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Abstract

This paper considers the following question: how well can depth-two ReLLU networks with ran-
domly initialized bottom-level weights represent smooth functions? We give near-matching upper-
and lower-bounds for Ly-approximation in terms of the Lipschitz constant, the desired accuracy,
and the dimension of the problem, as well as similar results in terms of Sobolev norms. Our pos-
itive results employ tools from harmonic analysis and ridgelet representation theory, while our
lower-bounds are based on (robust versions of) dimensionality arguments.
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1. Introduction

1.1. Background and motivation

Celebrated results of Cybenko (1989), Funahashi (1989), and Hornik et al. (1989) establish the
universality of depth-2 neural networks by showing that any continuous function on R can be
approximated by a neural network with a single hidden layer. However, these results offer no
upper-bound (e.g., in terms of d) on the width (number of bottom-level gates) required, leaving
unanswered many natural questions about the approximation power of neural networks, including:

e Which functions can be approximated by two-layer neural networks of subexponential width?
e Can tradeoffs be achieved between depth and width for neural network function approximation?

e Given the practical importance of random weight initialization, what are the representational
capabilities of neural networks with some randomly drawn weights (say, at the bottom level)?

The first two questions above have been studied intensely in the approximation-theoretic and
depth-separation literature; this paper focuses on the third question. Random weight initializations
play an important role in training neural networks in practice, and are also of theoretical interest; as
we discuss later in this introduction, they have been well studied as a way of understanding different
aspects of approximation and generalization.

In this work, we study the representational ability of depth-2 random bottom-layer (RBL) ReLLU
networks. Such a network is equivalent to a linear combination of rectified linear units (ReLUs),
where the weight vector and bias of each ReLU are randomly and independently chosen from a
fixed distribution, but the top-level combining weights of the ReL.Us are allowed to be arbitrary (we
give precise definitions in Section 2.2). This particular setting is of interest because, as discussed
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later, a number of papers have given approximation-theoretic results in this regime. We choose the
ReLU activation due to its popularity in both theory and practice; we expect that the results of our
paper could be generalized to a range of other activation functions.

Our main goal is to understand the abilities and limitations of depth-2 RBL ReLU networks for
approximating smooth functions of various types. We focus on smooth functions both because they
are a natural class of functions to consider, and because non-smooth functions have been shown to be
difficult to approximate by various types of neural networks. Indeed, several authors (e.g., Telgarsky
(2016) and Daniely (2017)) have established lower-bounds on the width of neural networks that
approximate certain non-smooth functions by taking advantage of the fact that such functions can
be highly oscillatory (have many “bumps’’) and can require many gates to approximate each “bump.”

Our chief focus is on functions over the d-dimensional solid cube [—1,1]¢ (though we also
consider functions over d-dimensional Gaussian space in Appendix E) whose smoothness is mea-
sured in two different ways. Our main results are about approximating functions on [—1, 1]¢ with
bounded Lipschitz constants; in Appendix D, we also consider functions on [—1,1]? (satisfying
certain periodicity conditions) with bounded Sobolev norms.

1.2. Our results
The main contributions of this work are to pose and answer the following question:

What is the minimum number of random ReLU features required so that (with high
probability) there exists some linear combination of those features that closely approx-
imates any sufficiently smooth function?

This minimum number of random ReLU features is equivalent to the minimum width required
for a depth-2 RBL ReL.U network to approximate the smooth function in question. We give full
details about our setting in Section 2.2, and here only touch on some of the main aspects:

e “Random ReLU features” are functions from R? to R that are drawn independently from some
fixed distribution. These take the form x — oreru({W, z) + b) where oreru(2) := max(z,0)
and w and b are random variables taking values in S%~! and R respectively.

e Our notion of “close approximation” refers to the Lo distance between functions with respect
to the uniform distribution on the solid cube; we say that f is an e-approximator for g if
Ilf—qll (—1,15¢ < € In Appendix E, we sketch how analyses similar to our analysis over [—1,1]¢

can be used to study approximation with respect to the Gaussian measure over R.

e As mentioned above, we chiefly measure the smoothness of a function by its Lipschitz constant.
In Appendix D, we extend our results to measure smoothness in terms of Sobolev norms.

Our main results give tight upper- and lower-bounds on the minimum width required for both
Lipschitz and Sobolev smooth functions. The upper- and lower-bounds match up to polynomial fac-
tors (equivalently, up to constant factors in the exponent). The sharpest forms of our bounds involve
the number of integer points in certain Euclidean balls; below, we present informal statements of
our upper- and lower-bounds for Lipschitz functions with explicit asymptotics given for clarity:

Theorem 1 (Informal upper-bound for L-Lipschitz functions) Fix any ¢, L > 0 that satisfy
L/e > 2, andlet f : [-1,1]¢ — R be any L-Lipschitz function. For

L? de? L?
r = exp (O (min <6210g <L€2 —|—2> ,dlog <€2d—|—2>>>) )
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with probability 0.9 (over a draw of v i.i.d. random ReLU features gV, ... g\") from a suitable
distribution) there exists a depth-2 RBL ReLU network h with g(l), cee g(r) as the bottom-level
features satisfying || f — hl|_y 10 < €.

Theorem 2 (Informal lower-bound for L-Lipschitz functions) Fixanye, L > 0. There exists an
L-Lipschitz function f : [—1, 1]d — R such that with probability at least % over a draw of

L? de? L?
r = exp <Q (min <6210g <L€2+2> ,dlog <e2d +2)>>>

many i.i.d. random ReLU gates g(l), e g(r), every depth-2 ReLU network h of width r with
g, ..., g as its bottom-layer gates has || f — hll_q e > €

Table 1 summarizes these results, as well as our analogues for functions in Sobolev balls.

’ Bound \ Smoothness \ Minimum Width \ Theorem ‘
Upper | Lipschiz <L | exp (O (min (5 log (% +2) .dlog (47 +2)))) | Thm.1/6
Lower | Lipschitz <L |  exp (Q (min (Lj log (1—5 n 2) ,dlog (ind n 2) )) Thm. 2/ 10
Upper | H® norm <v | exp (O (min (d log <% + 2) , 5222//: log (ff;;: + 2)))) Thm. 35
Lower | H® norm <7 | exp (Q (min (d log (dz% + 2) , zzi/j log (d;z;s + 2)))) Thm. 39

Table 1: Our upper- and lower-bounds on the minimum width needed for an RBL ReLLU network
to e-approximate a function over Ly([—1,1]¢) with either bounded Lipschitz constant L,
or bounded order-s Sobolev norm v (and periodic boundary conditions).

Discussion. Our results shed light on a question posed by Safran et al. (2019) about the approxi-
mation power of unconstrained depth-2 networks. They ask whether there exists a d-dimensional
1-Lipschitz function f that can be represented by a depth-3 neural network with poly(d) neurons
but requires width exp(€2(d)) to be approximated by a depth-2 network. As one of their main
results, they answer this question in the negative for pointwise approximation when f is a radial
function (depending only on ||z||2) over the unit ball, by showing that any such function can be
efficiently approximated by a poly(d) width depth-2 network. Our results imply that the answer is
also negative for Lo-approximation of arbitrary 1-Lipschitz functions (which need not be radial)
over [—1,1]%; this follows from our upper-bounds for the case that L = 1 and € is any constant,
which establish the existence of approximators that are poly(d)-width, depth-2 RBL networks. Our
results do not answer their question outright, because showing that every 1-Lipschitz function can
be approximated with respect to the Ly norm over [—1, 1] by a depth-2 network of poly(d) width
does not imply that every 1-Lipschitz function is uniformly approximable by such a network.

