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Abstract

This paper considers the following question: how well can depth-two ReLU networks with ran-

domly initialized bottom-level weights represent smooth functions? We give near-matching upper-

and lower-bounds for L2-approximation in terms of the Lipschitz constant, the desired accuracy,

and the dimension of the problem, as well as similar results in terms of Sobolev norms. Our pos-

itive results employ tools from harmonic analysis and ridgelet representation theory, while our

lower-bounds are based on (robust versions of) dimensionality arguments.

Keywords: Function representation, random initialization, deep learning, ReLU networks

1. Introduction

1.1. Background and motivation

Celebrated results of Cybenko (1989), Funahashi (1989), and Hornik et al. (1989) establish the

universality of depth-2 neural networks by showing that any continuous function on R
d can be

approximated by a neural network with a single hidden layer. However, these results offer no

upper-bound (e.g., in terms of d) on the width (number of bottom-level gates) required, leaving

unanswered many natural questions about the approximation power of neural networks, including:

• Which functions can be approximated by two-layer neural networks of subexponential width?

• Can tradeoffs be achieved between depth and width for neural network function approximation?

• Given the practical importance of random weight initialization, what are the representational

capabilities of neural networks with some randomly drawn weights (say, at the bottom level)?

The first two questions above have been studied intensely in the approximation-theoretic and

depth-separation literature; this paper focuses on the third question. Random weight initializations

play an important role in training neural networks in practice, and are also of theoretical interest; as

we discuss later in this introduction, they have been well studied as a way of understanding different

aspects of approximation and generalization.

In this work, we study the representational ability of depth-2 random bottom-layer (RBL) ReLU

networks. Such a network is equivalent to a linear combination of rectified linear units (ReLUs),

where the weight vector and bias of each ReLU are randomly and independently chosen from a

fixed distribution, but the top-level combining weights of the ReLUs are allowed to be arbitrary (we

give precise definitions in Section 2.2). This particular setting is of interest because, as discussed
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later, a number of papers have given approximation-theoretic results in this regime. We choose the

ReLU activation due to its popularity in both theory and practice; we expect that the results of our

paper could be generalized to a range of other activation functions.

Our main goal is to understand the abilities and limitations of depth-2 RBL ReLU networks for

approximating smooth functions of various types. We focus on smooth functions both because they

are a natural class of functions to consider, and because non-smooth functions have been shown to be

difficult to approximate by various types of neural networks. Indeed, several authors (e.g., Telgarsky

(2016) and Daniely (2017)) have established lower-bounds on the width of neural networks that

approximate certain non-smooth functions by taking advantage of the fact that such functions can

be highly oscillatory (have many “bumps”) and can require many gates to approximate each “bump.”

Our chief focus is on functions over the d-dimensional solid cube [−1, 1]d (though we also

consider functions over d-dimensional Gaussian space in Appendix E) whose smoothness is mea-

sured in two different ways. Our main results are about approximating functions on [−1, 1]d with

bounded Lipschitz constants; in Appendix D, we also consider functions on [−1, 1]d (satisfying

certain periodicity conditions) with bounded Sobolev norms.

1.2. Our results

The main contributions of this work are to pose and answer the following question:

What is the minimum number of random ReLU features required so that (with high

probability) there exists some linear combination of those features that closely approx-

imates any sufficiently smooth function?

This minimum number of random ReLU features is equivalent to the minimum width required

for a depth-2 RBL ReLU network to approximate the smooth function in question. We give full

details about our setting in Section 2.2, and here only touch on some of the main aspects:

• “Random ReLU features” are functions from R
d to R that are drawn independently from some

fixed distribution. These take the form x 7→ σReLU(〈w, x〉+ b) where σReLU(z) := max(z, 0)
and w and b are random variables taking values in S

d−1 and R respectively.

• Our notion of “close approximation” refers to the L2 distance between functions with respect

to the uniform distribution on the solid cube; we say that f is an ǫ-approximator for g if

‖f − g‖[−1,1]d ≤ ǫ. In Appendix E, we sketch how analyses similar to our analysis over [−1, 1]d

can be used to study approximation with respect to the Gaussian measure over Rd.

• As mentioned above, we chiefly measure the smoothness of a function by its Lipschitz constant.

In Appendix D, we extend our results to measure smoothness in terms of Sobolev norms.

Our main results give tight upper- and lower-bounds on the minimum width required for both

Lipschitz and Sobolev smooth functions. The upper- and lower-bounds match up to polynomial fac-

tors (equivalently, up to constant factors in the exponent). The sharpest forms of our bounds involve

the number of integer points in certain Euclidean balls; below, we present informal statements of

our upper- and lower-bounds for Lipschitz functions with explicit asymptotics given for clarity:

Theorem 1 (Informal upper-bound for L-Lipschitz functions) Fix any ǫ, L > 0 that satisfy

L/ǫ ≥ 2, and let f : [−1, 1]d → R be any L-Lipschitz function. For

r = exp

(

O

(

min

(

L2

ǫ2
log

(

dǫ2

L2
+ 2

)

, d log

(

L2

ǫ2d
+ 2

))))

,
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with probability 0.9 (over a draw of r i.i.d. random ReLU features g(1), . . . ,g(r) from a suitable

distribution) there exists a depth-2 RBL ReLU network h with g(1), . . . ,g(r) as the bottom-level

features satisfying ‖f − h‖[−1,1]d ≤ ǫ.

Theorem 2 (Informal lower-bound for L-Lipschitz functions) Fix any ǫ, L > 0. There exists an

L-Lipschitz function f : [−1, 1]d → R such that with probability at least 1
2 over a draw of

r = exp

(

Ω

(

min

(

L2

ǫ2
log

(

dǫ2

L2
+ 2

)

, d log

(

L2

ǫ2d
+ 2

))))

many i.i.d. random ReLU gates g(1), . . . ,g(r), every depth-2 ReLU network h of width r with

g(1), . . . ,g(r) as its bottom-layer gates has ‖f − h‖[−1,1]d > ǫ.

Table 1 summarizes these results, as well as our analogues for functions in Sobolev balls.

Bound Smoothness Minimum Width Theorem

Upper Lipschitz ≤L exp
(

O
(

min
(

L2

ǫ2
log
(

dǫ2

L2 + 2
)

, d log
(

L2

ǫ2d
+ 2
))))

Thm. 1 / 6

Lower Lipschitz ≤L exp
(

Ω
(

min
(

L2

ǫ2
log
(

dǫ2

L2 + 2
)

, d log
(

L2

ǫ2d
+ 2
))))

Thm. 2 / 10

Upper Hs norm ≤γ exp
(

O
(

min
(

d log
(

sγ2/s

dǫ2/s
+ 2
)

, sγ
2/s

ǫ2/s
log
(

dǫ2/s

sγ2/s + 2
))))

Thm. 35

Lower Hs norm ≤γ exp
(

Ω
(

min
(

d log
(

γ2/s

dǫ2/s
+ 2
)

, γ2/s

ǫ2/s
log
(

dǫ2/s

γ2/s + 2
))))

Thm. 39

Table 1: Our upper- and lower-bounds on the minimum width needed for an RBL ReLU network

to ǫ-approximate a function over L2([−1, 1]d) with either bounded Lipschitz constant L,

or bounded order-s Sobolev norm γ (and periodic boundary conditions).

Discussion. Our results shed light on a question posed by Safran et al. (2019) about the approxi-

mation power of unconstrained depth-2 networks. They ask whether there exists a d-dimensional

1-Lipschitz function f that can be represented by a depth-3 neural network with poly(d) neurons

but requires width exp(Ω(d)) to be approximated by a depth-2 network. As one of their main

results, they answer this question in the negative for pointwise approximation when f is a radial

function (depending only on ‖x‖2) over the unit ball, by showing that any such function can be

efficiently approximated by a poly(d) width depth-2 network. Our results imply that the answer is

also negative for L2-approximation of arbitrary 1-Lipschitz functions (which need not be radial)

over [−1, 1]d; this follows from our upper-bounds for the case that L = 1 and ǫ is any constant,

which establish the existence of approximators that are poly(d)-width, depth-2 RBL networks. Our

results do not answer their question outright, because showing that every 1-Lipschitz function can

be approximated with respect to the L2 norm over [−1, 1]d by a depth-2 network of poly(d) width

does not imply that every 1-Lipschitz function is uniformly approximable by such a network.

Our upper-bounds on the width that suffices to approximate Lipschitz functions are also useful

for proving learnability hardness results for neural networks with more than two layers. Malach et al.

(2021) establish this connection between hardness of approximation and hardness of learning by

showing that any function that cannot be weakly approximated by a network with three layers cannot

be learned by gradient descent applied to a neural network of any depth, given certain assumptions

about the random weight initialization and bounds on the number of units in the network and number
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of steps of gradient descent. Their result hinges on a technical lemma (their Lemma B.2), which

shows that L-Lipschitz functions can be approximated by three layer neural networks with bounded

width. By replacing that lemma with our Theorem 6, their result can be strengthened to say that any

function not weakly approximable by two-layer neural networks is not learnable by gradient descent

for networks of any depth that obey their assumptions.

1.3. Our techniques

In this section we give a high-level overview of the ideas that underlie our upper and lower bounds.

1.3.1. UPPER-BOUNDS

Our width upper-bounds state that for any fixed function of the relevant sort, given a large enough

number of independent random ReLU features, with high probability some linear combination of

those features approximates the function. We argue this in three steps. (Below, we only discuss the

Lipschitzness smoothness measure, but the Sobolev case follows the same basic steps.)

1. The first step shows that for any L-Lipschitz function f , there exists a low-degree trigonomet-

ric polynomial P that closely approximates f . We establish the existence of this trigonometric

polynomial using the fact that any function in L2([−1, 1]d) can be expressed as a (potentially

infinite) linear combination of sinusoidal functions, due to the existence of a Fourier represen-

tation for f . We use the Lipschitzness of f to show that high-frequency terms have negligibly

small coefficients in the representation, which we drop to obtain a low-degree approximation P .

2. The second step expresses P as an infinite mixture of random ReLU features (à la Barron,

1993; Murata, 1996; Rubin, 1998; Candès, 1999). That is, for some distribution over biases b

and weights w (which depends on L, ǫ, and d, but not f , and takes values in R× S
d−1), P can

be written as

P (x) = E
b,w

[h(b,w)σReLU (〈w, x〉 − b)]

for some function h(b,w). Intuitively, this is possible because each sinusoidal component of P
is a ridge function (a function that depends only on a one-dimensional projection of its input).

3. Finally, using a standard concentration argument, we show that the empirical average of suffi-

ciently many random ReLUs gives a close approximation to P with high probability. It follows

that the overall weighted combination of random features closely approximates f .

1.3.2. LOWER-BOUNDS

Our lower-bounds are proved using a dimensionality argument, stemming from the simple observa-

tion that linear combinations of r features (functions) can span at most r dimensions in the function

space L2([−1, 1]d). The key is to give N ≫ r candidate functions ϕ1, . . . , ϕN that are orthonormal

in L2([−1, 1]d). With such a set of functions in hand, any fixed outcome of a draw of r random

features will be such that linear combinations of those r features cannot closely approximate more

than a small fraction of the N functions, because no r-dimensional subspace can be close to a large

fraction of N orthonormal functions. (This kind of dimensionality argument has been used in a

number of prior works, including Barron (1993); Yehudai and Shamir (2019); Kamath et al. (2020)

and elsewhere.)
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Specializing to our context, to give a lower-bound on the minimum width of RBL ReLU net-

works needed to approximate L-Lipschitz functions, it suffices to construct a large family of or-

thonormal L-Lipschitz functions. We do this with L-Lipschitz sinusoidal functions of the form√
2 sin (π 〈K,x〉) where K ∈ Z

d. The quantity ‖K‖2 controls the Lipschitz constant of these

functions, and as our analysis shows, the tradeoff between the number of functions in the family

(which increases with the allowed range of ‖K‖2 and controls our width bound r) and the Lipschitz

constant L yields a lower-bound that is quite close to our upper-bound for L-Lipschitz functions.

The simple dimensionality argument sketched above establishes that some function among the

N orthonormal functions is hard to approximate (in fact, that most of them are hard), but it does not

yield an explicit hard function. By requiring the N orthonormal functions ϕ1, . . . , ϕN to satisfy a

natural symmetry property with respect to the random ReLU features, it is possible to get a lower

bound for a single explicit function ϕ1. Following this approach, we also give a quantitatively

slightly weaker lower-bound on the minimum width that random ReLU networks need in order to

approximate an explicit function ϕ1.

1.4. Related work

Since the pioneering universal approximation results for (non-RBL) depth-2 networks (Cybenko,

1989; Funahashi, 1989; Hornik et al., 1989) mentioned in the introduction, many subsequent works

have established quantitative bounds on the width that such networks require to approximate certain

functions.1 RBL networks have also been the subject of considerable study owing to their connec-

tion to kernel methods (Neal, 1996; Rahimi and Recht, 2008; Cho and Saul, 2009) and, in particular,

the Neural Tangent Kernel (NTK). Jacot et al. (2018) argue that training neural networks with gradi-

ent descent with small step-sizes results in a learning rule similar to that obtained by a kernel method

with the NTK. When the network weights are randomly initialized, then a finite-width NTK corre-

sponds to a linear combination of random ReLUs. Both RBL ReLU networks and the finite-width

NTK enjoy the same universal approximation property of non-RBL networks (Sun et al., 2018; Ji

et al., 2019), and hence quantitative bounds on the network width required to approximate families

of functions are of significant interest.

