampling algorithm for drawing from the jth subset posterior dis-
tribution of (α,Γ, τ2, θ1, . . . , θq) and β(u∗), y(u∗) for u∗ ∈ U∗ starts from an initial value

of parameters (α
(0)
j ,Γ

(0)
j , τ

2(0)
j , θ

(0)
j1 , . . . , θ

(0)
jq ) and cycles through the following six steps for

t = 0, 1, . . . ,∞:

(a*) draw ν̃
(t+1)
j given yj , α

(t)
j ,Γ

(t)
j , τ

2(t)
j , θ

(t)
jq , . . . , θ

(t)
jq from N(µν̃j ,Σν̃j ), where µν̃j ,Σν̃j are

defined in (44);

(b*) draw τ
2(t+1)
j given yj , ν̃

(t+1)
j using (46);

(c*) draw (α
(t+1)
j , γ

(t+1)
j ) given yj , ν̃

(t+1)
j , τ

2(t+1)
j using (47) and the vectorization of γ

(t+1)
j

is reversed to obtain Γ
(t+1)
j ;
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(d*) draw θ
(t+1)
j1 , . . . , θ

(t+1)
jq given ν̃

(t+1)
j using ESS as in step (d) of the full data posterior

sampling algorithm after multiplying the log likelihood by δn;

(e*) draw ν
∗(t+1)
ja and obtain βj(u

∗)(t+1) given ν̃
(t+1)
ja , α(t+1), Γ(t+1), θ

(t+1)
ja as in step (e) of

the full data posterior sampling algorithm; and

(f*) draw yj(u
∗)(t+1) given X(u∗), βj(u

∗)(t+1), τ
2(t+1)
j as in step (f) of the full data posterior

sampling algorithm.

Appendix C. Proof of Theorem 1

We use |||·||| to denote the matrix operator norm, and tr(·) to denote the trace of a matrix or
a covariance function. For two semi-positive definite matrices A1 and A2, A1 � A2 means
A2−A1 is semi-positive definite. For abbreviation, we write the Bayes L2-risk in estimating
β0(·) using the combined posterior from Theorem 1 as

L(Π) ≡ Eu∗ Ey,u Eβ|y,u
∥∥β(u∗)− β0(u∗)

∥∥2

2
, (48)

where β(·) be a q-variate random function drawn from the AMC posterior of β(·). Let Eu∗ ,
Eyj ,uj , Ey,u, Eβj |yj ,uj (similarly Eνj |yj ,uj and Eνja|yj ,uj for a = 1, . . . , q), Eβ|y,u (similarly

Eν|y,u and Eνa|y,u for a = 1, . . . , q) respectively be the expectations with respect to the
distribution of u∗, the true data generating distribution of the subset data (yj , uj), the true
data generating distribution of the full data (y, u), the subset posterior distribution of β
(similarly ν and νa) given yj , uj after stochastic approximation, and the AMC posterior
distribution of β (similarly ν and νa) given the full data. Notations for the variances are
similarly defined.

We begin by decomposing this Bayes L2-risk. Given the relation β(·) = Γ0ν(·), it follows
that

L(Π) ≤ |||Γ0|||2 Eu∗ Ey,u Eβ|y,u ‖ν(u∗)− ν0(u∗)‖22 , (49)

where |||Γ0||| <∞ given Assumption (A.2). Therefore, it suffices to study the Bayes L2 risk
of ν(·).

Based on Assumption (A.6), we have the following decomposition: For any u∗ ∈ [0, 1]d,

Eν|y,u ‖ν(u∗)− ν0(u∗)‖22
= Eν|y,u

∥∥ν(u∗)− Eν|y,u{ν(u∗)}+ Eν|y,u{ν(u∗)} − ν0(u∗)
∥∥2

2

= Eν|y,u
∥∥ν(u∗)− Eν|y,u{ν(u∗)}

∥∥2

2
+
∥∥Eν|y,u{ν(u∗)} − ν0(u∗)

∥∥2

2

=

q∑
a=1

Varνa|y,u {νa(u
∗)}+

∥∥Eν|y,u{ν(u∗)} − ν0(u∗)
∥∥2

2

≤ c

k

q∑
a=1

k∑
j=1

Varνja|yj ,uj{νja(u
∗)}

+

q∑
a=1

{
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − ν0a(u
∗)
]

+Op

(
n−1/2

)}2
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≤ c

k

q∑
a=1

k∑
j=1

Varνja|yj ,uj{νja(u
∗)}

+ 2

q∑
a=1

{
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − ν0a(u
∗)
]}2

+Op
(
n−1

)
, (50)

where the last inequality follows from (a+ b)2 ≤ 2(a2 + b2). Using this inequality again, we
have that

Eu∗ Ey,u Eν|y,u ‖ν(u∗)− ν0(u∗)‖22

≤ c

k

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj Varνja|yj ,uj{νja(u
∗)}

+ 2

q∑
a=1

Eu∗ Ey,u
q∑

a=1

{
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − ν0a(u
∗)
]}2

+Op
(
n−1

)
=
c

k

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj Varνja|yj ,uj{νja(u
∗)}

+ 2

q∑
a=1

Eu∗ Ey,u

{
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
]

+
1

k

k∑
j=1

[
Eνja,yj |uj{νja(u

∗)} − ν0a(u
∗)
]}2

+Op
(
n−1

)
≤ c

k

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj Varνja|yj ,uj{νja(u
∗)}

+ 4

q∑
a=1

Eu∗ Ey,u

(
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
])2

+ 4

q∑
a=1

Eu∗ Eu

(
1

k

k∑
j=1

[
Eνja,yj |uj{νja(u

∗)} − ν0a(u
∗)
])2

+Op
(
n−1

)
. (51)

Furthermore, using the sampling independence between subsets of uj as in Assumption
(A.1), the second term in (51) can be simplified as

4

q∑
a=1

Eu∗ Ey,u

(
1

k

k∑
j=1

[
Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
])2

=
4

k2

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj
[
Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
]2

+
4

k2

q∑
a=1

∑
j 6=j′

Eu∗ Eu Euj |u Euj′ |u

([
Eyj |uj Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
]
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×
[
Eyj′ |uj′ Eνj′a|yj′ ,uj′{νj′a(u

∗)} − Eνj′a,yj′ |uj′{νj′a(u
∗)}
])

=
4

k2

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj
[
Eνja|yj ,uj{νja(u

∗)} − Eνja,yj |uj{νja(u
∗)}
]2

=
4

k2

q∑
a=1

k∑
j=1

Eu∗ Euj
(

Varyj |uj

[
Eνja|yj ,uj{νja(u

∗)}
])
, (52)

where the second term after the first equal sign is zero due to the independence between uj
and uj′ given the full data u according to Assumption (A.1). The third term in (51) can
be bounded from above by the Cauchy-Schwarz inequality:

4

q∑
a=1

Eu∗ Eu

(
1

k

k∑
j=1

[
Eνja,yj |uj{νja(u

∗)} − ν0a(u
∗)
])2

≤ 4

k

q∑
a=1

k∑
j=1

Eu∗ Euj
[
Eνja,yj |uj{νja(u

∗)} − ν0a(u
∗)
]2
. (53)

We can plug in (52), and (53) to (51) to further obtain that

Eu∗ Ey,u Eν|y,u ‖ν(u∗)− ν0(u∗)‖22

≤ 4

k

q∑
a=1

k∑
j=1

Eu∗ Euj
[
Eνja,yj |uj{νja(u

∗)} − ν0a(u
∗)
]2

+
4

k2

q∑
a=1

k∑
j=1

Eu∗ Euj
(

Varyj |uj

[
Eνja|yj ,uj{νja(u

∗)}
])

+
c

k

q∑
a=1

k∑
j=1

Eu∗ Eyj ,uj Varνja|yj ,uj{νja(u
∗)}+Op

(
n−1

)
≤ 4

k

k∑
j=1

Eu∗ Euj
∥∥∥Eνj ,yj |uj{νj(u∗)} − ν0(u∗)

∥∥∥2

2

+
4

k2

k∑
j=1

Eu∗ Euj tr
(

Varyj |uj

[
Eνj |yj ,uj{νj(u

∗)}
])

+
c

k

k∑
j=1

Eu∗ Eyj ,uj tr
(

Varνj |yj ,uj{νj(u
∗)}
)

+Op
(
n−1

)
. (54)

Now we provide the detailed expressions for three terms on the right-hand side of (54).
We define the following notations. Let Γ0a be the ath column of Γ0, a = 1, . . . , q. In
the derivation below, ρa(·, ·) is the correlation function with its parameter fixed at θ0a,
a = 1, . . . , q. For j = 1, . . . , k and a = 1, . . . q,

