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Abstract

Model-free reinforcement learning (RL) algorithms are
known to be memory and computation-efficient com-
pared with model-based approaches. This paper presents a
model-free RL algorithm for infinite-horizon average-reward
Constrained Markov Decision Processes (CMDPs), which
achieves sub-linear regret and zero constraint violation. To
the best of our knowledge, this is the first model-free al-
gorithm for general CMDPs in the infinite-horizon average-
reward setting with provable guarantees.

Introduction

Reinforcement Learning has drawn significant attention due
to its success in board and video games such as Go (Silver
etal. 2017) and Starcraft (Vinyals et al. 2019), and in highly-
complex robotics systems (Andrychowicz et al. 2020). An
agent’s objective in a typical RL problem is to maximize
a cumulative reward through interacting with an unknown
environment. In board games or video games, the conse-
quences of a random action are limited. However, a careless
action in the real-world might have catastrophic outcomes
such as collisions and fatalities in robotics and autonomous
driving (Ono et al. 2015; Garcia and Fernandez 2012; Fisac
et al. 2018) or surgical robotics (Richter, Orosco, and Yip
2019). Therefore, it is critical to strike a balance between
reward maximization and safety in real-world applications.
A standard formulation for RL with constraints is the Con-
strained Markov Decision Processes framework (Altman
1999), in which the agent aims at learning a policy that max-
imizes the expected cumulative reward under the safety con-
straints during and after learning.

There are two main classes of RL algorithms: model-
based and model-free. Model-based algorithms estimate the
transition kernel of the underlying CMDP during the learn-
ing process and utilize it to derive the optimal policy. For
example, the estimated model can be used to formulate a
linear programming (LP) problem for the CMDP (Singh,
Gupta, and Shroff 2020; Brantley et al. 2020; Kalagarla,
Jain, and Nuzzo 2020; Efroni, Mannor, and Pirotta 2020),
or a LP problem as part of a primal-dual algorithm (Qiu
et al. 2020; Efroni, Mannor, and Pirotta 2020). (Ding et al.
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2020a) proposed a model-based, primal-dual algorithm with
linear function approximation dealing with infinite state and
action spaces under the assumption that the transition ker-
nel is linear. Model-based RL algorithms are sample effi-
cient and perform well when the model can be estimated
precisely. However, model-based algorithms are well known
for their memory complexity for storing a large amount of
model parameters. Furthermore, building accurate models is
very challenging computationally and data-wise (Sutton and
Barto 2018).

Model-free algorithms, on the other hand, learn state
or action value functions rather than the transition kernel,
which require significantly smaller memory. For example,
several policy-gradient algorithms (Tessler, Mankowitz, and
Mannor 2018; Stooke, Achiam, and Abbeel 2020; Yang
et al. 2020) have been proposed and seen successes in prac-
tice for solving constraint RL problems, but without regret
and constraint violation analysis. (Ding et al. 2020b; Xu,
Liang, and Lan 2020; Chen, Dong, and Wang 2021) are
some exceptions, but both of these works require a simu-
lator to either simulate the underlying MDP from any given
state or to evaluate a policy. Two very recently works (Liu
et al. 2021; Wei, Liu, and Ying 2021) are the most related
works, they both leverage Lyapunov drift analysis to achieve
regret bound and zero violation, but they focus on episodic
CMDPs, whereas we are looking at infinite average-reward
CMDPs, which is a harder problem. The question we seek
to answer in this paper is

Can we design efficient RL algorithms for infinite-
horizon, average-reward CMDPs with provably regret
guarantees?

We answer this question affirmatively, and present the first
model-free RL algorithm under this setting, which achieves
sub-linear regret and zero constraint violation. For compar-
isons with other existing approaches under the same setting,
see Table 1'.

Preliminaries

An infinite-horizon average-reward CMDP can be defined as
(S, A, 7, g,p), where S is the finite state space, A is the fi-
nite action space, 7(g) : S x A — [0,1] is the unknown

!"Throughout the paper, we use the notation O to suppress log
terms.



Table 1: Regret comparisons for RL algorithms in infinite-horizon average-reward CMDPs with S states, A actions and K total
steps. D is the diameter of the CMDP. § is the slackness that is defined later (Eq. (10)).