Upper-bounds. A line of inquiry starting with Barron (1993) (see also Klusowski and Barron,

2018) investigates upper-bounds on the width of (non-RBL) depth-2 networks needed to approxi-

mate functions whose smoothness is measured in terms of their Fourier transforms. Although these

results do not deal with RBL networks and hence are incomparable to ours, they do use randomiza-

tion in the proof. Specifically, a target function is represented as a mixture of activation functions

drawn from a target-specific distribution, and a finite-width depth-2 network approximating the

function is obtained by sampling. Our results use a similar overall approach, but with the crucial

difference that in our RBL setting, our distribution of ReLUs does not depend on the target function.

Perhaps the works on RBL networks that are most closely related to our own upper-bounds are

those of Andoni et al. (2014), Yehudai and Shamir (2019), Bach (2017), and Ji et al. (2019), all of

which prove approximation-theoretic results by representing a target function as the expected value

of weighted activation functions drawn from some distribution.

• Theorem 3.1 of Andoni et al. (2014) shows how neural networks with complex-valued weights

and exponential activation functions can approximate polynomials of bounded degree. Their

1. Our discussion here focuses on works that give non-asymptotic bounds. Pinkus (1999, Section 6) gives a review of

asymptotic rates of approximation by neural networks of width r as r → ∞ (regarding the dimension d as fixed).
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bounds have an exponential dependence on that degree, which translates to an exponential de-

pendence on the Lipschitz constant L even for constant dimension d; in contrast, our bounds are

exponential in min{d, L2/ǫ2}, which can be much better if d is small.

• Yehudai and Shamir (2019) study depth-2 RBL ReLU networks (as we do), but like Andoni

et al. (2014) focus on approximating polynomials of bounded degree. Since they consider a

more stringent notion of L∞-approximation (over the unit ball), their upper-bounds on network

width (see their Theorems 3.3 and 3.4) are more pessimistic than ours and depend exponentially

on the square of the polynomial degree.

• Proposition 3 of Bach (2017) and Theorem E.1 of Ji et al. (2019) imply (or directly give) upper-

bounds on the width of depth-2 RBL ReLU networks (or finite-width NTK) to approximate

Lipschitz functions. Similar to Yehudai and Shamir (2019), they consider an L∞ notion of

approximation, so they obtain upper-bounds that always are exponential in the dimension d.

Lower-bounds. A number of recent and classical papers give width lower-bounds for arbitrary

(non-RBL) depth-2 networks that approximate certain types of multivariate functions. Maiorov

(1999) gives asymptotically tight upper- and lower-bounds on the error in approximating functions

from a Sobolev class achieveable by any two-layer network of a given width. The asymptotic nature

of Maiorov’s results (and proof techniques) means that the results do not imply lower-bounds on

the network width required to achieve a given error rate ǫ unless ǫ is sufficiently small, possibly

as a function of dimension. Our results differs from Maiorov’s and other related results from the

approximation theory literature by elucidating the interplay between the dimension and the error in

both upper- and lower-bounds.

More recently, Eldan and Shamir (2016) and Safran and Shamir (2017) give exp(d)-type lower-

bounds on the width that depth-2 networks require toL2-approximate certain simple functions under

certain probability measures on R
d. In Eldan and Shamir (2016) the function being approximated

is not explicit, and in Safran and Shamir (2017) the lower-bound is only for very high-accuracy

approximation (to error at most 1/d4). In both works the relevant probability measures are rather

involved. In contrast, our lower bounds hold only for depth-2 RBL networks, but they are for

simple explicit functions, for large (constant) values of the approximation parameter, and for L2-

approximation with respect to the uniform distribution over [−1, 1]d. In other relevant work on

depth-2 lower-bounds, Martens et al. (2013) and Daniely (2017) give exp(d)-type (or better) width

lower bounds for depth-2 networks approximating certain functions with large Lipschitz constants,

but these lower-bounds require a weight bound on the top-level combining gate. In contrast, our

lower bonds for RBL networks have no restrictions on the weights of the top-level gate.

The work of Sonoda et al. (2020), which analyzes limitations on the approximation abilities of

two-layer networks of random ReLU activation functions, is relevant to our lower-bounds. Their

lower-bounds are independent of the width of the network; they give functions that cannot be ap-

proximated by RBL networks of any (potentially infinite) width. However, their lower-bounds are

for an extremely strong notion of approximation, namely L2 approximation over all of Rd (without

any weighting by a probability distribution).

Our lower-bound idea of exploiting symmetry to obtain an explicit function that is difficult to

approximate was inspired by Yehudai and Shamir (2019). Our approach for non-explicit lower

bounds is quite similar to Theorem 19 of Kamath et al. (2020), which bounds the dimension of the

space of all linear combinations of feature functions; similar to the lower-bound of Kamath et al.
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(2020) (but unlike Yehudai and Shamir (2019)), our lower-bounds hold regardless of the size of the

weights used in the linear combination of the bottom-level random features.

Finally, we remark that while we do not consider networks of depth larger than two, our paper

was in large part inspired by results from the literature on depth separation. Telgarsky (2016), Eldan

and Shamir (2016), and Daniely (2017) all prove lower-bounds by constructing highly oscillatory

functions and showing that shallow networks must be wide in order to approximate these functions.

Safran et al. (2019) prove lower-bounds on 1-Lipschitz functions that are non-oscillatory, such as

x 7→ max{0,−‖x‖+ 1}; however, these bounds only hold in the high-accuracy regime with small

ǫ. These works motivated us to directly study the relationship between the Lipschitz constant of a

target function and the width needed to approximate it.

2. Preliminaries

2.1. Notations

For a positive integer d ∈ Z
+, let [d] := {1, 2, . . . , d}. The vectors ~0 := (0, . . . , 0) ∈ R

d and
~1 := (1, . . . , 1) ∈ R

d are, respectively, the all-zeros and all-ones vectors. Let Sd−1 := {x ∈ R
d :

‖x‖2 = 1} denote the unit sphere in R
d. Let ‖f‖Lip denote the Lipschitz constant of f : Rd → R

with respect to the Euclidean metric (i.e., the least L s.t. f is L-Lipschitz w.r.t. ‖·‖2).

We use the following notations for a multi-index K ∈ N
d (where N := {z ∈ Z : z ≥ 0}).

Let |K| := ∑d
i=1Ki, ‖K‖2 := (

∑d
i=1K

2
i )

1/2, and K! :=
∏d

i=1(Ki!). Let xK :=
∏d

i=1 x
Ki

i for

x ∈ R
d. Lastly, let D(K)f be the order-|K| partial derivative of a function f(x) with respect to xK .

We use bold font to denote random variables and write “x ∼ D” to indicate that random variable

x is distributed according to distribution D.

We use 〈·, ·〉 to denote the standard Euclidean inner product in R
d (and occasionally regard

multi-indices K ∈ N
d as elements of Rd). For a probability measure µ on R

d, L2(µ) denotes the

space of square-integrable functions with inner product denoted by 〈f, g〉µ := Ex∼µ[f(x)g(x)] =
∫

Rd f(x)g(x)µ(dx). Many of our results concern the uniform probability measure on [−1, 1]d. In

these cases, we use the notations L2([−1, 1]d) and 〈·, ·〉[−1,1]d , and fix a particular orthonormal basis

T = {TK : K ∈ Z
d} for L2([−1, 1]d) based on trigonometric polynomials. See Appendix A for

details. We also consider certain finite-dimensional subspaces of L2([−1, 1]d) which are spanned

by a set of functions indexed by Kk,d := {K ∈ Z
d : ‖K‖2 ≤ k}. The dimensions Qk,d := |Kk,d|

of these subspaces are upper- and lower-bounded as follows (proof also given in Appendix A).

Fact 3 For all d ∈ Z
+ and k ≥ 1, Qk,d = exp

(

Θ
(

min
(

d log
(

k2

d + 2
)

, k2 log
(

d
k2

+ 2
)

)))

.

2.2. Random bottom layer neural network approximation

Throughout the paper, we treat a depth-2 random bottom layer (RBL) ReLU network as a random

features model. The upper-bounds in this paper demonstrate the representational powers of linear

combinations of these random features, while the lower-bounds demonstrate their limitations.

We define a family of distributions over the parameters of random ReLU activations. Note that

our lower-bounds in Theorems 10, 13, 39, and 41 hold for all such distributions D, while our upper-

bounds in Theorems 6 and 35 hold for some fixed D, which depends on an upper bound on the

Lipschitz norm of the target function but not on the target function itself.
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Definition 4 (Symmetric ReLU parameter distributions) A product distribution D := Dbias ×
Dweights over R × S

d−1 is a symmetric ReLU parameter distribution if the coordinates of Dweights

are invariant to permutation. That is, Dweights = π ◦ Dweights for any permutation π of [d].

Given a distribution over random ReLU parameters, we now introduce the full random ReLU

features model. We define a notion of approximation and formalize the minimum width of the

network (or the minimum number of random features to combine) needed to obtain a sufficiently

accurate approximation with high probability.

Definition 5 (Minimum-width RBL ReLU network approximation) Consider a symmetric ReLU

parameter distribution D, a measure µ over Rd, and a network width r ∈ Z
+. For all i ∈ [r], we

draw each random network feature g(i) ∈ L2(µ) independently by drawing (b(i),w(i)) from D and

letting g(i)(x) := σReLU(〈w(i), x〉 − b(i)).

Given ǫ, δ > 0 and a function f : Rd → R with bounded ‖f‖µ, we define MinWidthf,ǫ,δ,µ,D
to be the smallest r ∈ Z

+ such that the following holds: With probability at least 1 − δ over

g(1), . . . ,g(r),

inf
g∈Span(g(1),...,g(r))

‖f − g‖µ ≤ ǫ.

3. Upper-bounds for Lipschitz functions in L2([−1, 1]d)

Our upper-bounds on the minimum width RBL ReLU network that approximates a Lipschitz func-

tion are dominated by the quantity Qk,d, which represents the number of integer points contained in

a d-dimensional ball of radius k (see Section 2.1).

Theorem 6 (Formal version of Theorem 1: Upper-bound for L-Lipschitz functions) Fix some

δ ∈ (0, 12 ] and ǫ, L > 0 with L
ǫ ≥ 2. Then, there exists some symmetric ReLU parameter distribution

D such that for any f ∈ L2([−1, 1]d) with ‖f‖Lip ≤ L and |Ex [f(x)]| ≤ L,

MinWidthf,ǫ,δ,[−1,1]d,D ≤ O

(

L6d2

ǫ6
ln

(

1

δ

)

Q2
2L/ǫ,d

)

.

Applying the asymptotics of Qk,d from Fact 3 reveals that the minimum width can also be bounded

by the term in Theorem 1. That expression shows that the minimum width is polynomial in L
ǫ when

d is a fixed constant, and polynomial in d when L
ǫ is a fixed constant.

To prove Theorem 6, we break the process of approximating a Lipschitz function f with an

RBL ReLU network into two steps. We first approximate f with a bounded-degree trigonometric

polynomial P in Lemma 7 and then approximate P with an RBL ReLU network in Lemma 9. We

state the lemmas and discuss their proofs in Sections 3.1 and 3.2 respectively. Section 3.3 gives a

formal proof of Theorem 6.

In Appendix D.1, we present and prove Theorem 35, a parallel result to Theorem 6 that in-

stead considers the approximation of some function f that has a bounded Sobolev norm and which

(along with its derivatives) satisfies periodic boundary conditions. The proof of Theorem 35 only

differs from that of Theorem 6 by obtaining a trigonometric polynomial approximation for f from

Lemma 38 (stated and proved in Appendix D.1) rather than Lemma 7.
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3.1. Approximating Lipschitz functions with bounded-degree trigonometric polynomials

Lemma 7 Fix some L, ǫ > 0 with L
ǫ ≥ 1 and consider any function f ∈ L2([−1, 1]d) with

‖f‖Lip ≤ L and |Ex [f(x)]| ≤ L. Then, taking k = L
ǫ , there exists a bounded-degree trigonometric

polynomial

P (x) =
∑

K∈Kk,d

βKTK

(x

2

)

such that ‖f − P‖[−1,1]d ≤ ǫ. Moreover, |βK | ≤ L for all K.

We formally prove this lemma (which we restate as Lemma 22) in Appendix B.1. Here we highlight

a central part of the argument (used in the full proof) by stating and proving a special case of the

lemma which additionally requires that f satisfy periodic boundary conditions.

Lemma 8 (Approximating Lipschitz functions with periodic boundary conditions) Fix some

L, ǫ > 0 with L
ǫ ≥ 2. Consider any function f ∈ L2([−1, 1]d) such that f satisfies periodic

boundary conditions, ‖f‖Lip ≤ L, and |Ex [f(x)]| ≤ L
2 . Then, taking k = L

2ǫ , there exists a

bounded-degree trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK (x)

such that ‖f − P‖[−1,1]d ≤ ǫ. Moreover, |βK | ≤ L
2 for all K.

To prove Lemma 8, we consider the representation of f as an infinite linear combination of trigono-

metric basis elements from T . We show that f can only be L-Lipschitz if all high-degree terms

of this representation have vanishingly small coefficients. This requires the term-by-term differ-

entiation of the trigonometric representation of f , which is possible due to its periodic boundary

conditions (see Lemma 20 in Appendix A).

