Electrical Power and Energy Systems 134 (2022) 107426

Contents lists available at ScienceDirect ELECTRICAL

AND ENERGY
SY:!

STEMS

International Journal of Electrical Power and Energy Systems

ELSEVIER

journal homepage: www.elsevier.com/locate/ijepes

Check for

A novel framework for hosting capacity analysis with spatio-temporal e
probabilistic voltage sensitivity analysis

Sai Munikoti ", Mohammad Abujubbeh ?, Kumarsinh Jhala ”, Balasubramaniam Natarajan

@ Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
Y CEEESA in the Energy Systems Division at Argonne National Laboratory, IL, USA

ARTICLE INFO ABSTRACT

Keywords: Smart grids are envisioned to accommodate high penetration of distributed photovoltaic (PV) generation, which
Photovoltaic (PV) may cause adverse grid impacts in terms of voltage violations. Therefore, PV Hosting capacity is being used as a
Probabilistic planning tool to determine the maximum PV installation capacity that causes the first voltage violation and
ii:;g:f above which would require infrastructure upgrades. Traditional methods of Hosting capacity analysis are sce-

nario based and computationally complex as they rely on iterative load flow algorithms that require investigating
a large number of scenarios for accurate assessment of PV impacts. Therefore, this paper presents a computa-
tionally efficient analytical approach to compute the probability distribution of voltage change due to random
behavior of randomly located multiple distributed PVs. The proposed approach is based on Spatio-temporal
probabilistic voltage sensitivity analysis that exploits both spatial and temporal uncertainties associated with
PV injections. Thereafter, the derived distribution is used to quantify voltage violations for various PV pene-
tration levels and subsequently determine the hosting capacity of the system without the need to examine large
number of scenarios. Results of the proposed framework are validated via conventional load flow based simu-
lation approach on the IEEE 37 and IEEE 123 node test systems.

Voltage Violations
Hosting capacity

1. Introduction

Power grid is undergoing significant changes to meet modern- en-
ergy demand in a more efficient manner. Integration of renewable en-
ergy sources, especially rooftop Photovoltaics (PVs) offers various
solutions, including (1) low carbon footprint; (2) reduced operational
cost; (3) ancillary services in terms of peak load shaving and voltage
restoration at critical loads during contingencies. Therefore, many
countries are aiming to meet a major portion of energy demand through
renewable energy sources. For example, by 2050, USA, China, EU and
India are projected to have 63%, 67%, 70% and 73% of their total en-
ergy use met through renewables, respectively [1]. Despite the afore-
mentioned benefits, high penetration levels of PVs may impact the grid
negatively in terms of voltage fluctuations and stability. This necessi-
tates the need for thoroughly analyzing the grid in the presence of PVs to
maximize their integration benefits. Therefore, utilities are interested in
quantifying the maximum allowable PV penetration level in the system.
In this regard, PV hosting capacity (HC) as a planning tool has attracted
the attention of many researchers and practitioners. HC refers to the
maximum amount of PV generation that can be accommodated in the
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distribution system, while keeping system operational constraints
within their safe limits, without the need for infrastructure upgrades.
A comprehensive HC analysis monitors power quality, power loss,
thermal overload, protection devices, and voltage deviation for different
PV penetration levels. With increasing PV penetration levels in distri-
bution systems, many operational issues have emerged, including
voltage violations [2,3] which directly impact the HC. Therefore, the
development of an accurate, yet computationally efficient HC analysis
framework is essential to ensure efficient, economic, and reliable oper-
ation of the distribution system. Most of the existing methods for eval-
uating HC are scenario-based and require the execution of multiple load-
flow runs for various PV allocation scenarios [4,5]. The drawbacks of
scenario-based HC studies are (1) high computational complexity, which
increases with the size of the network; (2) scenario-based and scenario-
specific results that do not provide any performance guarantee for a
more general case; and 3) very conservative results, typically based on
worse case scenarios. As voltage is the primary concern for many utili-
ties while determining the HC [6,4], voltage sensitivity analysis (VSA)
can help identify voltage violations, which in turn can be used to
compute the HC of the system. Traditional methods of VSA such as load
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e ST-PVSA involves a substantial change in the formulation compared
to [14,13] since incorporating both spatial and temporal randomness
in a three phase setting requires extensive mathematical and statis-
tical analysis for obtaining the probability distribution of voltage
change.

e The proposed ST-PVSA is employed to efficiently and accurately
determine PV HC in a significantly faster way. For e.g., three orders
faster in IEEE 123-node network relative to the existing load flow-
based approach.