Our upper-bounds on the width that suffices to approximate Lipschitz functions are also useful
for proving learnability hardness results for neural networks with more than two layers. Malach et al.
(2021) establish this connection between hardness of approximation and hardness of learning by
showing that any function that cannot be weakly approximated by a network with three layers cannot
be learned by gradient descent applied to a neural network of any depth, given certain assumptions
about the random weight initialization and bounds on the number of units in the network and number
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of steps of gradient descent. Their result hinges on a technical lemma (their Lemma B.2), which
shows that L-Lipschitz functions can be approximated by three layer neural networks with bounded
width. By replacing that lemma with our Theorem 6, their result can be strengthened to say that any
function not weakly approximable by fwo-layer neural networks is not learnable by gradient descent
for networks of any depth that obey their assumptions.

1.3. Our techniques

In this section we give a high-level overview of the ideas that underlie our upper and lower bounds.

1.3.1. UPPER-BOUNDS

Our width upper-bounds state that for any fixed function of the relevant sort, given a large enough
number of independent random ReL.U features, with high probability some linear combination of
those features approximates the function. We argue this in three steps. (Below, we only discuss the
Lipschitzness smoothness measure, but the Sobolev case follows the same basic steps.)

1. The first step shows that for any L-Lipschitz function f, there exists a low-degree trigonomet-
ric polynomial P that closely approximates f. We establish the existence of this trigonometric
polynomial using the fact that any function in Lo([—1, 1]%) can be expressed as a (potentially
infinite) linear combination of sinusoidal functions, due to the existence of a Fourier represen-
tation for f. We use the Lipschitzness of f to show that high-frequency terms have negligibly
small coefficients in the representation, which we drop to obtain a low-degree approximation P.

2. The second step expresses P as an infinite mixture of random ReL.U features (a2 la Barron,
1993; Murata, 1996; Rubin, 1998; Candes, 1999). That is, for some distribution over biases b
and weights w (which depends on L, €, and d, but not f, and takes values in R x S?~1), P can
be written as

P(x) = E [h(b,W)ogeLu (W, ) —b)]
W
for some function h(b, w). Intuitively, this is possible because each sinusoidal component of P
is a ridge function (a function that depends only on a one-dimensional projection of its input).

3. Finally, using a standard concentration argument, we show that the empirical average of suffi-
ciently many random ReLUs gives a close approximation to P with high probability. It follows
that the overall weighted combination of random features closely approximates f.

1.3.2. LOWER-BOUNDS

Our lower-bounds are proved using a dimensionality argument, stemming from the simple observa-
tion that linear combinations of r features (functions) can span at most r dimensions in the function
space Lo([—1,1]%). The key is to give N >> r candidate functions (1, . . ., ¢ that are orthonormal
in Ly([—1,1]%). With such a set of functions in hand, any fixed outcome of a draw of  random
features will be such that linear combinations of those r features cannot closely approximate more
than a small fraction of the /N functions, because no r-dimensional subspace can be close to a large
fraction of N orthonormal functions. (This kind of dimensionality argument has been used in a
number of prior works, including Barron (1993); Yehudai and Shamir (2019); Kamath et al. (2020)
and elsewhere.)
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Specializing to our context, to give a lower-bound on the minimum width of RBL ReL.U net-
works needed to approximate L-Lipschitz functions, it suffices to construct a large family of or-
thonormal L-Lipschitz functions. We do this with L-Lipschitz sinusoidal functions of the form
V2sin ( (K,z)) where K € Z? The quantity ||K||2 controls the Lipschitz constant of these
functions, and as our analysis shows, the tradeoff between the number of functions in the family
(which increases with the allowed range of || K ||2 and controls our width bound r) and the Lipschitz
constant L yields a lower-bound that is quite close to our upper-bound for L-Lipschitz functions.

The simple dimensionality argument sketched above establishes that some function among the
N orthonormal functions is hard to approximate (in fact, that most of them are hard), but it does not
yield an explicit hard function. By requiring the N orthonormal functions ¢1, ..., @ N to satisfy a
natural symmetry property with respect to the random ReLU features, it is possible to get a lower
bound for a single explicit function ;. Following this approach, we also give a quantitatively
slightly weaker lower-bound on the minimum width that random ReLU networks need in order to
approximate an explicit function ;.

1.4. Related work

Since the pioneering universal approximation results for (non-RBL) depth-2 networks (Cybenko,
1989; Funahashi, 1989; Hornik et al., 1989) mentioned in the introduction, many subsequent works
have established quantitative bounds on the width that such networks require to approximate certain
functions.! RBL networks have also been the subject of considerable study owing to their connec-
tion to kernel methods (Neal, 1996; Rahimi and Recht, 2008; Cho and Saul, 2009) and, in particular,
the Neural Tangent Kernel (NTK). Jacot et al. (2018) argue that training neural networks with gradi-
ent descent with small step-sizes results in a learning rule similar to that obtained by a kernel method
with the NTK. When the network weights are randomly initialized, then a finite-width NTK corre-
sponds to a linear combination of random ReLLUs. Both RBL ReLLU networks and the finite-width
NTK enjoy the same universal approximation property of non-RBL networks (Sun et al., 2018; Ji
et al., 2019), and hence quantitative bounds on the network width required to approximate families
of functions are of significant interest.

Upper-bounds. A line of inquiry starting with Barron (1993) (see also Klusowski and Barron,
2018) investigates upper-bounds on the width of (non-RBL) depth-2 networks needed to approxi-
mate functions whose smoothness is measured in terms of their Fourier transforms. Although these
results do not deal with RBL networks and hence are incomparable to ours, they do use randomiza-
tion in the proof. Specifically, a target function is represented as a mixture of activation functions
drawn from a target-specific distribution, and a finite-width depth-2 network approximating the
function is obtained by sampling. Our results use a similar overall approach, but with the crucial
difference that in our RBL setting, our distribution of ReLUs does not depend on the target function.

Perhaps the works on RBL networks that are most closely related to our own upper-bounds are
those of Andoni et al. (2014), Yehudai and Shamir (2019), Bach (2017), and Ji et al. (2019), all of
which prove approximation-theoretic results by representing a target function as the expected value
of weighted activation functions drawn from some distribution.

e Theorem 3.1 of Andoni et al. (2014) shows how neural networks with complex-valued weights
and exponential activation functions can approximate polynomials of bounded degree. Their

1. Our discussion here focuses on works that give non-asymptotic bounds. Pinkus (1999, Section 6) gives a review of
asymptotic rates of approximation by neural networks of width r as r — oo (regarding the dimension d as fixed).
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bounds have an exponential dependence on that degree, which translates to an exponential de-
pendence on the Lipschitz constant L even for constant dimension d; in contrast, our bounds are
exponential in min{d, L?/e?}, which can be much better if d is small.

e Yehudai and Shamir (2019) study depth-2 RBL ReLU networks (as we do), but like Andoni
et al. (2014) focus on approximating polynomials of bounded degree. Since they consider a
more stringent notion of L..-approximation (over the unit ball), their upper-bounds on network
width (see their Theorems 3.3 and 3.4) are more pessimistic than ours and depend exponentially
on the square of the polynomial degree.

e Proposition 3 of Bach (2017) and Theorem E.1 of Ji et al. (2019) imply (or directly give) upper-
bounds on the width of depth-2 RBL ReLU networks (or finite-width NTK) to approximate
Lipschitz functions. Similar to Yehudai and Shamir (2019), they consider an L., notion of
approximation, so they obtain upper-bounds that always are exponential in the dimension d.