Proof. By appealing to a standard approximation argument (e.g., Folland, 1999, Proposition 8.17),

we may assume that f is differentiable. Because T is an orthonormal basis over L2([−1, 1]d), we

can express f as

f(x) =
∑

K∈Zd

αKTK(x).

The condition ‖f‖Lip ≤ L implies that ‖∇f(x)‖2 ≤ L for all x ∈ [−1, 1]d. Because f has periodic

boundary conditions, f is differentiable, and ∂f(x)/∂xi ∈ L2([−1, 1]d) for all i, Lemma 20 can be

applied to relate L to the coefficients (αK)K∈Zd :

L2 ≥ E
x∼[−1,1]d

[

‖∇f(x)‖22
]

=

d
∑

i=1

E
x

[

(

∂f(x)

∂xi

)2
]

=

d
∑

i=1

E
x









∑

K∈Zd

αK
∂TK(x)

∂xi





2

 (1)

=
d
∑

i=1

∑

K∈Zd

α2
K

∥

∥

∥

∥

∂TK
∂xi

∥

∥

∥

∥

2

[−1,1]d
+ 2

d
∑

i=1

∑

K∈Zd

∑

K′ 6=K

αKαK′

〈

∂TK
∂xi

,
∂TK′

∂xi

〉

[−1,1]d

=
d
∑

i=1

∑

K∈Zd

α2
Kπ

2K2
i = π2

∑

K

α2
K ‖K‖22 . (2)

9
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Equations (1) and (2) follow from Lemma 20 and Fact 18 respectively. An immediate conse-

quence of the above inequality is that |αK | ≤ L/π ≤ L/2 as long asK 6= ~0. Because |Ex [f(x)]| ≤
L/2, |α~0| ≤ L/2 as well. We define the trigonometric polynomial P =

∑

K∈Kk,d
βKTK by letting

βK := αK for all K with ‖K‖2 ≤ k. Parseval’s identity (Fact 15) and the inequality ending on line

(2) guarantee that

‖f − P‖2[−1,1]d =
∑

K∈Zd\Kk,d

α2
K ≤

∑

K∈Zd\Kk,d

α2
K · ‖K‖22

k2
≤ 1

k2

∑

K∈Zd

α2
K ‖K‖22

≤ L2

π2k2
≤ L2

22k2
= ǫ2.

The proof of Lemma 7 is a reduction to Lemma 8. Instead of approximating f with a low-

degree trigonometric polynomial, we approximate f̃ , a scaled, shifted, and reflected version of f
that has periodic boundary conditions and thus can be differentiated term-by-term. The bulk of the

proof involves transforming f into f̃ and transforming P̃ (the trigonometric polynomial obtained by

applying Lemma 8 to f̃ ) back into P . This scaling and reflection argument is why we approximate

f with combinations of trigonometric polynomials of the form TK(x/2), rather than TK(x).

3.2. Approximating bounded-degree trigonometric polynomials with RBL ReLU nets

Lemma 9 Fix some δ ∈ (0, 1/2], ǫ > 0, ρ ∈ (0, 1], k ≥ 1, and d ∈ Z
+. Then, there exists some

symmetric ReLU parameter distribution Dk such that for any trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(ρx)

with |βK | ≤ βmax for all K ∈ Kk,d,

MinWidthP,ǫ,δ,[−1,1]d,Dk
≤ O

(

β2maxd
2k4

ǫ2
Q2

k,d ln

(

1

δ

))

.

We prove this lemma in Appendix B.2 as Lemma 23. We take advantage of the fact that every

low-degree trigonometric polynomial can be expressed as a linear combination of ridge functions.

As shown in Lemma 25, each of those ridge functions can in turn be represented as an infinite

mixture of ReLUs. We then represent the entire trigonometric polynomial as an expectation over

weighted random ReLU features with parameters drawn from a symmetric ReLU parameter distri-

bution Dk (Definition 24). By bounding the maximum norm of every random ReLU drawn from

Dk, a concentration bound (Lemma 26) can show that this expectation can be closely approximated

with a sufficiently large finite linear combination of randomly sampled ReLUs.

3.3. Proof of Theorem 6

Consider any f ∈ L2([−1, 1]d) with ‖f‖Lip ≤ L and |Ex [f(x)]| ≤ L. By Lemma 7, there exists

a bounded-degree trigonometric polynomial P (x) =
∑

K∈Kk,d
βKTK (x/2) with k := 2L/ǫ and

10
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|βK | ≤ L for all K ∈ Kk,d, such that ‖f − P‖[−1,1]d ≤ ǫ/2. By applying Lemma 9 to P with

ρ = 1/2,

MinWidthP,ǫ/2,δ,[−1,1]d,Dk
≤ O

(

β2maxd
2k4

ǫ2
Q2

k,d ln

(

1

δ

))

≤ O

(

d2L6

ǫ6
Q2

2L/ǫ,d ln

(

1

δ

))

.

Thus (see Definition 5) there exists an RBL ReLU network g of width MinWidthP,ǫ/2,δ,[−1,1]d,Dk

such that ‖P − g‖[−1,1]d ≤ ǫ/2. By the triangle inequality, ‖f − g‖[−1,1]d ≤ ǫ. We conclude that

MinWidthf,ǫ,δ,[−1,1]d,Dk
= O

(

d2L6

ǫ6
Q2

2L/ǫ,d ln

(

1

δ

))

.

4. Lower-bounds for Lipschitz functions in L2([−1, 1]d)

We give lower-bounds on the minimum width needed to ǫ-approximate L-Lipschitz functions using

depth-2 RBL ReLU networks. Below we present a formal statement of Theorem 2, which shows that

a particular family of “simple” functions must contain some hard-to-approximate function. Like the

upper-bounds in Section 3, the minimum width is polynomial (in fact linear) in the quantity Qk,d,

where k = Θ(L/ǫ).

Theorem 10 (Formal version of Theorem 2: Lower-bound for L-Lipschitz functions) Fix any

ǫ, L > 0 and fix any symmetric ReLU parameter distribution D. Then, there exists some multi-index

K ∈ N
d with ‖K‖2 ≤ L/18ǫ such that the function f(x) := 4ǫTK (recall that TK ∈ T ) satisfies

‖f‖Lip ≤ L and

MinWidthf,ǫ, 1
2
,[−1,1]d,D ≥ 1

4
QL/18ǫ,d.

The informal version, Theorem 2, follows by applying Fact 3 to lower-bound Qk,d. We note that

the function f used in the lower-bound aligns nicely with the approximation techniques from Sec-

tion 3 because f is (i) a ridge function and (ii) a scalar multiple of a sinusoidal function from the

trigonometric basis T .

We prove Theorem 10 in stages by proving a sequence of claims which are successively more

closely tailored to our RBL ReLU model.

1. In Appendix C.1 we state and prove Theorem 11, which gives a general result about the limi-

tations of linear combinations of r random features. This theorem states that a large fraction of

any set ofN orthonormal functions must be inapproximable by linear combinations of r random

features when N ≫ r. We state a simplified version of the theorem below:

Theorem 11 (Simplification of Theorem 29) Let Φ = {ϕ1, . . . , ϕN} ⊂ L2(µ) be a family of

N functions such that 〈ϕi, ϕi′〉µ = 1 {i = i′}. Let g(1), . . . ,g(r) be i.i.d. copies of an L2(µ)-
valued random variable. Then, there exists some ϕi ∈ Φ such that

E
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ

]

≥ 1− r

N
.

The proof hinges on an intuitive linear algebraic fact generalized to function spaces: N orthog-

onal vectors cannot all be close to the span of r vectors whenN ≫ r. It does so by applying the

11
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Hilbert Projection Theorem (Fact 30). The full generality of Theorem 29 also includes function

families Φ that are “nearly orthonormal” rather than strictly orthonormal (this generalization is

useful for extending our results to Gaussian space, as discussed in Appendix E). It also proves

the inapproximability of some explicit function ϕ1 when the family Φ satisfies a suitable notion

of symmetry relative to g(1), . . . ,g(r).

2. Lemma 32 of Appendix C.2 adapts Theorem 29 to our random ReLU features by giving a

lower-bound on the minimum width RBL network needed to ǫ-approximate some function for

any ǫ > 0. Below is a simplified version of the lemma that is restricted to orthonormal function

families, considers only the uniform measure over [−1, 1]d, and omits the special “symmetric

case” for Φ.

Lemma 12 (Simplification of Lemma 32) Let D be a symmetric ReLU parameter distribu-

tion. Fix any Φ = {ϕ1, . . . , ϕN} ⊂ L2([−1, 1]d) such that 〈ϕi, ϕi′〉[−1,1]d = 1 {i = i′}. Then,

for any ǫ > 0, there exists some ϕi ∈ Φ such that MinWidth4ǫϕi,ǫ,1/2,[−1,1]d,D ≥ N/4.

The proof combines a scaling argument with the definition of MinWidth to provide lower-

bounds for any choice of the error parameter ǫ.

3. We conclude the proof of Theorem 10 in Appendix C.3. Lemma 33 shows the existence of a

low-degree element of the sinusoidal basis T that cannot be approximated over [−1, 1]d by an

RBL ReLU network of small width. It does so by defining the orthonormal family of functions

to be Φ := {TK ∈ T : K ∈ Kk,d} and invoking Lemma 32. The proof of Theorem 10

only requires applying Lemma 33 for some k = Θ(L/ǫ) and showing that all TK ∈ Φ have

‖TK‖Lip ≤ L.

Lemma 33 also yields an immediate proof of Theorem 39, the Sobolev analogue of Theorem 10,

in Appendix D.2. Theorem 39 uses the same function family Φ, but must bound the Sobolev

norm of all functions in Φ rather than the Lipschitz constant.

The lower-bound established in Theorem 10 is non-explicit; it guarantees the existence of some

inapproximable function in T , but does not by itself let us deduce the specific identity of a hard

function. Since it is desirable to have a lower-bound for a fully explicit function, we also give a

variant that achieves this goal at only a small cost in the resulting quantitative lower-bound:

Theorem 13 (Explicit lower-bound for an L-Lipschitz function) For some ǫ, L > 0, let ℓ :=
min(⌈d/2⌉, ⌊L2/32π2ǫ2⌋). Fix any symmetric ReLU parameter distribution D. Then the function

f(x) := 4
√
2ǫ sin(π

∑ℓ
i=1 xi) satisfies ‖f‖Lip ≤ L and

MinWidthf,ǫ, 1
2
,[−1,1]d,D ≥ 1

4

(

d

ℓ

)

≥ exp

(

Ω

(

min

(

L2

ǫ2
log

(

dǫ2

L2
+ 2

)

, d

)))

.

Comparing the quantitative lower-bounds of Theorem 10 and Theorem 13, we see that the latter is

weaker only by a logarithmic factor in the exponent.

We prove the explicit lower-bound Theorem 13 in Appendix C.4. The only difference between

the proofs of Theorems 10 and 13 is in the last step. Theorem 13 relies on Lemma 34, an analogue

of Lemma 33, which invokes Lemma 32 with a different family Φ of trigonometric polynomials that

are symmetric up to a permutation of variables. That is, for every TK , TK′ ∈ Φ, there exists some

permutation π over [d] such that TK = TK′ ◦π. (Roughly speaking, the larger family of orthonormal

12



ON THE APPROXIMATION POWER OF TWO-LAYER NETWORKS OF RANDOM RELUS

functions used in the proof of Theorem 10 consists of functions of the form sin (π 〈K,x〉) where

K ∈ N
d is only constrained by having ‖K‖ satisfy some bound, whereas the smaller family of or-

thonormal functions used in the proof of Theorem 34 consists of functions of the form sin (π 〈K,x〉)
where K is restricted to be a 0/1 vector of some specific Hamming weight. The latter family is eas-

ily seen to satisfy symmetry with respect to any permutation π of the d coordinates, whereas the

former family does not satisfy such a symmetry condition.) This symmetry condition makes it easy

to argue that all functions in the symmetric family Φ are “equally hard,” from which a lower bound

follows straightforwardly.

Finally, we mention that Lemma 34 also supports a proof of the inapproximability of an explicit

function with bounded Sobolev norm; this is established in Theorem 41 of Appendix D.2.
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Appendix A. Key facts about trigonometric polynomial basis

In this appendix, we supplement Section 2.1 by introducing the family of trigonometric polynomials

that we use in our proofs and by proving properties related to their orthonormality. We recall the

definition of an orthonormal basis for the space L2(µ):

Definition 14 (Orthonormal basis) A countable set G ⊂ L2(µ) is an orthonormal basis for L2(µ)
if 〈g, g̃〉µ = 1 {g = g̃} for all g, g̃ ∈ G and Span (G) = L2(µ).

We frequently apply the following standard facts about orthonormal bases:

15
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Fact 15 (Facts about orthonormal bases) For some measure µ, let G be an orthonormal basis

for L2(µ). For any f, f̃ ∈ L2(µ) we have that f =
∑

g∈G αgg and f̃ =
∑

g∈G βgg for some real

(αg)g∈G and (βg)g∈G , and moreover

• αg = 〈f, g〉µ;

• ‖f‖2µ =
∑

g∈G α
2
g (Parseval); and

• 〈f, f̃〉µ =
∑

g∈G αgβg (Plancherel).