Rja(u
∗) = {ρja(uj1, u∗), . . . , ρa(ujm, u∗)}T ∈ Rm,
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Rj(u
∗) = diag{RT

j1(u∗), . . . , RT
jq(u

∗)} ∈ Rq×qm,
R(u, u′) = diag{ρ1(u, u′), . . . , ρq(u, u

′)} ∈ Rq×q, u, u′ ∈ [0, 1]d,

Z̃(·) = Z(·)Γ0 ∈ R1×q, Z̃a(·) = Z(·)Γ0a ∈ R,

Z̃ja = diag
{
Z̃a(uj1), . . . , Z̃a(ujm)

}
∈ Rm×m, Z̃j =

{
Z̃j1, . . . , Z̃jq

}
∈ Rm×qm,

(Rja)ii′ = ρa(uji, uji′), i, i
′ ∈ {1, . . . ,m}, R̃jj = diag(Rj1, . . . , Rjq) ∈ Rqm×qm,

ν̃ja = {νa(uj1), . . . , νa(ujm)}T ∈ Rm, ν̃T
j = (ν̃T

1j , . . . , ν̃
T
qj) ∈ Rqm,

ν0ja = {ν0a(uj1), . . . , ν0a(ujm)}T ∈ Rm . (55)

Based on the subset model (19) and the standard GP derivation, we have that for
a = 1, . . . , q,

Eνj ,yj |uj{νj(u
∗)} − ν0(u∗) = Rj(u

∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃j ν̃j − ν0(u∗), (56)

Varyj |uj

[
Eνj |yj ,uj{νj(u

∗)}
]

= Varyj |uj

[
Rj(u

∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

yj

]

= τ2
0Rj(u

∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−2

Z̃jRj(u
∗)T, (57)

Varνj |yj ,uj{νj(u
∗)} = λ−1

n

{
R(u∗, u∗)−Rj(u∗)Z̃T

j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jRj(u
∗)T

}
.

(58)

In the following lemmas, we give upper bounds for (56), (57), and (58), respectively. We
first introduce some additional notations. In Assumption (A.5), we assume that the largest
eigenvalue of Ω is bounded above by a constant cΩ and its smallest eigenvalue is bounded
below by a constant cΩ, for 0 < cΩ < cΩ < ∞ and for all a = 1, . . . , q. By the definition
of Z̃(·) = Z(·)Γ0 and Z̃a(·) = Z(·)Γ0a (a = 1, . . . , q) and Assumption (A.5), we have that
|Z̃a(u)| ≤ CZ‖Γ0a‖2 ≤ CZ |||Γ0||| for all a = 1, . . . , q and all u ∈ [0, 1]d. We define the positive
constant C̃Z ≡ CZ |||Γ0||| for the derivations below. We define the Rq-valued functional space
Lq2(du) for f = (f1, . . . , fq)

T with f1, . . . , fq ∈ L2(du). The q-variate RKHS H is defined
to the space of functions with the finite H-norm ‖f‖2H =

∑q
a=1 ‖fa‖2Ha if f = (f1, . . . , fq)

T ∈
Lq2(du) and fa ∈ Ha for a = 1, . . . , q. This q-variate RKHS satisfies the reproducing
property that if f ∈ H, then for any u ∈ [0, 1]d and any c ∈ Rq, 〈f, R(u, ·)c〉H = f(u)Tc;
see Section 3.2 of Álvarez et al. (2012). For abbreviation, we let Λ(c, h) =

∑h
i=1 µi∗/(µi∗ +

c) for any c > 0, any positive integer h, and µi∗ as defined in Assumption (A.3). For
a = 1, . . . , q and any positive integer h, let tr(ρa) =

∑∞
i=1 µai, tr(ρa,h) =

∑∞
i=h+1 µai,

Tr(ρ) =
∑q

a=1 tr(ρa), and Tr(ρ, h) =
∑q

a=1 tr(ρa,h).

Lemma 2 Suppose that Assumptions (A.1)–(A.6) hold. Then for every j = 1, . . . , k,

Eu∗ Euj
∥∥∥Eνj ,yj |uj{νj(u∗)} − ν0(u∗)

∥∥∥2

2

≤ 8
τ2

0λn
cΩkm

‖ν0‖2H + 8
km

τ2
0λn

C4
ϕC̃

4
ZcΩc

−2
Ω ‖ν0‖2H Tr(ρ) Tr(ρ, h̄) + µ(h̄+1)∗‖ν0‖2H
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+ 2qh̄‖ν0‖2H Tr(ρ) exp

{
− m

8(B2 +B)

}
,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1.

Proof [of Lemma 2] Consider the subset posterior distribution of νj(·) on the subset j. The
jth subset posterior distribution of νj(u

∗) has the mean

ν̂j(u
∗) = Rj(u

∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

yj . (59)

We view ν̂j(u
∗) = {ν̂j1(u∗), . . . , ν̂jq(u

∗)}T as a q-variate function of u∗. Define the [0, 1]d 7→
Rq operators ∆j (j = 1, . . . , k) and ∆ as

∆j(·) = Rj(·)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

yj − ν0(·) ≡ ν̂j(·)− ν0(·),

∆(·) =
1

k

k∑
j=1

{ν̂j(·)− ν0(·)} =
1

k

k∑
j=1

∆j(·). (60)

For a = 1, . . . , q, ∆ja and ∆a denote the ath components of ∆j and ∆, respectively. We
can recognize that for j = 1, . . . , k, ν̂j(·) in (60) is the solution of q-variate function to the
optimization problem (see Section 3.2 in Álvarez et al. 2012)

argminν∈H

[
m∑
i=1

{
y(uji)− Z̃(uji)ν(uji)

}2
+
τ2

0λn
k
‖ν‖2H

]
. (61)

Now fix a ∈ {1, . . . , q}. Taking the Frechét derivative of (61) with respect to νa and plugging
in ν̂j gives

m∑
i=1

{
Z̃(uji)ν̂j(uji)− y(uji)

}
Z̃a(uji)ρa(uji, ·) +

τ2
0λn
k

ν̂ja(·) = 0. (62)

Stacking this up across a = 1, . . . , q gives

m∑
i=1

{
Z̃(uji)ν̂j(uji)− y(uji)

}
R(uji, ·)Z̃(uji)

T +
τ2

0λn
k

ν̂j(·) = 0. (63)

Since the true model assumes that

y(uji) = Z̃(uji)ν0(uji) + ε(uji) = 〈ν0, R(uji, ·)Z̃(uji)
T〉H + ε(uji),

so

Z̃(uji)ν̂(uji)− y(uji) = Z̃(uji){ν̂j(uji)− ν0(uji))− ε(uji)
= 〈∆j(·), R(uji, ·)Z̃(uji)

T〉H − ε(uji),
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Hence, we take expectations Eνj ,yj |uj on both sides of (62) and obtain that

0 =
m∑
i=1

Eνj ,yj |uj
{
Z̃(uji)ν̂j(uji)− y(uji)

}
R(uji, ·)Z̃(uji)

T +
τ2

0λn
k

Eνj ,yj |uj {ν̂j(·)}

=
m∑
i=1

〈Eνj ,yj |uj {∆j(·)} , R(uji, ·)Z̃(uji)
T〉HR(uji, ·)Z̃(uji)

T

− Eνj ,yj |uj{ε(uji)}R(uji, ·)Z̃(uji)
T +

τ2
0λn
k

Eνj ,yj |uj {ν̂j(·)}

=

m∑
i=1

〈
Eνj ,yj |uj {∆j(·)} , R(uji, ·)Z̃(uji)

T

〉
H
R(uji, ·)Z̃(uji)

T +
τ2

0λn
k

Eνj ,yj |uj {ν̂j(·)} .

(64)

Using (60), Eνj ,yj |uj {ν̂j(·)} = Eνj ,yj |uj {∆j(·)} + ν0, and dividing by m in (64), we obtain
that

1

m

m∑
i=1

〈
Eνj ,yj |uj {∆j(·)} , R(uji, ·)Z̃(uji)

T

〉
H
R(uji, ·)Z̃(uji)

T +
τ2

0λn
km

Eνj ,yj |uj {∆j(·)}

= − τ2
0λn
km

ν0(·). (65)

If we define the jth subset covariance operator Σ̂j = m−1
∑m

j=1R(uji, ·)Z̃(uji)
T ⊗

R(uji, ·)Z̃(uji)
T, then (65) reduces to(

Σ̂j +
τ2

0λn
km

Im

)
Eνj ,yj |uj {∆j(·)} = −τ

2
0λn
km

ν0(·)

=⇒ ‖Eνj ,yj |uj (∆j)‖H ≤ ‖ν0‖H, j = 1, . . . , k, (66)

where the last inequality follows because Σ̂j is a positive semi-definite matrix.