Lower-bounds. A number of recent and classical papers give width lower-bounds for arbitrary
(non-RBL) depth-2 networks that approximate certain types of multivariate functions. Maiorov
(1999) gives asymptotically tight upper- and lower-bounds on the error in approximating functions
from a Sobolev class achieveable by any two-layer network of a given width. The asymptotic nature
of Maiorov’s results (and proof techniques) means that the results do not imply lower-bounds on
the network width required to achieve a given error rate € unless e is sufficiently small, possibly
as a function of dimension. Our results differs from Maiorov’s and other related results from the
approximation theory literature by elucidating the interplay between the dimension and the error in
both upper- and lower-bounds.

More recently, Eldan and Shamir (2016) and Safran and Shamir (2017) give exp(d)-type lower-
bounds on the width that depth-2 networks require to Lo-approximate certain simple functions under
certain probability measures on R?. In Eldan and Shamir (2016) the function being approximated
is not explicit, and in Safran and Shamir (2017) the lower-bound is only for very high-accuracy
approximation (to error at most 1/d*). In both works the relevant probability measures are rather
involved. In contrast, our lower bounds hold only for depth-2 RBL networks, but they are for
simple explicit functions, for large (constant) values of the approximation parameter, and for Lo-
approximation with respect to the uniform distribution over [—1, 1}‘[. In other relevant work on
depth-2 lower-bounds, Martens et al. (2013) and Daniely (2017) give exp(d)-type (or better) width
lower bounds for depth-2 networks approximating certain functions with large Lipschitz constants,
but these lower-bounds require a weight bound on the top-level combining gate. In contrast, our
lower bonds for RBL networks have no restrictions on the weights of the top-level gate.

The work of Sonoda et al. (2020), which analyzes limitations on the approximation abilities of
two-layer networks of random ReLU activation functions, is relevant to our lower-bounds. Their
lower-bounds are independent of the width of the network; they give functions that cannot be ap-
proximated by RBL networks of any (potentially infinite) width. However, their lower-bounds are
for an extremely strong notion of approximation, namely L, approximation over all of R? (without
any weighting by a probability distribution).

Our lower-bound idea of exploiting symmetry to obtain an explicit function that is difficult to
approximate was inspired by Yehudai and Shamir (2019). Our approach for non-explicit lower
bounds is quite similar to Theorem 19 of Kamath et al. (2020), which bounds the dimension of the
space of all linear combinations of feature functions; similar to the lower-bound of Kamath et al.
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(2020) (but unlike Yehudai and Shamir (2019)), our lower-bounds hold regardless of the size of the
weights used in the linear combination of the bottom-level random features.

Finally, we remark that while we do not consider networks of depth larger than two, our paper
was in large part inspired by results from the literature on depth separation. Telgarsky (2016), Eldan
and Shamir (2016), and Daniely (2017) all prove lower-bounds by constructing highly oscillatory
functions and showing that shallow networks must be wide in order to approximate these functions.
Safran et al. (2019) prove lower-bounds on 1-Lipschitz functions that are non-oscillatory, such as
x — max{0, —||z|| + 1}; however, these bounds only hold in the high-accuracy regime with small
€. These works motivated us to directly study the relationship between the Lipschitz constant of a
target function and the width needed to approximate it.

2. Preliminaries

2.1. Notations

For a positive integer d € Z*, let [d] := {1,2,...,d}. The vectors 0 := (0,...,0) € R? and
I:=(1,...,1) € R? are, respectively, the all-zeros and all-ones vectors. Let S := {z € R? :
|||, = 1} denote the unit sphere in RY. Let || f|| Lip denote the Lipschitz constant of f: R?Y — R
with respect to the Euclidean metric (i.e., the least L s.t. f is L-Lipschitz w.r.t. [|-||,).

We use the following notations for a multi-index X € N (where N := {2z € Z : z > 0}).
Let |[K| := Y% | Ky, | K|y := (%, K2)V/2, and K! == []%, (Ki!). Let 2 := [[, X for
x € R% Lastly, let D) f be the order-| K| partial derivative of a function f(z) with respect to .

We use bold font to denote random variables and write “x ~ D’ to indicate that random variable
x is distributed according to distribution D.

We use (-,-) to denote the standard Euclidean inner product in R? (and occasionally regard
multi-indices K € N¢ as elements of R%). For a probability measure 1 on R%, Ly(p) denotes the
space of square-integrable functions with inner product denoted by (f, g), := Ex~u[f(x)g9(x)] =
Jga f(z)g(x)p(dz). Many of our results concern the uniform probability measure on [—1,1]%. In
these cases, we use the notations Lo([—1,1]%) and (-, -) (—1,1]¢» and fix a particular orthonormal basis
T = {Tx : K € 79} for Ly([—1,1]%) based on trigonometric polynomials. See Appendix A for
details. We also consider certain finite-dimensional subspaces of La([—1,1]%) which are spanned
by a set of functions indexed by K, 4 := {K € Z%: ||[K||, < k}. The dimensions Q. q4 := |Kk 4|
of these subspaces are upper- and lower-bounded as follows (proof also given in Appendix A).

Fact3 Foralld € Z+ and k> 1, Qa = exp (© (min (dlog (5 +2) k2 1og (% +2)) ) ).

2.2. Random bottom layer neural network approximation

Throughout the paper, we treat a depth-2 random bottom layer (RBL) ReLLU network as a random
features model. The upper-bounds in this paper demonstrate the representational powers of linear
combinations of these random features, while the lower-bounds demonstrate their limitations.

We define a family of distributions over the parameters of random ReLU activations. Note that
our lower-bounds in Theorems 10, 13, 39, and 41 hold for all such distributions D, while our upper-
bounds in Theorems 6 and 35 hold for some fixed D, which depends on an upper bound on the
Lipschitz norm of the target function but not on the target function itself.
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Definition 4 (Symmetric ReLLU parameter distributions) A product distribution D := Dyas X
Dyveights over R x S1isa symmetric ReLU parameter distribution if the coordinates of Dyeights
are invariant to permutation. That is, Dyeights = T © Dyeights for any permutation m of [d].

Given a distribution over random ReLU parameters, we now introduce the full random ReLLU
features model. We define a notion of approximation and formalize the minimum width of the
network (or the minimum number of random features to combine) needed to obtain a sufficiently
accurate approximation with high probability.

Definition 5 (Minimum-width RBL ReLU network approximation) Consider a symmetric ReLU
parameter distribution D, a measure | over Re and a network width r € 7. Forall i € [r], we
draw each random network feature g(¥) € Ly () independently by drawing (b, w(®) from D and
letting g (z) == oreLu (W, z) — b®).

Given ¢,6 > 0 and a function f : R? — R with bounded || f » we define MinWidthy e 5, p
to be the smallest r € 7 such that the following holds: With probability at least 1 — § over
g . g,

inf f—gll, <e
geSpan(g™),....g™M) | I,

3. Upper-bounds for Lipschitz functions in L,([—1, 1]%)

Our upper-bounds on the minimum width RBL ReLU network that approximates a Lipschitz func-
tion are dominated by the quantity (), 4, which represents the number of integer points contained in
a d-dimensional ball of radius k (see Section 2.1).

Theorem 6 (Formal version of Theorem 1: Upper-bound for L-Lipschitz functions) Fix some
9 € (0, %] and €, L > 0 with % > 2. Then, there exists some symmetric ReLU parameter distribution
D such that for any f € Lo([—1,1]9) with [ fllLip < L and [Ex [f(x)]| < L,

o Lo (1Y .,
MinWidthg 511 1jap < O 676111 3 QQL/e,d :

Applying the asymptotics of Q. 4 from Fact 3 reveals that the minimum width can also be bounded
by the term in Theorem 1. That expression shows that the minimum width is polynomial in % when
d is a fixed constant, and polynomial in d when % is a fixed constant.

