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ABSTRACT: The occurrence and properties of hail smaller than severe thresholds (diameter < 25
mm) are poorly understood. Prior climatological hail studies have predominantly focused on large
or severe hail (diameter at least 25 mm or 1 inch). Through use of data from the Meteorological
Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative
Rain, Hail and Snow Network the occurrence and characteristics of both severe, and sub-severe
hail are explored. Spatial distributions of days with the different classes of hail are developed on an
annual and seasonal basis for the period 2013-2020. Annually, there are several hail-day maxima
that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about
28 days per year). A secondary maxima exists over the Colorado Front Range (about 26 days per
year), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24
days per year with hail), and a fourth area is centered over the corners of southwest North Carolina,
northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are
driven by sub-severe hail. While similar patterns of severe hail have been previously documented,
this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis
of the hail size distribution suggests that to capture the overall hail risk, each dataset provides a

complimentary data source.
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1. Introduction

In the United States, hail size is divided into two classes: severe, meaning a diameter of at least
25 mm (1") and sub-severe, meaning anything less than 25 mm diameter, but greater than the 5
mm diameter of graupel (Allen et al. 2020). These two size classes are used to define whether
the event meets severe criteria. Prior to January 2010, the severe class was defined as hail with
a diameter at least 19 mm (0.75 in). The overall occurrence of hail has been regularly explored
in the United States given its substantive and rising impacts to both property and agriculture,
however, how frequently smaller hail sizes occur has received less attention (Changnon 1999;
Sander et al. 2013; Brown et al. 2015; Tang et al. 2019; Allen et al. 2020). Inferring the occurrence
of hail is challenging owing to the spatial and temporal inhomogeneities that arise from typical
observer-sourced datasets used to validate severe thunderstorm warnings (i.e. SPC Storm Data;
Kelly et al. 1985; Schaefer et al. 2004; Doswell et al. 2005; Allen and Tippett 2015; Allen et al.
2017; Taszarek et al. 2020a). The relationship of these data to warning verification (Blair et al.
2011; Bunkers et al. 2020) means that size criteria within the dataset are mostly confined to no
less than 19 mm (0.75 in) for hail and so sizes smaller that 19 mm are poorly represented. Smaller
sizes are occasionally included if they are associated with severe wind, or a tornado. As noted
by Changnon (1999), this limits the utility of these data in describing the true hail frequency, or
the full distribution of hail sizes that occur. Only about the last two decades contain reliable hail
data (Allen and Tippett 2015) meaning that prior to the 1990, these data are rarely used because
they lacked the necessary consistency to ascertain the true frequency of hail of any size in the
United States (Changnon 1999). Instead, prior studies relied either on station-based observations
(Changnon 1977; Changnon Jr 1977; Changnon and Changnon 1997, 2000; Changnon et al. 2001,
2009), hailpads, or agricultural damage data to infer these events. While these past datasets for the
most part still exist for assessment of hail occurrence, station-based observations have only had
size information for brief periods and formal observations were terminated in the 1990s. Hailpad
records have generally been inconsistent in their maintenance or heavily regionalized (e.g. Reges
et al. 2016), seriously limiting any climatological utility.

The limitations of Storm Data have spurred newer approaches that are more dynamic and
widespread to collect precipitation data including hail. For example, the CoCoRAHS observation

network collects more detailed hail information through either hail pads or spotter observations and
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includes each of the smallest, average and largest size of hail along with other properties (Reges
et al. 2016). Other high density observation collection efforts include the Severe Hazards and
Analysis and Verification Experiment (SHAVE, Ortega et al. 2009; Ortega 2018), which actively
probed areas around strong storms in near-real time to obtain observations to verify temporal and
spatial scales of hail for the verification of radar derived hail products. While an effective approach
to collate hail events, it was limited in coverage, and by the available personnel to make calls at
any given time. Despite these limitations, SHAVE documented otherwise unprecedented unknown
scales of hail fall and size on a comparatively large sample of storms. In parallel there have also
been small scale efforts to source high density measurements in the field, and while they have also
contributed to our understanding of hailstone and hail fall properties, their records are too sporadic
to contribute to the climatological understanding (Blair et al. 2017; Giammanco et al. 2017).

A more accessible and easily managed approach to collating hail information has been through
the Meteorological Phenomena Identification Near the Ground (mPING) project that implements
a flexible Application Program Interface on a mobile phone platform to crowdsource volunteer
reports of precipitation events (Elmore et al. 2014). As a result of these efforts, the mPING project
has garnered an impressively large collection of hail events in the past 8 years across the continental
United States, ranging from 6.35 mm (0.25 in) maximum diameter through sizes in excess of 125
mm (5 in). By approaching the problem through this platform, mPING provides valuable insight
into the hail sizes that are not traditionally collected or sought by existing approaches. Despite
these favorable attributes, to date data from mPING have not been used in a climatological context,
and small hail climatology over the United States has not been explored since 2005 (Changnon
et al. 2009).

