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ABSTRACT: The occurrence and properties of hail smaller than severe thresholds (diameter < 25

mm) are poorly understood. Prior climatological hail studies have predominantly focused on large

or severe hail (diameter at least 25 mm or 1 inch). Through use of data from the Meteorological

Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative

Rain, Hail and Snow Network the occurrence and characteristics of both severe, and sub-severe

hail are explored. Spatial distributions of days with the different classes of hail are developed on an

annual and seasonal basis for the period 2013-2020. Annually, there are several hail-day maxima

that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about

28 days per year). A secondary maxima exists over the Colorado Front Range (about 26 days per

year), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24

days per year with hail), and a fourth area is centered over the corners of southwest North Carolina,

northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are

driven by sub-severe hail. While similar patterns of severe hail have been previously documented,

this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis

of the hail size distribution suggests that to capture the overall hail risk, each dataset provides a

complimentary data source.
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1. Introduction26

In the United States, hail size is divided into two classes: severe, meaning a diameter of at least27

25 mm (1") and sub-severe, meaning anything less than 25 mm diameter, but greater than the 528

mm diameter of graupel (Allen et al. 2020). These two size classes are used to define whether29

the event meets severe criteria. Prior to January 2010, the severe class was defined as hail with30

a diameter at least 19 mm (0.75 in). The overall occurrence of hail has been regularly explored31

in the United States given its substantive and rising impacts to both property and agriculture,32

however, how frequently smaller hail sizes occur has received less attention (Changnon 1999;33

Sander et al. 2013; Brown et al. 2015; Tang et al. 2019; Allen et al. 2020). Inferring the occurrence34

of hail is challenging owing to the spatial and temporal inhomogeneities that arise from typical35

observer-sourced datasets used to validate severe thunderstorm warnings (i.e. SPC Storm Data;36

Kelly et al. 1985; Schaefer et al. 2004; Doswell et al. 2005; Allen and Tippett 2015; Allen et al.37

2017; Taszarek et al. 2020a). The relationship of these data to warning verification (Blair et al.38

2011; Bunkers et al. 2020) means that size criteria within the dataset are mostly confined to no39

less than 19 mm (0.75 in) for hail and so sizes smaller that 19 mm are poorly represented. Smaller40

sizes are occasionally included if they are associated with severe wind, or a tornado. As noted41

by Changnon (1999), this limits the utility of these data in describing the true hail frequency, or42

the full distribution of hail sizes that occur. Only about the last two decades contain reliable hail43

data (Allen and Tippett 2015) meaning that prior to the 1990, these data are rarely used because44

they lacked the necessary consistency to ascertain the true frequency of hail of any size in the45

United States (Changnon 1999). Instead, prior studies relied either on station-based observations46

(Changnon 1977; Changnon Jr 1977; Changnon and Changnon 1997, 2000; Changnon et al. 2001,47

2009), hailpads, or agricultural damage data to infer these events. While these past datasets for the48

most part still exist for assessment of hail occurrence, station-based observations have only had49

size information for brief periods and formal observations were terminated in the 1990s. Hailpad50

records have generally been inconsistent in their maintenance or heavily regionalized (e.g. Reges51

et al. 2016), seriously limiting any climatological utility.52

The limitations of Storm Data have spurred newer approaches that are more dynamic and53

widespread to collect precipitation data including hail. For example, the CoCoRAHS observation54

network collects more detailed hail information through either hail pads or spotter observations and55
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includes each of the smallest, average and largest size of hail along with other properties (Reges56

et al. 2016). Other high density observation collection efforts include the Severe Hazards and57

Analysis and Verification Experiment (SHAVE, Ortega et al. 2009; Ortega 2018), which actively58

probed areas around strong storms in near-real time to obtain observations to verify temporal and59

spatial scales of hail for the verification of radar derived hail products. While an effective approach60

to collate hail events, it was limited in coverage, and by the available personnel to make calls at61

any given time. Despite these limitations, SHAVE documented otherwise unprecedented unknown62

scales of hail fall and size on a comparatively large sample of storms. In parallel there have also63

been small scale efforts to source high density measurements in the field, and while they have also64

contributed to our understanding of hailstone and hail fall properties, their records are too sporadic65

to contribute to the climatological understanding (Blair et al. 2017; Giammanco et al. 2017).66

A more accessible and easily managed approach to collating hail information has been through67

the Meteorological Phenomena Identification Near the Ground (mPING) project that implements68

a flexible Application Program Interface on a mobile phone platform to crowdsource volunteer69

reports of precipitation events (Elmore et al. 2014). As a result of these efforts, the mPING project70

has garnered an impressively large collection of hail events in the past 8 years across the continental71

United States, ranging from 6.35 mm (0.25 in) maximum diameter through sizes in excess of 12572

mm (5 in). By approaching the problem through this platform, mPING provides valuable insight73

into the hail sizes that are not traditionally collected or sought by existing approaches. Despite74

these favorable attributes, to date data from mPING have not been used in a climatological context,75

and small hail climatology over the United States has not been explored since 2005 (Changnon76

et al. 2009).77

While a number of studies have explored the individual datasets that characterize hail occurrence78

(e.g. Changnon 1999; Doswell et al. 2005; Changnon et al. 2009; Allen and Tippett 2015; Grieser79

and Hill 2019), no effort has been made to explore a more comprehensive picture of hail occurrence80

through the synthesis of multiple observational datasets to leverage their relative strengths and81

address their weaknesses. This limitation to existing approaches has only been emphasized since82

the retirement of detailed hail reporting from station observations (Changnon 1999), leading to an83

incomplete picture of hail day occurrence for the full distribution of hail sizes. Understanding the84

climatology of all hail is important as sub-severe hail can lead to significant agricultural damage85
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(Changnon Jr 1971; Changnon and Changnon 1997), and if accumulated can result in dangerous86

road conditions and localized flash flooding (Kumjian et al. 2019; Friedrich et al. 2019). In some87

regions and seasons, these smaller hail sizes can be the primary mode of occurrence (e.g. Miller88

and Mote 2017), and can provide important insights into ice processes of strong convective clouds89

(Van Den Heever and Cotton 2004; Kacan and Lebo 2019) . The analysis of the spatial distribution90

of all hail sizes is also essential for the cross-validation of proxy hail climatologies that are derived91

through the use of remotely-sensed satellite and radar platforms (e.g. Cintineo et al. 2012; Cecil and92