The rest of the paper is organized as follows: Section 2 discusses the
typical simulation-based method for HC. Then, the probability distri-
bution of voltage change with spatio-temporal uncertainties is derived
in Section 3, followed by its validation in Section 4. In Section 5, the
distribution is used to determine the HC and validated with a load flow-
based approach, and finally, conclusions are provided in Section 6.

2. HC with simulation-based approach

This section describes a typical load flow based approach of deter-
mining the HC of the system. Here, the net power injection is increased
in steps by allocating power to PVs located at random locations of the
network. Then, load flow is executed for each penetration levels to track
the number of node voltage violations throughout the network. This
process is repeated for increasing penetration levels until the number of
violations exceeds the threshold. The corresponding power (penetration
level) is the HC for a particular PV deployment scenario. Thereafter, the
complete process is repeated multiple times to cover all possible spatial
distribution of the PV installations and the minimum capacity across all
such scenarios is the final HC of the network. The scenario based anal-
ysis presents a huge computational burden due to the requirement of
multiple load flow runs. Fig. 1 depicts the flow chart of the existing load
flow based approach of computing HC [4].

Alternatively, this paper attempts to develop a probabilistic VSA
approach that determines the HC in a computationally efficient manner.
Asmentioned in [7], a comprehensive analysis of PV distribution needs to
monitor voltage, protection, power quality and control limits. However,
voltage is the primary concern for many utilities [6,4]. So, similar to [4,5],
this paper only considers voltage limits to determine the PV HC. The first
step towards the probabilistic VSA approach for HC is to derive an
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analytical expression of voltage sensitivity due to random power change at
random locations in the network, as presented in the next section.

3. ST-PVSA for random distribution of PVs

This section details the steps involved in the derivation of the
probability distribution of voltage change at network nodes due to
random power changes at random locations of the network. Throughout
this paper, observation nodes are referred to those nodes where voltage
change is observed and actor nodes are those where power changes. The
change in complex voltage at any phase (say phase a) of observation
node O due to change in complex power at any phase of a single actor
node A is given by [14],

ASS Zoe  ASY Z%
vy vy

ASS Zg&,
ve |

AVS, ~ 1)

where, superscript a,b and c represent the three phases; this notation is
used throughout the paper. V4* and AS$ represent complex conjugate of
voltage at phase a and complex power change at actor node A, respec-
tively; Zpa denotes the impedance matrix including self and mutual line
impedance of the shared path between observation node and actor node
from the source node. The subscript A represents the actor node where
power is varying. In [14], the authors use the Eqn. (1) to derive the
distribution of voltage change. However, the distribution only in-
corporates the temporal uncertainty associated with power change,
thereby prevents its uses in hosting capacity analysis. Therefore, here,
we leverage Eqn. (1) to derive a generic probability distribution of
voltage change, considering both temporal and spatial randomness in a
three phase unbalanced network. In this regard, the complex voltage
change in (1) is decomposed into real and imaginary parts as,

AV, = AV, +jAVE,. @)

For simplicity, the voltage change expression throughout the derivation
is shown for a single phase (phase a). However, similar form and
approach is applicable to other phases as well. On expanding power
change (ASS* = AP —jAQ) and impedance (Zos = R + jX) components
in (1), the real (AV{,) and imaginary parts (AV?,‘Z) of voltage change at
phase a of the observation node O can be written as,

i

Step1: Fix number of penetration levels {2,4,...,100 %}

N4

Step 2: Compute number of PV units (N) corresponding to a
particular penetration level

N4

Step 3: Sample powers from PV distribution and allocate at N
randomly selected locations

NV

Step 4: Run load flow to compute the node voltages and monitor the
number of voltage violations

N4

Step 5: Repeat steps 2 to 4 for different PL, and stop at PL (capacity)
that causes first voltage violations

SUOIEBINWIS OlJBD-9IUOIA

AV

Minimum of capacity for all scenarios is the final hosting capacity

Fig. 1. Flowchart of Loaéi flow based HC method.
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where h e Hand u e U. The set H = {a, b, ¢} denotes different phases and
the set U = {aa, ab, ac} represents phase sequence for the corresponding
phase. AP% and AQZ are the active and reactive power changes,
respectively. R, and X%, are the resistance and reactance of shared
path between the observation node O and actor node Afrom the source
node. Vhdenotes the complex rated voltage of actor node A. The
magnitude and angle of voltage at a particular phase, say phase a, of
node A are given by | V4| and 65, respectively with reference to the slack
bus. w4 denotes the rated voltage angle of the actor node A. The detailed
steps to obtain Eq. (3) from Eq. (2) are described in the Appendix. Line
voltage of the network is always kept within permissible limits, and thus
it is reasonable to assume the phase difference of 120° between the
voltage angles of different phases with the same angle for all the node
voltages of each phase. Based on this assumption, AV%,, AVSL can be
rewritten as:

AV = {fAPgR’;fA AP, (Rzz ﬁxgﬁ) AP, (Rz; , ﬁX;';g) _A0XG,
vil vl 2 ) il 2 il
A0 <ﬁRz?A , xz,i) A, (—ﬁRz; ; xzz)}
[ViI\ 2 2 V5 2 2
(4
ave, - [CAPXG, | APL (VERG, | X5\ | APy (CVERG, | X5
[val \Z 2 2 V5 2 2
AQa Raa Rab R% \/— ng

(500 3 ()
T A T T A 7 A T

The real (4) and imaginary (5) parts of the voltage change can further be
represented in a simplified form as,

il
®)

AVE, = (22)"AS, AVY, = (24)"AS 6
ok ] [ xe ] [ A ]
Ry, V3Xg, V3RG, X5,
22 > T AP,
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where Z** and Z*! are the vectors incorporating shared path impedance
terms corresponding to real and imaginary parts of voltage change,
respectively. To represent the random variation of PV generation, the
real and reactive power change is modeled as a random variable.
Consistent with the prior efforts in modeling PV generation as a time
series with a trend component and Gaussian noise [26,27], the power
variation is assumed to be Gaussian. It is important to note that the
framework is quite general to account for any arbitrary random variable
with finite mean and variance. Therefore, the vector AS, which incor-
porate the terms corresponding to the ratio of power change and con-
stant base voltages, can be expressed as Gaussian random vector
AS ~ 1 (ppg, > ag) With i, being mean vector, and covariance matrix

> as S,

(883 Vi 8P Vi])-con (8021 0033
Vi

cov(APY/

a
Vi

A0S /| Vs

) . oy
vs

Here, the diagonal and off-diagonal elements indicate variance and
covariance among the terms that are ratio of power changes and base
voltages across different phases of actor nodes, respectively. The
impedance of the shared line between a given observation node (O) and
a random actor node can be modeled as a correlated random variable.
The mean, variance and covariance of resistance Ros and reactance Xoa
corresponding to a given observation node O can be estimated based on
actual line impedance data. In addition, let u, and u, represent the
mean of real (Z*") and imaginary (z%%) parts of impedance vector,
respectively. The average is taken over all the nodes of the network with
respect to the observation node. Similarly, >, and ), denote the
covariance matrices of Z*" and Z*!, respectively. The correlation coef-
ficient between the shared path impedances for various actor nodes is
computed based on network parameters. Particularly, the objective of
this work is to derive the probability distribution of the magnitude of
voltage change at an observation node due to random power variation of
PVs located at random nodes, which will further be used to estimate the
system HC. The probability distribution of real AV, and imaginary

components AV‘SL of the voltage change due to random spatial distri-
bution of multiple PV units can be derived using the following steps:

Step 1: Compute mean and variance of AV, and AV%, due to a single
actor node:

Using (6), the mean of the voltage change can be expressed as the
expectation of product of two terms, i.e., the shared path impedance
vector (Z*" for real and Z*' for imaginary part) and power change vector
AS. As the terms in the product are mutually independent, the expec-
tation of their product can be applied to individual terms separately
yielding the mean of real (¢,) and imaginary (y;) parts as,
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Furthermore, the variance of real and imaginary parts of the voltage
change can be computed as shown below,

Var(Avg;‘) _ E[(Z(“ '>TAS>2} - EKZ(""')TAS>]2
S

Since Z! and AS are independent, the expectation of their product can be
written in terms of product of their individual expectation as,

(8

E[Z(“"’TASASTZ“"’} —(E[z } [ASD ©

For simplicity, the equation for variance is shown for the real part of
voltage change and a similar form exists for imaginary part. Now, using
the properties of matrix trace, the variance of the real part can be
rewritten as,

E[Tr(Z,ZTASAST)] — (uyphss)’ = Tr(E[Z,ZT)E[ASAST]) — (upttas)

=Tr |: (ﬂzrﬂgr + Z) <.MA§:MAS >:| .”7'”As
7
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Now, the term Tr(uy phuasu’ls) is rearranged to (i ju,s)?, that cancels
the last term of (10). After applying trace operator, the variance of real
part can be expressed as,

Zﬂz’ + MASZMAS +Tr (Zz> an

7z AS

Following the same steps from Egs. (9)-(11), the variance of imaginary
part of voltage change can be written as,