To prove Theorem 6, we break the process of approximating a Lipschitz function f with an
RBL ReL.U network into two steps. We first approximate f with a bounded-degree trigonometric
polynomial P in Lemma 7 and then approximate P with an RBL ReLLU network in Lemma 9. We
state the lemmas and discuss their proofs in Sections 3.1 and 3.2 respectively. Section 3.3 gives a
formal proof of Theorem 6.

In Appendix D.1, we present and prove Theorem 35, a parallel result to Theorem 6 that in-
stead considers the approximation of some function f that has a bounded Sobolev norm and which
(along with its derivatives) satisfies periodic boundary conditions. The proof of Theorem 35 only
differs from that of Theorem 6 by obtaining a trigonometric polynomial approximation for f from
Lemma 38 (stated and proved in Appendix D.1) rather than Lemma 7.
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3.1. Approximating Lipschitz functions with bounded-degree trigonometric polynomials

Lemma 7 Fix some L,e > 0 with % > 1 and consider any function f € L*([—1,1]%) with
[ fllLip < L and [Ex [f(x)]| < L. Then, taking k = L, there exists a bounded-degree trigonometric

polynomial
x
> T (3)

KG/Ck}d

such that || f — P||[_1 1

We formally prove this lemma (which we restate as Lemma 22) in Appendix B.1. Here we highlight
a central part of the argument (used in the full proof) by stating and proving a special case of the
lemma which additionally requires that f satisfy periodic boundary conditions.

Lemma 8 (Approximating Lipschitz functions with periodic boundary conditions) Fix some
L,e > 0 with % > 2. Consider any function f € L*([—1,1]%) such that f satisfies periodic
< L, and |Ex [f(x)]] < % Then, taking k = é, there exists a
bounded-degree trigonometric polynomial

> BTk (z)

KG]Ckyd

such that || f — P||._ < Lforall K.

To prove Lemma 8, we consider the representation of f as an infinite linear combination of trigono-
metric basis elements from 7. We show that f can only be L-Lipschitz if all high-degree terms
of this representation have vanishingly small coefficients. This requires the term-by-term differ-
entiation of the trigonometric representation of f, which is possible due to its periodic boundary
conditions (see Lemma 20 in Appendix A).

Proof. By appealing to a standard approximation argument (e.g., Folland, 1999, Proposition 8.17),
we may assume that f is differentiable. Because 7 is an orthonormal basis over Ly([—1, 1]¢), we
can express f as

The condition || f{|;;, < L implies that [V f(z)||, < L forall z € [-1, 1]¢. Because f has periodic

boundary conditions, f is differentiable, and 0 f(z)/0z; € La([—1,1]%) for all i, Lemma 20 can be
applied to relate L to the coefficients (o) eza:

2

o oo S [(0))-E ()] o

x~[—1,1

i=1 Kezd
d
oT, 0Tk 0Tk
T R[S 23 S S e (5,20
i=1 Kezd —L1] i=1 Kezd K'#K Ti [ 1—1,)4
d
=> aKTrQK?—WQZaK K15 @)
i=1 Kezd
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Equations (1) and (2) follow from Lemma 20 and Fact 18 respectively. An immediate conse-
quence of the above inequality is that oy | < L/m < L/2 aslong as K # 0. Because |Ex [f(x)]| <
L/2, |ag| < L/2 as well. We define the trigonometric polynomial P = Keky.q P Tk by letting
Br := ak for all K with ||K||, < k. Parseval’s identity (Fact 15) and the inequality ending on line
(2) guarantee that

2
2 2 s K] 1 2 2
1f = Pl e = Z af < Z UK " 13 2 < 2 Z ag || K3
KEZd\’Ck’d KEZd\ICde Kezd
L2 L2
= €2 [ |

= w2k? = 22k2

The proof of Lemma 7 is a reduction to Lemma 8. Instead of approximating f with a low-
degree trigonometric polynomial, we approximate f , a scaled, shifted, and reflected version of f
that has periodic boundary conditions and thus can be differentiated term-by-term. The bulk of the
proof involves transforming f into f and transforming P (the trigonometric polynomial obtained by
applying Lemma 8 to f) back into P. This scaling and reflection argument is why we approximate
f with combinations of trigonometric polynomials of the form T (x/2), rather than Tk (z).

3.2. Approximating bounded-degree trigonometric polynomials with RBL ReL.U nets

Lemma 9 Fix some § € (0,1/2], ¢ >0, p € (0,1], k > 1, and d € Z*. Then, there exists some
symmetric ReLU parameter distribution Dy, such that for any trigonometric polynomial

P(x)= Y BxTx(px)

KEICka

with |Br| < Bmax for all K € Ky, g,

MinWidth <0 MQQ n (%
WMWIAWPp e 5[-1,1]9,D), = 2 kd M\ 5] )"

We prove this lemma in Appendix B.2 as Lemma 23. We take advantage of the fact that every
low-degree trigonometric polynomial can be expressed as a linear combination of ridge functions.
As shown in Lemma 25, each of those ridge functions can in turn be represented as an infinite
mixture of ReLUs. We then represent the entire trigonometric polynomial as an expectation over
weighted random ReL U features with parameters drawn from a symmetric ReLU parameter distri-
bution Dy, (Definition 24). By bounding the maximum norm of every random ReLLU drawn from
Dy, a concentration bound (Lemma 26) can show that this expectation can be closely approximated
with a sufficiently large finite linear combination of randomly sampled ReL Us.

3.3. Proof of Theorem 6

Consider any f € Lo([—1,1]%) with [ fllLip < L and [Ex [f(x)]| < L. By Lemma 7, there exists
a bounded-degree trigonometric polynomial P(z) = >y ci, BTk (x/2) with k := 2L /e and

10
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|Bk| < L forall K € K, such that | f — P||_; ja < €/2. By applying Lemma 9 to P with
p=1/2,

i i r2naxd2k4 1 d?L8 1
ManldthP,E/Q,é,[—1,1]d,’Dk < O (@Q%d In <5>> < 0 (66Q§L/€,d In (5)> .

Thus (see Definition 5) there exists an RBL ReLU network g of width MinWidthp /5 51 1)4.p,
such that | P — gH[le]d < €/2. By the triangle inequality, || f — gH[fl’Hd < e. We conclude that

S d*LS 1
Manldthf,e,&[—l,l}d,Dk = O GTQ2L/€:d h’l g . .

4. Lower-bounds for Lipschitz functions in Ly([—1, 1]¢)

We give lower-bounds on the minimum width needed to e-approximate L-Lipschitz functions using
depth-2 RBL ReL.U networks. Below we present a formal statement of Theorem 2, which shows that
a particular family of “simple” functions must contain some hard-to-approximate function. Like the
upper-bounds in Section 3, the minimum width is polynomial (in fact linear) in the quantity (), 4,
where k = O(L/e).

Theorem 10 (Formal version of Theorem 2: Lower-bound for L-Lipschitz functions) Fix any
€, L > 0 and fix any symmetric ReLU parameter distribution D. Then, there exists some multi-index
K € N4 with |[K ||, < L/18e¢ such that the function f(z) := 4€Ty (recall that Ty € T) satisfies
[fllpip < L and
MinWidthf,e,%,[fl,l]d,'D 2 EQL/18€7d'

The informal version, Theorem 2, follows by applying Fact 3 to lower-bound ()} 4. We note that
the function f used in the lower-bound aligns nicely with the approximation techniques from Sec-
tion 3 because f is (i) a ridge function and (ii) a scalar multiple of a sinusoidal function from the
trigonometric basis 7.