Blankenship 2012; Bang and Cecil 2019; Murillo et al. 2021; Wendt and Jirak 2021). For example,93

using only SPC storm reports to validate these measurements, it is not clear whether the radar-94

derived frequencies indicated from maximum expected size of hail detections (MESH, Murillo95

et al. 2021; Wendt and Jirak 2021) were an overestimate of hail frequency, or an overestimate of96

hail sizes or perhaps a combination of both. To this end, in this paper we consider climatological97

frequency and bulk statistics of hail as ascertained from the combination of mPING, Storm Data,98

and CoCoRaHS and explore the relative strengths and weaknesses of each dataset. The aim of99

this work is to produce a comprehensive climatology of hail in the contiguous Unites States and,100

in so doing, recognize unique strengths and weaknesses of each data source and the information101

provided through their cumulative hail observations.102

2. Data and methods103

Data used in computing hail days for sub-severe and severe hail come from two sources: the Na-104

tional Oceanic and Atmospheric Administration/National Centers for Environmental Information105

(NOAA/NCEI) Storm Data publication and mPING. These two sources differ substantially in that106

Storm Data is primarily used for NWS warning and verification purposes. This means that offices107

actively probe for relevant reports in areas of suspected severe weather, and reporting in the vicinity108

of NWS offices involves a higher fraction of NWS Employee reports (Allen and Tippett 2015).109

Reports are entered as the nearest reference object identified by the user or NWS employee entering110

the report. mPING in contrast is a passive collection of voluntarily provided reports provided by111

mPING users. Unlike Storm Data, users are also provided a referential list of hail sizes at quarter112

inch intervals and associated reference objects, which may assist in mediating size clustering bias113

toward known reference objects (Allen and Tippett 2015; Blair et al. 2017). The period of record114
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for mPING considered here spans eight years from 1 Jan 2013 through 31 Dec 2020, however,115

mPING remains operational.116

The nature of mPING observations means that they are automatically located in space and117

time by GPS and are thus spatially more accurate than other sources of reports, unless a user118

moves a considerable distance from the observation or waits a long time to send the report;119

cursory examination shows no evidence of such. No quality control is performed to mPING120

hail observations, outside of truly erroneous submissions, though no systematic biases that would121

influence the study results are present to the authors’ knowledge. Storm Data does not enjoy such122

precision and while Storm Data errors have been well documented (e.g. Witt et al. 1998) here we123

take several steps to address these potential sources of error on the derived climatology. One area124

that cannot be remedied is the serious bias in hail size reports as sub-severe hail is not generally125

recorded except in cases where it may be in association with another type of significant weather126

(winds, tornadoes, etc.). In contrast, mPING encourages reports of sub-severe hail and so is the127

only available data source for a more general all hail climatology. Both sources suffer from a128

spatial bias in that reports are naturally more numerous in and around population centers and road129

networks (Allen and Tippett 2015). Without care, this can lead to misleading conclusions related130

to the association of high frequency hail with high population density.131

To illustrate these potential biases in the two datasets and the distinct difference in the raw135

frequency of reports, we consider both sub-severe (Figs. 1a,b) and severe (Figs. 2a,b) point clouds136

from Storm Data and mPING, respectively. In both figures, areas of higher report density are137

clearly associated with cities and metropolitan areas in hail prone regions. Such density variations138

are non-physical artifacts and therefore must be removed to the extent possible.139

One approach to diminishing these population derived artifacts is through an analysis procedure142

that diffuses, filters, or "spreads out" this dependence over an appropriate area, an approach that143

has been used in numerous studies (e.g. Brooks et al. 2003; Gensini et al. 2020). Approaches such144

as Schaefer et al. (2004) treat this by aggregating (binning) Storm Data severe hail reports into 2145

degree squares, averaging across the squares, then normalizing the results to reports per decade146

per 34,300 𝑘𝑚2 (10,000 𝑛𝑚𝑖2). Hexagonal binning (Carr et al. 1992) is another way to deal with147

this effect that has advantages over rectangular binning and therefore is the approach used here.148

Chiefly, hexagons are the most complex polygon that can be tessellated over a surface, and are149
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Fig. 1. a) Point cloud showing Storm Data reports of sub-severe hail spanning the period 1 Jan 2013 through

31 Dec 2020; each point represents the location of a single Storm Data report. b) Same as Fig. 1a, but showing

sub-severe reports from mPING. .

132

133

134

more similar to circles than are squares. Thus, hexagons and hexagonal binning constitute the most150

efficient and compact division of 2D data space. This property helps reduce the edge and border151

effects inherent in rectangular binning procedures.152

For this work, a grid of 23 x 23 hexagons are distributed over the CONUS, providing for 529155

center points. From this set, not all hexagons have hail observations as illustrated in Fig. 3. We156

experimented with the maximum number of hexagons, and found that the aforementioned grid157

provided was the highest resolution that could be used before population centers began to clearly158
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Fig. 2. a) Point cloud showing Storm Data reports of severe, as in Fig. 1a. b) As for Fig 2a, but for mPING

reports of severe hail.

140

141

influence results. Each hexagon includes an area of about 32,600 𝑘𝑚2 (roughly equivalent to a159

100 km radius circle). This area reflects a similar scale to that of Schaefer et al. (2004), thereby160

allowing for more direct comparison despite the different gridding approach.161

To calculate the number of days with hail, reports from either dataset are binned within each162

hexagon; each day is counted only once. This step is critical to ensure that if there are many reports163

within a hexagon for a given date, that day is counted only once. Because the period of record164

covers eight years, the total number of days is divided by a factor of eight to yield the average165

number of hail days per year.166
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Fig. 3. Points showing the center of hexagonal cells that contain reports from either Storm data or mPING

over the period 1 Jan 2013 through 31 Dec 2002.