Z”Z‘ + ﬂAsZ#As +Tr (ZZ) 12)

Zi AS

Step 2: Compute covariance between real AVg, and imaginary AV,
parts of voltage change:

The covariance between the real and imaginary parts of voltage
change can be expressed as:
Cov(AVG), AVG,) = E(AVGIAVEG,) — E(AVE,)E(AVG))

—E[ 29" A8, 2D ASA]

Z@n" AS and Z@)" AS are expanded using Eqn. (4) and (5) to express
covariance as the expectation of following term,

a T 2 r (4
[v4] [V4 2 2 V5 2 2 a3
{AP’ (—x%)4 AP, (ﬁR;’; J‘ Xg,’;) ( V3R%, ‘\ X‘;,g;)
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VA ) AGL(RGL VIXGY) A0 (R, V3G,
va|OY VAL 2 2 vy 2 2
Terms inside the expectation operator are cross multiplied as,
1o
Ppe n“
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}p p”‘ 3 (04343 — 0.5 gus iy — 0.4342%0 )+
A
Py
}V'; ‘25; (= 0.4343. — 0.5ppacyee + 0431050 )+
P
}V{Z ‘2 Lzlh ( 0. 43ﬂRuh + 0.5z pixar + 0. 43/4)(“»)
14
Pye
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Ppage
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where, p and pg: denote the correlation coefficients of active power
and reactive power change among the same phase of different actor
nodes with h representing the corresponding phase term (h = {a,b,c}),
respectively. Pprgt denotes the correlation coefficient between the active
and reactive power within the same phase. Similarly, (7;,, and (72,, depict
the variance of active power and reactive power change, respectively.
For random impedance part, yize and uy denote the mean of shared path
resistance and reactance between all the nodes and a certain observation
node, respectively, with k representing the corresponding self/mutual
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impedance terms (k = aa,ab,ac,ba,bb,bc,ca,cb,cc). It is important to note
that all the defined parameters with respect to power change are user
defined and usually set based on historical data, whereas, the parame-
ters corresponding to shared path impedance are computed based on the
network specifications.

Step 3: Compute covariance between AVSY) and AVEY:

The covariance between the real component of complex voltage
change caused by two different PVs located at actor nodes A1 and A2 can
be calculated as:
Cov(AVGa1, AVGy,) E(AV?;LAV?)I\Z) E(AVG)E(AVG,)

15
E[ " NS GZY ASa (15)

Var

N
AV‘&':| =0 = Varz (Z/(f'r)TAS>

1<J

Var AV”'

1<J

Using Eq. (4), Z@)" AS can be expanded for both the actor nodes in the
following way,

APL( e\ L APL(RG  V3XGI) AP (R  V3XG
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+

V3RS X5\,
2 2

(16)

For simplicity, actor nodes A1 and A2 are denoted by subscript 1 and 2,
respectively. Like (14), the terms inside the expectation operator is cross
multiplied to express covariance,

Py Py
b+ LR
A
%a;,, (0.25022, — 086150 tyr + 0.75¢%0) +
A
pp’
v 2 02 (0.251% + 0.86pgacpixee + 0. 7503 ) +
|p ‘;”lzajh (075420 + 086t i + 0.252) +
A
p a7)
o 07 (0.75p 5 — 0.86pguc piyae + 0.25450 ) —
Paga
{‘”/ 60O g (2 g gen ) —
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| Oph Ogh (0 86MR(1h Mgab Hyab — 0.86}4)(/,/;)4‘
A
pP‘ 2 2
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The correlation coefficients and variances are same as defined in Eq.
(14). Now, following the same steps from (15)-(17), yields

= NVar (Z(‘”)TAS> + ZZCOV (AVZ’;,
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corresponding covariance for the imaginary part of voltage change.

Step 4: Compute mean and variance of AV%, and AV%, due to randomly
distributed multiple actor nodes:

The mean value of real and imaginary parts of voltage change due to
randomly distributed multiple actor nodes are:

|:AVZV:| =W = EZ AVGy = Nitgrpias
a=1

N (18)
=H= EZ AV, = Niizi fas

AVY

Further, the variance of real and imaginary parts of the net voltage
change can be expressed as,

A%ﬁ

19

N -
=or=Vary <z£;"")’ AS) = NVar <z<”-">’AS> +2) Cov <Avﬁ,~;‘, AV’;})

Now, by invoking Lindeberg-Feller central limit theorem, it can be
shown that the real and imaginary parts of voltage change follow non
zero mean Gaussian distribution with mean and variance as stated in
Egs. (18) and (19), respectively. As the square of non zero mean
Gaussian variable follows non-central chi-square distribution [28], the
distribution of the squared magnitude of AV is the sum of dependent
non-central chi-square variables.