While a number of studies have explored the individual datasets that characterize hail occurrence
(e.g. Changnon 1999; Doswell et al. 2005; Changnon et al. 2009; Allen and Tippett 2015; Grieser
and Hill 2019), no effort has been made to explore a more comprehensive picture of hail occurrence
through the synthesis of multiple observational datasets to leverage their relative strengths and
address their weaknesses. This limitation to existing approaches has only been emphasized since
the retirement of detailed hail reporting from station observations (Changnon 1999), leading to an
incomplete picture of hail day occurrence for the full distribution of hail sizes. Understanding the

climatology of all hail is important as sub-severe hail can lead to significant agricultural damage
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(Changnon Jr 1971; Changnon and Changnon 1997), and if accumulated can result in dangerous
road conditions and localized flash flooding (Kumjian et al. 2019; Friedrich et al. 2019). In some
regions and seasons, these smaller hail sizes can be the primary mode of occurrence (e.g. Miller
and Mote 2017), and can provide important insights into ice processes of strong convective clouds
(Van Den Heever and Cotton 2004; Kacan and Lebo 2019) . The analysis of the spatial distribution
of all hail sizes is also essential for the cross-validation of proxy hail climatologies that are derived
through the use of remotely-sensed satellite and radar platforms (e.g. Cintineo et al. 2012; Cecil and
Blankenship 2012; Bang and Cecil 2019; Murillo et al. 2021; Wendt and Jirak 2021). For example,
using only SPC storm reports to validate these measurements, it is not clear whether the radar-
derived frequencies indicated from maximum expected size of hail detections (MESH, Murillo
et al. 2021; Wendt and Jirak 2021) were an overestimate of hail frequency, or an overestimate of
hail sizes or perhaps a combination of both. To this end, in this paper we consider climatological
frequency and bulk statistics of hail as ascertained from the combination of mPING, Storm Data,
and CoCoRaHS and explore the relative strengths and weaknesses of each dataset. The aim of
this work is to produce a comprehensive climatology of hail in the contiguous Unites States and,
in so doing, recognize unique strengths and weaknesses of each data source and the information

provided through their cumulative hail observations.

2. Data and methods

Data used in computing hail days for sub-severe and severe hail come from two sources: the Na-
tional Oceanic and Atmospheric Administration/National Centers for Environmental Information
(NOAA/NCEI) Storm Data publication and mPING. These two sources differ substantially in that
Storm Data is primarily used for NWS warning and verification purposes. This means that offices
actively probe for relevant reports in areas of suspected severe weather, and reporting in the vicinity
of NWS offices involves a higher fraction of NWS Employee reports (Allen and Tippett 2015).
Reports are entered as the nearest reference object identified by the user or NWS employee entering
the report. mPING in contrast is a passive collection of voluntarily provided reports provided by
mPING users. Unlike Storm Data, users are also provided a referential list of hail sizes at quarter
inch intervals and associated reference objects, which may assist in mediating size clustering bias

toward known reference objects (Allen and Tippett 2015; Blair et al. 2017). The period of record
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for mPING considered here spans eight years from 1 Jan 2013 through 31 Dec 2020, however,
mPING remains operational.

The nature of mPING observations means that they are automatically located in space and
time by GPS and are thus spatially more accurate than other sources of reports, unless a user
moves a considerable distance from the observation or waits a long time to send the report;
cursory examination shows no evidence of such. No quality control is performed to mPING
hail observations, outside of truly erroneous submissions, though no systematic biases that would
influence the study results are present to the authors’ knowledge. Storm Data does not enjoy such
precision and while Storm Data errors have been well documented (e.g. Witt et al. 1998) here we
take several steps to address these potential sources of error on the derived climatology. One area
that cannot be remedied is the serious bias in hail size reports as sub-severe hail is not generally
recorded except in cases where it may be in association with another type of significant weather
(winds, tornadoes, etc.). In contrast, mPING encourages reports of sub-severe hail and so is the
only available data source for a more general all hail climatology. Both sources suffer from a
spatial bias in that reports are naturally more numerous in and around population centers and road
networks (Allen and Tippett 2015). Without care, this can lead to misleading conclusions related
to the association of high frequency hail with high population density.

To illustrate these potential biases in the two datasets and the distinct difference in the raw
frequency of reports, we consider both sub-severe (Figs. 1a,b) and severe (Figs. 2a,b) point clouds
from Storm Data and mPING, respectively. In both figures, areas of higher report density are
clearly associated with cities and metropolitan areas in hail prone regions. Such density variations
are non-physical artifacts and therefore must be removed to the extent possible.

One approach to diminishing these population derived artifacts is through an analysis procedure
that diffuses, filters, or "spreads out" this dependence over an appropriate area, an approach that
has been used in numerous studies (e.g. Brooks et al. 2003; Gensini et al. 2020). Approaches such
as Schaefer et al. (2004) treat this by aggregating (binning) Storm Data severe hail reports into 2
degree squares, averaging across the squares, then normalizing the results to reports per decade
per 34,300 km? (10,000 nmi?). Hexagonal binning (Carr et al. 1992) is another way to deal with
this effect that has advantages over rectangular binning and therefore is the approach used here.