The rest of the proof finds an upper bound for

∥∥∥Eνj ,yj |uj (∆j)
∥∥∥2

2
=

q∑
a=1

∥∥∥Eνja,yj |uj (∆ja)
∥∥∥2

2
.

The main idea is to reduce this problem to a finite dimensional one indexed by a chosen
h̄ = d 2v

2v−de ∈ N as specified in Assumption (A.5). For each j = 1, . . . , k and a = 1, . . . , q,

let δja =
(
δja1, . . . , δjah̄, δja(h̄+1), . . . , δja∞

)T

, such that

Eνja,yj |uj {∆ja(·)} =
∞∑
h=1

δjahφah(·), δjah =
〈
Eνja,yj |uj {∆ja(·)} , φh(·)

〉
L2(du)

,

∥∥∥Eνja,yj |uj (∆j)
∥∥∥2

2
=

∞∑
h=1

δ2
jah. (67)
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Define the vectors

δ↓ja =
(
δja1, . . . , δjah̄

)T
, δ↑ja =

(
δja(h̄+1), . . . , δja∞

)T

,

so ‖Eνja,yj |uj (∆j)‖22 = ‖δ↓ja‖22 +‖δ↑ja‖22 and we upper bound ‖Eνja,yj |uj (∆ja)‖22 by separately

upper bounding ‖δ↓ja‖22 and ‖δ↑ja‖22. Using the expansion ρa(u, u
′) =

∑∞
h=1 µhϕah(u)ϕah(u′)

for any u, u′ ∈ [0, 1]d, we have the following upper bound for ‖δ↓ja‖22 and ‖δ↑ja‖22:

∥∥∥δ↓ja∥∥∥2

2
=
µa1

µa1

h̄∑
h=1

δ2
jah

(i)

≤ µa1

h̄∑
h=1

δ2
jah

µah

≤ µa1

∞∑
h=1

δ2
jah

µah

(ii)
= µa1

∥∥∥Eνja,yj |uj (∆ja)
∥∥∥2

Ha

(iii)

≤ tr(ρa)‖ν0a‖2Ha , (68)

∥∥∥δ↑ja∥∥∥2

2
=
µa(h̄+1)

µa(h̄+1)

∞∑
h=h̄+1

δ2
jah ≤ µa(h̄+1)

∞∑
h=h̄+1

δ2
jah

µah

(iv)

≤ µa(h̄+1)

∥∥∥Eνja,yj |uj (∆ja)
∥∥∥2

Ha
(69)

where (i) follows from the decreasing eigenvalues µa1 ≥ µa2 ≥ . . ., (ii) and (iv) follow
because ‖Eνja,yj |uj (∆ja)‖2Ha =

∑∞
h=1 δ

2
jah/µah, (iii) follow from µa1 ≤ tr(ρa).

Let

δj = (δT
j1, . . . , δ

T
jq)

T, δ↓j = (δ↓Tj1 , . . . , δ
↓T
jq )T, δ↑j = (δ↑Tj1 , . . . , δ

↑T
jq )T.

We now derive a more refined upper bound than (68) for ‖δ↓j ‖22 =
∑q

a=1 ‖δ
↓
ja‖22, such that the

upper bound converges to zero as m→∞. For a given positive integer h̄, each a = 1, . . . , q,
and each j = 1, . . . , k, let Ma = diag(µa1, . . . , µah̄) ∈ Rh̄×h̄, M = diag{M1, . . . ,Mq} ∈
Rqh̄×qh̄. Let Φj ∈ Rqm×qh̄ and Φja ∈ Rm×h̄ be matrices such that

(Φja)ih = ϕah(uji), i = 1, . . . ,m, h = 1, . . . , h̄, j = 1, . . . , k,

Φj = diag{Φj1, . . . ,Φjq} ∈ Rqm×qh̄ . (70)

Let ν0a(·) =
∑∞

h=1 ζ0ahϕah(·) with ζ0ah = 〈ν0a, ϕah〉L2(du) for h = 1, 2, . . . and a = 1, . . . , q.

Also define the tail error vector vja = (vja1, . . . , vjam)T ∈ Rm and vj =
(
vT
j1, . . . , v

T
jq

)T

∈
Rqm (j = 1, . . . , k) such that

vjai =
∞∑

h=h̄+1

δjahϕah(uji), i = 1, . . . ,m.

For any g ∈ {1, . . . , h̄} and any a ∈ {1, . . . , q}, we take the Ha-inner product between ϕag
and the ath component of (65) and obtain that for j = 1, . . . , k,

1

m

m∑
i=1

〈
Eνj ,yj |uj {∆j(·)} , R(uji, ·)Z̃(uji)

T

〉
H

〈
ρa(uji, ·)Z̃a(uji), ϕag(·)

〉
Ha
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+
τ2

0λn
km

〈
Eνj ,yj |uj {∆ja(·)} , ϕag(·)

〉
Ha

= −τ
2
0λn
km
〈ν0a, ϕag〉Ha , (71)

which implies that

1

m

m∑
i=1

[
q∑
b=1

Z̃b(uji)Eνj ,yj |uj {∆jb(uji)}

]
Z̃a(uji)ϕag(uji) +

τ2
0λn
km

δjag
µag

= −τ
2
0λn
km

ζ0ag

µag
. (72)

The first term on the left-hand side of (72) can be rewritten as

1

m

m∑
i=1

[
q∑
b=1

Z̃b(uji)Eνj ,yj |uj {∆jb(uji)}

]
Z̃a(uji)ϕag(uji)

=
1

m

m∑
i=1

 q∑
b=1

Z̃b(uji)

h̄∑
h=1

δjbhϕbh(uji)

 Z̃a(uji)ϕag(uji)
+

1

m

m∑
i=1

 q∑
b=1

Z̃b(uji)

∞∑
h=h̄+1

δjbhϕbh(uji)

 Z̃a(uji)ϕag(uji)
=

1

m

m∑
i=1

q∑
b=1

(
Z̃jaΦja

)
ig

(
Z̃jbΦjbδ

↓
jb

)
i
+

1

m

m∑
i=1

(
Z̃jaΦja

)
ig

(
Z̃jvj

)
i

=
1

m

(
ΦT
jaZ̃

T
ja

q∑
b=1

Z̃jbΦjbδ
↓
jb

)
g

+
1

m

(
ΦT
jaZ̃

T
jaZ̃jvj

)
g

=
1

m

(
ΦT
jaZ̃

T
jaZ̃jΦjδ

↓
j

)
g

+
1

m

(
ΦT
jaZ̃

T
jaZ̃jvj

)
g
, (73)

which implies that in (72), for g = 1, . . . , h̄ and a = 1, . . . , q,

1

m

(
ΦT
jaZ̃

T
jaZ̃jΦjδ

↓
j

)
g

+
1

m

(
ΦT
jaZ̃

T
jaZ̃jvj

)
g

+
τ2

0λn
km

δjag
µag

= −τ
2
0λn
km

ζ0ag

µag
.

Let ζ↓0a = (ζ0a1, . . . , ζ0ah̄)T and ζ↓0 = (ζ↓T01 , . . . , ζ
↓T
0q )T ∈ Rqh̄. Stacking the last display over

g = 1, . . . , h̄ gives

1

m
ΦT
jaZ̃

T
jaZ̃jΦjδ

↓
j +

1

m
ΦT
jaZ̃

T
jaZ̃jvj +

τ2
0λn
km

M−1
a δ↓ja = −τ

2
0λn
km

M−1
a ζ↓0a.