Algorithm Regret Constraint Violations
Known Model | C-UCRL(Zheng and Ratliff 2020) O(SAVKL?) 0
Model-based | UCRL-CMDP (Singh, Gupta, and Shroff 2020) O(SVAK5) O(SVAK15)
Known Model | CMDP-PSRL (Agarwal, Bai, and Aggarwal 2021) | O(poly(SAD)VK) O(poly(SA)VK)
Model-free this work (‘/571( G ) 0

reward (utility) function, and p : S x A x § — [0,1]
represents the transition probability such that p(s'|s,a) :=
P(sg+1 = §'|sp = s,ar = a) for s, € S, ay € A and time
k=1,2,.... A stationary policy is a mapping 7 : S — A,
the long-term average reward (reward rate) of a stationary
policy 7 with initial state s € S is defined as

S1 = S‘| 5

and the long-term average utility (utility rate) is such policy
can be denoted by
S1 = 5] .

In this paper, we consider the constrained RL problem in
which an agent interacts with the CMDP through K steps,
starting from an arbitrary initial state s; € S. At each step
k, the agent observes the state sy, decides an action a; and
receives the reward r (s, ay) and utility g(sg, ay). The next
state si1 is then sampled according to the probability dis-
tribution p(+|sk, ax). The goal of the learning problem is to
learn a policy that maximizes the reward rate subject to a
constraint on the utility rate:

K
L. 1
max lim mf?Eﬂ lz 7(Sk, CLk)‘|

K

r(sk, 7(sk))

k=1

1
J7(s) :=lim inng

K—o0

K
1
Jy(s) = l}g&fEE lZg(sk,W(sk))

k=1

mell K—oo Pt

- (1)
s.t. hmlnf Z (Sk, ag ] > p,

k=1

where II is set of all possible policies and p € (0, 1) to avoid
triviality. Let 7* be the optimal policy of the CMDP problem
in (1). The performance of the learning algorithm is evalu-
ated through regret and constraint violation defined below:

K
Regert(K) = Z (JT”* — (s, ak)) ; @)

k=1

=

Violation(K) = Z (p—9g(sk,ar)) . 3)
k=1

Regret measures the difference between the total reward of
the optimal policy and that obtained by a learning algorithm

and violation evaluates the difference between the total util-
ity collected by a learning algorithm and the requirement.
To analyze the regret and constraint violation, we make the
following assumption throughout the paper:

Assumption 1. The MDP is an unichain MDP, which means
for any stationary deterministic policy m, the Markov chain
induced by w contains a single (aperiodic) ergodic class.

Assumption 1 is necessary for ensure that the optimal
policy 7* of the CMDP is independent of the state, i.e.
J(s) = Jf*,J;*(s) = J;* for all s € S, and the op-
timality is achievable by using linear programming (LP) ap-
proach (Altman 1999) (defined below). This assumption is
commonly used in infinite-horizon average-reward CMDPs
(Wei et al. 2020; Ortner 2020; Abbasi-Yadkori et al. 2019).

When the transition kernel p(s’|s, a) is known, an optimal
policy can be obtained by solving the following LP problem,

> a(s,a)r(s,a) 4)

max
{q(s,a):(s,a)eSx A} oa

s.t. Zq(s, a)g(s,a) > p,Vs € S,Va € A 5)

q(s,a) >0,¥s € S,Va € A (6)

> a(s,a)=1 (7)

s,a

Z q(s,a) = Zp(s|s’, a')q(s',a’), (8)

a s’,a’

where the ¢(s, a) is called the occupancy measure, which is
defined as the set of distributions generated by executing the
associated induced policy 7 in the infinite-horizon CMDP.
Y. 4(s,a) represents the probability the system is in state

qa(s.a)
sandZ (Sa

s. The utility constraint is defined as (5). More details can be
found in (Altman 1999). To analyze the performance of our
algorithm, we need to consider a tightened version of the
above LP problem, which is defined below:

a)r(s,a) 9)

3 is the probability of taking action a in state

max q(s
{Q(S»(l)i(S,(l)ESxA}; (

s.t. Zq(s,a)g(s,a) >p+eVseS,Vac A

(6) — (8),



where e > 0 is called a tightness constant. As in previ-
ous works (Ding et al. 2020a,b; Efroni, Mannor, and Pirotta
2020; Paternain et al. 2019), we make the following standard
assumption of Slater’s condition.