Chiefly, hexagons are the most complex polygon that can be tessellated over a surface, and are
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a) Storm Data Sub-Severe Hail 2013-2020

b) mPING Sub-Severe Hail 2013-2020

Fic. 1. a) Point cloud showing Storm Data reports of sub-severe hail spanning the period 1 Jan 2013 through
31 Dec 2020; each point represents the location of a single Storm Data report. b) Same as Fig. 1a, but showing

sub-severe reports from mPING. .

more similar to circles than are squares. Thus, hexagons and hexagonal binning constitute the most
efficient and compact division of 2D data space. This property helps reduce the edge and border
effects inherent in rectangular binning procedures.

For this work, a grid of 23 x 23 hexagons are distributed over the CONUS, providing for 529
center points. From this set, not all hexagons have hail observations as illustrated in Fig. 3. We
experimented with the maximum number of hexagons, and found that the aforementioned grid

provided was the highest resolution that could be used before population centers began to clearly
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a) Storm Data Severe Hail 2013-2020

FiG. 2. a) Point cloud showing Storm Data reports of severe, as in Fig. 1a. b) As for Fig 2a, but for mPING

reports of severe hail.

influence results. Each hexagon includes an area of about 32,600 km? (roughly equivalent to a
100 km radius circle). This area reflects a similar scale to that of Schaefer et al. (2004), thereby
allowing for more direct comparison despite the different gridding approach.

To calculate the number of days with hail, reports from either dataset are binned within each
hexagon; each day is counted only once. This step is critical to ensure that if there are many reports
within a hexagon for a given date, that day is counted only once. Because the period of record
covers eight years, the total number of days is divided by a factor of eight to yield the average

number of hail days per year.
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Fic. 3. Points showing the center of hexagonal cells that contain reports from either Storm data or mPING

over the period 1 Jan 2013 through 31 Dec 2002.

To smooth the results from the original hexagonal grid, a local, quadratic least squares surface
is fit to the resulting grid of counts as an additional smoothing step (LOESS Cleveland 1979;
Cleveland and Devlin 1988). The resulting fit is applied to a finer grid for plotting purposes, and
then used as the basis for contours of days per year of sub-severe hail, severe hail, or any hail.

Storm Data timestamps have known inaccuracies and tend to be biased late (after the event),
yet Storm Data report time errors seldom exceed 1 hour (Witt et al. 1998). Provided that mPING
users submit reports during or very shortly after an event, mPING reports have reduced time errors
relative to Storm Data. Times from both source datasets are used to generate distributions of event
times, in local solar time (LST), to evaluate the most common time of day for hail events and
to discern whether any difference exists between times by season or hail size. Occurrence time
distributions are then estimated using kernel density estimates computed at 201 points each using a
Gaussian weighting 12.7 mm wide (0.5 in) truncated at four standard devaitions (KDEs, Silverman
1998).

Finally, a third data source reflecting the next largest available dataset was also considered, the
Community Collaborative Rain, Hail and Snow Network (CoCoRaHS Reges et al. 2016). As
time information from CoCoRaHS is unreliable and difficult to ascertain, we instead focus on
its application for understanding hail size distributions. We use CoCoRaHS to help generate

distributions of hail size and estimate the proportions of sub-severe and severe or larger hail.
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For this application the use of both CoCoRaHS and mPING allows for a more comprehensive
viewpoint of sub-severe hail, as Storm Data does not provide sufficient data of this type. The

resulting distributions are created through empirical cumulative density functions (eCDFs).

3. Results

a. Sub-severe and Severe Hail Frequency

Here we compare and contrast both the common and complimentary qualities of Storm Data and
mPING for severe and sub-severe hail days. Unsurprisingly, there is a much larger fraction of sub-
severe reports within mPING, and severe or greater reports in Storm Data (Figs. 1, 2), suggesting
that these two datasets are likely complementary by providing insight into different sizes of hail,
rather than one being notionally superior to the other. Following gridding and smoothing to the
annual average number of hail days of any size, Fig. 4 shows an estimate of the average total
number of days with any hail across the CONUS as estimated using Storm Data (red) and mPING
(blue). This approach further illustrates the differences between the two datasets because any hail
frequency illustrates regions where hail less than an arbitrary size threshold often occurs. This is
particularly evident over the western U.S. where larger hail sizes are comparatively rare (Schaefer
et al. 2004; Allen and Tippett 2015). Higher frequencies are particularly evident outside of the
typical Great Plains severe hail maxima, with higher frequency on and near the foothills of the
Rocky Mountains, over the Midwest and East. Combining the two datasets however, provides a
complementary picture of the total number of hail days. We expect that the values in Fig. 4b
provide the most accurate representation of average yearly hail days across the CONUS. These
values are more broadly consistent than long term hail data records based on station data, though
with some differences, including slightly higher frequencies reflecting the broader spatial sampling
(Changnon and Changnon 2000). For example, Changnon and Changnon (2000) reported a hail day
frequency of 21 for Denver, CO, and Dodge City, KS, with a gradient through eastern KS. However,
over regions with more sparse population, the reliability of observation stations overshadows this
benefit. Itis important to note that these sources are not exclusive or independent: a day that counts
as a sub-severe hail day may also count as a severe hail day and vice versa. This explains why Fig.