153

154

To smooth the results from the original hexagonal grid, a local, quadratic least squares surface167

is fit to the resulting grid of counts as an additional smoothing step (LOESS Cleveland 1979;168

Cleveland and Devlin 1988). The resulting fit is applied to a finer grid for plotting purposes, and169

then used as the basis for contours of days per year of sub-severe hail, severe hail, or any hail.170

Storm Data timestamps have known inaccuracies and tend to be biased late (after the event),171

yet Storm Data report time errors seldom exceed 1 hour (Witt et al. 1998). Provided that mPING172

users submit reports during or very shortly after an event, mPING reports have reduced time errors173

relative to Storm Data. Times from both source datasets are used to generate distributions of event174

times, in local solar time (LST), to evaluate the most common time of day for hail events and175

to discern whether any difference exists between times by season or hail size. Occurrence time176

distributions are then estimated using kernel density estimates computed at 201 points each using a177

Gaussian weighting 12.7 mm wide (0.5 in) truncated at four standard devaitions (KDEs, Silverman178

1998).179

Finally, a third data source reflecting the next largest available dataset was also considered, the180

Community Collaborative Rain, Hail and Snow Network (CoCoRaHS Reges et al. 2016). As181

time information from CoCoRaHS is unreliable and difficult to ascertain, we instead focus on182

its application for understanding hail size distributions. We use CoCoRaHS to help generate183

distributions of hail size and estimate the proportions of sub-severe and severe or larger hail.184

9



For this application the use of both CoCoRaHS and mPING allows for a more comprehensive185

viewpoint of sub-severe hail, as Storm Data does not provide sufficient data of this type. The186

resulting distributions are created through empirical cumulative density functions (eCDFs).187

3. Results188

a. Sub-severe and Severe Hail Frequency189

Here we compare and contrast both the common and complimentary qualities of Storm Data and190

mPING for severe and sub-severe hail days. Unsurprisingly, there is a much larger fraction of sub-191

severe reports within mPING, and severe or greater reports in Storm Data (Figs. 1, 2), suggesting192

that these two datasets are likely complementary by providing insight into different sizes of hail,193

rather than one being notionally superior to the other. Following gridding and smoothing to the194

annual average number of hail days of any size, Fig. 4 shows an estimate of the average total195

number of days with any hail across the CONUS as estimated using Storm Data (red) and mPING196

(blue). This approach further illustrates the differences between the two datasets because any hail197

frequency illustrates regions where hail less than an arbitrary size threshold often occurs. This is198

particularly evident over the western U.S. where larger hail sizes are comparatively rare (Schaefer199

et al. 2004; Allen and Tippett 2015). Higher frequencies are particularly evident outside of the200

typical Great Plains severe hail maxima, with higher frequency on and near the foothills of the201

Rocky Mountains, over the Midwest and East. Combining the two datasets however, provides a202

complementary picture of the total number of hail days. We expect that the values in Fig. 4b203

provide the most accurate representation of average yearly hail days across the CONUS. These204

values are more broadly consistent than long term hail data records based on station data, though205

with some differences, including slightly higher frequencies reflecting the broader spatial sampling206

(Changnon and Changnon 2000). For example, Changnon and Changnon (2000) reported a hail day207

frequency of 21 for Denver, CO, and Dodge City, KS, with a gradient through eastern KS. However,208

over regions with more sparse population, the reliability of observation stations overshadows this209

benefit. It is important to note that these sources are not exclusive or independent: a day that counts210

as a sub-severe hail day may also count as a severe hail day and vice versa. This explains why Fig.211

4b is not simply the simple sum of occurrences within Storm Data and mPING.212
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a) Storm Data and mPING Hail Days 2013-2020

b) Combined Storm Data and mPING Hail Days 2013-2020

Fig. 4. a) Contours of the average number of hail days per year for hail of any size from Storm Data (red) and

mPING (blue). b) As for a) but for combined Storm Data and mPING reports.

213

214

Spatially, the overall patterns are similar to Schaefer et al. (2004), however, we note that study215

provides contours in number of reports per 10 years and thus the results are not directly comparable.216

The overall frequency of that study also depicts a maximum number of reports to be nearly 60 per217

year for hail exceeding 0.75 in. This number is well in excess of the nearly 30 per year for any hail218

size shown in Fig. 4b, reflecting the difference obtained if an approach uses hail days rather than219

hail reports (Doswell et al. 2005; Allen and Tippett 2015). For this reason, in this work any single220

day that receives n>1 reports still counts as a single day within a hexagonal bin.221
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a) Storm Data and mPING Sub-Severe Hail Days 2013-2020

b) Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020

1

1

1

1

12
22

2

5

5

5

1

1

1

1

1

1

1

1 1 1

1

1
1

1

1
2

2 2

2

2

2

2

2

2

5

5
5

10

10

15
15

15

20

20

1

1

1

1

1
1

1 1
1

1

1

1

1

2

2

2

2

2

2

2

2

2

5

5

5

5
10

15 15

15
20

20
2

Fig. 5. a) Contours of the average number of hail days per year for hail of sub-severe size from Storm Data

(red) and mPING (blue). b) As in Figure 5a, but for combined reports from both Storm Data and mPING.

222

223

Sub-dividing these reports into mean sub-severe days per year only, the differences between the224

two datasets are further emphasized (Figs. 5a and b). Storm Data shows two maxima, one of 6-7225

days per year across NW KS and another near Charlotte, NC. However, this is clearly an under-226

representation of the true frequency, as mPING shows what is almost certainly a more accurate227

depiction of sub-severe hail days because mPING is not, by design, biased towards severe hail.228

The most significant differences are in regions outside the traditional ’hail belt’, with maxima in229

the Colorado Front Range, central OK, and also an E-W region encompassing parts of the lower230
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midwest, as well as KY, NC, SC, GA and northeast AL. Curiously, the frequency of mPING reports231

also introduce spatial inhomogeneities, for example Storm Data reports are more likely across the232

California seaboard as compared to those from mPING. In combining the two datasets (Fig. 5b),233

these reports show a pattern with clear maxima (24 days) over central OK, a NE-SW band from234

S WI into N OH touching the S tip of Lake Michigan (18-24 days), a clear separate maximum235

along the front range of the Rocky mountains extending into E CO (16 days), and finally a fourth236

maximum encompassing E KY, the SW corner of NC, the NW corner of SC, N AL and N MS237

(14-16 days). The maximum in C OK is part of a general ridge of high sub-severe hail frequency238

that extends into the Great Lakes region.239

The patterns for severe hail (Figs. 6a and b) are decidedly different from sub-severe hail, and240

while spatially consistent are higher in frequency than the hail day rate reported using Storm241

Data alone (Allen and Tippett 2015), likely reflecting continual growth in hail reporting frequency.242

Storm Data shows a maximum of 20 days at the junction of NE-KS-CO, along with a broader region243

of active severe hail days extending into W NC. mPING doesn’t record as many severe weather244

days, particularly outside of the traditional region for large hail east of the Rocky Mountains, with245

a maximum of only 6 days over central OK and a ridge of activity extending into the Great Lakes246

region, a broad E-W region over N CO with a weak max roughly over Denver, CO, then a ridge247

centered roughly over the Appalachians. Through the merger of both sources (Fig. 6b), a more248

complete picture develops again highlighting their complementary nature. The 20 day maximum249

over the NE-KS-CO intersection expands, with a clear ridge of frequency extending SE into W250