We define the basis of trigonometric polynomials T as

T :=
{

TK : K ∈ Z
d
}

,

where

TK(x) :=











1 K = ~0√
2 sin (π 〈K,x〉) K ∈ Ksin√
2 cos (π 〈K,x〉) K ∈ Kcos,

(3)

and Ksin and Kcos form a partition of Zd \ {~0}2 and are defined as

Ksin :=
{

K ∈ Z
d \ {~0} : Ki > 0, where i = min {j ∈ [d] : xj 6= 0}

}

,

Kcos :=
{

K ∈ Z
d \ {~0} : Ki < 0, where i = min {j ∈ [d] : xj 6= 0}

}

.

The set T is a useful family of functions for both our upper- and our lower-bounds on the minimum

width RBL ReLU network needed to approximate Lipschitz functions. The fact that T is an or-

thonormal basis for L2([−1, 1]d) (Fact 17) permits us to express other functions in L2([−1, 1]d) as

a linear combination of the elements of T . As we show in Fact 18, those orthogonality properties of

the elements of T are maintained even after taking partial derivatives. In addition, every function in

T is a ridge function (that is, TK(x) = φK(〈K,x〉) for some φK : R → R), which, as we will see

later, means (very usefully for us) that TK is easily approximated by linear combinations of shifted

ReLUs. Finally, the Lipschitz constant of all functions in T is bounded: ‖TK‖Lip ≤
√
2π ‖K‖2.

To prove that T is orthogonal, we rely on the following fact from integral calculus.

Fact 16 (Integrals of multivariate sinusoids) For each K ∈ Z
d,

∫

[−1,1]d
cos (π 〈K,x〉) dx = 2d · 1{K = ~0} &

∫

[−1,1]d
sin (π 〈K,x〉) dx = 0.

Proof. We use a simple inductive argument on d to evaluate the first integral. The base case d = 1 is

straightforward, so assume d > 1 and define x−1 = (x2, . . . , xd) ∈ R
d−1 for any x ∈ R

d. Assume

inductively that
∫

[−1,1]d−1

cos (π 〈K−1, x−1〉) dx−1 = 2d−1
1{K−1 = ~0}.

2. Note that this partition of Zd − {~0} is an arbitrary one. The only property this partition is designed to satisfy is that

if K corresponds to sin(π〈K,x〉), then −K must correspond to cos(−π〈K,x〉) (and vice versa).
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By the cosine addition formula, we have that:

∫

[−1,1]d
cos (π〈K,x〉) dx

=

∫

[−1,1]d
[cos (πK1x1) cos (π〈K−1, x−1〉)− sin (πK1x1) sin (π〈K−1, x−1〉)] dx

=

[∫ 1

−1
cos (πK1x1) dx1

]

[

∫

[−1,1]d−1

cos (π 〈K−1, x−1〉) dx−1

]

−
[∫ 1

−1
sin (πK1x1) dx1

]

[

∫

[−1,1]d−1

sin (π 〈K−1, x−1〉) dx−1

]

= 2 · 1{K1 = 0}
[

∫

[−1,1]d−1

cos (π 〈K−1, x−1〉) dx−1

]

= 2d · 1{K = ~0}.

The second claim follows by a nearly identical inductive argument, which we omit.

Fact 17 T is an orthonormal basis for L2([−1, 1]d).

Proof. First, we make use of the well-known fact that the constant 1 function, along with z 7→√
2 sin(πkz) and z 7→

√
2 cos(πkz) for all k ∈ Z

+, collectively form an orthonormal basis for

L2([−1, 1]). (For details, see Dym and McKean, 1972.) Thus, the d-fold Cartesian product of this

collection is an orthonormal basis for L2([−1, 1]d).3 Each function in this basis is a product of d
functions—one per variable, and each being either a constant, sine, or cosine as above—and can

be rewritten as a linear combination of functions from T using basic product-to-sum trigonometric

identities. Thus, Span (T ) = L2([−1, 1]d).
To complete our proof, it remains to show that all elements of T are orthogonal and have unit

norm. It suffices to show that 〈TK , TK′〉[−1,1]d = 1{K = K ′} for all K,K ′ ∈ Z
d. There are six

possible scenarios for this claim depending on which partitioning subsets of Zd contain K and K ′:
(1)K,K ′ ∈ Kcos; (2)K,K ′ ∈ Ksin; (3)K = K ′ = ~0; (4)K ∈ Kcos,K

′ = ~0 orK = ~0,K ′ ∈ Kcos;

(5)K ∈ Ksin,K
′ = ~0 orK = ~0,K ′ ∈ Ksin; and (6)K ∈ Ksin,K

′ ∈ Kcos orK ∈ Kcos,K
′ ∈ Ksin.

For the sake of simplicity, we only explicitly prove the claim for scenario (1). The other cases can

be proved with similar trigonometric arguments, all of which involve applying Fact 16. For scenario

(1), we observe that

〈TK , TK′〉[−1,1]d =
1

2d

∫

[−1,1]d
2 cos (π 〈K,x〉) cos

(

π
〈

K ′, x
〉)

dx

=
1

2d

∫

[−1,1]d

[

cos
(

π
〈

K −K ′, x
〉)

− cos
(

π
〈

K +K ′, x
〉)]

dx

=
1

2d

[

2d1
{

K −K ′ = 0
}

− 2d1
{

K +K ′ = 0
}

]

= 1
{

K = K ′} .

3. This is also an orthonormal basis, so we could similarly represent functions in L2([−1, 1]d) as linear combinations

of the elements of this basis and apply the properties of Fact 15. However, this representation is unhelpful for our

analysis because its elements have large Lipschitz constants and are not ridge functions.
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The last equality holds because if K + K ′ = 0, then either K or K ′ must belong to Ksin by the

definitions of Ksin and Kcos.

We additionally derive the following useful fact about the partial derivatives of elements of the

trigonometric basis T .

Fact 18 (Orthogonality of derivatives of T ) For all M ∈ N
d and for all K,K ′ ∈ Z

d,

〈

D(M)TK , D
(M)TK′

〉

[−1,1]d
= 1

{

K = K ′}π2|M |K2M .

Proof. The partial derivatives of TK for every K ∈ Z
d can be exactly characterized by inductively

taking derivatives of sin and cos functions:

D(M)TK(x) =











































π|M |TK(x)KM |M | ≡ 0 (mod 4)

π|M |T−K(x)KM |M | ≡ 1 (mod 4) &K ∈ Ksin

−π|M |T−K(x)KM |M | ≡ 1 (mod 4) &K ∈ Kcos ∪ {~0}
−π|M |TK(x)KM |M | ≡ 2 (mod 4)

−π|M |T−K(x)KM |M | ≡ 3 (mod 4) &K ∈ Ksin

π|M |T−K(x)KM |M | ≡ 3 (mod 4) &K ∈ Kcos ∪ {~0}.

(4)

The conclusion follows by applying the orthonormality of trigonometric basis elements from Fact

17 to Equation (4).

To prove that a function f ∈ L2([−1, 1]d) can be represented by a linear combination of suf-

ficiently many random ReLUs, we first show that f can be approximated by a low-degree trigono-

metric polynomial. To do so, we upper-bound the higher-order coefficients of the trigonometric

expansion of f . Obtaining these bounds requires taking partial derivatives of f by differentiating

term-by-term the trigonometric expansion of f . However, this is not always possible; for instance,

if f(x) = x1, the terms of the trigonometric expansion of ∂f/∂x1 do not correspond to the term-

by-term derivatives of the expansion of f .4 We define a notion of boundary periodicity that lets us

perform term-by-term differentiation:

Definition 19 (Periodic boundary conditions) f ∈ L2([−1, 1]d) satisfies the periodic boundary

conditions if for all i ∈ [d] and for all x ∈ [−1, 1]d

f(x1, . . . , xi−1,−1, xi+1, . . . , xd) = f(x1, . . . , xi−1, 1, xi+1, . . . , xd).

Note that all basis elements in T satisfy the periodic boundary conditions. The next lemma gives

sufficient conditions for term-by-term differentiation of a function’s trigonometric representation.

Lemma 20 (Term-by-term differentiation of trigonometric basis representations) Consider

some f ∈ L2([−1, 1]d) and i ∈ [d] such that f satisfies the periodic boundary conditions, f

4. Because ∂f/∂x1 = 1, its trigonometric expansion ∂f/∂x1 =
∑

K∈Zd βKTK will have βK = 1{K = ~0}.

Because f =
∑

K∈Zd αKTK will have αK 6= 0 for some K 6= ~0, βK 6= 0 if term-by-term differentiation were

possible. Since this contradicts the expansion of ∂f/∂x1, term-by-term differentiation is impossible in this case.
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is differentiable with respect to xi, and ∂f/∂xi ∈ L2([−1, 1]d). Then, f and ∂f/∂xi have

trigonometric expansions of the form

f =
∑

K∈Zd

αKTK &
∂f

∂xi
=
∑

K∈Zd

βKTK ,

where their coefficients (αK)K∈Zd , (βK)K∈Zd are related as follows:

βK =











πKiα−K K ∈ Kcos

−πKiα−K K ∈ Ksin

0 K = ~0.

(5)

Therefore,
∂f

∂xi
=
∑

K∈Zd

αK
∂TK
∂xi

.

Proof. Without loss of generality, let i = 1. Because each of f and ∂f/∂x1 is in L2([−1, 1]d), there

exist α and β by Fact 17 such that f and ∂f/∂x1 are exactly represented by the expansions given

in the lemma statement. It remains to show that (5) holds. We fix any K ∈ Kcos, where TK(x) =√
2 cos(π 〈K,x〉) and ∂TK(x)/∂x1 = −

√
2πK1 sin(π 〈K,x〉). By Fact 15, each coefficient of the

representation is an inner-product: αK = 〈f, TK〉[−1,1]d and βK = 〈∂f/∂x1, TK〉[−1,1]d . Moreover,

βK is related to α−K , as shown in the following:

βK =

〈

∂f

∂x1
, TK

〉

[−1,1]d
=

√
2

2d

∫

[−1,1]d

∂f(x)

∂x1
cos(π 〈K,x〉) dx

=

√
2

2d

∫

[−1,1]d−1

∫ 1

−1

∂f(x)

∂x1
cos(π 〈K,x〉) dx1 dx−1

=

√
2

2d

∫

[−1,1]d−1

[

f(x) cos(π 〈K,x〉)
∣

∣

∣

∣

1

−1

+

∫ 1

−1
f(x)πK1 sin(π 〈K,x〉) dx1

]

dx−1 (6)

=

√
2

2d

∫

[−1,1]d
f(x)πK1 sin(π 〈K,x〉) dx = πK1 〈f, T−K〉[−1,1]d = πK1α−K . (7)

We integrate by parts for Equation (6) and take advantage of the periodic boundary conditions of f
and TK for Equation (7). A symmetric argument proves the claim for K ∈ Ksin. When K = ~0, we

repeat the above argument, and the periodic boundary conditions of f imply that β~0 = 0.

The subspaces of L2([−1, 1]d) of primary interest in our analysis are spanned by a set of or-

thonormal functions that are indexed by the integer lattice points contained in given Euclidean balls.

The next fact upper- and lower-bounds the number of such points (and hence the dimension of such

a subspace).

Fact 21 (Restatement of Fact 3) For all d ∈ Z
+ and k ≥ 1,

Qk,d = exp

(

Θ

(

min

(

d log

(

k2

d
+ 2

)

, k2 log

(

d

k2
+ 2

))))

.
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Proof. For the upper bound, we use the fact that ‖K‖1 ≤ ‖K‖22 for all K ∈ Z
d:

Qk,d =
∣

∣

∣

{

K ∈ Z
d : ‖K‖2 ≤ k

}∣

∣

∣ ≤
∣

∣

∣

{

K ∈ Z
d : ‖K‖1 ≤ k2

}∣

∣

∣

≤
∣

∣

∣

{

K ∈ N
2d : ‖K‖1 ≤ k2

}∣

∣

∣
(8)

≤
(
⌈

k2
⌉

+ 2d− 1

⌈k2⌉

)

. (9)

Inequality (8) holds because we replace each integer in K from the previous line with two natural

numbers (there would be equality if we forced one of each pair of natural numbers to equal zero).

Line (9) follows from a standard stars-and-bars counting argument. Note that

(
⌈

k2
⌉

+ 2d− 1

⌈k2⌉

)

=

(
⌈

k2
⌉

+ 2d− 1

2d− 1

)

.

We show two separate upper-bounds on that quantity, which together prove the claim:

Qk,d ≤
(
⌈

k2
⌉

+ 2d− 1

2d− 1

)

≤
(

e
⌈

k2
⌉

2d− 1
+ e

)2d−1

≤ exp

(

Θ

(

d log

(

k2

d
+ 2

)))

;

Qk,d ≤
(
⌈

k2
⌉

+ 2d− 1

⌈k2⌉

)

≤
(

2ed

⌈k2⌉ + e

)⌈k2⌉
≤ exp

(

Θ

(

k2 log

(

d

k2
+ 2

)))

.

For the lower bound, we observe that

min

(

d log

(

k2

d
+ 2

)

, k2 log

(

d

k2
+ 2

))

=

{

d log
(

k2

d + 2
)

if k2 ≥ d,

k2 log
(

d
k2

+ 2
)

if k2 < d.

We will lower-bound Qk,d by the appropriate term in each of the two cases, k2 ≥ d and k2 < d.