4b is not simply the simple sum of occurrences within Storm Data and mPING.

10
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Fic. 4. a) Contours of the average number of hail days per year for hail of any size from Storm Data (red) and

mPING (blue). b) As for a) but for combined Storm Data and mPING reports.

Spatially, the overall patterns are similar to Schaefer et al. (2004), however, we note that study
provides contours in number of reports per 10 years and thus the results are not directly comparable.
The overall frequency of that study also depicts a maximum number of reports to be nearly 60 per
year for hail exceeding 0.75 in. This number is well in excess of the nearly 30 per year for any hail
size shown in Fig. 4b, reflecting the difference obtained if an approach uses hail days rather than
hail reports (Doswell et al. 2005; Allen and Tippett 2015). For this reason, in this work any single

day that receives n>1 reports still counts as a single day within a hexagonal bin.
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Fic. 5. a) Contours of the average number of hail days per year for hail of sub-severe size from Storm Data

(red) and mPING (blue). b) As in Figure 5a, but for combined reports from both Storm Data and mPING.

Sub-dividing these reports into mean sub-severe days per year only, the differences between the
two datasets are further emphasized (Figs. 5a and b). Storm Data shows two maxima, one of 6-7
days per year across NW KS and another near Charlotte, NC. However, this is clearly an under-
representation of the true frequency, as mPING shows what is almost certainly a more accurate
depiction of sub-severe hail days because mPING is not, by design, biased towards severe hail.
The most significant differences are in regions outside the traditional “hail belt’, with maxima in

the Colorado Front Range, central OK, and also an E-W region encompassing parts of the lower
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midwest, as well as KY, NC, SC, GA and northeast AL. Curiously, the frequency of mPING reports
also introduce spatial inhomogeneities, for example Storm Data reports are more likely across the
California seaboard as compared to those from mPING. In combining the two datasets (Fig. 5b),
these reports show a pattern with clear maxima (24 days) over central OK, a NE-SW band from
S WI into N OH touching the S tip of Lake Michigan (18-24 days), a clear separate maximum
along the front range of the Rocky mountains extending into E CO (16 days), and finally a fourth
maximum encompassing E KY, the SW corner of NC, the NW corner of SC, N AL and N MS
(14-16 days). The maximum in C OK is part of a general ridge of high sub-severe hail frequency
that extends into the Great Lakes region.

The patterns for severe hail (Figs. 6a and b) are decidedly different from sub-severe hail, and
while spatially consistent are higher in frequency than the hail day rate reported using Storm
Data alone (Allen and Tippett 2015), likely reflecting continual growth in hail reporting frequency.
Storm Data shows a maximum of 20 days at the junction of NE-KS-CO, along with a broader region
of active severe hail days extending into W NC. mPING doesn’t record as many severe weather
days, particularly outside of the traditional region for large hail east of the Rocky Mountains, with
a maximum of only 6 days over central OK and a ridge of activity extending into the Great Lakes
region, a broad E-W region over N CO with a weak max roughly over Denver, CO, then a ridge
centered roughly over the Appalachians. Through the merger of both sources (Fig. 6b), a more
complete picture develops again highlighting their complementary nature. The 20 day maximum
over the NE-KS-CO intersection expands, with a clear ridge of frequency extending SE into W
OK and the E TX Panhandle. The ridge of severe hail days remains over the Appalachians but
likely has a true frequency closer to 8-10 days per year. These patterns are reminiscent of prior
climatologies of hail day frequency (Doswell et al. 2005; Allen and Tippett 2015), however also
illustrate further regional detail and local maxima.

It is well established that hail displays a strong seasonal cycle with regional variation perhaps
even more so than tornado frequency (Changnon Jr 1977; Doswell et al. 2005; Changnon et al.
2009; Allen and Tippett 2015; Taszarek et al. 2020a). To explore these distributions in terms of
both sub-severe and severe hail, we explore these characteristics using the seasons as defined from

the National Centers for Environmental Prediction, spring (March, April, May), summer (June,

13
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Fic. 6. a) As in Fig. 5a, but for severe hail. b) As in Fig. 5b, but for severe hail.

July and August), fall (September, October, November) and winter (December, January, February),
hereafter MAM, JJA, SON and DJF respectively.