Then stacking this over a = 1, . . . , q gives

1

m
ΦT
j Z̃

T
j Z̃jΦjδ

↓
j +

1

m
ΦT
j Z̃

T
j Z̃jvj +

τ2
0λn
km

M−1δ↓j = −τ
2
0λn
km

M−1ζ↓0 ,

which implies that(
1

m
ΦT
j Z̃

T
j Z̃jΦj +

τ2
0λn
km

M−1

)
δ↓j = −τ

2
0λn
km

M−1ζ↓0 −
1

m
ΦT
j Z̃

T
j Z̃jvj . (74)
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The proof is completed by showing that the right hand side expression in (74) gives an

upper bound for ‖δ↓j ‖22. Using the Ω matrix defined in Assumption (A.5), we define the

matrix Q =
(
Iqh̄ +

τ2
0λn
km Ω−1M−1

)1/2
∈ Rqh̄×qh̄. Then

1

m
ΦT
j Z̃

T
j Z̃jΦj +

τ2
0λn
km

M−1 = Ω +
τ2

0λn
km

M−1 +
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

= ΩQ

{
Iqh̄ +Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1

}
Q.

and using this in (74) gives{
Iqh̄ +Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1

}
Qδ↓j

= − τ2
0λn
km

Q−1Ω−1M−1ζ↓0 −
1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃jvj . (75)

Now we define the event

Ej1 =

{∣∣∣∣∣∣∣∣∣∣∣∣Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1/2

}
, (76)

with the randomness in {uj1, . . . , ujm}. We have that

Iqh̄ +Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1 � 1

2
Iqh̄ (77)

whenever Ej1 occurs. It is also clear that Q � Iqh̄. Therefore, when Ej1 occurs, (75) implies
that ∥∥∥δ↓j∥∥∥2

2
≤ 4

∥∥∥∥τ2
0λn
km

Q−1Ω−1M−1ζ↓0 +
1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃jvj

∥∥∥∥2

2

≤ 8

∥∥∥∥τ2
0λn
km

Q−1Ω−1M−1ζ↓0

∥∥∥∥2

2

+ 8

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃jvj

∥∥∥∥2

2

, (78)

where the last inequality follows because (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R.
For the first term on the right hand side of (78), we have that∥∥∥∥τ2

0λn
km

Q−1Ω−1M−1ζ↓0

∥∥∥∥2

2

≤
(
τ2

0λn
km

)2

ζ↓T0

{
MΩ

(
Iqh̄ +

τ2
0λn
km

Ω−1M−1

)
ΩM

}−1

ζ↓0

=

(
τ2

0λn
km

)2

ζ↓T0

(
MΩ2M +

τ2
0λn
km

ΩM

)−1

ζ↓0

≤
(
τ2

0λn
km

)2

ζ↓T0

(
τ2

0λn
km

ΩM

)−1

ζ↓0 =
τ2

0λn
cΩkm

q∑
a=1

h̄∑
h=1

ζ2
0h

µah
≤ τ2

0λn
cΩkm

‖ν0‖2H. (79)

For the second term on right hand side of (78), it is equal to

1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃jvj =

(
M +

τ2
0λn
km

Ω−1

)−1/2

· 1

m
M1/2Ω−1ΦT

j Z̃
T
j Z̃jvj . (80)
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The first term in (80) has bounded matrix operator norm by Assumption (A.5):∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
M +

τ2
0λn
km

Ω−1

)−1/2
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = max

1≤a≤q,1≤h≤h̄

1√
µah +

τ2
0λn
cΩkm

≤

√
cΩkm

τ2
0λn

. (81)

For the second term in (80), we repeatedly apply |ϕai| ≤ Cϕ and
∣∣∣Z̃a(uji)∣∣∣ ≤ C̃Z in As-

sumptions (A.3) and (A.5) to obtain that∥∥∥∥ 1

m
M1/2Ω−1ΦT

j Z̃
T
j Z̃jvj

∥∥∥∥2

2

≤
c−2

Ω

m2

(
Z̃jvj

)T

Z̃jΦjMΦT
j Z̃

T
j

(
Z̃jvj

)
=
c−2

Ω

m2

q∑
a=1

(
Z̃jvj

)T (
Z̃jaΦjaMaΦ

T
jaZ̃ja

)(
Z̃jvj

)

≤
c−2

Ω

m2

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

Z̃a(uji)ϕag(uji)
(
Z̃jvj

)
i

}2

≤
C2
ϕC̃

2
Zc
−2
Ω

m2

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

∣∣∣(Z̃jvj)
i

∣∣∣}2

=
C2
ϕC̃

2
Zc
−2
Ω

m2

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

q∑
b=1

∣∣∣Z̃b(uji)vjbi∣∣∣
}2

≤
C2
ϕC̃

4
Zc
−2
Ω

m2

q∑
a=1

h̄∑
g=1

µag


m∑
i=1

q∑
b=1

∞∑
h=h̄+1

|δjbhϕbh(uji)|


2

≤ C4
ϕC̃

4
Zc
−2
Ω

 q∑
a=1

h̄∑
g=1

µag

 q∑
b=1

∞∑
h=h̄+1

|δjbh|

2

(i)

≤ C4
ϕC̃

4
Zc
−2
Ω

(
q∑

a=1

tr(ρa)

)
·

 q∑
b=1

∞∑
h=h̄+1

µbh

 q∑
b=1

∞∑
h=h̄+1

δ2
jbh

µbh


= C4

ϕC̃
4
Zc
−2
Ω

(
q∑

a=1

tr(ρa)

)(
q∑

a=1

tr(ρa,h̄)

)(
q∑
b=1

∥∥∥Eνjb,yj |uj (∆jb)
∥∥∥2

Hb

)

= C4
ϕC̃

4
Zc
−2
Ω Tr(ρ) Tr(ρ, h̄)

∥∥∥Eνj ,yj |uj (∆j)
∥∥∥2

H
(ii)

≤ C4
ϕC̃

4
Zc
−2
Ω ‖ν0‖2H Tr(ρ) Tr(ρ, h̄), (82)

where (i) is from the Cauchy-Schwarz inequality and the definition of tr(ρa), and (ii) is
from the relation (66). Combining (80), (81), and (82) leads to∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃jvj

∥∥∥∥2

2

≤ cΩkm

τ2
0λn

C4
ϕC̃

4
Zc
−2
Ω ‖ν0‖2H Tr(ρ) Tr(ρ, h̄). (83)
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Finally we combine these results. Note that (68) implies that

‖δ↓j ‖
2
2 =

q∑
a=1

‖δ↓ja‖
2
2 ≤

q∑
a=1

tr(ρa) ‖ν0a‖2Ha ≤ Tr(ρ) ‖ν0‖2H . (84)

(69) and (66) together imply that

‖δ↑j ‖
2
2 =

q∑
a=1

‖δ↑ja‖
2
2 ≤

q∑
a=1

µa(h̄+1)

∥∥∥Eνja,yj |uj (∆ja)
∥∥∥2

Ha
≤ µ(h̄+1)∗ ‖ν0‖2H . (85)

Based on (56) and the definition of ∆j , we combine (84), (69), (78), (79), (83), and Lemma
5 to obtain that

Eu∗ Euj
∥∥∥Eνj ,yj |uj{νj(u∗)} − ν0(u∗)

∥∥∥2

2
= Eu∗ Euj

∥∥∥Eνj ,yj |uj (∆j)
∥∥∥2

2

≤ Euj
(
‖δ↓j ‖

2
2 + ‖δ↑j ‖

2
2

)
= Euj

{
‖δ↓j ‖

2
21(Ej1) + ‖δ↓j ‖

2
21(Ecj1) + ‖δ↑j ‖

2
2

}
≤ Euj

{
‖δ↓j ‖

2
21(Ej1)

}
+ Tr(ρ)‖ν0‖2H Puj (Ecj1) + Euj

(
‖δ↑j ‖

2
2

)
≤ 8

τ2
0λn
cΩkm

‖ν0‖2H + 8
km

τ2
0λn

C4
ϕC̃

4
ZcΩc

−2
Ω ‖ν0‖2H Tr(ρ) Tr(ρ, h̄)

+ 2qh̄‖ν0‖2H Tr(ρ) exp

{
− m

8(B2 +B)

}
+ µ(h̄+1)∗‖ν0‖2H,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1. This proves the conclusion.

Lemma 3 Suppose that Assumptions (A.1)–(A.6) hold. Then for every j = 1, . . . , k,

Eu∗ Euj tr
(

Varyj |uj

[
Eνj |yj ,uj {νj(u

∗)}
])

≤ 12
τ2

0λn
cΩkm

‖ν0‖2H +
24km

τ2
0λn

C4
ϕC̃

4
ZcΩc

−2
Ω Tr(ρ) Tr(ρ, h̄)

(
km

λn
+ 2‖ν0‖2H

)
+ 12

C2
ϕC̃

2
Zc
−2
Ω τ2

0 q

m
Λ(τ2

0λn/(cΩkm), h̄) + 2µ(h̄+1)∗

(
km

λn
+ 2‖ν0‖2H

)
+ 4qh̄Tr(ρ)

(
km

λn
+ 2‖ν0‖2H

)
exp

{
− m

8(B2 +B)

}
,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1.