OK and the E TX Panhandle. The ridge of severe hail days remains over the Appalachians but251

likely has a true frequency closer to 8-10 days per year. These patterns are reminiscent of prior252

climatologies of hail day frequency (Doswell et al. 2005; Allen and Tippett 2015), however also253

illustrate further regional detail and local maxima.254

It is well established that hail displays a strong seasonal cycle with regional variation perhaps255

even more so than tornado frequency (Changnon Jr 1977; Doswell et al. 2005; Changnon et al.256

2009; Allen and Tippett 2015; Taszarek et al. 2020a). To explore these distributions in terms of257

both sub-severe and severe hail, we explore these characteristics using the seasons as defined from258

the National Centers for Environmental Prediction, spring (March, April, May), summer (June,259
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a) Storm Data and mPING Severe Hail Days 2013-2020

b) Combined Storm Data and mPING Severe Hail Days 2013-2020
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Fig. 6. a) As in Fig. 5a, but for severe hail. b) As in Fig. 5b, but for severe hail.

July and August), fall (September, October, November) and winter (December, January, February),260

hereafter MAM, JJA, SON and DJF respectively.261

Springtime yields the highest frequency for both sub-severe and severe hail over the central266

Plains (Fig. 7). This broadly consistent with station-based estimates in earlier climatologys267

(Changnon et al. 2009). Storm Data in contrast produces only about three days of sub-severe hail268

during an average spring (Fig. 7a), in a rough ellipse extending from NE TX across E OK, into269

SW MO including the SE corner of KS. Because of Storm Data constraints and aforementioned270

properties this undercount is expected. The mPING average number of spring sub-severe hail days271
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a) MAM Storm Data and mPING Sub-Severe Hail Days 2013-2020

c) MAM Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020
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d) MAM Combined Storm Data and mPING Severe Hail Days 2013-2020

Fig. 7. a) Contours of spring (March, April, May) average number of sub-severe hail days from Storm Data

(red) and mPING (blue). b) As for a), but for the spring average number of severe hail days. c) Contours spring

average number of sub-severe hail days in spring from both Storm Data and mPING combined. d) As for c), but

for the spring average number of severe hail days.
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264

265

capture generally the same spatial pattern for the highest values, but the number of days increase272

substantially. Higher frequencies also more broadly extend into the Midwest, and minimum273

contours are more expansive than those of Storm Data. Merging the two sources (Fig. 7c) the274

pattern is driven primarily by mPING observations. This yields a maximum of 13 days of sub-275

severe hail observations situated over E central OK, extending up into the Great Lakes region then276

eastward into S New England. There is another maximum (6 days) nestled into the Denver area.277

For severe hail (Fig. 8c,b), Storm Data days are again more numerous that mPING observations.278

Here we see maximum average number of days ( 9 days) shifted slightly to the west and south279

from the sub-severe days, which is instead centered in southwest OK. A weak ridge of activity280

extends to the north and east, following roughly the same pattern as for sub-severe hail, but much281

attenuated. mPING severe hail days are remarkably similar to Storm Data observations, but with282

fewer observations outside of the traditional hail belt of TX-OK-KS-NE-MO. A non-meteorological283
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a) Combined MAM Any Hail Days 2013-2020

c) Combined SON Any Hail Days 2013-2020
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d) Combined DJF Any Hail Days 2013-2020
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Fig. 8. a) Contours of the spring average number of days with any hail regardless of size from Storm Data and

mPING combined regardless of hail size. b) As for a), except for the summer months (June, July, August). c) As

for a), except for the fall months (September, October, November), d) As for a), except for the winter (December,

January, February).
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289

290

291

explanation for this focus may be a function of project familiarity in and around the central OK284

area. Finally, merging the two sources (Fig. 7d) the overall pattern is driven by the the larger data285

source in Storm Data. The ridge of enhanced activity clearly delineates the expected ”hail alley”,286

along with a broad region of higher frequency extending to the Atlantic coast.287

In the summer, sub-severe hail shifts northwards with a broad axis extending from the Rocky292

Mountains through the Midwest (Fig. 8a). Higher frequencies also extend into the southeastern293

United States, reflecting weakly forced pulse storms during the summer in this region (Miller and294

Mote 2017). Storm Data generally undercounts sub-severe hail days and the pattern is significantly295

different from spring, while mPING sub-severe hail days provide a more coherent depiction. The296

maximum of eight days is found in the Denver/Ft. Collins, CO area, an extended area of six to297

seven days from E MN, through the Chicago, IL, area and then through PA. Again, by merging the298

two data sources (Fig. 8c), we see a more complete picture, with a weak maximum remaining in299
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a) JJA Storm Data and mPING Sub-Severe Hail Days 2013-2020

c) JJA Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020

b) JJA Storm Data and mPING MAM Severe Hail Days 2013-2020

d) JJA Combined Storm Data and mPING Severe Hail Days 2013-2020
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Fig. 9. a) Contours of the yearly average number of sub-severe hail days in summer from Storm Data (red)

and mPING (blue). b) As for a), but for severe hail. c) Contours of the yearly average number of sub-severe hail

days in summer from both Storm Data and mPING combined. d) As for b) but for severe hail.
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309

C OK, the orographically driven maximum over the Denver area extending into E CO is clearly300

evident, as is a band of hail activity from eastern Minnesota through the lower Great Lakes and301

into New England, and a separate maxima is found over the southeast. When only Storm Data302

severe hail is considered (Fig. 8b), the maximum frequency is clearly centered over NE CO and303

extends north into western SD, with a broad band of high frequency across the Midwest into the304

mid-Atlantic. Combining the two datasets results in a broader range of higher frequency severe305

hail, extending into the northeast (Fig. 8d).306

To better illustrate the seasonal progression of occurrence Fig. 9 shows the total hail days,310

regardless of size, across the seasons from both sources. The average number of winter days with311

any hail is as would be expected low given limited instability (Fig. 9d). A broad maximum during312

this season is found over E TX, SE OK, AR, N LA, and S MO. This hints at the maximum in313

severe weather frequency over the southeast CONUS. Also, on average at least one day of hail314

occurs along the west Coast, with two days on average in W WA. Frequency rapidly increases into315
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Fig. 10. Contours of the yearly average number days with severe hail for monthly snapshots to illustrate the

seasonal cycle in March (purple), May (red) and July (blue).