For the case k2 < d, we lower-bound Qk,d by a sum of binomial coefficients:

Qk,d =

∣

∣

∣

∣

∣

{

K ∈ Z
d :

d
∑

i=1

K2
i ≤ k2

}∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

{

K ∈ {0, 1}d :
d
∑

i=1

Ki ≤ k2

}∣

∣

∣

∣

∣

=

(

d

0

)

+

(

d

1

)

+ · · ·+
(

d

⌊k2⌋

)

.

If ⌊k2⌋ ≤ d/2, then the sum of binomial coefficients is at least the last one, which we bound using

(

d

⌊k2⌋

)

≥ exp

(

⌊

k2
⌋

ln
d

⌊k2⌋

)

≥ exp

(

⌊

k2
⌋

2
ln

(

d

⌊k2⌋ + 2

)

)

= exp

(

Θ

(

k2 ln

(

d

k2
+ 2

)))

.

Otherwise, if d/2 < ⌊k2⌋ < d, the sum of binomial coefficients is at least 2⌊k
2⌋, and

2⌊k2⌋ = exp
(

(ln 2)
⌊

k2
⌋)

≥ exp

(

ln 2

ln 4

⌊

k2
⌋

ln

(

d

⌊k2⌋ + 2

))

= exp

(

Θ

(

k2 ln

(

d

k2
+ 2

)))

.
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When k2 ≥ d, we show thatQk,d grows at a rate similar to that of the volume of a d-dimensional

ball of sufficiently large radius Θ(k). To do so, we regard each K ∈ Kk,d as an element of Rd, and

define

Ak,d :=

{

x ∈ R
d : min

K∈Kk,d

‖x−K‖∞ ≤ 1

2

}

.

This is the Minkowski sum of Kk,d and the ℓ∞ ball of radius 1/2 in R
d. Note thatAk,d has Lebesgue

measure vol(Ak,d) = |Kk,d| = Qk,d. Let Bd
2(r) := {x ∈ R

d : ‖x‖2 ≤ r} be the d-dimensional

Euclidean ball of radius r. We claim that Bd
2(k −

√
d/2) ⊂ Ak,d, which in turn implies

Qk,d ≥ vol
(

Bd
2

(

k −
√
d/2
))

.

To see why this claim holds, consider any x ∈ Bd
2(k −

√
d/2). We’ll show that x ∈ Ak,d. Indeed,

there exists some y ∈ Z
d such that ‖x− y‖∞ ≤ 1/2, and hence this y also satisfies ‖x− y‖2 ≤√

d/2. By the triangle inequality,

‖y‖2 ≤ ‖x‖2 + ‖x− y‖2

≤
(

k −
√
d

2

)

+

√
d

2
= k.

Thus, y ∈ Kk,d, which implies x ∈ Ak,d.

To complete our lower-bound on Qk,d, we observe that

Qk,d ≥ vol

(

Bd

(

k − 1

2

√
d

))

≥ vol

(

Bd

(

k

2

))

=
πd/2(k/2)d

Γ
(

d
2 + 1

) ≥
(

πk2

2d+ 4

)d/2

≥ exp

(

Θ

(

d log

(

k2

d
+ 2

)))

,

where Γ is the gamma function and we have used a standard bound on the volume of the d-

dimensional Euclidean ball.

Appendix B. Supporting lemmas for upper-bounds for Lipschitz functions

This appendix supports Section 3, which presents and proves Theorem 6, the main upper-bound

on the minimum width RBL network needed to approximate a Lipschitz function. It contains the

proofs of the key Lemmas 7 and 9, which are given in Appendices B.1 and B.2 respectively.

B.1. Trigonometric polynomial approximation for Lipschitz functions

Lemma 22 (Restatement of Lemma 7) Fix some L, ǫ > 0 with L
ǫ ≥ 1 and consider any function

f ∈ L2([−1, 1]d) with ‖f‖Lip ≤ L and |Ex [f(x)]| ≤ L. Then, taking k = L
ǫ , there exists a

bounded-degree trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK

(x

2

)

such that ‖f − P‖[−1,1]d ≤ ǫ. Moreover, |βK | ≤ L for all K.
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Proof of Lemma 22. To give a low-degree trigonometric polynomial approximation for f , we

transform f into a function f̃ that satisfies periodic boundary conditions, apply Lemma 8 to approx-

imate f̃ with trigonometric polynomial P̃ , and obtain P from P̃ . Roughly, the argument proceeds

as follows:

1. We define f̄ : [0, 1]d → R to be a rescaling and shift of f so that its domain is the cube [0, 1]d.

That is, for x ∈ [−1, 1]d and y ∈ [0, 1]d, f̄(y) = f(2y − ~1) and f(x) = f̄((x+ ~1)/2). Then it

holds that ‖f̄‖Lip ≤ 2L and |Ey∼[0,1]d [f̄(y)]| = |Ex∼[−1,1]d [f(x)]| ≤ L.

2. We define f̃ : [−1, 1]d → R by reflecting f̄ across orthants as follows: f̃(x) = f̄(sign(x)⊙ x),
where sign (x) := (sign(x1), . . . , sign(xd)) and ⊙ represents element-wise multiplication. The

function f̃ is 2L-Lipschitz, satisfies the periodic boundary conditions, and has

∣

∣

∣

∣

∣

E
x∼[−1,1]d

[

f̃(x)
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E
y∼[0,1]d

[

f̄(y)
]

∣

∣

∣

∣

∣

≤ L.

3. We find a low-degree trigonometric polynomial P̃ that ǫ-approximates f̃ over [−1, 1]d.

4. Such a P̃ must ǫ-approximate f̃ in at least one of the 2d unit cubes contained in the orthants of

[−1, 1]d. Therefore, there exists some sign vector ν ∈ {−1, 1}d such that f̄(y) is approximated

by P̃ (ν ⊙ y) on [0, 1]d.

5. By shifting and rescaling P̃ (ν⊙y), we obtain a trigonometric polynomial P that ǫ-approximates

f on [−1, 1]d as desired.

Steps (1) and (2) are immediate.

Step (3) follows from Lemma 8. Because f̃ is 2L-Lipschitz, f̃ satisfies the periodic boundary

conditions, |Ex∼[−1,1]d [f̃(x)]| ≤ L, and 2L/ǫ ≥ 2, Lemma 8 guarantees the existence of some

trigonometric polynomial

P̃ (x) =
∑

K∈Kk,d

β̃KTK(x)

such that ‖f̃ − P̃‖[−1,1]d ≤ ǫ and |β̃K | ≤ L for all K.

For step (4), if P̃ is an ǫ-approximator for f̃ over L2([−1, 1]d), then there must exist a unit cube

in some orthant corresponding to some ν ∈ {−1, 1}d where P̃ also ǫ-approximates f̃ . That is,

E
y∼[0,1]d

[

(

P̃ (ν ⊙ y)− f̄(y)
)2
]

≤ ǫ2.

For step (5), by translating the distribution from [−1, 1]d to [0, 1]d and taking P (x) := P̃ (ν ⊙
(x+~1)/2), we obtain

E
x∼[−1,1]d

[

(P (x)− f(x))2
]

= E
y∼[0,1]d

[

(

P̃ (ν ⊙ y)− f̄(y)
)2
]

It remains to show that we can represent P as a proper trigonometric polynomial with halved

frequencies and bounded coefficients. We do so by examining each term of the expansion of P̃ .

Fix any K ∈ Z
d with ‖K‖2 ≤ k and K ∈ Ksin. Then, TK(y) =

√
2 sin(π〈K, y〉). Consider

the term corresponding to K of P (x) represented as an expansion of P̃ , β̃KTK(ν ⊙ (x + ~1)/2).
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Figure 1: A depiction of the function transformations used to give an approximation of f in

Lemma 7. The original function f is in (a), which is scaled and reflected to yield a

function f̃ with periodic boundary conditions in (b), which is given a trigonometric poly-

nomial approximation P̃ in (c), which is in turn scaled and shifted to obtain P approxi-

mating the original f in (d).

By rearranging its inner product and applying sum-of-angles trigonometric identities, we obtain the

following identity:

TK

(

1

2
ν ⊙ (x+~1)

)

=
√
2 sin

(π

2
〈ν ⊙K,x〉+ π

2
〈ν ⊙K,~1〉

)

=























√
2 sin

(

π
2 〈ν ⊙K,x〉

)

〈ν ⊙K,~1〉 ≡ 0 (mod 4)√
2 cos

(

π
2 〈ν ⊙K,x〉

)

〈ν ⊙K,~1〉 ≡ 1 (mod 4)

−
√
2 sin

(

π
2 〈ν ⊙K,x〉

)

〈ν ⊙K,~1〉 ≡ 2 (mod 4)

−
√
2 cos

(

π
2 〈ν ⊙K,x〉

)

〈ν ⊙K,~1〉 ≡ 3 (mod 4).

This yields the final representation for TK functions:

TK

(

1

2
ν ⊙ (x+~1)

)

=























Tν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 0 (mod 4)

T−ν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 1 (mod 4)

−Tν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 2 (mod 4)

−T−ν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 3 (mod 4).
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Similarly,

T−K

(

1

2
ν ⊙ (x+~1)

)

=























T−ν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 0 (mod 4)

−Tν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 1 (mod 4)

−T−ν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 2 (mod 4)

Tν⊙K(x2 ) 〈ν ⊙K,~1〉 ≡ 3 (mod 4).

Using these identities, we can rewrite P as its own trigonometric polynomial with coeffi-

cients βK for all K ∈ Z
d such that βK ∈ {β̃ν⊙K ,−β̃ν⊙K} if 〈ν ⊙ K,~1〉 ≡ 0 (mod 2), and

βK ∈ {β̃−ν⊙K ,−β̃−ν⊙K} otherwise. Due to the existence of such βK coefficients, the following

trigonometric polynomial approximates f over [−1, 1]d:

P (x) =
∑

K∈Kk,d

β̃KTK

(

1

2
ν ⊙ (x+~1)

)

=
∑

K∈Kk,d

βKTK

(x

2

)

.

B.2. RBL ReLU network approximation for trigonometric polynomials

In this section, we give a general purpose lemma that bounds the width needed to approximate

trigonometric polynomials of bounded degree.

Lemma 23 (Restatement of Lemma 9) Fix some δ ∈ (0, 1/2], ǫ > 0, ρ ∈ (0, 1], k ≥ 1, and

d ∈ Z
+. Then, there exists some symmetric ReLU parameter distribution Dk such that for any

trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(ρx)

with |βK | ≤ βmax for all K ∈ Kk,d,

MinWidthP,ǫ,δ,[−1,1]d,Dk
≤ O

(

β2maxd
2k4

ǫ2
Q2

k,d ln

(

1

δ

))

.

We first define the specific symmetric ReLU parameter distribution Dk used in the proof, which

can be shown to meet the symmetry criteria spelled out in Definition 4. (As a result, the lower-

bounds on the minimum width in Theorems 10 and 13 hold for Dk.)

Definition 24 (Symmetric ReLU parameter distribution Dk for [−1, 1]d upper-bounds) Define

Dk := Dbias ×Dweights,k as a product distribution with the following components:

• Dbias is the uniform distribution over [−2
√
d, 2

√
d]; and

• Dweights,k is a distribution over weights w taking value in S
d−1. To draw w from Dweights,k,

draw K uniformly at random from Kk,d and let w := K/ ‖K‖2. (If K = ~0, let w := ~1/
√
d.)

We also introduce notation to represent the set of vectors contained in Kk,d that generate each

w ∈ supp(Dweights,k) ⊂ S
d−1:

Kk,d,w :=

{

{K ∈ Kk,d : K = ηw, η ≥ 0} w = 1√
d
~1

{K ∈ Kk,d : K = ηw, η > 0} otherwise.
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Note that every w ∈ supp(Dweights,k) is drawn with probability |Kk,d,w|/Qk,d, which is at least

1/Qk,d and at most (k + 1)/Qk,d.

To prove Lemma 9, we represent P as an expectation over random ReLU features with pa-

rameters drawn from Dk. We first express each trigonometric basis element TK as an expectation

over random ReLUs. We leverage the fact that each individual TK is a ridge function (that is,

TK(x) = φ(〈K,x〉) for some φ). In the following lemma, we show that every ridge function on

[−1, 1]d can be represented as a mixture of ReLUs with random bias terms b drawn from Dbias.

Lemma 25 (Representing ridge functions as a mixture of ReLUs) Let φ : [−
√
d,
√
d] → R be

twice differentiable and let f : [−1, 1]d → R be f(x) = φ(〈v, x〉) for some v ∈ S
d−1. Then, for all

x ∈ [−1, 1]d,

f(x) = E
b∼Dbias

[ψ(b)σReLU (〈v, x〉 − b)] ,

where

ψ(b) :=























4
√
da0 :=

16√
d
φ(−

√
d)− 4φ′(−

√
d) b ∈ [−2

√
d,−3

2

√
d)

4
√
da1 := − 16√

d
φ(−

√
d) + 12φ′(−

√
d) b ∈ [−3

2

√
d,−

√
d)

4
√
dφ′′(b) b ∈ [−

√
d,
√
d]

0 b ∈ (
√
d, 2

√
d].