Proof [of Lemma 3] We use the same notations as in the proof of Lemma 2. We further
expand the functions ∆ja(·) defined in (60) for a = 1, . . . , q and j = 1, . . . , k as

∆ja(·) =

∞∑
i=1

δ̃jaiϕai(·), ∆↓ja(·) =

h̄∑
i=1

δ̃jaiϕai(·), ∆↑ja(·) =

∞∑
i=h̄+1

δ̃jaiϕai(·),
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δ̃↓ja =
(
δ̃ja1, . . . , δ̃jah̄

)T

, δ̃↑ja =
(
δ̃ja(h̄+1), . . . , δ̃ja∞

)T

,

δ̃↓j =
(
δ̃↓Tj1 , . . . , δ̃

↓T
jq

)T

, δ̃↑j =
(
δ̃↑Tj1 , . . . , δ̃

↑T
jq

)T

.

From (57), we can see that

Eu∗ tr
(

Varyj |uj

[
Eνj |yj ,uj{νj(u

∗)}
])

= Eu∗ tr

[
Varyj |uj

{
Rj(u

∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

yj

}]

≤ Eu∗ Eyj |uj

∥∥∥∥∥Rj(u∗)Z̃T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

yj − ν0(u∗)

∥∥∥∥∥
2

2

= Eu∗ Eyj |uj ‖∆j(u
∗)‖22 = Eu∗ Eyj |uj ‖∆

↓
j (u
∗)‖22 + Eu∗ Eyj |uj ‖∆

↑
j (u
∗)‖22

= Eyj |uj ‖δ̃
↓
j ‖

2
2 + Eyj |uj ‖δ̃

↑
j ‖

2
2. (86)

Therefore, we will find an upper bound for Eu∗ Eyj |uj ‖∆j(u
∗)‖22 in the following. We start

with finding a rough upper bound for Eyj |uj ‖∆j‖2H. Using the definition of ν̂j in (60) and
the optimizer property in (61), we have that

‖ν̂j‖2H
(i)

≤
m∑
i=1

{
y(uji)− Z̃(uji)ν̂j(uji)

}2

τ2
0λn/k

+ ‖ν̂j‖2H

(ii)

≤
m∑
i=1

{
y(uji)− Z̃(uji)ν0(uji)

}2

τ2
0λn/k

+ ‖ν0‖2H

(iii)

≤
m∑
i=1

{ε(uji)}2

τ2
0λn/k

+ ‖ν0‖2H, (87)

where (i) follows because the term inside the summation is non-negative, (ii) follows because
ν̂j minimizes the objective, and (iii) follows from our model assumption. Since the error
variance is τ2

0 , (87) implies that

Eyj |uj ‖∆j‖2H ≤ 2Eyj |uj ‖ν̂j‖
2
H + 2Eyj |uj ‖ν0‖2H

≤ 2Eyj |uj

[
m∑
i=1

{ε(uji)}2

τ2
0λn/k

]
+ 4‖ν0‖2H

≤ 2km

λn
+ 4‖ν0‖2H. (88)

Using this bound for Eyj |uj ‖∆j‖2H, we can find an upper bound for Eyj |uj ‖δ
↑
j ‖22:

Eyj |uj ‖δ̃
↑
j ‖

2
2 =

q∑
a=1

∞∑
i=h̄+1

Eyj |uj (δ̃
2
jai)
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=

q∑
a=1

µa(h̄+1)

∞∑
i=h̄+1

Eyj |uj (δ̃
2
jai)

µa(h̄+1)

≤
q∑

a=1

µa(h̄+1)

∞∑
i=h̄+1

Eyj |uj (δ̃
2
jai)

µai

=

q∑
a=1

µa(h̄+1) Eyj |uj ‖∆
↑
ja‖

2
Ha ≤

q∑
a=1

µa(h̄+1) Eyj |uj ‖∆ja‖2Ha

≤ µ(h̄+1)∗

(
2km

λn
+ 4‖ν0‖2H

)
, (89)

and also an upper bound for Eyj |uj ‖δ̃j‖22:

Eyj |uj ‖δ̃j‖
2
2 =

q∑
a=1

∞∑
i=1

Eyj |uj (δ̃
2
jai)

≤
q∑

a=1

µa1

∞∑
i=1

Eyj |uj (δ̃
2
ji)

µai
=

q∑
a=1

µa1 Eyj |uj ‖∆
↑
j‖

2
Ha ≤ µ1∗ Eyj |uj ‖∆j‖2H

≤ Tr(ρ)

(
2km

λn
+ 4‖ν0‖2H

)
, (90)

Now we find an upper bound for Eyj |uj ‖δ̃
↓
j ‖22. Define the error vectors

ṽjai =
∞∑

h=h̄+1

δ̃jaiϕah(uji),

ṽja = (ṽja1, . . . , ṽjam)T ∈ Rm, i = 1, . . . ,m, a = 1, . . . , q,

ṽj =
(
ṽT
j1, . . . , ṽ

T
jq

)T ∈ Rqm .

Now we use an argument similar to the derivation of (63), (64), (65), (71), (72), (73), and
(74). Instead of taking the Eνj ,yj |uj as in (65), we do not take this expectation and keep
the error term ε(uji) all the way along the derivation. We can obtain the following relation
similar to (74):(

1

m
ΦT
j Z̃

T
j Z̃jΦj +

τ2
0λn
km

M−1

)
δ̃↓j = −τ

2
0λn
km

M−1ζ↓0 −
1

m
ΦT
j Z̃

T
j Z̃j ṽj +

1

m
ΦT
j Z̃

T
j εj . (91)

We use the same Q matrix as defined in the proof of Lemma 2. Then (91) can be rewritten
as {

Iqh̄ +Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1

}
Qδ̃↓j

= − τ2
0λn
km

Q−1Ω−1M−1ζ↓0 −
1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj +

1

m
Q−1Ω−1ΦT

j Z̃
T
j εj . (92)

On the event Ej1 defined as in (76), using (77) and the fact Q � Iqh̄ (92) imply that

Eyj |uj ‖δ̃
↓
j ‖

2
2 ≤ Eyj |uj ‖Qδ̃

↓
j ‖

2
2
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≤ 4Eyj |uj

∥∥∥∥−τ2
0λn
km

Q−1Ω−1M−1ζ↓0 −
1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj +

1

m
Q−1Ω−1ΦT

j Z̃
T
j εj

∥∥∥∥2

2

≤ 12

∥∥∥∥τ2
0λn
km

Q−1Ω−1M−1ζ↓0

∥∥∥∥2

2

+ 12Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj

∥∥∥∥2

2

+ 12Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j εj

∥∥∥∥2

2

, (93)

where the last inequality follows because (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 for any a, b, c ∈ R.
We bound the three terms on the right hand side of (93). The first term can be bounded as
in (79). The second term can be bounded similar to the proof of Lemma 2: By Assumption
(A.3), we have that

1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj =

(
M +

τ2
0λn
km

Ω−1

)−1/2

· 1

m
M1/2Ω−1ΦT

j Z̃
T
j Z̃j ṽj . (94)

The first term in (94) has bounded matrix operator norm in (81). For the second term in
(80), we repeatedly apply Assumptions (A.3) and (A.5) to obtain that

Eyj |uj

∥∥∥∥ 1

m
M1/2Ω−1ΦT

j Z̃
T
j Z̃j ṽj

∥∥∥∥2

2

=
c−2

Ω

m2
Eyj |uj

q∑
a=1

(
Z̃jvj

)T (
Z̃jaΦjaMaΦ

T
jaZ̃ja

)(
Z̃j ṽj

)

≤
c−2

Ω

m2
Eyj |uj

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

Z̃a(uji)ϕag(uji)
(
Z̃j ṽj

)
i

}2

≤
C2
ϕC̃

2
Zc
−2
Ω

m2
Eyj |uj

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

∣∣∣(Z̃j ṽj)
i

∣∣∣}2

=
C2
ϕC̃

2
Zc
−2
Ω

m2
Eyj |uj

q∑
a=1

h̄∑
g=1

µag

{
m∑
i=1

q∑
b=1

∣∣∣Z̃b(uji)ṽjbi∣∣∣
}2

≤
C2
ϕC̃

4
Zc
−2
Ω

m2
Eyj |uj

q∑
a=1

h̄∑
g=1

µag


m∑
i=1

q∑
b=1

∞∑
h=h̄+1

∣∣∣δ̃jbhϕbh(uji)
∣∣∣


2

≤ C4
ϕC̃

4
Zc
−2
Ω

 q∑
a=1

h̄∑
g=1

µag

Eyj |uj

 q∑
b=1

∞∑
h=h̄+1

∣∣∣δ̃jbh∣∣∣
2

(i)