AVl ~ ot (i) + o (12) 20)

where 62 and u? are the weight and non centrality parameters of non
central chi square distribution with one degree of freedom correspond-
ing to both real and imaginary parts of the voltage change. The sum of
weighted non-central chi-square distributions can then be approximated
with a scaled non-central chi-square with weight 1, non-centrality
parameter w, and v degrees of freedom as shown below [28]:

2(w), @1)
_ oy (1+2) + 07 (1 +2417)
B or(1+242) + 07 (14 247)

_ (fffﬂf+ﬂfﬂ?)( + 0} + 20747 + 20047
N o) + 0} +20}4] + 2004

_(a+a)(o

(22)
} 0} + 20,47 + 20747
o; +0; +2(a}u;) +2(ojk;)

Since the square root of a non-central chi-square random variables fol-
lows a Rician distribution [28], the magnitude of voltage change will
follow a Rician distribution:

|AVY| ~ Rician(k, o) (23)

where k = /w and ¢ = v/2. The magnitudes of voltage changes for other
phases follow a similar expression with the respective phase values. If
the power variation is assumed to follow a zero-mean Gaussian distri-
bution, which is a typical assumption used in many prior works [26,27],
U, vanishes from the mean (Egs. (7)) and variance (Eqgs. (11) and (12))
equations of voltage change. This eventually leads to zero value for .,
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and ;. Again, by invoking Lindeberg-Feller central limit theorem, one
can show that the real and imaginary parts of the voltage change follow
zero-mean normal distributions as,

NGO <0, af) . avy Ly (0, af) (24)

The square of the magnitude of voltage change follows a gamma dis-
tribution [29], and subsequently, the magnitude of voltage change fol-
lows a Nakagami distribution [30],

[AVE] ~ Nakagami(m, w), (25)

where parameter 0 =2(c? + 6} +2c2)/(6? + 6?), shape parameterm =
(62 + 6?)/6, scale parameter @ = v/mé, and c being the covariance
between the real and imaginary parts of voltage change. In the next
sections, the proposed ST-PVSA method is first validated using simula-
tions, and then it is employed to estimate PV HC in a efficient manner.

4. Validation of ST-PVSA

The proposed probability distribution of the voltage change is vali-
dated on the modified IEEE 37-node test system. The nominal voltage of
the test system is 4.8 kV. The actual distribution of the magnitude of the
voltage change is obtained using Newton-Raphson based sensitivity
analysis method, and the theoretical distribution is obtained using the
proposed method of ST-PVSA. A scenario is considered for simulation
where 9 PV units are located at random locations in the distribution
system. The power at the actor nodes, i.e., the nodes injected with PVs,
varies randomly due to fluctuations in PV generation. For illustration, 9
actor nodes are chosen where change in PV generation at a particular
time instant is modeled as a zero mean Gaussian random variable.
However, ST-PVSA is valid for any number of actor nodes with any
arbitrary distribution of power variation. Typically, unbalance in the
distribution system is caused by single phase loads. Therefore, unbal-
ance in our experiments is achieved by employing single-phase and two-
phase loads in the standard three-phase test networks. The base loads
are the same as provided in the distribution system analysis sub-
committee report [31]. Unbalance can also be induced by unequal
power change across different phases of the system. However, the
magnitude of power change needs to be strong enough which also
depend on the base loads. The covariance matrix »_,; captures the
spatial correlation of PV generation, which exists because of
geographical proximity as PVs in the same region typically exhibit same
generation profile. The diagonal elements of the covariance matrix
contain variances that depend on the size of PV units and the off-
diagonal elements capture the effect of geographical proximity of
these PV units. In our simulation, the variance of change in real power
(AP) is set to 5 kW and the variance of change in reactive power (AQ) is
set to 0.5 kVar. The values of the correlation coefficients py, pgn and pyugn

Simulated
—— Theoretical

0.0 1.0 200 3.0 4.0 5.0
[AV[(v)