328

329

the spring months, with a strong Great Plains signal that extends into the Denver, CO area. Spring316

however is early in the hail season for many areas closer to the mountains and through the midwest317

and northeast. During summer maximum surface heating along with convection reach their peak.318

Two very distinct maxima are identified during the summer for any hail day: one over the Denver319

area (likely associated with topographic forcing, the "Denver cyclone"(Wilczak and Glendening320

1988) and the southwest monsoon), and a second maximum over the W NC. The belt of seven to321

eight days of hail extending from E MN around the Great Lakes through PA becomes more diffuse,322

but is still evident. Fall sees waning frequency and a lower overall number of days with hail (Fig.323

9c). Only three days of hail of any size occur and these days all contain a mix of sub-severe and324

severe hail. On average a broad area of two severe hail days is centered on the KS-NE border (not325

shown). The main area of hail activity extends from central OK into IA, then eastern MN, curving326

around the Great Lakes into far western PA.327

Another viewpoint for the seasonal cycle is to consider monthly snapshots through its progression,330

from March through to May and July (Fig. 10). In March a broad area of severe hail overlays the331

southeastern CONUS, evidence of the southeastern maximum in severe weather frequency. The332

number of average severe hail days for May increases, displaying a clear maximum over western333

OK and the eastern TX panhandle. By July, the frequency maxima extends over the NE panhandle.334
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As has been shown in prior research, the area of peak severe weather progresses west and north335

from March through July.336

b. Hail Size Distribution337

Given the distinct differences in the number of sub-severe and severe hail reports between the338

datasets, a broader examination of the hail size distribution may reveal how these datasets capture339

the distribution of hail sizes from all reported instances. All reported hail sizes are rounded to the340

nearest 6.35 mm (0.25"), and a kernel density estimate (KDE) across 201 points using a Gaussian341

weight 12.7 mm (0.5") wide truncated at four standard deviations of the hail size probability density342

function estimated. For completeness, the approach here also considers the hail size distribution for343

the same temporal period (2013-2020) from CoCoRaHS maximum size (when available) reports344

in comparison to the other two datasets. We choose the maximum size because we suspect that345

mPING reports also are based on the maximum size observed. Fig. 11 displays the hail size346

pdfs from all three sources; the missing small sizes are readily apparent in Storm Data. This347

problematic size distribution has been discussed in prior literature (Allen and Tippett 2015; Allen348

et al. 2017), with the added influence of clear discontinuites in the pdf associated with the minimum349

size threshold (0.75 inch), but also the common reference objects used (25.4mm or 1 in, 45mm, or350

1.75 in Golf Ball, 70mm or 2.75 in Baseball). In comparison, both CoCoRAHS and mPING show351

a more continuous distribution that includes the smaller sizes, reflecting a more even weighting of352

frequency toward these categories. Owing to the challenges of Storm Data for understanding the353

characteristic hail size pdf, we consider a combined pdf of CoCoRaHS and mPING size data (Fig.354

11). Contrasting the Storm Data pdf, sizes less than 25.4 mm (1 inch) comprise nearly 95 percent355

of all the 95,009 hail reports (15,169 from CoCoRahs and 79,840 from mPING). This suggests that356

the use of mPING and CoCoRaHS data combined is a realistic approach to offset the size biases357

inherent in Storm Data, and these datasets now constitute a record to better explore the occurrence358

of sub-severe hail and complement the larger sample size of Storm Data. We do however note359

that CoCoRaHS data may be biased small, as it allows reporting of much smaller sizes leading360

to differences in the eCDF which imply preferred sizes reported within CoCORaHS that do not361

appear in mPING. It is also likely that to some extent mPING data may be biased large because the362
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Fig. 11. a) KDE pdfs of hail size for Storm Data (red), mPING (blue) and CoCoRaHS (purple). b) KDE pdfs

using combined mPING and CoCoRaHS data.

365

366

hail size is estimated rather than measured, and the maximum reporting size of 127mm (5 in) may363

influence the overall pdf.364

c. Occurrence Times367

A final climatological aspect of interest is the relative time of occurrence (Fig. 12 a). Trans-368

forming hail occurrence time of any size across the respective seasons to LST and applying a KDE,369

allows exploration of how the temporal structure of hail occurrence varies. We note here that Storm370

Data occurrence times may on rare occasions be biased late due to observer bias, if the occurrence371
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time is estimated, and possibly by errors in recording the observation time itself, e.g., recording the372

submission time rather than the observation time. Even so such errors are rare enough that they do373

not affect the occurrence time distributions citeportega2021, wendt2021hourly. All seasons show374

peaks in the late afternoon with relatively slight variations (all times LST): spring at 1630, summer375

at 1615, fall at 1615, and winter at 1600. These times bracket the peak convective periods that376

usually follow daytime heating. Variations away from these peaks and spreading of the times away377

from these peaks may indicate additional effects due to synoptic-scale dynamic processes, a signal378

highlighted by the higher relative frequencies outside of this peak in winter.379
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Fig. 12. a) Report/occurrence time in LST of Storm Data and mPING hail events for spring (blue), summer

(red), fall (cyan), and winter (magenta). b) Kernel density estimates of report/occurrence times for Storm Data

and mPING spring severe hail (red) and sub-severe hail (blue). c) Same as b), but for summer severe (red) and

sub-severe (blue).
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Seasonally, there are small but discernible differences between the peak times for sub-severe384

and severe hail (Fig. 12). Two characteristics stand out: the sub-severe peak is at 1630 while the385

severe peak is on average later in the day at 1645, and the sub-severe peak is more broad than the386

severe peak is. This is physically consistent as severe hail comes from more energetic convection387

that likely occurs later in the day possibly in response to greater diabatic heating and the capping388

inversion’s delay of convection (Jewell and Brimelow 2009; Allen et al. 2020; Johnson and Sugden389