Proof. We expand the expectation over b. For x ∈ [−1, 1]d, let z := 〈v, x〉 ∈ [−
√
d,
√
d]. We have

the following:

E
b∼Dbias

[ψ(b)σReLU (〈v, x〉 − b)]

= a0

∫ − 3
2

√
d

−2
√
d
σReLU(z − b) db+ a1

∫ −
√
d

− 3
2

√
d
σReLU(z − b) db+

∫

√
d

−
√
d
φ′′(b)σReLU(z − b) db

= a0

(

zb− 1

2
b2
) ∣

∣

∣

∣

− 3
2

√
d

−2
√
d

+ a1

(

zb− 1

2
b2
) ∣

∣

∣

∣

−
√
d

− 3
2

√
d

+

∫ z

−
√
d
φ′′(b)(z − b) db

=

√
d

2
z (a0 + a1) +

d

8
(7a0 + 5a1) +

(

φ′(b)(z − b)
)

∣

∣

∣

∣

z

−
√
d

−
∫ z

−
√
d
φ′(b) · (−1) db

= zφ′(−
√
d) + φ(−

√
d) +

√
dφ′(−

√
d)− φ′(−

√
d)(z +

√
d) + φ(z)− φ(−

√
d)

= φ(z) = f(x).

Once P is represented as an expectation over random ReLUs with parameters drawn from Dk,

we conclude the proof by arguing that this expectation can be closely approximated with high proba-

bility by a linear combination of sufficiently many randomly sampled ReLUs. We do so by applying

a concentration bound due to Yurinskiı̆ (1976) for sums of independent random variables taking val-

ues in a Hilbert space. We use a convenient version of the bound from Rahimi and Recht (2009,

Lemma 4):

Lemma 26 (Concentration inequality for Hilbert spaces) Let h(1), . . . ,h(r) be independent ran-

dom variables that take values in a Hilbert space with norm ‖·‖ such that ‖h(i)‖ ≤ m for all i.
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Then, for any δ ∈ (0, 1), with probability at least 1− δ,

∥

∥

∥

∥

∥

1

r

r
∑

i=1

h(i) − E

[

1

r

r
∑

i=1

h(i)

]∥

∥

∥

∥

∥

≤ m√
r

(

1 +

√

2 log

(

1

δ

)

)

.

We are now prepared to formally prove Lemma 9.

Proof of Lemma 9. We first represent any trigonometric monomial TK as an expected value over

weighted ReLUs of the form σReLU(〈K/ ‖K‖2 , x〉 + b) for b ∼ Dbias. For each K, we have

TK(ρx) = φK(〈K/ ‖K‖2 , x〉), where

φK(z) =











√
2 cos(πρ ‖K‖2 z) K ∈ Kcos√
2 sin(πρ ‖K‖2 z) K ∈ Ksin

1 K = ~0.

By Lemma 25,

TK(ρx) = E
b∼Dbias

[

ψK(b)σReLU

(

1

‖K‖2
〈K,x〉 − b

)]

,

where ψK is the function defined in Lemma 25 for φK . Because |φK(z)| ≤
√
2, |φ′K(z)| ≤√

2πρ ‖K‖2, and |φ′′K(z)| ≤
√
2π2ρ2 ‖K‖22 for all z, we can bound ψK :

|ψK(z)| ≤ max

{

16√
d
·
√
2 + 12 ·

√
2πρ ‖K‖2 , 4

√
d
√
2π2ρ2 ‖K‖22

}

≤ 60
√
d
(

‖K‖22 + 1
)

.

Because any sinusoidal basis element TK can be expressed as an expectation of random ReLUs

and because P is a linear combination of a finite number of those basis elements, we can also

represent P as an expectation over ReLUs. We define h : R× S
d−1 → R as

h(b, w) =
Qk,d

|Kk,d,w|
∑

K∈Kk,d,w

βKψK(b) =
1

Prw∼Dweights,k
[w = w]

∑

K∈Kk,d,w

βKψK(b),

and represent P (x) as an infinite mixture of ReLU functions weighted by h over all x ∈ [−1, 1]d.

E
b,w

[h(b,w)σReLU (〈w, x〉 − b)]

=
∑

w∈supp(Dweights,k)

E
b∼Dbias





∑

K∈Kk,d,w

βKψK(b)σReLU (〈w, x〉 − b)





=
∑

w∈supp(Dweights,k)

∑

K∈Kk,d,w

βK E
b∼Dbias

[

ψK(b)σReLU

(

1

‖K‖2
〈K,x〉 − b

)]

=
∑

K∈Kk,d

βK E
b∼Dbias

[

ψK(b)σReLU

(

1

‖K‖2
〈K,x〉 − b

)]

=
∑

K∈Kk,d

βKTK(ρx)

= P (x).
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To conclude the proof, let (w(1),b(1)), . . . , (b(r),w(r)) be independent copies of (w,b), and

define h(i) ∈ L2([−1, 1]d) for i = 1, . . . , r by

h(i)(x) := h(w(i),b(i))σReLU(〈w(i), x〉 − b(i)).

Now we apply Lemma 26 to the random variables h(1), . . . ,h(r). Note that Eb(i),w(i) [h(i)(x)] =

P (x). To apply the lemma, we first bound ‖h(i)‖[−1,1]d :

∥

∥

∥h
(i)
∥

∥

∥

[−1,1]d
≤ max

b∈[−2
√
d,2

√
d],w∈Sd−1,x∈[−1,1]d

|h(b, w)σReLU (〈w, x〉 − b)|

≤
(

max
b,w,x

|σReLU (〈w, x〉 − b)|
)(

max
b,w

|h(b, w)|
)

=

(

max
w,x

‖w‖2 ‖x‖2 +max
b

|b|
)



max
b,w

Qk,d

|Kk,d,w|

∣

∣

∣

∣

∣

∣

∑

K∈Kk,d,w

βKψK(b)

∣

∣

∣

∣

∣

∣





≤ 3
√
dQk,dmax

w

1

|Kk,d,w|
∑

K∈Kk,d,w

|βK | · 60
√
d
(

‖K‖22 + 1
)

≤ 360dQk,dβmaxk
2.

Therefore, with probability 1− δ,

inf
g∈Span(g(1),...,g(r))

‖P − g‖[−1,1]d ≤
∥

∥

∥

∥

∥

1

n

r
∑

i=1

h(i) − E

[

1

r

n
∑

i=1

h(i)

]∥

∥

∥

∥

∥

[−1,1]d

≤ 360dβmaxk
2Qk,d√

r

(

1 +

√

2 ln
1

δ

)

≤ ǫ,

which holds as long as we choose r with

r ≥
3602d2β2maxk

4Q2
k,d

ǫ2

(

1 +

√

2 ln
1

δ

)2

.

Based on Definiton 5, this gives the desired upper-bound on MinWidth.

Appendix C. Supporting lemmas for lower-bounds for Lipschitz functions

This appendix supports Section 4 by proving Theorems 10 and 13.

C.1. General lower-bounds for random features

In Theorem 29, we give the most general form of our lower-bound. In this setting, we consider

linear combinations of features drawn independently from some distribution over functions (which

are not required to be ReLUs or even ridge functions). We argue that the span of any r such random

functions in L2(µ) cannot cover more than r dimensions of that function space and that we therefore

cannot approximate most of the members of a family of N orthonormal functions if N ≫ r.
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If the family of N functions satisfies a suitable notion of symmetry with respect to the random

features, then we can additionally argue that each function in that family is equally likely to be

inapproximable. This makes it possible to construct a single explicit function that cannot be ap-

proximated with high probability by linear combinations of random features. We give the relevant

notion of symmetry below:

Definition 27 (Symmetry of random functions) Let g be an L2(µ)-valued random variable for

some measure µ. We say g is symmetric with respect to the set of functions Φ = {ϕ1, . . . , ϕN} ⊂
L2(µ) if the distribution of 〈g, ϕi〉µ is the same for all i = 1, . . . , N .

In fact, strict orthonormality of the hard functions is not needed for our approach; we introduce

a notion of “average coherence,”

which allows us to quantify how far the family is from being orthogonal and prove lower-bounds

that depend on this quantity.

Definition 28 (Average coherence) For any set of functions Φ = {ϕ1, . . . , ϕN} ⊂ L2(µ) with

‖ϕi‖µ = 1 for all i = 1, . . . , N , its (average) coherence is κ(Φ) :=
√

∑

i 6=j〈ϕi, ϕj〉2µ.

We are particularly interested in large collections of functions with low coherence. Note that a

collection of orthogonal functions has zero coherence. Our main approximation lower bounds in

Theorems 10 and 13 are achieved using an orthogonal collection. However, our general lower bound

(Theorem 29) extends to the case where the family of functions has small (but nonzero) coherence,

and indeed this version for families with small coherence is useful in extending our general approach

to functions over Gaussian space, as we sketch in Appendix E.

The following general lower bound works for any distribution over random features that meets

the above symmetry condition and for any set of “nearly-orthonormal” functions that have a bounded

average coherence κ. It is akin to Theorem 19 of Kamath et al. (2020) although that result does not

involve a symmetry notion (and hence does not yield an explicit hard function).

Theorem 29 (Lower-bound for linear combinations of random features) Fix a family of func-

tions Φ = {ϕ1, . . . , ϕN} ⊂ L2(µ) with ‖ϕi‖2µ = 1 for all i = 1, . . . , N . Let g(1), . . . ,g(r) be i.i.d.

copies of an L2(µ)-valued random variable. Then, there exists some ϕi ∈ Φ such that

E
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ

]

≥ 1− r (1+κ(Φ))

N
. (10)

In particular, for any α ∈ [0, 1],

Pr
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ ≥ α

(

1− r (1+κ(Φ))

N

)

]

≥ (1−α)
(

1− r (1+κ(Φ))

N

)

.

(11)

Moreover, if g(1), . . . ,g(r) are symmetric with respect to Φ, then (10) and (11) hold for i = 1.

We recall two tools that will be used in the proof of Theorem 29, namely the Hilbert projection

theorem and the Boas-Bellman inequality.
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Fact 30 (Hilbert projection theorem (Rudin, 1987)) For some measure µ and g(1), . . . , g(r) ∈
L2(µ), consider the subspace W = Span(g(1), . . . , g(r)) of L2(µ). For any f ∈ L2(µ), it holds

that

inf
g∈W

‖g − f‖2µ = ‖ΠW f − f‖2µ = ‖f‖2µ − ‖ΠW f‖2µ , (12)

where ΠW : L2(µ) → W is the orthogonal projection operator for W . Moreover, the orthogonal

projection ΠW f depends on f only through (〈g(1), f〉µ, . . . , 〈g(r), f〉µ).

The following is a generalization of Bessel’s inequality due to Boas (1941) and Bellman (1944),

specialized to our present context.

Fact 31 (Boas-Bellman inequality) For any g, ϕ1, . . . , ϕN ∈ L2(µ),

N
∑

i=1

〈g, ϕi〉2µ ≤ ‖g‖2µ
(

max
1≤i≤N

‖ϕi‖2µ + κ({ϕ1, . . . , ϕN})
)

. (13)

Proof of Theorem 29. By the Hilbert projection theorem (Fact 30), for all i ∈ [N ] we have that

E
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ

]

= 1− E
g(1),...,g(r)

[

∥

∥

∥ΠSpan(g(j))rj=1
ϕi

∥

∥

∥

2

µ

]

.

We now upper-bound the sum of the expected norms of the projections of each function in Φ
onto Span(g(j))rj=1. Let u1, . . . ,ud be an orthonormal basis for Span(g(j))rj=1, where d :=

dimSpan(g(j))rj=1. Then

N
∑

i=1

∥

∥

∥ΠSpan(g(j))rj=1
ϕi

∥

∥

∥

2

µ
=

N
∑

i=1

d
∑

k=1

〈uk, ϕi〉2µ =

d
∑

k=1

N
∑

i=1

〈uk, ϕi〉2µ (Plancherel’s identity, Fact 15)

≤
d
∑

k=1

(1 + κ(Φ)) = d · (1 + κ(Φ)) (Fact 31)

≤ r · (1 + κ(Φ)) (dimSpan(g(j))rj=1 ≤ r).

Hence, we conclude by linearity of expectation that

1

N

N
∑

i=1

E
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ

]

≥ 1− r · (1 + κ(Φ))

N
. (14)

Therefore, there exists some i ∈ [N ] such that

E
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖g − ϕi‖2µ

]

≥ 1− r · (1 + κ(Φ))

N
,

which gives us inequality (10). Inequality (11) follows by an application of Markov’s inequality

to the random variable 1 − infg∈Span(g(j))rj=1
‖g − ϕi‖2µ (which is easily seen to be non-negative),

which by the first part of the theorem has expected value at most r · (1 + κ(Φ))/N .
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We conclude by proving the stronger version of the theorem, where we additionally assume

that the random features are symmetric. Suppose g(1), . . . ,g(r) are symmetric with respect to Φ.

As mentioned in Fact 30, the orthogonal projection ΠSpan(g(j))rj=1
ϕ1 depends on ϕ1 only through

the (random) vector (〈g(1), ϕ1〉µ, . . . , 〈g(r), ϕ1〉µ). Therefore, by the symmetry assumption on the

distribution of each g(i), the orthogonal projection ΠSpan(g(j))rj=1
ϕ1 has the same distribution as

ΠSpan(g(j))rj=1
ϕi for all i ∈ [N ]. Then

E
g(1),...,g(r)

[

∥

∥

∥ΠSpan(g(j))rj=1
ϕ1

∥

∥

∥

2

µ

]

=
1

N

N
∑

i=1

E
g(1),...,g(r)

[

∥

∥

∥ΠSpan(g(j))rj=1
ϕi

∥

∥

∥

2

µ

]

. (15)

Plugging Equation (15) into Inequality (14) proves that Inequalities (10) and (11) hold for i = 1.