Assumption 2. (Slater’s Condition). There exist § > 0 such
that

> als,a)g(s,a) —p > 4. (10)

s,a

It is obvious that when € < § the problem (9) has a feasi-
ble solution due to Slater’s condition. We remark that this
assumption is a noticeable difference from some existing
works in which the agent needs to know the value of this
constant (e.g. (Ding et al. 2020a)) or alternatively a feasible
policy (e.g. (Achiam et al. 2017)).

Let
J; :Zq*(&a)r(s,a) (11)
Ty = 4" (s,a)g(s, ). (12)

be the optimal reward rate and utility rate, where ¢* (s, a) is
the optimal solution obtained by solving the LP problem(4).

Moreover it is obvious that J, J; are independent of the

start state and we have J;! = J;r*,J; = J;*.

In the following, we use superscript * to denote the op-
timal policy achieved by solving the LP (4) of the original
CMDP, and superscript “* to denote the optimal policy re-

lated to the e-tightened version of LP (9).

Primal-Dual-Based, Two-Time-Scale
Optimistic SARSA

In this section, we introduce our algorithm (see Algorithm 1
for pseudo-code) which achieves sub-linear regret and zero
constraint violation. The algorithm is inspired by (Wei et al.
2020) to solve the average-reward CMDP via designing an
algorithm for a discounted CMDP which is defined with the
same states, actions, reward/utility function, transition ker-
nels, and an extra discount factor . The intuition is that the
reward of the discounted problem (scaled by 1 — «)) ap-
proaches to the reward of the average reward problem as
goes to 1.

Under the discounted CMDP setting, given a policy 7, the
reward value function V," at step k is the expected cumula-
tive rewards from step k£ under policy 7 :

S = S‘| .

The reward Q-function Q) (s, a) at step k is the expected cu-
mulative rewards when agent starts from a state-action pair
(s, a) at step k and then follows policy 7 :

o0

Sy E (s, w(s,))

i=k

Vii(s) =E

o0

Sy E (s, w(s,))

i=k

Q%(s,a) =r(s,a)+E

Algorithm 1: Algorithm

1: Initialize Q1 (s,a) = Q1(s,a) + H and n,(s,a) + 0
forall (s,a) e Sx A,v=1— %,Vl(s) =HVseS

2: Choose y = K%,n = K&, = 8log(v2K),8 = %
3: Choose € = QKT VAL — max{sp(ve*), sp(w®*), 1}.
_ 6
4: Initialize C' < 0, Z; < 0.
. _ x+1 _ (x+1)e
5: Deﬁne,ak—%,bﬂr—l{ X?
6: forepisode k =1,..., K do
7: Take action
~ 7 A
ay = argmax | Qr(sg,a) + ﬁC'k(sk,a) )
8: Observe sg4 1.
9: Nk11(Sk, ak) < ng(sg, ar) +1,7 < ngi1(Sk, ak).
10: Update
1 Qpgalsks ar) < (1 — ar)Qr(sk, ar)
12: +ar[r(sk, ar) + YVi(sk41) + b7,
13: Ck+1(8k,ak) — (1 — Oé-,—)Ck(S}i, CL}C)
14: +o, [g(sAk, ar) + YWk (sg+1) + br].

150 i Qria(sk, ar) < Qu(sk, ar) and Cry (s, ax) <
C’k(sk,ak) then

16: Qr+1(8k, ar) < Q1 (sk, ax)
17: CkJrl(Sk, ak) — Ck+1(sk,ak)
18: else .

19: Qk_,_l(sk,ak) — Qk(sk,ak)
20: Ck+1(5ka ak) — Ck(sk,ak.)