We prove Theorem 10 in stages by proving a sequence of claims which are successively more
closely tailored to our RBL ReLLU model.

1. In Appendix C.1 we state and prove Theorem 11, which gives a general result about the limi-
tations of linear combinations of r random features. This theorem states that a large fraction of
any set of NV orthonormal functions must be inapproximable by linear combinations of r random
features when N > r. We state a simplified version of the theorem below:

Theorem 11 (Simplification of Theorem 29) Ler ® = {1,...,on} C La(u) be a family of
N functions such that (i, pyr),, = 1{i =1i'}. Let g ... g beiid. copies of an Lo(p)-
valued random variable. Then, there exists some p; € ® such that

,
E inf ol =1
g, gn | gespan(e)y_, lg — @illy, N

The proof hinges on an intuitive linear algebraic fact generalized to function spaces: N orthog-
onal vectors cannot all be close to the span of r vectors when N > r. It does so by applying the

11
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Hilbert Projection Theorem (Fact 30). The full generality of Theorem 29 also includes function
families ® that are “nearly orthonormal” rather than strictly orthonormal (this generalization is
useful for extending our results to Gaussian space, as discussed in Appendix E). It also proves
the inapproximability of some explicit function ¢ when the family ® satisfies a suitable notion
of symmetry relative to g(), ..., g(").

2. Lemma 32 of Appendix C.2 adapts Theorem 29 to our random ReLU features by giving a
lower-bound on the minimum width RBL network needed to e-approximate some function for
any € > (. Below is a simplified version of the lemma that is restricted to orthonormal function
families, considers only the uniform measure over [—1, 1]%, and omits the special “symmetric
case” for ®.

Lemma 12 (Simplification of Lemma 32) Ler D be a symmetric ReLU parameter distribu-
tion. Fix any ® = {p1,...,on} C La([—1,1]%) such that {p;, @ir)j—1,14 = L{i =1'}. Then,
for any € > 0, there exists some @; € ® such that MinWidthy,,, ¢ 1/2[-117¢,0 = N/4.

The proof combines a scaling argument with the definition of MinWidth to provide lower-
bounds for any choice of the error parameter e.

3. We conclude the proof of Theorem 10 in Appendix C.3. Lemma 33 shows the existence of a
low-degree element of the sinusoidal basis 7~ that cannot be approximated over [—1, 1]¢ by an
RBL ReLU network of small width. It does so by defining the orthonormal family of functions
tobe & := {Txk € T : K € Kiq4} and invoking Lemma 32. The proof of Theorem 10
only requires applying Lemma 33 for some k£ = ©(L/¢) and showing that all T € & have
1Tl < L
Lemma 33 also yields an immediate proof of Theorem 39, the Sobolev analogue of Theorem 10,

in Appendix D.2. Theorem 39 uses the same function family ®, but must bound the Sobolev
norm of all functions in ® rather than the Lipschitz constant.

The lower-bound established in Theorem 10 is non-explicit; it guarantees the existence of some
inapproximable function in 7, but does not by itself let us deduce the specific identity of a hard
function. Since it is desirable to have a lower-bound for a fully explicit function, we also give a
variant that achieves this goal at only a small cost in the resulting quantitative lower-bound:

Theorem 13 (Explicit lower-bound for an L-Lipschitz function) For some ¢, L. > 0, let { :=
min([d/2], | L?/3272€2]). Fix any symmetric ReLU parameter distribution D. Then the function
f(z) := 4y/2esin(7 Zle x;) satisfies || f|;, < L and

R 1/d . (L? de?
Man1dthf767%7[,171]d7D > 1 <€> > exp <Q <m1n <€2 log <L2 + 2> ,d))) .

Comparing the quantitative lower-bounds of Theorem 10 and Theorem 13, we see that the latter is
weaker only by a logarithmic factor in the exponent.

We prove the explicit lower-bound Theorem 13 in Appendix C.4. The only difference between
the proofs of Theorems 10 and 13 is in the last step. Theorem 13 relies on Lemma 34, an analogue
of Lemma 33, which invokes Lemma 32 with a different family ® of trigonometric polynomials that
are symmetric up to a permutation of variables. That is, for every Tk, T+ € ®, there exists some
permutation 7 over [d] such that T = T om. (Roughly speaking, the larger family of orthonormal

12
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functions used in the proof of Theorem 10 consists of functions of the form sin (7 (K, z)) where
K € N%is only constrained by having || K|| satisfy some bound, whereas the smaller family of or-
thonormal functions used in the proof of Theorem 34 consists of functions of the form sin (7 (K, x))
where K is restricted to be a 0/1 vector of some specific Hamming weight. The latter family is eas-
ily seen to satisfy symmetry with respect to any permutation 7 of the d coordinates, whereas the
former family does not satisfy such a symmetry condition.) This symmetry condition makes it easy
to argue that all functions in the symmetric family ® are “equally hard,” from which a lower bound
follows straightforwardly.

Finally, we mention that Lemma 34 also supports a proof of the inapproximability of an explicit
function with bounded Sobolev norm; this is established in Theorem 41 of Appendix D.2.
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Appendix A. Key facts about trigonometric polynomial basis

In this appendix, we supplement Section 2.1 by introducing the family of trigonometric polynomials
that we use in our proofs and by proving properties related to their orthonormality. We recall the
definition of an orthonormal basis for the space La(u):

Definition 14 (Orthonormal basis) A countable set G C La(u) is an orthonormal basis for La(p)
if(9,9),, = 1{g = g} forall g, g € G and Span (G) = La(n).

We frequently apply the following standard facts about orthonormal bases:

15
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Fact 15 (Facts about orthonormal bases) For some measure u, let G be an orthonormal basis

for La(u). For any fyf € Lo(u) we have that f = deg agg and f = deg Byg for some real
(ag)geg and (Bg)geg, and moreover

L] ag = <f7g>u;
J Hf||i =Y 4e6 o (Parseval); and

o (f,f)u= > geg OgBg (Plancherel).

We define the basis of trigonometric polynomials 7 as
T = {TK:KGZd},

where o
1 K=0
Tk (z) := { V2sin (1 (K, z)) K € Kgin €
V2cos (m(K,z)) K € Keos,

and gy, and Keos form a partition of Z¢ \ {6}2 and are defined as

Kein = {K € 74\ {0} : K; > 0, where i = min {j € [d] : 7; # 0}},

Keoos := {K € 79\ {0} : K; < 0, where i = min {j € [d] : z; #0}}.

The set T is a useful family of functions for both our upper- and our lower-bounds on the minimum
width RBL ReLU network needed to approximate Lipschitz functions. The fact that 7 is an or-
thonormal basis for Lo ([—1,1]%) (Fact 17) permits us to express other functions in L ([—1,1]%) as
a linear combination of the elements of 7. As we show in Fact 18, those orthogonality properties of
the elements of 7 are maintained even after taking partial derivatives. In addition, every function in
T is a ridge function (that is, Tk (z) = ¢x ((K,x)) for some ¢ : R — R), which, as we will see
later, means (very usefully for us) that Tk is easily approximated by linear combinations of shifted
ReLUs. Finally, the Lipschitz constant of all functions in 7 is bounded: || T ||p;, < V2 || K|,
To prove that 7 is orthogonal, we rely on the following fact from integral calculus.