Springtime yields the highest frequency for both sub-severe and severe hail over the central
Plains (Fig. 7). This broadly consistent with station-based estimates in earlier climatologys
(Changnon et al. 2009). Storm Data in contrast produces only about three days of sub-severe hail
during an average spring (Fig. 7a), in a rough ellipse extending from NE TX across E OK, into
SW MO including the SE corner of KS. Because of Storm Data constraints and aforementioned

properties this undercount is expected. The mPING average number of spring sub-severe hail days

14
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Fic. 7. a) Contours of spring (March, April, May) average number of sub-severe hail days from Storm Data
(red) and mPING (blue). b) As for a), but for the spring average number of severe hail days. ¢) Contours spring
average number of sub-severe hail days in spring from both Storm Data and mPING combined. d) As for c), but

for the spring average number of severe hail days.

capture generally the same spatial pattern for the highest values, but the number of days increase
substantially. Higher frequencies also more broadly extend into the Midwest, and minimum
contours are more expansive than those of Storm Data. Merging the two sources (Fig. 7c) the
pattern is driven primarily by mPING observations. This yields a maximum of 13 days of sub-
severe hail observations situated over E central OK, extending up into the Great Lakes region then
eastward into S New England. There is another maximum (6 days) nestled into the Denver area.
For severe hail (Fig. 8c,b), Storm Data days are again more numerous that mPING observations.
Here we see maximum average number of days ( 9 days) shifted slightly to the west and south
from the sub-severe days, which is instead centered in southwest OK. A weak ridge of activity
extends to the north and east, following roughly the same pattern as for sub-severe hail, but much
attenuated. mPING severe hail days are remarkably similar to Storm Data observations, but with

fewer observations outside of the traditional hail belt of TX-OK-KS-NE-MO. A non-meteorological
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Fic. 8. a) Contours of the spring average number of days with any hail regardless of size from Storm Data and
mPING combined regardless of hail size. b) As for a), except for the summer months (June, July, August). c) As
for a), except for the fall months (September, October, November), d) As for a), except for the winter (December,

January, February).

explanation for this focus may be a function of project familiarity in and around the central OK
area. Finally, merging the two sources (Fig. 7d) the overall pattern is driven by the the larger data
source in Storm Data. The ridge of enhanced activity clearly delineates the expected hail alley”,
along with a broad region of higher frequency extending to the Atlantic coast.

In the summer, sub-severe hail shifts northwards with a broad axis extending from the Rocky
Mountains through the Midwest (Fig. 8a). Higher frequencies also extend into the southeastern
United States, reflecting weakly forced pulse storms during the summer in this region (Miller and
Mote 2017). Storm Data generally undercounts sub-severe hail days and the pattern is significantly
different from spring, while mPING sub-severe hail days provide a more coherent depiction. The
maximum of eight days is found in the Denver/Ft. Collins, CO area, an extended area of six to
seven days from E MN, through the Chicago, IL, area and then through PA. Again, by merging the

two data sources (Fig. 8c), we see a more complete picture, with a weak maximum remaining in
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Fic. 9. a) Contours of the yearly average number of sub-severe hail days in summer from Storm Data (red)
and mPING (blue). b) As for a), but for severe hail. c) Contours of the yearly average number of sub-severe hail

days in summer from both Storm Data and mPING combined. d) As for b) but for severe hail.

C OK, the orographically driven maximum over the Denver area extending into E CO is clearly
evident, as is a band of hail activity from eastern Minnesota through the lower Great Lakes and
into New England, and a separate maxima is found over the southeast. When only Storm Data
severe hail is considered (Fig. 8b), the maximum frequency is clearly centered over NE CO and
extends north into western SD, with a broad band of high frequency across the Midwest into the
mid-Atlantic. Combining the two datasets results in a broader range of higher frequency severe
hail, extending into the northeast (Fig. 8d).

To better illustrate the seasonal progression of occurrence Fig. 9 shows the total hail days,
regardless of size, across the seasons from both sources. The average number of winter days with
any hail is as would be expected low given limited instability (Fig. 9d). A broad maximum during
this season is found over E TX, SE OK, AR, N LA, and S MO. This hints at the maximum in
severe weather frequency over the southeast CONUS. Also, on average at least one day of hail

occurs along the west Coast, with two days on average in W WA. Frequency rapidly increases into
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Fic. 10. Contours of the yearly average number days with severe hail for monthly snapshots to illustrate the

seasonal cycle in March (purple), May (red) and July (blue).

the spring months, with a strong Great Plains signal that extends into the Denver, CO area. Spring
however is early in the hail season for many areas closer to the mountains and through the midwest
and northeast. During summer maximum surface heating along with convection reach their peak.
Two very distinct maxima are identified during the summer for any hail day: one over the Denver
area (likely associated with topographic forcing, the "Denver cyclone"(Wilczak and Glendening
1988) and the southwest monsoon), and a second maximum over the W NC. The belt of seven to
eight days of hail extending from E MN around the Great Lakes through PA becomes more diffuse,
but is still evident. Fall sees waning frequency and a lower overall number of days with hail (Fig.
9¢). Only three days of hail of any size occur and these days all contain a mix of sub-severe and
severe hail. On average a broad area of two severe hail days is centered on the KS-NE border (not
shown). The main area of hail activity extends from central OK into IA, then eastern MN, curving
around the Great Lakes into far western PA.