21: C++ C+(1—~)Chlsk, ar)
22: a’ = argmax, (Qk+1(5k, a) + %ék—&-l(ska a))
23: ‘A{kH(sk) — QAkH(Skaa/)

24 W}C+1(Sk) — Ck+1(sk, a')
25 ift mod K# = 0 then

26: Z<—(Z+p+e—%)

27: Reset C' < 0,n4(s,a) + 0.

28: Qrii1(s,a) < Quii(s,a) + %N(s, a)

29: Qrr1(s,a) + Qrr1(s,a) + %,V(s, a)

30: if Qr41(s,a) > H or C41(s,a) > H then

31 Reset C:)Hl(s,a),Q;Hl(s,a), Vit1(s) to H
32: Reset Ci11(s,a), Crr1(s,a), Wia1(s) to H

Similarly, we use W[ (s) : S — R* and Cf (s,a) : S x
A — R7 to denote the utility value function and utility Q-
function at step k:

Sk = S] )

> A Fg(sim(si)

i=k

o0

> A Fg(si,mi(si)

i=k

W7 (z) =E

Ci(s,a) = g(s,a) + E

S = S
ar=a |’

It is obvious that all the reward and utility value (Q-value)
functions are bounded by ﬁ due to the fact reward and



utility functions are bounded by 1. We denote H = ﬁ
Then given a state-action pair (s, a) at step k, our algorithm
updates the estimate of reward (utility) (J—value functions
of the discounted CMDP setting instead.

The design of our algorithm is based on the primal-dual
approach for constrained optimization problems. Suppose
that V7 (s)(W7™(s)) is a accurate estimate of ‘]1%(;)(‘]1%(2))
(the formal proof is deferred to next section). Given La-
grangian multiplier 1, we consider the following problem:

max J(s) + p(Jg (s) — p)
~max(1 —7)(V7(s) +uW"(s)) — pp

which can be interpreted as an unconstrained MDP with a
modified reward function (1 — ) (7 + ug).

Specifically, the algorithm maintains an estimate
Vi.(s) (Wi (s)) for the optimal value function V*(s)(W*(s))
and  Qi(s,a)(Cr(s,a)) for the optimal Q-function
Q*(s,a)(C*(s,a)). At each step k, after observing state s,
the agent selects action aj, based on the combined Q-value:

A 7 A
alt € arg max Qk($7a) + gck(saa)a (13)

where % can be treated as an estimate of the Lagrange mul-

tiplier ;. Although primal-dual is a standard approach and is
heavily used in previous works, analyzing the regret or con-
straint violation is particularly challenging. We need to con-
sider how to carefully choose the Lagrange multiplier and
how often it will be updated. Too fast would lead to diver-
gence but too slow would delay the speed of convergence
which tends to have a large regret and constraint violation.
We address these difficulties by designing our algorithm as a
two-time-scale algorithm where Z is updated at a slow time-
scale, i.e., every K steps in line 25 — 26 in Algorithm 1. In
particular,

C +
Z<—<Z+p+e—Kﬁ> : (14)

where (z)* = max{x,0}, and C is the summation of all

(1 —4)Ch(sk, ax) of the steps in the previous frame, where
each frame consists of K” consecutive steps.

On the contrary, it learns the combined Q functions for
fixed Z at a fast time scale. The estimates of reward and
utility value functions are updated each time after observing
a new state-action pair.

It is important to mention that the optimal policy may not
satisfy the optimality principle due to the constraints. More
specifically,

V*(s) # max Q*(s,a). (15)

This means we cannot leverage optimistic Q-learning algo-
rithms for unconstrained MDPs (Jin et al. 2018; Wei et al.
2020; Dong et al. 2019) to estimate the optimal value func-
tions of CMDP. Instead, our algorithm uses a SARSA-type
updating rule, as shown in line 11 — 14.

We remark that the optimal policy for a CMDP is stochas-
tic in general. The policy under our algorithm is a stochastic

policy because the virtual queue Z varies during and after
the learning process, which results in a stochastic policy.