Fig. 2. Distribution of voltage change at node 9.
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are set to 0.2,0.2, and -0.5, respectively for all the phases. Variance can
be set to zero for nodes with no PVs. Now, for random impedance part,
the mean and variance of resistance and reactance between random
actor node and observation node 9 is calculated from data of the IEEE
37-node test system. The value of correlation coefficient between
resistance and reactance is 0.99. Fig. 2 compares the actual distribution
of the magnitude of voltage change with the proposed ST-PVSA case.
The actual distribution of AVj is obtained by randomly varying powers
of all actor nodes at phase-a and subsequently, voltage change at node 9
is computed by using Newton-Raphson based method. Further, Monte-
Carlo simulations (MCS) are incorporated to capture the uncertainties
associated with the power changes. Here, voltage changes are computed
for one million MCS. The scaled histogram of |AVs| is depicted through
the orange curve in the Fig. 2. The theoretical distribution computed
with Egs. (18) and (19) is shown by blue curve in Fig. 2. It can be
observed that the probability distribution computed using the proposed
method is very close to the actual simulated distribution with 0.18 as
Jensen-Shannon distance. Further, the execution time of our method to
calculate the voltage change distribution in both the 37-node and 123-
node networks are within 1 min, whereas the time exceeds 120 min in
the classical load flow based method. Thus, ST-PVSA is order 2 faster
compared to the conventional approach. This experiment demonstrates
the effectiveness of the proposed ST-PVSA approach.

5. ST-PVSA for PV hosting capacity

This section presents the methodology for computing HC with the
proposed ST-PVSA approach. As ST-PVSA provides the probability dis-
tribution of voltage change at a node due to random power changes at
random locations of the network, it suffices to identify voltage violations
for different PV penetration levels. The procedure to determine HC be-
gins with fixing the number of penetration levels say from 1% to 100%
level at an increment of 1%. Then, the number of PV units (Nj) that need
to be integrated for each penetration level is computed using Eqn. (26).
Ny is determined statistically based on the distribution of real PV sizes.
The size of actual PV installations in the state of California, USA is
collected from the California dataset [32]. Fig. 3 depicts the scaled
histogram of PV sizes which approximately follows a gamma distribu-
tion. The penetration level is divided into various bands based on the
percentage of total demand. For instance, k varies from 1 to 5 for 5
bands, i.e., (0 —20%), (21 —40%) ...(81 —100%). A unique Ny is defined
for each band such that the same number of PV units is used for all
penetration levels in that particular band. In each band k, the power
injection increases with the increasing penetration levels at Ny random
locations. This is logical in a sense that it is not necessary to increase the
number of PV units for simulating increasing penetration level rather it
can be achieved by increasing the power injection in the existing PVs.

0.25

0.2

0.05

20 25

PV size (kW)

Fig. 3. Distribution of PV sizes from California dataset.
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Hosting Capacity for IEEE 37-node network
T T T

14
‘ oST-PVSA | |
—oSimulation
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x 6 1
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Penetration level

Fig. 4. Variation of violations count with Penetration levels.

However, the power injections cannot be increased beyond a certain
limit due to the restriction of PV size. Therefore, Ny increases as we move
to the higher penetration band. Ny for a particular penetration band k is
computed as following:

_ Mean penetration level for band k
B Max PV size

Ny (26)
where “Max PV size” comes from the PV size distribution and the mean
penetration level is the average power injection for band k. In the third
step, Ni is used to obtain the mean (u}g) of power change vector AS
(Eqn. 4) for each penetration level I, such that y, ;N ~ Py. Here, P and N'
are the net power injection and PV units for penetration level [,
respectively. The complex voltage change due to power injection is
added to the base voltage to get the future voltage. Following the same
arguments as mentioned in Theorem 2 of [33], the distribution of future
voltage is shown to follow Rician with the parameters as defined in Eq.
(22). The mean of real (¢,) and imaginary (y;) parts of voltage change
(18) are added to the corresponding parts of base voltage to get the mean
value of the future voltage. The mean future voltage is then plugged in
the derived Eqn. (23) to find the distribution of future voltage at all
nodes of the network. Nodes that have a probability of voltage violation
greater than the threshold are classified as highly vulnerable nodes, and
violations are reported. For illustration, a violation is recorded when the
probability of voltage violations is more than 0.5. 0.5 is unbiased and
gives equal preference to both detection and non-detection of violations.
The complete process is repeated for increasing penetration levels until
the algorithm encounters the first violation. The corresponding pene-
tration level is the HC of the system. “First voltage violation™ refers to
the situation when we observe voltage violations in the system for the
very first time while increasing the PV penetration level. In this paper,
the minimum penetration level for which the violation is observed for
the first time is considered as the hosting capacity. Algorithm 1 provides
the pseudo-code of ST-PVSA approach to compute HC.

Algorithm 1.

1: Fix number of penetration levels (1,2,...100%)

2: Calculate number of PVs for a particular penetration level using Eq. (26).