Another viewpoint for the seasonal cycle is to consider monthly snapshots through its progression,
from March through to May and July (Fig. 10). In March a broad area of severe hail overlays the
southeastern CONUS, evidence of the southeastern maximum in severe weather frequency. The
number of average severe hail days for May increases, displaying a clear maximum over western

OK and the eastern TX panhandle. By July, the frequency maxima extends over the NE panhandle.
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As has been shown in prior research, the area of peak severe weather progresses west and north

from March through July.

b. Hail Size Distribution

Given the distinct differences in the number of sub-severe and severe hail reports between the
datasets, a broader examination of the hail size distribution may reveal how these datasets capture
the distribution of hail sizes from all reported instances. All reported hail sizes are rounded to the
nearest 6.35 mm (0.25"), and a kernel density estimate (KDE) across 201 points using a Gaussian
weight 12.7 mm (0.5") wide truncated at four standard deviations of the hail size probability density
function estimated. For completeness, the approach here also considers the hail size distribution for
the same temporal period (2013-2020) from CoCoRaHS maximum size (when available) reports
in comparison to the other two datasets. We choose the maximum size because we suspect that
mPING reports also are based on the maximum size observed. Fig. 11 displays the hail size
pdfs from all three sources; the missing small sizes are readily apparent in Storm Data. This
problematic size distribution has been discussed in prior literature (Allen and Tippett 2015; Allen
etal. 2017), with the added influence of clear discontinuites in the pdf associated with the minimum
size threshold (0.75 inch), but also the common reference objects used (25.4mm or 1 in, 45mm, or
1.75 in Golf Ball, 70mm or 2.75 in Baseball). In comparison, both CoCoRAHS and mPING show
a more continuous distribution that includes the smaller sizes, reflecting a more even weighting of
frequency toward these categories. Owing to the challenges of Storm Data for understanding the
characteristic hail size pdf, we consider a combined pdf of CoCoRaHS and mPING size data (Fig.
11). Contrasting the Storm Data pdf, sizes less than 25.4 mm (1 inch) comprise nearly 95 percent
of all the 95,009 hail reports (15,169 from CoCoRahs and 79,840 from mPING). This suggests that
the use of mPING and CoCoRaHS data combined is a realistic approach to offset the size biases
inherent in Storm Data, and these datasets now constitute a record to better explore the occurrence
of sub-severe hail and complement the larger sample size of Storm Data. We do however note
that CoCoRaHS data may be biased small, as it allows reporting of much smaller sizes leading
to differences in the eCDF which imply preferred sizes reported within CoCORaHS that do not

appear in mPING. It is also likely that to some extent mPING data may be biased large because the
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Fic. 11. a) KDE pdfs of hail size for Storm Data (red), mPING (blue) and CoCoRaHS (purple). b) KDE pdfs
using combined mPING and CoCoRaHS data.

hail size is estimated rather than measured, and the maximum reporting size of 127mm (5 in) may

influence the overall pdf.

c. Occurrence Times

A final climatological aspect of interest is the relative time of occurrence (Fig. 12 a). Trans-
forming hail occurrence time of any size across the respective seasons to LST and applying a KDE,
allows exploration of how the temporal structure of hail occurrence varies. We note here that Storm

Data occurrence times may on rare occasions be biased late due to observer bias, if the occurrence
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time is estimated, and possibly by errors in recording the observation time itself, e.g., recording the
submission time rather than the observation time. Even so such errors are rare enough that they do
not affect the occurrence time distributions citeportega2021, wendt2021hourly. All seasons show
peaks in the late afternoon with relatively slight variations (all times LST): spring at 1630, summer
at 1615, fall at 1615, and winter at 1600. These times bracket the peak convective periods that
usually follow daytime heating. Variations away from these peaks and spreading of the times away
from these peaks may indicate additional effects due to synoptic-scale dynamic processes, a signal

highlighted by the higher relative frequencies outside of this peak in winter.
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Seasonally, there are small but discernible differences between the peak times for sub-severe
and severe hail (Fig. 12). Two characteristics stand out: the sub-severe peak is at 1630 while the
severe peak is on average later in the day at 1645, and the sub-severe peak is more broad than the
severe peak is. This is physically consistent as severe hail comes from more energetic convection
that likely occurs later in the day possibly in response to greater diabatic heating and the capping
inversion’s delay of convection (Jewell and Brimelow 2009; Allen et al. 2020; Johnson and Sugden
2014; Taszarek et al. 2020b). Sub-severe hail report times are more spread out, possibly indicating
that while the convection is strong enough to produce hail, these storms reflect a greater fraction
of weakly forced or pulse storms (Miller and Mote 2017), or time frames when convection has
weaker vertical updrafts, both earlier in the day and after the nocturnal transition. Differences
in the summer are similar: peak report time for sub-severe hail is 1600 while peak report time
for severe hail is 1630. The difference is more pronounced and likely reflects the contribution of
orographic initiation of thunderstorms earlier in the day, or regions where or pulse thunderstorms
are more common but still indicates that the severe reports come later in the day. This also implies
that generally speaking sub-severe hail is generated on the periphery of severe convection or to its

exclusion.