≤ C4
ϕC̃

4
Zc
−2
Ω

(
q∑

a=1

tr(ρa)

)
·

 q∑
b=1

∞∑
h=h̄+1

µbh

Eyj |uj

 q∑
b=1

∞∑
h=h̄+1

δ̃2
jbh

µbh


= C4

ϕC̃
4
Zc
−2
Ω Tr(ρ)

(
q∑

a=1

tr(ρa,h̄)

)
Eyj |uj

(
q∑
b=1

‖∆jb‖2Hb

)
= C4

ϕC̃
4
Zc
−2
Ω Tr(ρ) Tr(ρ, h̄)Eyj |uj ‖∆j‖2H
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(ii)

≤ C4
ϕC̃

4
Zc
−2
Ω Tr(ρ) Tr(ρ, h̄)

(
2km

λn
+ 4‖ν0‖2H

)
, (95)

where (i) is from the Cauchy-Schwarz inequality and the definition of tr(C), and (ii) is from
the relation (88). Combining (94), (81), and (95) leads to

Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj

∥∥∥∥2

2

≤ 2km

τ2
0λn

C4
ϕC̃

4
ZcΩc

−2
Ω Tr(ρ) Tr(ρ, h̄)

(
km

λn
+ 2‖ν0‖2H

)
. (96)

For the third term in (93), by Assumptions (A.3) and (A.5), we have that

Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j εj

∥∥∥∥2

2

≤
c−2

Ω

m2
Eyj |uj

{
εT
j Z̃jΦj

(
Iqh̄ +

τ2
0λn
km

Ω−1M−1

)−1

ΦT
j Z̃

T
j εj

}

≤
c−2

Ω

m2
Eyj |uj

q∑
a=1

h̄∑
h=1

1

1 +
τ2
0λn

cΩkmµah

{
m∑
i=1

Z̃a(uji)ϕah(uji)ε(uji)

}2

(i)
=
c−2

Ω

m2

q∑
a=1

h̄∑
h=1

1

1 +
τ2
0λn

cΩkmµah

Eyj |uj

{
m∑
i=1

Z̃a(uji)
2ϕah(uji)

2ε(uji)
2

}

≤
C2
ϕC̃

2
Zc
−2
Ω

m2

q∑
a=1

h̄∑
h=1

1

1 +
τ2
0λn

cΩkmµah

Eyj |uj

{
m∑
i=1

ε(uji)
2

}

≤
C2
ϕC̃

2
Zc
−2
Ω τ2

0 q

m
Λ(τ2

0λn/(cΩkm), h̄). (97)

where (i) follows from the independence between {εj1, . . . , εjm}. Therefore, we can obtain
that

Eu∗ Euj tr
(

Varyj |uj

[
Eνj |yj ,uj {νj(u

∗)}
])

(i)

≤ Eyj |uj ‖δ̃
↓
j ‖

2
2 + Eyj |uj ‖δ̃

↑
j ‖

2
2

= Eyj |uj
{
‖δ̃↓j ‖

2
21(Ej1)

}
+ Eyj |uj

{
‖δ̃↓j ‖

2
21(Ecj1)

}
+ Eyj |uj ‖δ̃

↑
j ‖

2
2

(ii)

≤ 12

∥∥∥∥τ2
0λn
km

Q−1Ω−1M−1ζ↓0

∥∥∥∥2

2

+ 12Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j Z̃j ṽj

∥∥∥∥2

2

+ 12Eyj |uj

∥∥∥∥ 1

m
Q−1Ω−1ΦT

j Z̃
T
j εj

∥∥∥∥2

2

+ µ(h̄+1)∗

(
2km

λn
+ 4‖ν0‖2H

)
+ Tr(ρ)

(
2km

λn
+ 4‖ν0‖2H

)
Puj (Ecj1)

(iii)

≤ 12
τ2

0λn
cΩkm

‖ν0‖2H +
24km

τ2
0λn

C4
ϕC̃

4
ZcΩc

−2
Ω Tr(ρ) Tr(ρ, h̄)

(
km

λn
+ 2‖ν0‖2H

)
+ 12

C2
ϕC̃

2
Zc
−2
Ω τ2

0 q

m
Λ(τ2

0λn/(cΩkm), h̄) + 2µ(h̄+1)∗

(
km

λn
+ 2‖ν0‖2H

)
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+ 4qh̄Tr(ρ)

(
km

λn
+ 2‖ν0‖2H

)
exp

{
− m

8(B2 +B)

}
,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1, (i) is from (86), (ii) is from (89), (90), and
(93), and (iii) is from (79), (96), (97), and Lemma 5. This completes the proof of Lemma
3.

Lemma 4 Suppose that Assumptions (A.1)–(A.6) hold. Then for every j = 1, . . . , k,

Eu∗ Eyj ,uj tr
[
Varνj |yj ,uj{νj(u

∗)}
]

≤ 5τ2
0λn

2cΩkm
Λ
(
τ2

0λn/(cΩkm), h̄
)

+
4C̃2

Zkm

τ2
0λ

2
n

Tr(ρ, h̄) Tr(ρ) + λ−1
n Tr(ρ, h̄)

+ 2λ−1
n qh̄Tr(ρ) exp

{
− m

8(B2 +B)

}
,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1.

Proof [of Lemma 4] For each a = 1, . . . , q, we have the eigen-decomposition
ρa(u, u

′) =
∑∞

i=1 µaiϕai(u)ϕai(u
′) for u, u′ ∈ [0, 1]d. This together with the expression

of Varνj |yj ,uj{νj(u∗)} in (58) and the orthonormal property of {ϕai}∞i=1 imply that

Eu∗ Eyj ,uj tr
[
Varνj |yj ,uj{νj(u

∗)}
]

= λ−1
n Eu∗ Eyj ,uj

q∑
a=1

{
ρa(u

∗, u∗)−Rja(u∗)TZ̃T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jaRja(u
∗)

}

= λ−1
n

q∑
a=1

∞∑
h=1

µah Eu∗
{
ϕah(u∗)2

}
− λ−1

n Euj
q∑

a=1

m∑
i=1

m∑
i′=1

∞∑
h=1

∞∑
h′=1

µahµah′

{
Z̃T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃ja

}
i′i′′

×
[
ϕah(uji)ϕah′(uji′)Eu∗ {ϕah(u∗)ϕah′(u

∗)}
]

= λ−1
n

q∑
a=1

∞∑
h=1

µah − λ−1
n Euj

q∑
a=1

m∑
i=1

m∑
i′=1

∞∑
h=1

µ2
ahϕah(uji)ϕah(uji′)

×

{
Z̃T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃ja

}
ii′

= λ−1
n

q∑
a=1

h̄∑
h=1

µah − λ−1
n Euj

q∑
a=1

m∑
i=1

m∑
i′=1

h̄∑
h=1

µ2
ahϕah(uji)ϕah(uji′)

×

{
Z̃T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃ja

}
ii′
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+ λ−1
n

q∑
a=1

∞∑
h=h̄+1

µah − λ−1
n Euj

q∑
a=1

m∑
i=1

m∑
i′=1

∞∑
h=h̄+1

µ2
ahϕah(uji)ϕah(uji′)

×

{
Z̃T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃ja

}
ii′

(i)

≤ λ−1
n Euj

q∑
a=1

h̄∑
h=1

{
µah − µ2

ahΦT
jahZ̃

T
ja

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jaΦjah

}
+ λ−1

n Tr(ρ, h̄)

= λ−1
n Euj tr

{
M −MΦT

j Z̃
T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jΦjM

}
+ λ−1

n Tr(ρ, h̄), (98)

where Φjah denotes the hth column of the matrix Φja defined in (70), and (i) follows because
we dropped the last negative term to make it larger.