2014; Taszarek et al. 2020b). Sub-severe hail report times are more spread out, possibly indicating390

that while the convection is strong enough to produce hail, these storms reflect a greater fraction391

of weakly forced or pulse storms (Miller and Mote 2017), or time frames when convection has392

weaker vertical updrafts, both earlier in the day and after the nocturnal transition. Differences393

in the summer are similar: peak report time for sub-severe hail is 1600 while peak report time394

for severe hail is 1630. The difference is more pronounced and likely reflects the contribution of395

orographic initiation of thunderstorms earlier in the day, or regions where or pulse thunderstorms396

are more common but still indicates that the severe reports come later in the day. This also implies397

that generally speaking sub-severe hail is generated on the periphery of severe convection or to its398

exclusion.399

4. Discussion400

The exploration of datasets here illustrates that one hail dataset is not superior to another, but401

rather they approach the characterization of hail occurrence from alternative perspectives and402

different purposes. In this way, we suggest that the data comprising Storm Data and mPING403

are complimentary in nature. Through playing to these dataset’s relative strengths, we are able404

to capture a more holistic picture of the hail hazard, similar to the opportunities afforded by405

station reported records (Changnon and Changnon 2000). By its very design and implementation,406

Storm Data is clearly the better dataset if the goal is to capture severe hail days. While mPING407

data expands somewhat on severe hail day numbers, it’s primary strength is that it provides a more408

detailed depiction of smaller, sub-severe hail sizes that Storm Data is not designed to capture.Storm409

Data is clearly the better dataset if the goal is to capture severe hail days, while mPING data expands410

on severe hail day numbers, but also provides a more detailed depiction of smaller sub-severe hail411

sizes. There are other advantages and disadvantages to the respective datasets as well. mPING412
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reflects a true volunteer and passive collection dataset, capturing whatever observers report. In413

contrast, Storm Data is biased because in addition to such voluntary reports, the NWS Weather414

Forecast Offices (WFOs) actively search for severe hail reports (as well as other events) as an415

approach to verify severe weather warnings (Blair et al. 2011; Bunkers et al. 2020). This can lead416

to an undersampling bias, or a bias toward the larger hail size as the NWS doesn’t continue probing417

once a warning has been verified (Ortega et al. 2009). Similar to Allen and Tippett (2015), by418

approaching hail days rather than reports or individual hail events the results presented here are419

largely unaffected by this characteristic. Curiously, despite relatively widespread coverage mPING420

severe hail data appears to be a sub-sample of Storm Data. It is true that Storm Data may record421

sub-severe hail events, but usually this is as an adjunct to some other significant weather event, and422

since the change of severe criteria in 2010 to 25.4 mm (1 inch), these reports have decreased in423

frequency (Allen and Tippett 2015). Despite the differences in the total frequency of reports, it is424

clear that both sources tend to capture similar patterns.425

While hail, even severe hail, has a relatively common rate of occurrence across the United States426

it is not commonly observed because of its temporal and spatial heterogeneity and the need to have427

an observer present (Allen and Tippett 2015). There is no reason to suspect that mPING observers428

are censoring observations of severe hail, especially since both mPING and Storm Data tend to429

capture similar spatial patterns, though mPING captures fewer days of severe hail. The likely430

explanation for this disparity is that the density of mPING observers is not as widespread or as431

high as the potential sources of reports for Storm Data, both volunteer and solicited. Despite Storm432

Data not aiming to collect sub-severe hail, there are also pattern similarities that raise an important433

question about the sub-severe hail days. As mPING is passive, we note that it tends to miss severe434

hail events by a factor of three to five in comparison to Storm Data. This leads the authors to435

speculate: is mPING missing the non-severe hail events by the same ratio? If so, the count of436

sub-severe hail days may be too low by a factor of at least three. Also, within mPING non-severe437

hail often (but not always) accompanies severe hail observations, though there are clearly days438

and places when no severe hail is reported but sub-severe hail is. In all likelihood, it is likely that439

the spatial distribution here underrepresents the frequency of sub-severe hail days, yet the overall440

pattern of sub-severe hail occurrence is likely well captured. Through analysis and comparison of441
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the sub-severe and severe hail distributions to date using these data, we illustrate that sub-severe442

hail doesn’t always mimic severe hail.443

While spatial properties retain some limitations from the sampling, we can ascribe greater444

confidence for the hail size eCDFs and analysis of hail report times. Both of these metrics are445

less sensitive to the heterogeneity that can create problems with finding the days with hail. Hail446

size pdfs indicate that slightly less that five percent of the hail that has been observed over the447

eight years covered by mPING here meets severe criteria. The remaining record is sub-severe,448

suggesting that greater attention needs to be paid to exploring how to represent hail days beyond449

arbitrary severe hail criteria (Doswell 2001), as sub-severe hail can still be damaging to agriculture450

or lead to large accumulations (Kumjian et al. 2019; Friedrich et al. 2019) that can cause dangerous451

road conditions and exacerbate flash floods. The diurnal nature of hail reports unsurprisingly lead452

to an afternoon peak, though clearly if the goal is to sample sub-severe hail, a broader period of453

observation is necessary.454

5. Concluding Remarks455

Data from three sources (Storm Data, CoCoRaHS, and mPING) over the past eight years have456

been used to construct a more complete climatology of hail days and characteristics over the457

CONUS. Differences between these data sources have been discussed to illustrate their relative458

strengths and applicability, both in combination and individually. Seasonal differences in number459

of hail days and their spatial distributions have been illustrated, with a spring and summer peak460

of frequency with a shift of peak from the Southeastern CONUS into the Northwestern Plains,461

moreso than seen in only severe hail data. Considering sub-severe hail days (days with hail less462

than 25.4 mm in diameter) and severe hail days, we have shown that there are notable differences463

in the peaks of hail climatology. Severe hail days also generally record sub-severe hail somewhere,464

suggesting that the two datasets are not independent. Yet, the spatial distribution of sub-severe hail465

days differs markedly in some cases from severe hail days.466

Considering the reasons for these different depictions, we also explore the size distribution of467

observed hail through the use of CoCoRaHS, mPING and Storm Data reports. As mPING and468

CoCoRaHS offer more distributionally complete representations of hail size, we present a combined469
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eCDF that illustrates the utility of these data to explore the relationship of hail size at the ground470

to remotely sensed characteristics.471

For environmental studies, or other approaches that rely on the time of occurrence we highlighted472

the distribution of hail in terms of LST. This analysis reveals differences between sub-severe and473

severe hail occurrence of 30 minutes to 1 hour which is much larger than that between seasons,474

suggesting that care should be taken when selecting a proximal profile if considering sub-severe475

hail environments.476

While this work follows on from the depiction of hail occurrence from prior studies (e.g. Kelly477

et al. 1985; Schaefer et al. 2004; Doswell et al. 2005; Allen and Tippett 2015; Taszarek et al.478