3: Compute mean and variance of power change vector corresponding to a particular
penetration level.

4: Use ST-PVSA to compute node voltages and track total number of voltage violations.

5: Repeat steps 2 to 4 for different penetration levels.

6: The penetration level that causes first voltage violations is the hosting capacity.

Proposed ST-PVSA method to compute Hosting capacity

To evaluate the performance of ST-PVSA in determining the HC, load
flow based HC is used as a benchmark. Similar to the ST-PVSA approach,
the PV penetration level is fixed from 1% to 100% level at 1% increment.
For each penetration level, Monte Carlo simulations are repeated 10k
times thereby creating one million different PV deployment scenarios.
For illustration purposes, the loads on the test network are chosen as
reported in the IEEE PES distribution system analysis subcommittee
report [31]. However, the proposed method is generic enough to
accommodate other loading scenarios such as daytime (10 am-2 pm)
maximum load and daytime minimum. Finally, for each penetration
level, Ny locations are selected randomly to allocate PV units and load
flow is executed to track the voltage violations. For I[EEE 37-node
network, the number of PV units for each of the five penetration level
bands are 5,10, 20, 25 and 30. The power is increased from 10 kW (1%
penetration level) to 1100 kW (100% level) in steps of 11 kW. Fig. 4
depicts the variation of violations count with increasing penetration
levels. It can be observed that the proposed STPVSA approach is 100%
accurate in estimating HC of IEEE 37-node test network. In other words,
the penetration level predicted by ST-PVSA aligns well with those
computed from the load flow based approach (i.e., lies within the range
of load flow based HC values). Further, to demonstrate the scalability of
the proposed method, the HC analysis is also validated on the IEEE 123-
node network.

Table 1 presents the HC values computed with the proposed ST-PVSA
based approach and existing load flow-based method for a various
number of scenarios. It is worth noting that for each PV penetration
level, ST-PVSA needs to be run once (independent of scenarios), whereas
multiple simulations are required for convergence in the load flow-based

Table 1
Hosting capacity with Load flow and ST-PVSA.
Test Network Scenarios* 1k (%) 10 k (%) 30 k (%) 40 k % 50 k % 60 k%
IEEE 37 Load Flow 33 32 31 31 31 31
ST-PVSA 33
IEEE 123 Load Flow 44 43 42 41 40 40
ST-PVSA 39
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Table 2
Execution time with Load flow and ST-PVSA.
Test Network Scenarios” 1 k (min) 10 k (min) 30 k (min)
IEEE 37 LF 1.93 18.8 55.7
ST-PVSA 1.13
IEEE 123 LF 43.93 400.2 1195.6
ST-PVSA 3.91

approach. For the IEEE-37 node network, ST-PVSA yields a HC of 33%
which lies in the range of values computed with load flow based
approach. Similarly, for the IEEE-123 test network, the ST-PVSA based
HC value is 39%, which again intersects with that of load flow’s
approach. Furthermore, the proposed approach is also evaluated for a
balanced load case in the IEEE 37-node test network. The estimated
value of HC turns out to be 41%, whereas 42% is obtained with 30 k
simulations in the conventional approach. This demonstrates the
generalizability of our method. Additionally, HC seems to decrease for
an unbalanced case compared to a balanced one although all the factors
(power change and network parameters) remain unchanged. This is
because of non-uniformity in voltages across the buses which increases
the probability of extreme voltages leading to violations in a relatively
earlier stage compared to a balanced load scenario.

Along with the high estimation accuracy, ST-PVSA offers a signifi-
cant advantage in terms of computational complexity. Table 2 repre-
sents the execution time of scenarios simulated in 1 for the two test
networks. All experiments are conducted in a machine with an Intel-i7
processor and 16 Gb RAM. It can be inferred from Table 2 that in IEEE
123-node test network, the ST-PVSA is three orders faster than the load
flow-based approach, and the gap will further increase as the network
size grows.

The above-discussed experiments demonstrate the efficacy of ST-
PVSA for a typical snapshot type HC. Further, it will be more effective
for a dynamic HC, which is relatively a new way of analyzing HC of
distribution systems. Dynamic HC is not based on worst-case snapshot
power flows. It requires probabilistic screens that consider the uncer-
tainty around the time-series input variables, like hourly PV productions
and building loads. Power flow analysis is conducted on large time-
series data of load and PV on an hourly basis. For a real distribution
model with thousands of nodes and one-second resolution data, simu-
lations could take a few days [5]. Furthermore, the PV and load un-
certainties have significant influences on hosting capacity values. Under

Appendix A
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this type of dynamic analysis, the proposed approach could work very
efficiently by accurately capturing voltage violations in an acceptable
amount of time. The performance of ST-PVSA in dynamic HC will be
investigated as part of our future work.