If we let

M̃ = M −MΦT
j Z̃

T
j

(
Z̃jR̃jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jΦjM,

then (98) has shown that

Eu∗ Eyj ,uj
[
Varνj |yj ,uj{νj(u

∗)}
]
≤ λ−1

n Euj tr(M̃) + λ−1
n Tr(ρ, h̄). (99)

For j = 1, . . . , k, a = 1, . . . , q, and h = 1, 2, . . ., we define the following matrices

M↑a = diag
{
µa(h̄+1), . . . , µa∞

}
, M↑ = diag

{
M↑1 , . . . ,M

↑
q

}
,

Φjah = {ϕah(uj1), . . . , ϕah(ujm)}T ,

Φ↑ja =
{

Φja(h̄+1), . . . ,Φja∞

}
, Φ↑j = diag

{
Φ↑j1, . . . ,Φ

↑
jq

}
,

R̃↑jj = Φ↑jM
↑Φ↑j , R̃jj = ΦjMΦj + R̃↑jj ,

where Φj ∈ Rqm×qh̄ is defined in (70). Then the Woodbury formula (Harville, 1997) and
the definition of Q imply that

M̃ =

{
M−1 + ΦT

j Z̃
T
j

(
Z̃jR̃

↑
jjZ̃

T
j +

τ2
0λn
k

Im

)−1

Z̃jΦj

}−1

=
τ2

0λn
km

{
Ω +

τ2
0λn
km

M−1 +
1

m
ΦT
j Z̃

T
j

(
k

τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j + Im

)−1
Z̃jΦj − Ω

}−1

=
τ2

0λn
km

Q−1

[
Iqh̄ +Q−1Ω−1

{
1

m
ΦT
j Z̃

T
j

(
k

τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j + Im

)−1
Z̃jΦj − Ω

}
Q−1

]−1

Q−1Ω−1.

(100)

For j = 1, . . . , k, define the event Ej2 =
{

k
τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j � 1

4Im

}
. Since the matrix R̃↑jj is

semi-positive definite, we have the relation that{
tr
(

k
τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j

)
≤ 1

4

}
⊆
{

smax

(
k

τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j

)
≤ 1

4

}
⊆ Ej2,
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smax(A) is the maximum eigenvalue of the square matrix A. Therefore, by Markov’s in-
equality and Assumption (A.5), we have that

Puj
(
Ecj2
)
≤ Puj

{
tr
(

k
τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j

)
>

1

4

}
≤ 4Euj tr

(
k

τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j

)
=

4k

τ2
0λn

Euj tr
(
Z̃jΦ

↑
jM
↑Φ↑j Z̃

T
j

)
=

4k

τ2
0λn

q∑
a=1

∞∑
h=h̄+1

µah Euj

{
m∑
i=1

Za(uji)
2ϕah(uji)

2

}

≤
4C̃2

Zk

τ2
0λn

q∑
a=1

∞∑
h=h̄+1

m∑
i=1

µah Euj
{
ϕah(uji)

2
}

=
4C̃2

Zkm

τ2
0λn

Tr(ρ, h̄). (101)

On the event Ej1 ∩Ej2 (with Ej1 defined in (76)), we have that

Iqh̄ +Q−1Ω−1

{
1

m
ΦT
j Z̃

T
j

(
k

τ2
0λn

Z̃jR̃
↑
jjZ̃

T
j + Im

)−1
Z̃jΦj − Ω

}
Q−1

(i)

� Iqh̄ +Q−1Ω−1

{
1

m
ΦT
j Z̃

T
j

(
1

4
Im + Im

)−1

Z̃jΦj − Ω

}
Q−1

= Ih̄ −
1

5
Q−2 +

4

5
Q−1Ω−1

{
1

m
ΦT
j Z̃

T
j

(
1

4
Im + Im

)−1

Z̃jΦj − Ω

}
Q−1

(ii)

� Iqh̄ −
1

5
Iqh̄ −

4

5
· 1

2
Iqh̄ =

2

5
Iqh̄, (102)

where (i) follows on the event Ej2, and (ii) holds on the event Ej1 and from the fact
Q−2 � Iqh̄. Therefore, from (100) and (102), we can obtain that

Euj
{

tr(M̃)1 (Ej1 ∩Ej2)
}
≤ Euj

{
τ2

0λn
km

Q−1 · 5

2
Iqh̄ ·Q−1Ω−1

}
=

5τ2
0λn

2km
tr
(
Q−2Ω−1

)
≤ 5τ2

0λn
2km

tr

{(
Ω +

τ2
0λn
km

M−1

)−1
}

≤ 5τ2
0λn

2km

q∑
a=1

h̄∑
h=1

1

cΩ +
τ2
0λn

kmµah

=
5τ2

0λn
2cΩkm

Λ
(
τ2

0λn/(cΩkm), h̄
)
. (103)

Therefore, by combining (99), (101), (103), and Lemma 5, we obtain that

Eu∗ Eyj ,uj tr
[
Varνj |yj ,uj{νj(u

∗)}
]

≤ λ−1
n Euj tr(M̃) + λ−1

n Tr(ρ, h̄)

≤ λ−1
n Euj

{
tr(M̃)1 (Ej1 ∩Ej2)

}
+ λ−1

n Euj
{

tr(M̃)1
(
Ecj1
)}
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+ λ−1
n Euj

{
tr(M̃)1

(
Ecj2
)}

+ λ−1
n Tr(ρ, h̄)

≤ 5τ2
0λn

2cΩkm
Λ
(
τ2

0λn/(cΩkm), h̄
)

+ λ−1
n Tr(ρ)Puj

(
Ecj1
)

4C̃2
Zkm

τ2
0λ

2
n

Tr(ρ, h̄) Tr(ρ) + λ−1
n Tr(ρ, h̄)

≤ 5τ2
0λn

2cΩkm
Λ
(
τ2

0λn/(cΩkm), h̄
)

+
4C̃2

Zkm

τ2
0λ

2
n

Tr(ρ, h̄) Tr(ρ) + λ−1
n Tr(ρ, h̄)

+ 2λ−1
n qh̄Tr(ρ) exp

{
− m

8(B2 +B)

}
,

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1. This completes the proof of Lemma 4.

Lemma 5 For the event Ej1 defined in (76), the probability of the event Ecj1 is upper
bounded by

Puj
(
Ecj1
)
≤ 2qh̄ exp

{
− m

8(B2 +B)

}
, (104)

where B = C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1.

Proof [of Lemma 5] For j = 1, . . . , k and i = 1, . . . ,m, let

Wji =
{
Z̃1(uji)ϕ11(uji), . . . , Z̃1(uji)ϕ1h̄(uji), . . . ,

Z̃q(uji)ϕq1(uji), . . . , Z̃q(uji)ϕqh̄(uji)
}T ∈ Rqh̄,

similar to W (u) in Assumption (A.5). With some linear algebra, the matrix in the definition
(76) can be rewritten as

Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1 = Q−1Ω−1

(
1

m

m∑
i=1

WjiW
T
ji − Ω

)
Q−1

=
1

m

m∑
i=1

Q−1Ω−1
(
WjiW

T
ji − Ω

)
Q−1. (105)

Using Assumptions (A.3), (A.5), and the fact that Q � Iqh̄, we can obtain that for every
j = 1, . . . , k and i = 1, . . . ,m,∣∣∣∣∣∣Q−1Ω−1

(
WjiW

T
ji − Ω

)
Q−1

∣∣∣∣∣∣
≤
∣∣∣∣∣∣Q−1Ω−1WjiW

T
jiQ
−1
∣∣∣∣∣∣+

∣∣∣∣∣∣Q−2
∣∣∣∣∣∣

≤WT
jiQ
−2Ω−1Wji + 1

≤WT
ji

(
Ω +

τ2
0λn
km

M−1

)−1

Wji + 1
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≤ c−1
Ω

q∑
a=1

h̄∑
h=1

µah

µah +
τ2
0λn
cΩkm

Z̃a(uji)
2ϕah(uji)

2 + 1

≤ C2
ϕC̃

2
Zc
−1
Ω qΛ

(
τ2

0λn/(cΩkm), h̄
)

+ 1 ≡ B. (106)

Furthermore, ∣∣∣∣∣∣∣∣∣{Q−1Ω−1
(
WjiW

T
ji − Ω

)
Q−1

}2
∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣Q−1Ω−1

(
WjiW

T
ji − Ω

)
Q−1

∣∣∣∣∣∣2 ≤ B2. (107)

Now from (105), (106) and (107), we apply the matrix Bernstein inequality (Theorem 6.1.1

of Tropp 2015) to the sequence of
{
Q−1Ω−1

(
WjiW

T
ji − Ω

)
Q−1

}m
i=1

to obtain that

Puj
(
Ecj1
)

= Puj
(∣∣∣∣∣∣∣∣∣∣∣∣Q−1Ω−1

(
1

m
ΦT
j Z̃

T
j Z̃jΦj − Ω

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣ > 1/2

)
≤ Puj

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

Q−1Ω−1
(
WjiW

T
ji − Ω

)
Q−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ > 1/2

)

≤ 2qh̄ exp

{
− (m/2)2/2

mB2 +mB/6

}
≤ 2qh̄ exp

{
− m

8(B2 +B)

}
,

which completes the proof.