We then introduce some additional notations before pre-
senting our main theorem. Let v™(s), w™ (s) be the reward
and utility relative value functions for state s under average-
reward setting, and ¢™ (s, a), ¢ (s, a) be the reward and util-
ity Q value functions for any state-action pair (s, a). Based
on the Bellman equation, we have

I (s) + ¢ (s,0) = (s,0) + Egrop(fs,a) [V (5)]
vT(s) =) _ 4" (s,a)P(n(s) = a)

‘];T(S) + cﬂ-(sv a) = 9(57 a) + ]ES’NP('|S,LL) [wﬂ(sl)]
w™(s) = ch(s, a)P(r(s) = a)

a

Define
sp(f) = max f(s) — min f(s) (16)

to be the span of the function f. It is well known that the
span of the optimal reward relative value function sp(v*)
and utility relative value function sp(w*) are bounded for
weakly communication or ergodic MDPs. In particular, they
are bounded by the diameter of the MDP (Lattimore and
Szepesvari 2020).

Let k = max{sp(v*), sp(w=*), 1} be a upper bound for
convenience. We assume that sp(v®*), sp(w™*) which are
used in the algorithm are known beforehand as (Wei et al.
2020, 2021) throughout the paper, we can always substitute
them with any upper bound (e.g. the diameter) when they
are unknown.

We now state the main result guarantee of Algorithm 1.

6
Theorem 1. Under assumption K > (lg%@) .Lete =

%T VSAL such that € < g.By choosing m = K3 log K,H =
6
Ko,n=Ko,x=K3,[= 2 we have H > SE Then

\/SAF;K2>

Regret(K) < O < 5

Violation(K) < 92?§ log (2;) —VSAK® = 0,

where 1 = 321log(V/2K).

Proof of the Main Theorem
Notations
Throughout the paper, we use shorthand notation

{f = g}@) = fx) —g(x),

where f(-) and g(-) the the same argument value. Similarly,

{(f = 9)a} (@) = (f(2) — g(2))q().

Due to the page limit, we will only present several key lem-
mas and the key intuitions in this section. The complete
proof can be found in the appendix.



Regret Analysis

We start the proof by adding and subtracting the correspond-
ing terms to the regret defined in (2), we obtain

K
Regret(K) = E [Z(J: - T(Slmak))l

. k=1

=E | "(J; - Jﬁ**)] (17)
:k;l

+E D (It - (1- ’Y)Ve’*(é’k-))] (18)
:k;1 A

+E Z(l =) (Vé’*(Sk) - Qk(smak))] (19)
Lk=1
[ K

+E > ((1 — 1) Qx (58, ax) — T(Skyak)ﬂ . (20
Lk=1

We will bound each of the four terms above in the following
sequence of lemmas.

Term (17) is the difference between original CMDP and
its corresponding e—tighten version which is a perturbation
of the original problem. We establish a bound by using the
following lemma:

Lemma 2. Under assumption 2, given € < ¢, we have

K

S - ) <

t=1

eK
= 1)

For the second term (18), we establish a bound by using
Lemma 3, which shows the difference of value functions un-
der average-reward setting and discounted setting is small,
the proof is based on the Bellman equation under two set-
tings.

Lemma 3. For an arbitrary policy 7, we have

Ji(s) = (L =7)V7(s) < (1 =7)sp(v™(s)), (22)

[V7T(s1) = V7 (s2)| < 2sp(v™(s)); (23)
Jg(s) = (L =7)W7(s) < (L —)sp(w™(s)),  (24)
[WT(s1) — W7 (s2)] < 2sp(w™(s)), (25)

where V™ (s) is the value function for the discounted setting
under policy m, and JT (J7) is the reward (utility) rate under
policy .

Then it is easy to obtain
ot = (L =y)V(s) < (1 =)k, (26)

Next we establish a bound on term (19) by using
Lyapunov-drift analysis. This term is not hard to be ad-
dressed in the unconstrained MDPs, because using opti-
mistic Q-learning guarantees that Qk(s,a) is an overesti-
mate of Q*(s, a). However this inequality does not hold in
CMDPs, because the algorithm needs to consider reward and
utility simultaneously which makes the analysis difficult. To

bound this term, we first add and subtract some addition
terms to have

(1-1) (Ve’*(sk) - Qk(smak))

Z
(1 o ,Y) Z {Qe7*qe,* + :CE’*qE’*} (sk7a) (27)

a

. Zy -
- {que’* + ;Cz@qe’*} (sk,a)  (28)

a

(1= (Z {Qua} (51 0) = Qulsnoar) 29)

a

M= T T T

+

>
Il

1

+ZT;€ za: {C’kqe’* - C’E’*qe’*} (s, a)) . (30)

We can see (27) + (28) is the difference of two combined
Q functions. We will show that {Qk + %C’kh} (s,a) is

always an over-estimate of {QEV* + %C’E’*} (s,a) (e.