4. Discussion

The exploration of datasets here illustrates that one hail dataset is not superior to another, but
rather they approach the characterization of hail occurrence from alternative perspectives and
different purposes. In this way, we suggest that the data comprising Storm Data and mPING
are complimentary in nature. Through playing to these dataset’s relative strengths, we are able
to capture a more holistic picture of the hail hazard, similar to the opportunities afforded by
station reported records (Changnon and Changnon 2000). By its very design and implementation,
Storm Data is clearly the better dataset if the goal is to capture severe hail days. While mPING
data expands somewhat on severe hail day numbers, it’s primary strength is that it provides a more
detailed depiction of smaller, sub-severe hail sizes that Storm Data is not designed to capture.Storm
Data is clearly the better dataset if the goal is to capture severe hail days, while mPING data expands
on severe hail day numbers, but also provides a more detailed depiction of smaller sub-severe hail

sizes. There are other advantages and disadvantages to the respective datasets as well. mPING
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reflects a true volunteer and passive collection dataset, capturing whatever observers report. In
contrast, Storm Data is biased because in addition to such voluntary reports, the NWS Weather
Forecast Offices (WFOs) actively search for severe hail reports (as well as other events) as an
approach to verify severe weather warnings (Blair et al. 2011; Bunkers et al. 2020). This can lead
to an undersampling bias, or a bias toward the larger hail size as the NWS doesn’t continue probing
once a warning has been verified (Ortega et al. 2009). Similar to Allen and Tippett (2015), by
approaching hail days rather than reports or individual hail events the results presented here are
largely unaffected by this characteristic. Curiously, despite relatively widespread coverage mPING
severe hail data appears to be a sub-sample of Storm Data. It is true that Storm Data may record
sub-severe hail events, but usually this is as an adjunct to some other significant weather event, and
since the change of severe criteria in 2010 to 25.4 mm (1 inch), these reports have decreased in
frequency (Allen and Tippett 2015). Despite the differences in the total frequency of reports, it is
clear that both sources tend to capture similar patterns.

While hail, even severe hail, has a relatively common rate of occurrence across the United States
it is not commonly observed because of its temporal and spatial heterogeneity and the need to have
an observer present (Allen and Tippett 2015). There is no reason to suspect that mPING observers
are censoring observations of severe hail, especially since both mPING and Storm Data tend to
capture similar spatial patterns, though mPING captures fewer days of severe hail. The likely
explanation for this disparity is that the density of mPING observers is not as widespread or as
high as the potential sources of reports for Storm Data, both volunteer and solicited. Despite Storm
Data not aiming to collect sub-severe hail, there are also pattern similarities that raise an important
question about the sub-severe hail days. As mPING is passive, we note that it tends to miss severe
hail events by a factor of three to five in comparison to Storm Data. This leads the authors to
speculate: is mPING missing the non-severe hail events by the same ratio? If so, the count of
sub-severe hail days may be too low by a factor of at least three. Also, within mPING non-severe
hail often (but not always) accompanies severe hail observations, though there are clearly days
and places when no severe hail is reported but sub-severe hail is. In all likelihood, it is likely that
the spatial distribution here underrepresents the frequency of sub-severe hail days, yet the overall

pattern of sub-severe hail occurrence is likely well captured. Through analysis and comparison of
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the sub-severe and severe hail distributions to date using these data, we illustrate that sub-severe
hail doesn’t always mimic severe hail.

While spatial properties retain some limitations from the sampling, we can ascribe greater
confidence for the hail size eCDFs and analysis of hail report times. Both of these metrics are
less sensitive to the heterogeneity that can create problems with finding the days with hail. Hail
size pdfs indicate that slightly less that five percent of the hail that has been observed over the
eight years covered by mPING here meets severe criteria. The remaining record is sub-severe,
suggesting that greater attention needs to be paid to exploring how to represent hail days beyond
arbitrary severe hail criteria (Doswell 2001), as sub-severe hail can still be damaging to agriculture
or lead to large accumulations (Kumjian et al. 2019; Friedrich et al. 2019) that can cause dangerous
road conditions and exacerbate flash floods. The diurnal nature of hail reports unsurprisingly lead
to an afternoon peak, though clearly if the goal is to sample sub-severe hail, a broader period of

observation is necessary.