C.2. MinWidth lower-bounds for RBL ReLU networks

Here, we specialize Theorem 29 to the case of ReLU networks, which prepares us to prove the

specific lower-bounds that will be given in the subsequent sections.

Lemma 32 Let D be a symmetric ReLU parameter distribution and µ be some measure over Rd.

Fix any Φ = {ϕ1, . . . , ϕN} ⊂ L2(µ) such that ‖ϕi‖2µ = 1 for all i ∈ [N ]. Then, for any ǫ > 0,

there exists some ϕi ∈ Φ such that

MinWidth4ǫϕi,ǫ,
1
2
,µ,D ≥ N

4 + 4κ(Φ)
. (16)

Additionally, suppose that the functions in Φ are symmetric up to some permutation of variables

and µ is invariant to permutation of variables. That is, for all i, i′ ∈ [N ] there exists a permutation

πi,i′ over [d] such that ϕi ◦ πi,i′ = ϕi′ . Then, Inequality (16) always holds for i = 1.

Proof. By applying Theorem 29 for any r ≤ N/(4 + 4κ(Φ)) and for α = 1/3, there exists some

i ∈ [N ] such that

Pr
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖ϕi − g‖µ <
1

4

]

<
1

2
.

Note that for all f , there exists g ∈ Span(g(j))rj=1 with ‖f − g‖µ < ǫ if and only if there exists

g′ ∈ Span(g(j))rj=1 with ‖f/4ǫ− g′‖µ < 1/4. Thus, we conclude the following:

Pr
g(1),...,g(r)

[

inf
g∈Span(g(j))rj=1

‖4ǫϕi − g‖µ < ǫ

]

= Pr
g(1),...,g(r)

[

inf
g′∈Span(g(j))rj=1

∥

∥ϕi − g′
∥

∥

µ
<

1

4

]

<
1

2
.

To prove the stronger version of the theorem that assumes permutation symmetry for Φ, we

apply the stronger version of Theorem 29. To do so, we must show that each g(i) is symmetric with

respect to Φ.
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Because the ReLU feature parameters b(i) are chosen independently w(i) and the distribution of

w(i) is invariant to variable permutation, each g(i) is drawn from a distribution that is also invariant

to permutation. We prove the symmetry property by showing that the inner product distributions

are identical for g(1), without loss of generality. Because each function in ϕ1, . . . , ϕN is symmetric

to a permutation of variables, there exists some permutation πi,i′ such that for all x ∈ µ, ϕi(x) =
ϕi′(πi,i′(x)). To show that the two inner products induce the same distribution, consider any z ∈ R.

Then:

Pr
g(1)

[〈g(1), ϕi〉µ ≥ z]

= Pr
g(1)

[

E
x∼µ

[g(1)(x)ϕi(x)] ≥ z

]

= Pr
g(1)

[

E
x∼µ

[g(1)(x)ϕj(πi,i′(x))] ≥ z

]

(Existence of πi,i′)

= Pr
g(1)

[

E
x∼µ

[g(1)(πi,i′(x))ϕj(πi,i′(x))] ≥ z

]

(Symmetry of g(1)’s distribution)

= Pr
g(1)

[

E
x∼µ

[g(1)(x)ϕi′(x)] ≥ z

]

(Symmetry of µ)

= Pr
g(1)

[〈g(1), ϕi′〉µ ≥ z]

Hence, recalling Definition 27, g(1) is symmetric with respect to ϕ1, . . . , ϕN . By invoking The-

orem 29 with the additional symmetry assumption, inequality (16) holds when i = 1.

C.3. Asymptotically tight lower-bounds for RBL ReLU networks over [−1, 1]d

To finalize the proof of Theorem 10, we first show that some low-degree trigonometric polynomial

cannot be approximated by a combination of random ReLU features.5

Lemma 33 For any k > 0, any ǫ > 0, and any symmetric ReLU parameter distribution D, there

exists some K ∈ N
d with ‖K‖2 ≤ k such that

MinWidth4ǫTK ,ǫ, 1
2
,[−1,1]d,D ≥ 1

4
Qk,d.

Proof. Let Tk := {TK ∈ T : K ∈ Kk,d} be a subset of trigonometric basis elements with bounded

degree. Because T is an orthonormal family of functions, Tk is as well, and κ(Tk) = 0. Then,

Lemma 32 implies the existence of some TK ∈ Tk such that

MinWidth4ǫTK ,ǫ, 1
2
,[−1,1]d,D ≥ |Tk|

4
=

1

4
Qk,d.

We prove Theorem 10 by applying Lemma 33 and bounding the Lipschitz constant of the inap-

proximable function.

5. We prove Lemma 33 separately from Theorem 10 since we also make use of Lemma 33 in Appendix D.2 when

proving lower-bounds based on the Sobolev norm of a function, rather than its Lipschitz constant.
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Proof of Theorem 10. Consider any TK ∈ T with ‖K‖2 ≤ k. Then, for all x, x′ ∈ [−1, 1]d,
∣

∣TK(x)− TK(x′)
∣

∣ ≤
√
2π〈K,x− x′〉 ≤

√
2π ‖K‖2 ‖x− x′‖2 ≤

√
2πk‖x− x′‖2.

Thus, ‖TK‖Lip ≤
√
2πk and ‖f‖Lip ≤ 4

√
2πkǫ ≤ 18kǫ. By applying Lemma 33 with k :=

L/18ǫ, there exists a satisfactory f such that ‖f‖Lip ≤ L.

C.4. Explicit lower-bounds for RBL ReLU networks over [−1, 1]d

As in the previous section, we prove Lemma 34 by applying Lemma 32 to a family of orthonormal

functions. In order to obtain an explicit function f that is hard to approximate, we invoke the

stronger version of Lemma 32, which requires showing that that the family of functions exhibits

symmetry up to a permutation of variables.

Lemma 34 For any ℓ ∈ Z
+ with ℓ ≤ d, any ǫ > 0, and any symmetric ReLU parameter distribu-

tion D, define f : Rd → R to be the function f(x) := 4
√
2ǫ sin(π

∑ℓ
i=1 xi). Then,

MinWidthf,ǫ, 1
2
,[−1,1]d,D ≥ 1

4

(

d

ℓ

)

.

Proof. We prove the claim by constructing a family of functions Φℓ with 1
4ǫf ∈ Φℓ and applying

Lemma 32. We define a family of functions

Φℓ :=

{

ϕS : x 7→
√
2 sin

(

π
∑

i∈S
xi

)

| S ⊆ [d], |S| = ℓ

}

.

Note that |Φℓ| =
(

d
ℓ

)

and that ϕ1 := 1
4ǫf = ϕ[ℓ] ∈ Φℓ. Because Φℓ ⊆ T and T is an orthonormal

basis for L2([−1, 1]d) (Fact 17), the functions in Φℓ are orthonormal and κ(Φℓ) = 0. Thus, because

the Φℓ satisfies the symmetry conditions for the special case of Lemma 32,

MinWidthf,ǫ, 1
2
,[−1,1]d,D ≥ 1

4

(

d

ℓ

)

.

Proof of Theorem 13. This is immediate from Lemma 34 and from the fact that ‖f‖Lip =

4πǫ
√
2ℓ ≤ L. The right-hand side of the bound follows by lower-bounding

(

d
ℓ

)

for our choice

of ℓ.
If ℓ = ⌈d/2⌉ and d ≥ 2,6 then

(

d

ℓ

)

≥
(

d

⌈d/2⌉

)⌈d/2⌉
≥
(

3

2

)d/2

≥ exp (Θ(d)) .

Otherwise, ℓ < d/2 and

(

d

ℓ

)

≥
(

d

ℓ

)ℓ

≥ exp

(

Θ

(

ℓ log

(

d

ℓ
+ 2

)))

= exp

(

Θ

(

L2

ǫ2
log

(

dǫ2

L2
+ 2

)))

.

This matches the exponent asymptotically up to logarithmic factors of the corresponding Lips-

chitz upper-bound, Theorem 6.

6. There is no need to consider the d = 1 case, because then MinWidthf,ǫ, 1
2
,[−1,1]d,D ≥ 1

4
= exp(Θ(1)), which

satisfies the claim.
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Appendix D. Upper- and lower-bounds for Sobolev functions

In this section, we present upper- and lower-bounds on the width required for depth-2 RBL ReLU

approximation of functions in a larger family of smooth functions, namely the order-s Sobolev

functions. Sobolev spaces are normed function spaces arising in the study of partial differential

equations, and their norms quantify the effective “bumpiness” of their constituent functions in terms

of their weak derivatives. Let µ denote the uniform probability measure on an open subset of Rd.

Following Leoni (2017), we denote the order-s Sobolev space of functions in L2(µ) for s ∈ N by7

Hs(µ) :=
{

f : Rd → R : D(M)f ∈ L2(µ), ∀M ∈ N
d s.t. |M | ≤ s

}

.

The norm on this space is

‖f‖Hs(µ) :=

√

∑

|M |≤s

∥

∥D(M)f
∥

∥

2

µ
.

(We do not consider Sobolev spaces in Lp(µ) for p 6= 2 since we rely on Hilbert space structure.)

We focus on the classical spaces Hs(µ) in L2(µ), where µ is the uniform product probability

measure on the torus T
d and T = R/(2Z). As a short-hand, we refer to this space as Hs(Td)

in L2(T
d). Recall that T is obtained by identifying points in R that differ by 2z for some z ∈ Z.

Functions on T
d can be regarded as functions on [−1, 1]d, which, along with their derivatives, satisfy

the periodic boundary conditions. Note that T is also an orthonormal basis for Td, because all of

the trigonometric polynomials in T and all their derivatives have periodic boundary conditions and

because the probability density of the uniform distribution on T
d is the same as the density over the

uniform distribution on [−1, 1]d.

D.1. Upper-bounds for functions in Hs(Td)

We prove an analogue to Theorem 6 that places an upper-bound on the minimum width RBL ReLU

network that approximates a function with bounded order-s Sobolev norm.

Theorem 35 Fix some δ ∈ (0, 1/2], ǫ, γ > 0, and s ∈ Z
+. Let k :=

√
sγ1/s/ǫ1/s. Then,

there exists some ReLU parameter distribution D such that for any fixed f ∈ Hs(Td) that satisfies

‖f‖Hs(Td) ≤ γ, we have

MinWidthf,ǫ,δ,Td,D ≤ O

(

s2γ2+4/sd2

ǫ2+4/s
Q2

k,d ln

(

1

δ

)

)

.

Remark 36 When s = 1,

MinWidthf,ǫ,δ,Td,D ≤ O

(

γ6d2

ǫ6
Q2

γ/ǫ,d ln

(

1

δ

))

,

which is a near-perfect match to the upper-bound for Lipschitz functions in Theorem 6. This is

unsurprising, because all L-Lipschitz functions f with |E [f ]| ≤ L have a squared 1-order Sobolev

norm with the following bound:

‖f‖2Hs(Td) = ‖f‖2
T
+ E

x∼Td

[

‖∇f(x)‖2
]

≤ O(L2).

7. Technically, D(M)f is interpreted as the M -th weak partial derivative of f . However, it satisfies the integration-by-

parts formulas that appear in the proof of Lemma 20, which is all we require.
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Thus, the two theorems give nearly identical upper-bounds for L-Lipschitz functions that satisfy

periodic boundary conditions.

Remark 37 Applying Fact 3 to Theorem 35 implies that

MinWidthf,ǫ,δ,Td,D ≤ ln

(

1

δ

)

exp

(

O

(

min

(

d log

(

sγ2/s

dǫ2/s
+ 2

)

,
sγ2/s

ǫ2/s
log

(

dǫ2/s

sγ2/s
+ 2

))))

.

Like the proof of Theorem 6, we first show that every function in Hs(Td) can be approximated

by low-degree trigonometric polynomial in Lemma 38, which is a parallel result to Lemma 7. Unlike

Theorem 6, however, we require that f and its first s derivatives satisfy the periodic boundary

conditions, which is assured by the fact that f ∈ Hs(Td). Thanks to this assumption, we eliminate

the need for the “reflection” trick from Lemma 7, which simplifies the proof.

Lemma 38 (Approximating Sobolev functions with low-degree trigonometric polynomials) Fix

any values γ, ǫ > 0 and s ∈ Z
+. Consider any f ∈ Hs(Td) with ‖f‖Hs(Td) ≤ γ. Let k :=√

sγ1/s/(2ǫ)1/s. Then, there exists a trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(x)

such that ‖f − P‖
Td ≤ ǫ. Moreover, |βK | ≤ ‖f‖

Td ≤ γ for all K ∈ Kk,d.

Proof. Because T is an orthonormal basis over Td, we express f as the expansion

f =
∑

K∈Zd

αKTK .

Since f can be regarded as a function on [−1, 1]d whose first s partial derivatives satisfy boundary

conditions, Lemma 20 implies that this expansion of f can be differentiated term-by-term. By

taking term-by-term partial derivatives of f , applying Parseval’s identity (Fact 15), and using the

known norms of partial derivatives of TK (Fact 18), we obtain the following closed-form L2(T
d)

norm for D(M)f for all M ∈ N
d with |M | ≤ s:

∥

∥

∥D(M)f
∥

∥

∥

2

Td
=
∑

K∈Zd

α2
K(πK)2M .