Fact 16 (Integrals of multivariate sinusoids) For each K € VA

/ cos (m (K, z))dz =2¢ . 1{K =0} & sin (7 (K, x))dz = 0.
[_171]d [_lvl}d

Proof. We use a simple inductive argument on d to evaluate the first integral. The base case d = 1 is
straightforward, so assume d > 1 and define z_; = (x2,...,24) € R4 for any x € R, Assume
inductively that

/[ o cos (m(K_1,z_1))dz_; = 2 "{K | = 0}.
—1,1]d-

2. Note that this partition of Z¢ — {6} is an arbitrary one. The only property this partition is designed to satisfy is that
if K corresponds to sin(w (K, z)), then — K must correspond to cos(—7 (K, x)) (and vice versa).
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By the cosine addition formula, we have that:

/[ L cos (m(K, z)) dz

= /[1 ” [cos (mKy21) cos (m{K_1,2_1)) — sin (rKy21) sin (7(K_1,z_1))] dz

- {/_11 cos (Wlel)dﬂi‘l] [/[—l,l]dlcos (7 <K1,x1>)d$1]

1
- [/_1 sin (K7 21) dxl] [/[—1,1}«11 sin(m(K_1,2_1)) dx1]
— 9 1{K = 0} [/ cos (m (K_1,71)) dx1] _ ol 1{K =},
[_171]d71

The second claim follows by a nearly identical inductive argument, which we omit. |

Fact 17 T is an orthonormal basis for Lo([—1,1]%).

Proof. First, we make use of the well-known fact that the constant 1 function, along with z +—
V2sin(mkz) and z + \/2cos(mkz) for all k € Z*, collectively form an orthonormal basis for
Lo([—1,1]). (For details, see Dym and McKean, 1972.) Thus, the d-fold Cartesian product of this
collection is an orthonormal basis for Lo([—1,1]%).> Each function in this basis is a product of d
functions—one per variable, and each being either a constant, sine, or cosine as above—and can
be rewritten as a linear combination of functions from 7 using basic product-to-sum trigonometric
identities. Thus, Span (7)) = La([—1,1]%).

To complete our proof, it remains to show that all elements of 7 are orthogonal and have unit
norm. It suffices to show that (T, Tr)(_11¢ = L{K = K'} forall K, K’ € Z%. There are six
possible scenarios for this claim depending on which partitioning subsets of Z% contain K and K':
(DK, K' € Keos; (2) K, K' € Kgin: (3) K =K' = 0;(4) K € Keos, K' =00r K = 0, K’ € Keos;
(5) K € Kgn, K" =00r K =0, K" € Kgin; and (6) K € Kain, K’ € Keos 0r K € Keos, K € Ksin.
For the sake of simplicity, we only explicitly prove the claim for scenario (/). The other cases can
be proved with similar trigonometric arguments, all of which involve applying Fact 16. For scenario
(1), we observe that

1
(Tre, Trer)—q 170 = 5 /[_1 ” 2cos (7 (K, z)) cos (m (K',z)) dw
_ 2% g Loon (74 = K )) = cos m (K + K2))] da
= % 271 {K — K’ = 0} — 21 {K + K’ = 0}
=1{K=K'}.

3. This is also an orthonormal basis, so we could similarly represent functions in Lo ([—1, 1]d) as linear combinations
of the elements of this basis and apply the properties of Fact 15. However, this representation is unhelpful for our
analysis because its elements have large Lipschitz constants and are not ridge functions.
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The last equality holds because if K + K’ = 0, then either K or K’ must belong to Kg, by the
definitions of g, and KCcos. [ |

We additionally derive the following useful fact about the partial derivatives of elements of the
trigonometric basis 7.

Fact 18 (Orthogonality of derivatives of 7) For all M € N% and for all K, K' € 7,

(DT, DTy )y =1 {K = K} n2MI2,

[_171]d

Proof. The partial derivatives of T for every KL € Z% can be exactly characterized by inductively
taking derivatives of sin and cos functions:

r7r|M‘TK(:c)KM |M| =0
dMIT_g(o)KM M| =1

( )
( )
—7MIT p(x) KM |M|=1 (mod4) & K € Keos U {0}
( )
( )
( )

DM Ty () = “)

—alMITy(e)KM | M| =2
—7MIT_pe(x) KM |M| =3
dMIT g (e)KM M| =3

The conclusion follows by applying the orthonormality of trigonometric basis elements from Fact
17 to Equation (4). |

To prove that a function f € Lo([—1,1]%) can be represented by a linear combination of suf-
ficiently many random ReLUs, we first show that f can be approximated by a low-degree trigono-
metric polynomial. To do so, we upper-bound the higher-order coefficients of the trigonometric
expansion of f. Obtaining these bounds requires taking partial derivatives of f by differentiating
term-by-term the trigonometric expansion of f. However, this is not always possible; for instance,
if f(x) = x1, the terms of the trigonometric expansion of df/0z; do not correspond to the term-
by-term derivatives of the expansion of f.* We define a notion of boundary periodicity that lets us
perform term-by-term differentiation:

Definition 19 (Periodic boundary conditions) f € Lo([—1,1]%) satisfies the periodic boundary
conditions if for all i € [d] and for all x € [—1,1]¢

f(xb ey Lg—1, _17xi+17 .. ,.’Ed) - f(xla ey Li—1, 17xi+17 cee 7xd)'

Note that all basis elements in 7 satisfy the periodic boundary conditions. The next lemma gives
sufficient conditions for term-by-term differentiation of a function’s trigonometric representation.

Lemma 20 (Term-by-term differentiation of trigonometric basis representations)  Consider
some f € Lo([—1,1]%) and i € [d] such that f satisfies the periodic boundary conditions, f

4. Because Of/0x1 = 1, its trigonometric expansion Of/0x1 = Y cza BrxTx will have fx = T{K = 0}.
Because f = ) Kezd @ k' Tk will have ag # 0 for some K # 6, Br # 0 if term-by-term differentiation were
possible. Since this contradicts the expansion of f /0z1, term-by-term differentiation is impossible in this case.
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is differentiable with respect to x;, and Of/0x; € Lo([~1,1]%). Then, f and Of/Ox; have
trigonometric expansions of the form

f=> axTxk & 83}1 = Y BTk,

Kezd KeZd

where their coefficients (i) gczd, (BK ) keza are related as follows:

TKo_g K € Keos

Br = —mKja_g K € Kgin (5
0 K =0.
Therefore,
af N 0Tk
p— K .
al’i Kezd aa}i

Proof. Without loss of generality, let i = 1. Because each of f and 3 f /0y isin La([—1, 1]¢), there
exist « and 3 by Fact 17 such that f and 0f/0z, are exactly represented by the expansions given
in the lemma statement. It remains to show that (5) holds. We fix any K € K5, where T () =
V2cos(m (K, x)) and 0Tk () /0x1 = —/2m K1 sin(r (K, x)). By Fact 15, each coefficient of the
representation is an inner-product: ax = (f, T )[_1 1j¢ and Bk = (9f /0x1, Tk )[_1 1)a- Moreover,
B is related to a_ g, as shown in the following:

Br = <6f T > = V2 mcos(w (K,z))dx
1,10

0 1’ K 2d [-1,1)¢ 8:B1
= K, -
/ e 1/ 8x1 (m (K, z))dx; de_y

\[ 1
/11]d 1 [ ) cos(m (K, )) )

f@)nKysin(m (K, z)) dz = 7K1 (f, T- k) [y 10 = TK10- K. (7)

1
* / flz)rKysin(m (K, z))dz | dz—1  (6)
-1

2d [—1,1]d

We integrate by parts for Equation (6) and take advantage of the periodic boundary conditions of f
and T for Equation (7). A symmetric argument proves the claim for K € Kgj,. When K = 0, we
repeat the above argument, and the periodic boundary conditions of f imply that 55 = 0. |

The subspaces of Lo([—1,1]%) of primary interest in our analysis are spanned by a set of or-
thonormal functions that are indexed by the integer lattice points contained in given Euclidean balls.
The next fact upper- and lower-bounds the number of such points (and hence the dimension of such
a subspace).