2020a), it provides a novel insight into the voluntarily sourced small, or sub-severe hail, which has479

not been directly examined with size information in prior work outside of isolated field datasets.480

This difference also means that through the use of datasets such as mPING or CoCoRaHS a481

more comprehensive depiction of hail size distributions is now available to the community. As482

these datasets continue to grow, this will likely provide a more comprehensive viewpoint of hail483

occurrence for all sizes offering better opportunities for the validation of radar hail detection,484

similar to the saturation seen in equivalent approaches in Switzerland (Barras et al. 2019).485

Despite the advantages, and combination of datasets, the challenges and limitations with ob-486

servational data remain. Both mPING and CoCoRaHS suffer from the same problems that afflict487

all other similar observational studies: the uneven spatial distribution of observations. Changnon488

(1999) pointed to the advantage of fixed station observers for deriving hail frequency which is that,489

generally speaking these stations reliably identified any hail occurrence in their vicinity. To some490

extent, this is somewhat less of a problem within Storm Data, particularly in more populated areas491

of the country, since if no report is received in an area warned for a severe thunderstorm, the NWS492

WFOs actively probe for verifying observations. The challenge to uncovering a true climatology493

is that uneven spatial observation distribution cannot be solved by a longer period of record if494

observations are normalized by area or days as is done here and in other similar studies. The only495

solution for this problem is to have more observations across a wider array of locations and users.496

The impacts of spatial inhomogeneity are most easily seen in the difference between the spatial497

distribution of Storm Data severe hail days as compared to mPING severe hail days. Usually,498

Storm Data has at least 3X the number of severe hail days that mPING reports, sometimes more.499
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This difference implies that as diligent as mPING observers are, small hail is probably missed at500

about the same rate that large hail is missed. Thus do we suspect that there are overall probably501

3X as many sub-severe hail days as seen here. While the spatial patterns of sub-severe hail days502

are likely correct, the frequency remains underestimated.503

To offset these limitations remotely sensed climatologies of estimated hail occurrence are now504

possible (e.g. Cintineo et al. 2012; Murillo et al. 2021; Wendt and Jirak 2021). These technologies505

are available over a near complete spatio-temporal range for the continent outside of the western506

CONUS. However, these approaches focus strongly on the maximum expected size of hail, and507

through lack of appropriate validation data, generally leave sub-severe hail as an afterthought,508

despite its societal implications. Despite the efforts of projects such as SHAVE (Ortega et al. 2009;509

Ortega 2018), or those in Switzerland (Barras et al. 2019) a greater volume of sub-severe hail510

reports is needed to understand the best approach to characterize the total frequency of hail days,511

the properties of smaller hailstones, and sub-severe hail economic impacts. The question of whether512

small hail occurrence has changed over time is also a reason to maintain and expand such datasets.513

For example, over both China and France there have been decreasing trends in smaller hail (Li et al.514

2016; Sanchez et al. 2017), contrasting the stationary frequency or increases seen for larger hail in515

the United States (Allen et al. 2015; Tang et al. 2019). With climate projections indicating strong516

decreases to smaller hail, approaches are needed to monitor these events (Mahoney et al. 2012;517

Brimelow et al. 2017; Trapp et al. 2019). For mPING and CoCoRAHS to develop into this level of518

climatological resource likely means that the best approach into the future will be recruitment of519

additional observers as well as dedicated support. As the observer density increases, fewer events520

will "slip between the gaps."521

27



Acknowledgments. Funding was provided for K. Elmore by NOAA/Office of Oceanic522

and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement523

#NA21OAR4320204, U.S. Department of Commerce. J. Allen acknowledges funding support524

from the National Science Foundation (AGS-1945286).525

Data availability statement. Observational hail reports from the mPING data are available through526

an API request at https://mping.ou.edu/, with instructions provided for the structuring of527

requests. Storm Data reports for hail for the period can be freely obtained from the Storm528

Prediction Center https://www.spc.noaa.gov/wcm/. CoCoRaHS data are available from529

the project website and use of a web-API request https://www.cocorahs.org/ViewData/530

ListHailReports.aspx.531

References532

Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. Jurgen Punge, Q. Zhang, P. Groenemeijer,533

M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophysics, 58 (1),534

e2019RG000 665.535

Allen, J. T., and M. K. Tippett, 2015: The characteristics of united states hail reports: 1955-2014.536

E-Journal of Severe Storms Meteorology, 10 (3).537

Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017:538

An extreme value model for us hail size. Monthly Weather Review, 145 (11), 4501–4519.539

Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating US monthly540

hail occurrence to large-scale meteorological environment. J. Adv. Modelling Earth Sys., 7 (1),541

226–243.542

Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval543

and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58 (9), 1889–1904.544

Barras, H., A. Hering, A. Martynov, P.-A. Noti, U. Germann, and O. Martius, 2019: Experiences545

with >50,000 crowdsourced hail reports in Switzerland. Bull. Amer. Meteor. Soc., 100 (8),546

1429–1440.547

28



Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargen,548

2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms549

Meteorol., 6 (7).550

Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS551

warning operations. Wea. Forecasting, 32 (3), 1101–1119.552

Brimelow, J. C., W. R. Burrows, and J. M. Hanesiak, 2017: The changing hail threat over North553

America in response to anthropogenic climate change. Nature Climate Change, 7 (7), 516–522.554

Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm555

and tornado environments from global reanalysis data. Atmos. Res., 67-68, 73–94.556

Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using557

property insurance claims data. Wea. Climate Soc., 7 (3), 197–210.558

Bunkers, M. J., S. R. Fleegel, T. Grafenauer, C. J. Schultz, and P. N. Schumacher, 2020: Ob-559

servations of Hail–Wind Ratios from Convective Storm Reports across the Continental United560

States. Wea. Forecasting, 35 (2), 635–656, https://doi.org/10.1175/WAF-D-19-0136.1, URL561

https://journals.ametsoc.org/view/journals/wefo/35/2/waf-d-19-0136.1.xml.562

Carr, D. B., A. R. Olsen, and D. White, 1992: Hexagon mosaic maps for display of univariate and563

bivariate geographical data. Cartography and Geographic Information Systems, 19 (4), 228–236.564

Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as565

estimated by satellite passive microwave imagers. J. Climate, 25 (2), 687–703.566

Changnon, D., S. Changnon, and S. Changnon, 2001: A method for estimating crop losses from567

hail in uninsured periods and regions. J. Appl. Meteor. Climatol., 40 (1), 84–91.568