6. Conclusion

This work presents an analytical approach to compute the proba-
bility distribution of voltage change at a particular node as a function of
random change in power at random locations of the network due to
distributed PV units. The proposed approach is validated with a con-
ventional load flow based approach in two different test networks
namely IEEE 37 and IEEE 123. The estimated probability distribution
matches with the baseline to a high degree of accuracy (as demonstrated
with a low Jensen-Shannon distance of 0.18). The computational
complexity is also reduced by an order of 3 compared to the conven-
tional approach. Our framework can be applied to analyze stochastic
operations of a power distribution system. One of the use cases is shown
by employing the proposed method to determine the hosting capacity of
the system without investigating multiple scenarios. Our method is
fairly accurate in identifying the hosting capacity and offers huge
advantage in terms of computational efficiency. In the IEEE 123-node
test network, proposed method is an order two faster compared to
conventional load flow based approach and this gap will further increase
as the network size grows. As part of future work, we plan to extend our
framework for dynamic HC involving continuous time series data of load
and PV with the system allowing violations of small duration in accor-
dance with the ANSI standards.
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The change in complex voltage at any phase (say phase a) of observation node O due to change in complex power at any phase of a single actor node

A is given as [14],

AVE 7[A5x*zza ASyZg, Asz*zz;]

ax b Cck
VA VA VA

(27)

On expanding the complex power and shared path impedance terms, we get the following equation,

v~ [(AP;: A0 (R +iX5) .

ave
VA

- [(OF3RGL + OO¥) (AP RO | ]
(Var =iV + (avi - avy) '

On normalizing the numerator and denominator, (28) reduces to

(28)
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Ave ~ _ [(APARG, + AQIXG)) +i(APIXG, — RGAQY) (VAT +AVY) +i(Va' + AV (29)
oA (V" + AV — (Ve +Avy) (Vi + AV +i(vi +Avy) T

Normalization segregates (29) into real and imaginary parts as shown below,

Ave ~ | (BPARG, + AGIXG,) (V7 + AVYY) — (APIXG, — R AQY) (Vi +AVY)
o (V47 + AV 4 (VA + AVE)?

(30)
+ (AP{RG, + AQIXG,) (V' + AVY') + (APIXG) — RGAQS) (VA7 +AVY")
(V47 4+ AVE ) 4 (Ve AV

The real part of the voltage change can be expressed as,
A

r & aa a paa a,i AV
(arsrs, + s ) (vir) (1+95) (arixs - acies, ) (v) (1+22)

AVY &~ — - — - — | (31)
5 . 5 ;
(v:’)z(lﬁv?,) + (Ve (1+Avf.) (VX”)2<1+AV2,¢> ) <1+Avé§>

A
Using the same assumptions as in [14], (31) can further be simplified as,

Ay o [ (APIRE + A0LXE) (Vi) (APIXE, — AQIRE) (VE) 32
oA a,r a,iy? a,r a,iy2 T
(Va7 + (Vi) (Ve + (v

Similarly, the imaginary part of the voltage change can be written as,

aver o [(8PIXE — A0IRE) (Vi) _ (8PiRs, +801XE) (V) _ .
oA ar\2 i) 2 ar\2 a2 P

Vi) + (VA') Vi) + (VA )

Eqgs. (32) and (33) are rearranged by taking the common factor with power terms as shown below,
Ay~ |APARG VL — X, Vi) LA (XG.Va" + RG,Va')
oA~ ™ a2 a,i\2 a2 a,i\2 T
(Vi)™ + (VA ) (Van + (VA )

(34)
ai o _|APARGVE 4 X5 V) | AQUXG, V' — R5VAY)
AVgy = ary2 aiy? + ary2 ai\?
(Vi) + (Vi) (VA7) + (Vi)

Finally, the real and imaginary part of base voltages are expressed in polar magnitude form (i.e., V" = |Vf}, |cos(wa) Vj’i = ‘vg ‘sin(wA)) which reduces
(34) to,

AV A [APZ (R‘(’J‘Zcos (wA) — X{ysin (u}A)) N AQ4 (XZ”Acos (u)A) + Ry, sin (a)A)) B }

o Vil Vil )
AVE 2 — [APﬁ (R sin(w,) + X cos(wa)) N AQ (X4, sin(wy) — R, cos(w,)) B }

i Vi vil i)
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