Therefore, the squared Hs(Td)-norm of f can be written as

‖f‖2Hs(Td) =
∑

|M |≤s

∥

∥

∥D(M)f
∥

∥

∥

2

Td
=
∑

|M |≤s

∑

K∈Zd

α2
K(πK)2M =

∑

K∈Zd

α2
KcK,s, (17)

where

cK,s :=
∑

|M |≤s

(πK)2M .
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We lower-bound cK,s in terms of s and ‖K‖2 with the multinomial theorem:

cK,s ≥
∑

|M |=s

(πK)2M ≥ π2s

s!

∑

|M |=s

s!

M !
K2M =

π2s

s!
‖K‖2s2 ≥

(

π2 ‖K‖22
s

)s

.

We define βK := αK for all K ∈ Kk,d and βK := 0 for all other K ∈ Z
d. Note that if K ∈ Z

d

has ‖K‖2 > k ≥ √
sγ1/s/πǫ1/s, then cK,s > γ2/ǫ2. By Parseval’s identity, we have β2K ≤ ‖f‖2

Td .

Moreover,

‖f − P‖2
Td =

∑

K∈Zd\Kk,d

α2
K ≤

∑

K∈Zd:
cK,s>γ2/ǫ2

α2
K ≤

∑

K∈Zd:
cK,s>γ2/ǫ2

α2
K · cK,S

γ2/ǫ2
≤ ǫ2

γ2

∑

K∈Zd

α2
KcK,s ≤ ǫ2.

Above, the first equality uses Parseval’s identity, and the final equality uses Equation (17).

Proof of Theorem 35. This proof is identical to the proof of Theorem 6 in Section 3.3, except that

we make use of Lemma 38 instead of Lemma 7, and instead set k :=
√
sγ1/s/ǫ1/s and ρ := 1.

D.2. Lower-bounds for functions in Hs([−1, 1]d)

Similar to Section 4, we give lower-bounds on the width of RBL ReLU neural networks required

to approximate certain functions (now ones with bounded s-order Sobolev norm). As before, we

present two variants of the lower-bound, one non-explicit tight bound and one looser explicit bound.

• Theorem 39 is analogous to Theorem 10. It shows the existence of some sinusoidal function

with bounded Sobolev norm which matches the upper-bound Theorem 35 by depending on the

same combinatorial term.

• Theorem 41, like Theorem 13, offers an explicit sinusoidal function with bounded Sobolev

norm whose minimum width can be bounded by a term that differs from the asymptotics of the

exponent of the upper-bound by a logarithmic factor.

These results follow from proofs that directly apply Lemmas 33 and 34 respectively and bound

the s-order Sobolev norms of the resulting functions.

D.2.1. A TIGHT LOWER-BOUND

We give a bound on the minimum width depth-2 RBL ReLU network needed to approximate some

function with bounded Sobolev norm, which is a scaled version of some function in T . The family

of functions is identical to that of Theorem 39; the only difference is that we parameterize the

bounds by the s-order Sobolev norm of the function, rather than its Lipschitz constant.

Theorem 39 Fix some ǫ, γ > 0 and s ∈ Z+ with γ2/ǫ2 ≥ 16(s+ 1). Let

k :=
γ1/s

π41/sǫ1/s(s+ 1)1/2s
.

Then, there exists some K ∈ Kk,d such that for f := 4ǫTK and for any symmetric ReLU parameter

distribution D,
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MinWidthf,ǫ, 1
2
,Td,D ≥ 1

4
Qk,d,

and ‖f‖Hs(Td) ≤ γ.

Remark 40 By invoking Fact 3, we have

MinWidthf,ǫ,1/2,Td,D ≥ exp

(

Ω

(

min

(

d log

(

γ2/s

dǫ2/s
+ 2

)

,
γ2/s

ǫ2/s
log

(

dǫ2/s

γ2/s
+ 2

))))

.

Note that we can drop (s+ 1)1/s terms from the asymptotics of the exponent, because (s+ 1)1/s ∈
(1, 2] for all s ∈ Z

+. The asymptotics of the exponents match the upper-bound on the minimum

width presented in Remark 37, when δ = 1/2 and s is regarded as a small constant.

Proof. To prove the existence of f , we need only invoke Lemma 33 for our choice of k. It remains

to bound the s-order Sobolev norm of f . We do so by expanding the squared Sobolev norm of f and

applying Fact 18 to obtain an exact representation of the norms of derivatives of the basis elements

TK ∈ T .

‖f‖2Hs(Td) =
∑

M :|M |≤s

∥

∥

∥D(M)f
∥

∥

∥

2

Td
= 16ǫ2

∑

M :|M |≤s

∥

∥

∥D(M)TK

∥

∥

∥

2

Td
= 16ǫ2

∑

M :|M |≤s

π2|M |K2M

= 16ǫ2
s
∑

m=0

π2m
∑

|M |=m

K2M ≤ 16ǫ2
s
∑

m=0

π2m
∑

|M |=m

m!

K!
K2M = 16ǫ2

s
∑

m=0

π2m ‖K‖2m2

≤ 16ǫ2
s
∑

m=0

(

π2k2
)m

= 16ǫ2
s
∑

m=0

(

γ2/s

161/sǫ2/s(s+ 1)1/s

)m

Because of our assumed lower-bound on γ2/ǫ2, the final term of the sum cannot be smaller than

any preceding terms. Therefore, we conclude with the following trivial bound on the sum.

‖f‖2Hs(Td) ≤ 16ǫ2
s
∑

m=0

(

γ2/s

161/sǫ2/s(s+ 1)1/s

)m

≤ 16ǫ2(s+ 1)

(

γ2/s

161/sǫ2/s(s+ 1)1/s

)s

= γ2.

D.2.2. A LOWER-BOUND FOR AN EXPLICIT SINUSOIDAL FUNCTION

We give an explicit lower-bound that bounds the Sobolev norm of the function f used in Lemma

34. In that way, it is nearly identical to Theorem 13.

Theorem 41 Fix some ǫ, γ > 0 and s ∈ Z+ with γ2/ǫ2 ≥ 16(s+ 1). Let

ℓ := min

(

⌈

d

2

⌉

,

⌊

γ2/s

π2161/sǫ2/s(s+ 1)1/s

⌋)

.
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Fix any symmetric ReLU parameter distribution D. Then, the function f(x) := 4
√
2ǫ sin(π

∑ℓ
i=1 xi)

satisfies ‖f‖Hs(Td) ≤ γ and

MinWidthf,ǫ, 1
2
,Td,D ≥ 1

4

(

d

ℓ

)

≥ exp

(

Ω

(

min

(

γ2/s

ǫ2/s
log

(

dǫ2/s

γ2/s
+ 2

)

, d

)))

.

Proof. The width bound is immediate from Lemma 34 and from the lower-bounds on
(

d
ℓ

)

shown in

the proof of Theorem 13. Note that f can be written as f = 4ǫTK for some K with

‖K‖2 =
√
ℓ ≤ γ1/s

π41/sǫ1/s(s+ 1)1/2s
.

Thus, we conclude that ‖f‖Hs(Td) ≤ γ by applying the same chain of inequalities from Theorem 39,

making use of our lower-bound on γ2/ǫ2.

Appendix E. A similar approach for the Gaussian measure

The techniques underlying our upper- and lower-bounds on approximation by depth-2 RBL net-

works are rather general, and can be applied in a broader range of settings than are captured by

Theorems 1 and 2. These settings include other activation functions beyond ReLU gates and other

functions spaces beyond L2([−1, 1]d). In this Appendix, we briefly sketch how several of the key

ingredients for Theorems 1 and 2 have analogues over Gaussian space, and how results similar to

Theorems 1 and 2 can be proved over Gaussian space.8

E.1. The setting and key background results

We consider the domain R
d endowed with the standard d-dimensional Gaussian measure N (0, Id)

with mean zero and identity covariance matrix. It is well known (see e.g. Section 11.2 of O’Donnell

(2014)) that the set {HK}K∈Nd of all multivariate normalized Hermite polynomials is an orthonor-

mal basis for L2(N (0, Id)), where for K = (K1, . . . ,Kd) the function HK is

HK =
d
∏

j=1

hKj
(xj)

where hi is the degree-i normalized univariate Hermite polynomial. These multivariate Hermite

polynomials are analogous to the trigonometric basis polynomials TK that are introduced in Ap-

pendix A for the function space L2([−1, 1]d).

Well known results (see, e.g., Section 5.5 of Szegö (1989)) show that partial derivatives of

multivariate normalized Hermite polynomials can be conveniently expressed in terms of other mul-

tivariate normalized Hermite polynomials, very analogous to Equation 4. By combining this with

a well-known recurrence relation for Hermite polynomials (again, see Szegö (1989)), it is possible

to prove the following result, which is closely analogous to Lemma 20 but now for L2(N (0, Id))
rather than L2([−1, 1]d):

8. Coarse analogues of the results from Appendix D for Sobolev spaces may also be obtained with these techniques.
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Lemma 42 (Term-by-term differentiation for Hermite representation) Consider some f ∈
L2(N (0, Id)) and i ∈ [d] such that f is differentiable with respect to xi and

∂f
∂xi

∈ L2(N (0, Id)).
Then, f and its partial derivative ∂f/∂xi have Hermite expansions of the form

f =
∑

K∈Nd

αKHK &
∂f

∂xi
=
∑

K∈Nd

αK
∂HK

∂xi
.

E.2. The upper-bound approach

Recall that our positive results for depth-2 RBL ReLU approximation are proved in two stages.

In the first stage (Lemma 7, restated as Lemma 22 in Appendix B.1), we argued that any Lipschitz

function over [−1, 1]d can be approximated as a low-degree trigonometric polynomial with bounded

coefficients. In the second stage (Lemma 9), we argued that low-degree trigonometric polynomials

can be approximated with depth-2 RBL ReLU networks.

For the first stage, with Lemma 42 in hand as an analogue of Lemma 20, it is possible to ob-

tain an analogue of Lemma 22; in the current Gaussian setting, this result shows that functions in

L2(N (0, Id)) with bounded Lipschitz constant can be approximated with low-degree Hermite poly-

nomials whose coefficients (in terms of the orthonormal basis of normalized multivariate Hermite

polynomials) are not too large. (The argument is in fact simpler than for Lemma 22 because there

are no issues with periodic boundary conditions, which were responsible for steps 1, 2, 4 and 5 of

the outline provided at the beginning of the proof of Lemma 22.)

For the second stage, some technical challenges arise because the Hermite basis functions (un-

like the trigonometric polynomials defined in Appendix A) are not ridge functions. These challenges

can be overcome: using techniques from Andoni et al. (2014), it is possible to show that the small-

coefficient, low-degree Hermite polynomials we are dealing with can indeed be approximated by

depth-2 RBL ReLU networks. It turns out that the resulting width of the RBL ReLU networks

obtained using this approach is roughly (dL/ǫ)O(L2/ǫ2), i.e., polynomial in the dimension d but

exponential in L/ǫ; this corresponds to a somewhat weaker analogue of Theorem 6 in which the

“min(L2/ǫ2, d)” is replaced with just L2/ǫ2, and gives a good upper bound when d is large com-

pared to L2/ǫ2. For the complementary regime where L2/ǫ2 is large compared to d, using different

techniques9 it can be shown that in fact depth-2 RBL ReLU networks of width roughly (dL/ǫ)O(d)

also suffice; combining these two regimes, this gives an overall approximation result for Lipschitz

functions over Gaussian space that is quite closely analogous to Theorem 6. The arguments to es-

tablish these results are somewhat lengthy for each of the two regimes, though, so we omit both the

arguments and detailed claims of the results in this paper.

9. Roughly speaking, the approach (inspired by Ji et al. (2019)) is to (i) truncate the function by setting it to a constant

outside of a ball of carefully chosen radius; (ii) approximate the truncated function with a superposition of “Gaussian

bumps;” (iii) approximate this superposition of Gaussian bumps by a weighted average of random ReLU gates.
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E.3. The lower-bound approach

Recall that our main lower bound tool, Theorem 29, only requires small average coherence (rather

than strict orthogonality) for the set of “hard” functions . Exploiting this flexibility, it is not difficult

to adapt Theorem 29 to the setting of Gaussian space.

In a bit more detail, it turns out that taking a family Φ = {ϕ1, . . . , ϕN} of “hard” functions

that corresponds to points v(1), . . . , v(N) in a suitable packing of the unit sphere, where the function

ϕi(x) is defined to be (a suitably normalized version of) sin(L〈v(i), x〉), results in Φ having small

average coherence, and from this it is not difficult to obtain lower-bounds on depth-2 RBL ReLU

network width, following the approach of Section 4. The resulting lower bounds can be shown to be

quite close to matching the upper-bounds for Gaussian space sketched in the previous subsection.

39


	Introduction
	Preliminaries
	Upper-bounds for Lipschitz functions in L2([-1, 1]d)
	Lower-bounds for Lipschitz functions in L2([-1, 1]d)
	Key facts about trigonometric polynomial basis
	Supporting lemmas for upper-bounds for Lipschitz functions
	Supporting lemmas for lower-bounds for Lipschitz functions
	Upper- and lower-bounds for Sobolev functions
	A similar approach for the Gaussian measure