(27) + (28) < 0) for all (s, a, k) simultaneously with a high
probability using the following Lemma 4. This result further
implies an expected upper bound

3H
E[@N)+@8)] < (-7 e (31)

Lemma 4. With probability at least 1 — %, the following
inequality holds simultaneously for all (s,a,k) € S x A x
(K] :

{(Qk - QE’*) + % (C'k - Ce’*)} (s,a) >0, (32)

Then for the rest term (29) + (30), we can bound it by
using the following lemma:

Lemma 5. Assuming ¢ < 6, we have

K
E > (1-9) (Z {quﬁ’*} (sk>a) — Qr(sk, ar)
k=1 a
+% z@: {que’* - Ce’*qe’*} (ks a))}
K'=F
<%+ E[ZT]M. (33)
n T—1 n

To see the idea behind Lemma 5, we need to consider
the Lyapunov function Ly = %Z%, where T is the frame
index and Zr is the virtual-queue length at the beginning
of T'th frame. Recall that each frame contains K” consecu-
tive steps. In the proof of Lemma 5, we will show that the
Lyapunov-drift satisfies

E[L74+1 — L7] < anegative drift

L—mr o T
+2+E[Zr) 05— — 5 S (34
k=TKF+1



where

O =(1-7) (Z {que’*} (58, @) — Qk(sk, ar)

a

+ % > {ékqﬁ’* - CE’*qe’*} (sk, a)>

a

Then take submission on both sides of equation over all the
K1-8 frames, we can obtain

E[Ly — Lyi-51]

K'=F
1-8 (I-vs 7

Therefore

(29) +(30) = ) @y
k

1-8

KPE[L; — L1~ 2K N 1—

< [L1 — Lgr-s44] L 2B Z ]E[ZT}( v)k

" no A=
ok 1

<254 Y Bl S22

T=1

where the last inequality holds because L; = 0 and L > 0
for all T

Then combining the result form (31) and Lemma 5 we can
obtain

(1 =) (Vo (1) = Qulsian))

K'=#

© Y Bz L 3 s

= K
=1 Ui Ui

=[x I~

The term E[Z7] is proved uniformly bounded in the follow-
ing Lemma 6 by using Lyapunov-drift analysis on the mo-
ment generating function of Z i.e. E[e”Z] that holds uni-
formly over the entire learning process. The reason is that
our algorithm takes actions to almost greedily reduce the
virtual-queue Z when Z is large.

Lemma 6. Assuming ¢ < g,H > %”, we have for any
1<T<K'Y8,

92 24\  6n
< = - -
E[Zr] < 5 1og<6)+ 5

We apply the following lemma to bound the last term (20).

Lemma 7. Forany T € [K'77],

TK"?
(= 1Qulsta1) = r(swan)

El )

| k=(T—1)KF+1

KB
<ymKP 4+ Tm +4(1 — y)mky/(x + 1)SAKPL 4+ 2mS

TK"?

El D

((1 — (5, ar) — g(sk, ak))
k=(T—1)KP+1

KB
<y 18+ 2 41— yymsa/ (x + 1)SAKBL + 2ms,
X

where m is a positive integer.

This lemma is one of our key technical contributions
which show that the cumulative estimation error over one
frame (K” consecutive episodes) between weighted re-
ward(utility) Q-value functions and average reward (utility)
is upper bounded. From the lemma above, we can immedi-
ately conclude that:

{5 (1 - )@t 00) — rlswsan)

k=1

+4(1 - v)mm/(x +1)SAK2 A1+ 2mSK' ™" (36)

<ATK 4+ —
X

] Km

To balance the terms in regret, we carefully select that

2
m:H:KélogK,X:K%,ﬁzg,

Then we have

Hlog K

1 1
m_(1-_—~ <=
v ( H) =K

and the order of the second and third terms in the above
equation (36) is O(K 8 ), which is also the dominate term
in our regret bound.