Fact 21 (Restatement of Fact 3) Foralld € Z* and k > 1,

Qra = ex <@<min<dlo </<;2+2> k% lo <d +2)>>>
k,d = €Xp g d ) g 2

19



HSU SANFORD SERVEDIO VLATAKIS GKARAGKOUNIS

Proof. For the upper bound, we use the fact that || K|, < || K||3 forall K € Z%:
Qua = [{K ezt K], < k}| < [{K e 2?5 K, < 47}
< HKGNQd: HKngsz ®)
(k] +2d -1
< . 9
(e ) ®

Inequality (8) holds because we replace each integer in K from the previous line with two natural
numbers (there would be equality if we forced one of each pair of natural numbers to equal zero).
Line (9) follows from a standard stars-and-bars counting argument. Note that

(-

We show two separate upper-bounds on that quantity, which together prove the claim:
2d—1
(kz] +2d—-1 e (kﬂ k2
< < | == < 1 — +2 ;
Qk,d_< od 1 >_<2d_1+e _exp(@(dog(d—l-))),
(k2] +2d -1 2ed  \I"I 0o [ d
Qra < 2] < W +e <exp|(O|[k°log 2 +2 )

For the lower bound, we observe that

k2 d dl (ﬁ+2) i k2> d,
min<dlog<+2>,k‘210g<2—|—2>>: o8\ 4 -
d k klog (% +2) ifk? <d.
We will lower-bound @)y, 4 by the appropriate term in each of the two cases, k% > dand k? < d.
For the case k% < d, we lower-bound Q,q by a sum of binomial coefficients:

d
Qra = |{KeZd:ZKE§k2}‘

=1

d
{Ke{0,1}d:ZKigk2H

=1

=)+ () ()

If Uczj < d/2, then the sum of binomial coefficients is at least the last one, which we bound using

>

(LdeJ> >exp(pf2j anj?J> > exp (LZZJ In (L:QJ+2>> = exp (@ <k:21n <kd2+2>>>.

Otherwise, if d/2 < | k2| < d, the sum of binomial coefficients is at least 21%°J, and

2lF] = exp (In2) [K2]) > exp Gﬂi k2| In <Uj2j + 2)) = exp (@ </<;2 In (:2 + 2>>> :
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When k? > d, we show that k,d rows at a rate similar to that of the volume of a d-dimensional
ball of sufficiently large radius O (k). To do so, we regard each K € K}, 4 as an element of R, and

define

1
Apg=< z€R?: mi — K| <<¢-
kd {x o llz = Koo < 2}

This is the Minkowski sum of K, 4 and the ¢ ball of radius 1/2 in R?. Note that A}, q has Lebesgue
measure vol(Ag ) = |Ki.a| = Qr.a- Let B§(r) := {z € R?: ||z|, < r} be the d-dimensional
Euclidean ball of radius r. We claim that B¢(k — v/d/2) C Ay, g, which in turn implies

Qua = vol (B (k= Va/2)).

To see why this claim holds, consider any = € B$(k — v/d/2). We’ll show that = € Ay, 4. Indeed,
there exists some y € Z? such that ||z — y||, < 1/2, and hence this y also satisfies ||z — yl|, <
Vd /2. By the triangle inequality,

||Z/||2 < ||$”2 + ||z — Z/HQ

Vd\ | Vd

Thus, y € Ky, 4, which implies x € Ay, 4.
To complete our lower-bound on (), 4, we observe that

Qua = vol (B (1= 3vid) ) = val (54 (5))

T = () 2en(o (aes (5 42))).

where I' is the gamma function and we have used a standard bound on the volume of the d-
dimensional Euclidean ball. |

Appendix B. Supporting lemmas for upper-bounds for Lipschitz functions

This appendix supports Section 3, which presents and proves Theorem 6, the main upper-bound
on the minimum width RBL network needed to approximate a Lipschitz function. It contains the
proofs of the key Lemmas 7 and 9, which are given in Appendices B.1 and B.2 respectively.

B.1. Trigonometric polynomial approximation for Lipschitz functions

Lemma 22 (Restatement of Lemma 7) Fix some L,e¢ > 0 with % > 1 and consider any function
e LA([=1,1)%) with || f|l;, < L and |Ex [f(x)]| < L. Then, taking k = ¢, there exists a
bounded-degree trigonometric polynomial

o= S aen ()

KEKk,d

such that || f — P||_y yja < €. Moreover, |Bi| < L for all K.
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Proof of Lemma 22. To give a low-degree trigonometric polynomial approximation for f, we
transform f into a function f that satisfies periodic boundary conditions, apply Lemma 8 to approx-
imate f with trigonometric polynomial P, and obtain P from P. Roughly, the argument proceeds
as follows:

1. We define £ : [0, ] — Rtobea rescaling and shift of f so that its domain is the cube [0, 1]4.
That is, for z € [-1,1]%and y € [0,1]%, f(y) = f(2y — 1) and f(z) = f((z + 1)/2). Then it
holds that | f[|s» < 2L and | Eymfojalf I = [Bx1,a[f ()] < L.

2. We define f : [-1,1]? — R by reflecting f across orthants as follows: f(z) = f(sign(z) ® ),
where sign (z) := (sign(x1), . . .,sign(xq)) and © represents element-wise multiplication. The
function f is 2 L-Lipschitz, satisfies the periodic boundary conditions, and has

E [f(y)]

y~[0,1]4

x~[—1,1]¢

3. We find a low-degree trigonometric polynomial P that e-approximates f over [—1,1]%.

4. Such a P must e-approximate f in at least one of the 2¢ unit cubes contained in the orthants of
[—1, 1]%. Therefore, there exists some sign vector v € {—1,1}% such that f(y) is approximated
by P(v ® y) on [0, 1]
5. By shifting and rescaling P (v®y), we obtain a trigonometric polynomial P that e-approximates
f on [—1,1]? as desired.
Steps (1) and (2) are immediate.
Step (3) follows from Lemma 8. Because f is 2L-Lipschitz, f satisfies the periodic boundary
=114 [f f(x)]| < L, and 2L/e > 2, Lemma 8 guarantees the existence of some

trigonometric polyn0m1a1
> BTk (x)

KeKy.q

such that || f — 15||[_171]d < eand |fx| < L forall K.

For step (4), if P is an e-approximator for f over Lo([-1, 1] ), then there must exist a unit cube
in some orthant corresponding to some v € {—1,1}¢ where P also e-approximates f. That is,

g |(Peon-fw)]<e

y~[0,1]¢
For step (5), by translating the distribution from [—1, 1]% to [0, 1] and taking P(z) := P(v ®
(x +1)/2), we obtain

(P - 1007) = B N(Proy) - )]

xN[flvl]d yN[Ovl]d

It remains to show that we can represent P as a proper trigonometric polynomial with halved
frequencies and bounded coefficients. We do so by examining each term of the expansion of P.
Fix any K € Z% with ||K||, < k and K € Kgn. Then, Tk (y) = v2sin(r(K,y)). Consider
the term corresponding to K of P(xz) represented as an expansion of P, SxTx (v ® (z 4 1)/2).
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Figure 1: A depiction of the function transformations used to give an approximation of f in
Lemma 7. The original function f is in (a), which is scaled and reflected to yield a
function f with periodic boundary conditions in (b), which is given a trigonometric poly-
nomial approximation P in (c), which is in turn scaled and shifted to obtain P approxi-
mating the original f in (d).