Proof [of Theorem 1] We prove part (i) and part (ii), respectively. We simplify the upper
bounds in Lemmas 2, 3, and 4 with the choice λn = 1 and λn � n−(2v)/(2v+d).

(i) With λn = 1, we first derive a bound for the quantity Λ(τ2
0λn/(ckm), h̄) for a generic

constant c > 0 (which will be replaced by cΩ and cΩ in the upper bounds in Lemmas 2, 3,
and 4). Using Assumption (A.3), there exists some constant cµ > 0 such that µi∗ ≤ cµi−2v/d

for i = 1, 2, . . .. Therefore, given the fact that 2v > d, we have that if λn = 1,

Λ(τ2
0λn/(ckm), h̄) ≤

∞∑
h=1

(
1 +

τ2
0

ckmµh∗

)−1

≤
∞∑
h=1

(
1 +

cµc2τ
2
0

cn
h2v/d

)−1

≤
∑

h≤nd/(2v)

(
1 +

cµc2τ
2
0

cn
h2v/d

)−1

+
∑

h>nd/(2v)

(
1 +

cµc2τ
2
0

cn
h2v/d

)−1

≤ nd/(2v) +
∑

h>nd/(2v)

(
cµc2τ

2
0

cn
h2v/d

)−1

≤ nd/(2v) +

(
cµc2τ

2
0

cn

)−1 ∑
h>nd/(2v)

∫ h+1

h
x−2v/ddx
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≤ nd/(2v) +

(
cµc2τ

2
0

cn

)−1

n
− d

2v
·
(

2v
d −1

)

� nd/(2v) + n1− 2v−d
2v

� nd/(2v). (108)

Given the condition m & n(d/v)+η, in the exponent of (104), we have

m

8(B2 +B)
� m

Λ(τ2
0λn/(cΩkm), h̄)2

&
n(d/v)+η

nd/v
= nη.

This implies that for some positive constant c′ > 0,

exp

{
− m

8(B2 +B)

}
≤ exp(−c′nη). (109)

With the choice h̄ = dn3d/(2v−d)e, we have that

Tr(ρ, h̄) =

q∑
a=1

∑
h≥h̄

µah ≤ q
∑
h≥h̄

µh∗ ≤ q
∑
h≥h̄

cµh
−2v/d

≤ qcµ
∑
h≥h̄

∫ h+1

h
x−2v/ddx ≤ cµ

∫ ∞
n3d/(2v−d)

x−2v/ddx

= qcµn
− 3d

2v−d ·
2v−d
d � n−3. (110)

Note that Assumption (A.3) (ii) and Assumption (A.4) imply that Tr(ρ) = O(1) and
‖ν0‖H = O(1). Using the orders in (108), (109), and (110), the order of the upper bound in
Lemma 2 can be quantified as

4

k

k∑
j=1

Eu∗ Euj
∥∥∥Eνj ,yj |uj{νj(u∗)} − ν0(u∗)

∥∥∥2

2

. n−1 + n · n−3 + n−3 + nd3d/(2v−d)e · exp(−c′nη)

. n−1. (111)

Similarly, the order of the upper bound in Lemma 3 can be quantified as

4

k2

k∑
j=1

Eu∗ Euj tr
(

Varyj |uj

[
Eνj |yj ,uj{νj(u

∗)}
])

.
1

kn
+
n

k
· n−3 · (n+ 1)

+
1

km
· nd/(2v) +

1

k
· n−3 (n+ 1)

+
1

k
· nd3d/(2v−d)e (n+ 1) · exp(−c′nη)

. k−1n−1 + n−(2v−d)/(2v) + k−1n−2 + k−1nd3d/(2v−d)e+1 · exp(−c′nη)
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. n−(2v−d)/(2v). (112)

The order of the upper bound in Lemma 4 can be quantified as

c

k

k∑
j=1

Eu∗ Eyj ,uj tr
(

Varνj |yj ,uj{νj(u
∗)}
)

. n−1 · nd/(2v) + (n+ 1) · n−3 + nd3d/(2v−d)e · exp(−c′nη)

. n−(2v−d)/(2v). (113)

Finally, we combine (111), (112), (113), (49), and (54) to obtain that

L(Π) . n−1 + n−(2v−d)/(2v) + n−(2v−d)/(2v) + n−1 . n−(2v−d)/(2v).

The rate for w(·) follows trivially from the inequality

|w(u∗)− w0(u∗)| =
∣∣Z(u∗)β(u∗)− Z(u∗)β0(u∗)

∣∣ ≤ CZ ∥∥β(u∗)− β0(u∗)
∥∥

2
.

This proves the conclusion of Theorem 1 (i).

(ii) When λn � nd/(2v+d), similar to part (i), we first derive a bound for the quantity
Λn(τ2

0λn/(ckm), h̄) with c > 0 being a generic constant. Using Assumption (A.3), there
exists some constant cµ > 0 such that µj ≤ cµj−2v/d. Therefore, we have that

Λ(τ2
0λn/(km), h̄) ≤

∞∑
h=1

(
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0λn

ckmµh∗

)−1

≤
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2
0λn

cn
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(
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cµc2τ
2
0λn
n

h2v/d

)−1

+
∑

h>nd/(2v+d)

(
1 +

cµc2τ
2
0λn

cn
h2v/d

)−1

≤ nd/(2v+d) +
∑

h>nd/(2v+d)

(
cµc2τ

2
0λn

cn
h2v/d

)−1

≤ nd/(2v+d) +

(
cµc2τ

2
0λn

cn

)−1 ∑
h>nd/(2v+d)

∫ h+1

h
x−2v/ddx

≤ nd/(2v+d) +

(
cµc2τ

2
0λn

cn

)−1

n
− d

2v+d
·
(

2v
d −1

)

� nd/(2v+d) + λ−1
n n1− 2v−d

2v+d

� nd/(2v+d), (114)

where the last step follows because λn � nd/(2v+d).
Given our condition m & n2d/(2v+d)+η, in the exponent of (104), we have

m

8(B2 +B)
� m

Λ(τ2
0λn/(ckm), h̄)2

&
n2d/(2v+d)+η

n2d/(2v+d)
= nη.
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This implies that for some positive constant c′ > 0,

exp

{
m

8(B2 +B)

}
≤ exp(−c′nη). (115)

With the choice h̄ = dn3d/(2v−d)e, Tr(ρ, h̄) is upper bounded by n−3 as in (110).
Using the orders in (114), (115), and (110), the order of the upper bound in Lemma 2

can be quantified as

4

k

k∑
j=1

Eu∗ Euj
∥∥∥Eνj ,yj |uj{νj(u∗)} − ν0(u∗)

∥∥∥2

2

.
nd/(2v+d)

n
+

n

nd/(2v+d)
· n−3 + n−3 + nd3d/(2v−d)e · exp(−c′nη)

. n−2v/(2v+d). (116)

Similarly, the order of the upper bound in Lemma 3 can be quantified as

4

k2

k∑
j=1

Eu∗ Euj tr
(

Varyj |uj

[
Eνj |yj ,uj{νj(u

∗)}
])

.
nd/(2v+d)

kn
+

n

knd/(2v+d)
· n−3 ·

( n

nd/(2v+d)
+ 1
)

+
1

km
· nd/(2v+d) +

1

k
· n−3

(
2n

nd/(2v+d)
+ 1

)
+

1

k
· nd3d/(2v−d)e

( n

nd/(2v+d)
+ 1
)
· exp(−c′nη)

. k−1n−2v/(2v+d) + k−1n4v/(2v+d)−3 + n−2v/(2v+d) + k−1n2v/(2v+d)−3

+ k−1nd3v/(2v−d)e+2v/(2v+d) · exp(−c′nη)
. n−2v/(2v+d). (117)

The order of the upper bound in Lemma 4 can be quantified as

c

k

k∑
j=1

Eu∗ Eyj ,uj tr
(

Varνj |yj ,uj{νj(u
∗)}
)

.
1

n
· nd/(2v+d) +

(
n · n−2d/(2v+d) + n−d/(2v+d)

)
· n−3

+ n−d/(2v+d) · nd3d/(2v−d)e · exp(−c′nη)
. n−2v/(2v+d). (118)

Finally, we combine (116), (117), and (118), (49), and (54) to obtain that

L(Π) . n−2v/(2v+d) + n−2v/(2v+d) + n−2v/(2v+d) + n−1 . n−2v/(2v+d).

The rate for w(·) follows similarly. This proves the conclusion of Theorem 1 part (ii).
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