Then by appropriately choosing other parameters ¢, ¢, n
and combing the results from (35), (36), Lemma 2, Lemma

3, and Lemma 6 we finish the proof for regret.

Constraint Violation Analysis

Recall that we use Z7 to denote the value of virtual-queue
in frame 7'. According to the update of virtual-queue length,
we have

Zry =7 Cr\"
T4+1 = T+p+6*ﬁ

Cr
ZZT+0+€—W, (37)
which implies that

TK?

Z (—g(skar) + p) < K (Zp11 — Zr)
k=(T—1)Kf+1

TK?

o

k=(T—1)KB+1

((1 —9)Cr(sk, ar) — g(sk, ar) — e) .
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Figure 1: Grid World with Safety Constraints

Summing the inequality above over all frames and taking ex-
pectation on both sides, we obtain the following upper bound
on the constraint violation:

T
E ZP*Q(Sk,ak) < —Ke+ KPE[Zg1-5,4]
t=1
K
+E > (1 =)Ch(sk, ar) — Q(Sk,ak)] , o (3®)
k=1
where we used the fact Z; = (. Combining the upper

bound on the estimation error of C’k in Lemma 7 and the
upper bound on E[Z7] in Lemma 6 yields the constraint vi-
olation bound. Furthermore, under our carefully choices of
m,7,€,n, a, B and ¢, it can be easily verified that K e domi-
nates the upper bounds in (38), which leads to fact that con-
straint violation because zero when K is sufficiently large.
In particular, under our assumption on K, which implies that
e < %, and leads to

Violation(K) = 0.

Simulation

In this section, we present simulation results that evaluate
our algorithm using the 2D safety grid-world exploration
problem (Zheng and Ratliff 2020; Leike et al. 2017). Figure
1 shows the map of the 10 x 10 grid-world with a total of
100 states. We choose a error probability 0.03 which means
with probability 0.03 the agent will choose an action ran-
domly to make the environment stochastic. The objective of
the agent is to travel to the destination (the red star) from
the original position (the blue triangle) as quickly as possi-
ble while limiting the number of times hitting the obstacles
(the yellow squares). Hitting an obstacle incurs cost 1 and
otherwise, there is no cost. The reward for the destination
is 1, and for others are the normalized Euclidean distance
between them and the destination times a scaled factor 0.1.
We set constraint limit as 0.15 through the simulation which
means the expected cost rate should below the limit. To ac-
count for statistical significance, the results of each experi-
ment are averaged over 5 trials.

We remark that in the simulation we consider the follow-
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Figure 2: Average reward and cost of our algorithm during
training, and the shaded region represents the standard devi-
ations.

ing constraint

1
liminf —E
il

K
Zg(sk, ak)] <p

k=1
which is similar to the constraint that the average utility
needs to be above a threshold.

Figure 2 shows the performance of our algorithm in terms
of average reward and average cost during training com-
pared with the algorithm in (Wei et al. 2020). We can see that
our algorithm is able to learn a policy that achieves a high
reward while satisfying the safety constraint very quickly.

Conclusion

In this paper, we proposed the first model-free RL algorithm
for infinite-horizon average-reward CMDPs. The design of
the algorithm is based on the primal-dual approach. By us-
ing the Lyapunov drift analysis, we proved that our algo-
rithm achieves sublinear regret and zero constraint violation.
Our regret bound scales as O(K %) and is suboptimal com-
pared to model-based approaches. However, this is the first
model-free and simulator-free algorithm with sub-linear re-
gret and optimal constraint violation. It is still an interesting
open problem that how to achieve O~(\/? ) regret bound via
model-free algorithms.

The algorithm is also computationally efficient from al-
gorithmic perspective because it is model-free, which means
that it is potential to apply our method for complex and chal-
lenging CMDPs in practice. Simulation result also demon-
strates the good performance of our algorithm.
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