5. Concluding Remarks

Data from three sources (Storm Data, CoCoRaHS, and mPING) over the past eight years have
been used to construct a more complete climatology of hail days and characteristics over the
CONUS. Differences between these data sources have been discussed to illustrate their relative
strengths and applicability, both in combination and individually. Seasonal differences in number
of hail days and their spatial distributions have been illustrated, with a spring and summer peak
of frequency with a shift of peak from the Southeastern CONUS into the Northwestern Plains,
moreso than seen in only severe hail data. Considering sub-severe hail days (days with hail less
than 25.4 mm in diameter) and severe hail days, we have shown that there are notable differences
in the peaks of hail climatology. Severe hail days also generally record sub-severe hail somewhere,
suggesting that the two datasets are not independent. Yet, the spatial distribution of sub-severe hail
days differs markedly in some cases from severe hail days.

Considering the reasons for these different depictions, we also explore the size distribution of
observed hail through the use of CoCoRaHS, mPING and Storm Data reports. As mPING and

CoCoRaHS offer more distributionally complete representations of hail size, we present a combined
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eCDF that illustrates the utility of these data to explore the relationship of hail size at the ground
to remotely sensed characteristics.

For environmental studies, or other approaches that rely on the time of occurrence we highlighted
the distribution of hail in terms of LST. This analysis reveals differences between sub-severe and
severe hail occurrence of 30 minutes to 1 hour which is much larger than that between seasons,
suggesting that care should be taken when selecting a proximal profile if considering sub-severe
hail environments.

While this work follows on from the depiction of hail occurrence from prior studies (e.g. Kelly
et al. 1985; Schaefer et al. 2004; Doswell et al. 2005; Allen and Tippett 2015; Taszarek et al.
2020a), it provides a novel insight into the voluntarily sourced small, or sub-severe hail, which has
not been directly examined with size information in prior work outside of isolated field datasets.
This difference also means that through the use of datasets such as mPING or CoCoRaHS a
more comprehensive depiction of hail size distributions is now available to the community. As
these datasets continue to grow, this will likely provide a more comprehensive viewpoint of hail
occurrence for all sizes offering better opportunities for the validation of radar hail detection,
similar to the saturation seen in equivalent approaches in Switzerland (Barras et al. 2019).

Despite the advantages, and combination of datasets, the challenges and limitations with ob-
servational data remain. Both mPING and CoCoRaHS suffer from the same problems that afflict
all other similar observational studies: the uneven spatial distribution of observations. Changnon
(1999) pointed to the advantage of fixed station observers for deriving hail frequency which is that,
generally speaking these stations reliably identified any hail occurrence in their vicinity. To some
extent, this is somewhat less of a problem within Storm Data, particularly in more populated areas
of the country, since if no report is received in an area warned for a severe thunderstorm, the NWS
WEFOs actively probe for verifying observations. The challenge to uncovering a true climatology
is that uneven spatial observation distribution cannot be solved by a longer period of record if
observations are normalized by area or days as is done here and in other similar studies. The only
solution for this problem is to have more observations across a wider array of locations and users.
The impacts of spatial inhomogeneity are most easily seen in the difference between the spatial
distribution of Storm Data severe hail days as compared to mPING severe hail days. Usually,

Storm Data has at least 3X the number of severe hail days that mPING reports, sometimes more.
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This difference implies that as diligent as mPING observers are, small hail is probably missed at
about the same rate that large hail is missed. Thus do we suspect that there are overall probably
3X as many sub-severe hail days as seen here. While the spatial patterns of sub-severe hail days
are likely correct, the frequency remains underestimated.

To offset these limitations remotely sensed climatologies of estimated hail occurrence are now
possible (e.g. Cintineo et al. 2012; Murillo et al. 2021; Wendt and Jirak 2021). These technologies
are available over a near complete spatio-temporal range for the continent outside of the western
CONUS. However, these approaches focus strongly on the maximum expected size of hail, and
through lack of appropriate validation data, generally leave sub-severe hail as an afterthought,
despite its societal implications. Despite the efforts of projects such as SHAVE (Ortega et al. 2009;
Ortega 2018), or those in Switzerland (Barras et al. 2019) a greater volume of sub-severe hail
reports is needed to understand the best approach to characterize the total frequency of hail days,
the properties of smaller hailstones, and sub-severe hail economic impacts. The question of whether
small hail occurrence has changed over time is also a reason to maintain and expand such datasets.
For example, over both China and France there have been decreasing trends in smaller hail (Li et al.
2016; Sanchez et al. 2017), contrasting the stationary frequency or increases seen for larger hail in
the United States (Allen et al. 2015; Tang et al. 2019). With climate projections indicating strong
decreases to smaller hail, approaches are needed to monitor these events (Mahoney et al. 2012;
Brimelow et al. 2017; Trapp et al. 2019). For mPING and CoCoRAHS to develop into this level of
climatological resource likely means that the best approach into the future will be recruitment of
additional observers as well as dedicated support. As the observer density increases, fewer events

will "slip between the gaps."
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