Changnon, D., and S. A. Changnon, 1997: Surrogate data to estimate crop-hail loss. J. Appl.569

Meteor., 36 (9), 1202–1210.570

Changnon, S. A., 1977: The climatology of hail in North America. Hail: A review of hail science571

and hail suppression, Springer, 107–133.572

Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous united573

states. Journal of Applied Meteorology, 38 (12), 1730–1739.574

29



Changnon, S. A., and D. Changnon, 2000: Long-term fluctuations in hail incidences in the united575

states. Journal of Climate, 13 (3), 658–664.576

Changnon, S. A., D. Changnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas577

about hail and its damages. ISWS Contract Report CR-2009-12.578

Changnon Jr, S. A., 1971: Hailfall characteristics related to crop damage. J. Appl. Meteor., 10 (2),579

270–274.580

Changnon Jr, S. A., 1977: The scales of hail. J. Appl. Meteor. Climatol., 16 (6), 626–648.581

Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective582

high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27 (5),583

1235–1248.584

Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scatterplots. J. American585

Stat Assoc., 74 (368), 829–836.586

Cleveland, W. S., and S. J. Devlin, 1988: Locally weighted regression: an approach to regression587

analysis by local fitting. J. American Stat Assoc., 83 (403), 596–610.588

Doswell, C. A., 2001: Severe convective storms—an overview. Severe Convective Storms, 1–26.589

Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local590

nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577–591

595, https://doi.org/10.1175/WAF866.1.592

Elmore, K. L., Z. Flamig, V. Lakshmanan, B. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz,593

2014: mping: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95 (9),594

1335–1342.595

Friedrich, K., and Coauthors, 2019: Chat: The Colorado Hail Accumulation from Thunderstorms596

project. Bull. Amer. Meteor. Soc., 100 (3), 459–471.597

Gensini, V. A., A. M. Haberlie, and P. T. Marsh, 2020: Practically perfect hindcasts of severe598

convective storms. Bull. Amer. Meteor. Soc., 101 (8), E1259–E1278.599

30



Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco, 2017: Using 3D600

laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98 (7),601

1341–1347.602

Grieser, J., and M. Hill, 2019: How to express hail intensity—modeling the hailstone size distri-603

bution. J. Appl. Meteor. Climatol., 58 (10), 2329–2345.604

Jewell, R., and J. Brimelow, 2009: Evaluation of alberta hail growth model using severe hail605

proximity soundings from the united states. Wea. Forecasting, 24, 1592–1609.606

Johnson, A. W., and K. Sugden, 2014: Evaluation of Sounding-Derived Thermodynamic and Wind-607

Related Parameters Associated with Large Hail Events. E-Journal of Severe Storms Meteorology,608

9 (5), 1–42, URL http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/137.609

Kacan, K. G., and Z. J. Lebo, 2019: Microphysical and dynamical effects of mixed-phase hydrom-610

eteors in convective storms using a bin microphysics model: Melting. Monthly Weather Review,611

147 (12), 4437–4460.612

Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe613

thunderstorm events in the united states. Monthly Weather Review, 113 (11), 1997–2014.614

Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of615

small hail. J. Appl. Meteor. Climatol., 58 (2), 341–364.616

Li, M., Q. Zhang, and F. Zhang, 2016: Hail day frequency trends and associated atmospheric617

circulation patterns over China during 1960–2012. J. Climate, 29 (19), 7027–7044.618

Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott, 2012: Changes in619

hail and flood risk in high-resolution simulations over Colorado’s mountains. Nature Climate620

Change, 2 (2), 125–131.621

Miller, P. W., and T. L. Mote, 2017: A climatology of weakly forced and pulse thunderstorms in622

the southeast United States. J. Appl. Meteor. Climatol., 56 (11), 3017–3033.623

Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using624

GridRad MESH observations. Mon. Wea. Rev., 149 (4), 945–958.625

31



Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis.626

E-Journal Sev. Storms Meteorol, 13 (1).627

Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J.628

Gourley, 2009: The severe hazards analysis and verification experiment. Bull. Amer. Meteor. Soc.,629

90 (10), 1519–1530.630

Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe, 2016: Cocorahs:631

The evolution and accomplishments of a volunteer rain gauge network. Bull. Amer. Meteor. Soc.,632

97 (10), 1831–1846.633

Sanchez, J., A. Merino, P. Melcón, E. García-Ortega, S. Fernández-González, C. Berthet, and634

J. Dessens, 2017: Are meteorological conditions favoring hail precipitation change in Southern635

Europe? Analysis of the period 1948–2015. Atmos. Res., 198, 1–10.636

Sander, J., J. Eichner, E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related US637

losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5 (4),638

317–331.639

Schaefer, J. T., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over640

the contiguous United States. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer.641

Meteor. Soc, Citeseer, Vol. 3.642

Silverman, B. W., 1998: Density estimation for statistics and data analysis. Routledge, 176 pp.643

Tang, B. H., V. A. Gensini, and C. R. Homeyer, 2019: Trends in United States large hail environ-644

ments and observations. NPJ Clim. Atmos, Sci., 2 (1), 1–7.645

Taszarek, M., J. T. Allen, P. Groenemeijer, R. Edwards, H. E. Brooks, V. Chmielewski, and S.-E.646

Enno, 2020a: Severe convective storms across Europe and the United States. Part I: Climatology647

of lightning, large hail, severe wind, and tornadoes. J. Climate, 33 (23), 10 239–10 261.648

Taszarek, M., J. T. Allen, T. Púčik, K. A. Hoogewind, and H. E. Brooks, 2020b: Severe convective649

storms across europe and the united states. part ii: Era5 environments associated with lightning,650

large hail, severe wind, and tornadoes. Journal of Climate, 33 (23), 10 263–10 286.651

32



Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in652

the United States determined through convection-permitting dynamical downscaling. J. Climate,653

32 (17), 5493–5509.654

Van Den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell655

storms. Journal of the atmospheric sciences, 61 (13), 1596–1609.656

Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed657

severe and significant hail with comparisons to Storm Data hail reports. Wea. Forecasting, 36 (2),658

645–659.659

Wilczak, J. M., and J. W. Glendening, 1988: Observations and mixed-layer modeling of a terrain-660

induced mesoscale gyre: The denver cyclone. Mon. Wea. Rev., 116, 1599–1622.661

Witt, A., M. D. Eilts, G. J. Stumpf, E. D. W. Mitchell, J. Johnson, and K. W. Thomas, 1998:662

Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting,663

13 (2), 513–518.664

33