By rearranging its inner product and applying sum-of-angles trigonometric identities, we obtain the
following identity:

TK<%I/@(1‘+T)) \/_sm( (v @Kx>+g<V®K,T>)

V2sin (3 (v © K, ) (o K,1)=0 (mod 4)
~ ) V2cos (5 (v o K, ) oK1 =1 (mod4)
B 2sin (5 (v © K, z)) (oK, I)=2 (mod 4)
—V2cos (5 (v o K, z)) (vOK,I)=3 (mod 4)
This yields the final representation for T functions
Toor(%) (oK, I)=0 (mod 4)
1 - T oK (% K1) =1 d4
Tk (—I/ O (z+ 1)) - QK(%C) o _’> (mod 4)
2 —Twok(3) wOK1)=2 (mod4)
~T_yorx(%) (voOK,I)=3 (mod4).
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Similarly,
T ,ox(%) (@WOKTIT) =0 (mod4)
1 - ~Tor(% K1 =1 d4
T <1/®( +1)> _ ox(3) (OKI) (mod 4)
2 T ,ok(3) (vOK,1)=2 (mod4)
Tyor (% (vOK,I)=3 (mod 4).

Using these identities, we can rewrite P as its own trigonometric polynomial with coeffi-
cients g for all K € Z% such that Bk € {Buok, —furok} if (v © K,1) = 0 (mod 2), and
Bk € {B_V@ K, —5_,,@ K } otherwise. Due to the existence of such Sk coefficients, the following
trigonometric polynomial approximates f over [—1,1]%:

P)= Y ﬁKTK@u@ a:—i—l) 3 BKTK< ) m

KE/de KGIde

B.2. RBL ReLU network approximation for trigonometric polynomials

In this section, we give a general purpose lemma that bounds the width needed to approximate
trigonometric polynomials of bounded degree.

Lemma 23 (Restatement of Lemma 9) Fix some 6 € (0,1/2], ¢ > 0, p € (0,1], & > 1, and
d € Z*. Then, there exists some symmetric ReLU parameter distribution D}, such that for any
trigonometric polynomial

> BkTk(px)

KE’Ckyd

with |Br| < Bmax for all K € Ky, g,

— 2 2Kk 1
MinWidthp 51-11j¢,p, < O 7deln 5) )
th b k) I’ 6

We first define the specific symmetric ReLLU parameter distribution Dy, used in the proof, which
can be shown to meet the symmetry criteria spelled out in Definition 4. (As a result, the lower-
bounds on the minimum width in Theorems 10 and 13 hold for Dy,.)

Definition 24 (Symmetric ReLU parameter distribution D}, for [—1, 1] upper-bounds) Define
Dy, := Drjas X Dyeights,k as a product distribution with the following components:

® Dhyias is the uniform distribution over [—2\/3, 2\/&] ; and

® Dyeights,k IS a distribution over weights w taking value in S To draw w from Dyeights k>
draw K uniformly at random from Ky, 4 and let w := K/ | K ||,. (If K =0, let w := 1/+/d.)

We also introduce notation to represent the set of vectors contained in K, 4 that generate each
~1.
w e Supp(Dweights,k) C Sd .

{K € Kiq: K =nw,n >0} w—\lfl
kydaw
Y {K €Kpq: K =nw,n>0} otherwise.
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Note that every w € supp(Dyeights,k) 1S drawn with probability |Ky, .|/ Qk,q4, Which is at least
1/Qp q and at most (k + 1)/Qp 4.

To prove Lemma 9, we represent P as an expectation over random ReL.U features with pa-
rameters drawn from Dj. We first express each trigonometric basis element T as an expectation
over random ReL.Us. We leverage the fact that each individual T is a ridge function (that is,
Tk (x) = ¢((K,x)) for some ¢). In the following lemma, we show that every ridge function on
[—1, 1]d can be represented as a mixture of ReLLUs with random bias terms b drawn from Dy .

Lemma 25 (Representing ridge functions as a mixture of ReLUs) Ler ¢ : [—\/ﬁ, \/&] — R be
twice differentiable and let f : [—1,1]¢ — R be f(z) = ¢((v, ) for some v € S¥1. Then, for all
T e [_17 1}(1)

f(x)= E [(b)oreu ((v,z) —b)],
b~Dyias

where

Wiag = $o(—VD) ~46/(-Vd)  be[-2vVd -§Va)
4day = — 1 o(—Vd) +12¢/(—Vd) b€ [-3Vd,~Vd)
4/dg¢" (b) b [—Vd,Vd

0 b€ (Vd,2Vd).

P(b) =

Proof. We expand the expectation over b. For z € [—1,1]%, let z := (v,z) € [—+/d, v/d]. We have
the following:

bN% N [(b)oreLu ((v, ) — b)]

-3Vd —Vd Vd
= ao/ UReLU(Z — b) db + ay / UReLU(Z — b) db + / gb"(b)aReLU(z — b) db
W EWr BV

+ay <zb — b2> ‘ + / ¢"(b)(z — b) db
~2vd 2 ) lsva J-va

. Y ORI
= =g/ (V) + G(~V) + Vi (~Vd) — & (~Vd) (o + V) + 9(z) ~ H(~V)

z (CL() + al) + g (7&0 + 5&1) + (d)’(b)(z — b))

Once P is represented as an expectation over random RelLUs with parameters drawn from Dy,
we conclude the proof by arguing that this expectation can be closely approximated with high proba-
bility by a linear combination of sufficiently many randomly sampled ReLUs. We do so by applying
a concentration bound due to Yurinskii (1976) for sums of independent random variables taking val-
ues in a Hilbert space. We use a convenient version of the bound from Rahimi and Recht (2009,
Lemma 4):

Lemma 26 (Concentration inequality for Hilbert spaces) Let h® ... h®) pe independent ran-
dom variables that take values in a Hilbert space with norm ||-|| such that ||h®| < m for all i.
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Then, for any ¢ € (0, 1), with probability at least 1 — 6,

iéh“) [ Zh ] \[<1+1/210g<(15>>.

We are now prepared to formally prove Lemma 9.
Proof of Lemma 9. We first represent any trigonometric monomial 7T as an expected value over
weighted ReLUs of the form oreLu((K/ || K|y, x) + b) for b ~ Dy;as. For each K, we have
Tr(px) = o ((K/ | Klly , ), where

V2cos(mp||K|ly2) K € Keos
bx(2) = { V2sin(mp K|, 2) K € Ky
1 K =0.

By Lemma 25,

Tk(pz) = E |:¢K(b)UReLU <HK1"2 (K, x) — bﬂ ;

b~Dyias

where 1k is the function defined in Lemma 25 for ¢x. Because |¢px(2)
V27p || K|y and |¢% ()| < V212 p? || K||5 for all 2, we can bound

VB 12V2rp | K|y 4VdY2rp? HK\S} < 60v/a (|13 +1).

(=) <

16

| (2)| < max {

Vd

Because any sinusoidal basis element Tx can be expressed as an expectation of random ReLUs

and because P is a linear combination of a finite number of those basis elements, we can also
represent P as an expectation over ReLUs. We define i : R x S%~1 — R as

hw)= -2 S B (b) = ! 0

|ICk,d,w| KeK}c,d,w PrwNDweights,k [W = w] Ke’ck,d,w

and represent P(z) as an infinite mixture of ReLU functions weighted by h over all x € [—1, 1]¢.

bEw [h(b, W)oreLu ((W, z) — b)]

- Z E Z BrYK(b)oreLu ((w, ) — b)

b~Dyias
wesupp(pwcights,k) blas Kelckyliyw

- > > 5K E [¢K(b)0’ReLU<HKH2<Kx> b)}

wesupp(Dyweights, k) K ELk,d,w Dbias

- Z 51( E [wK(b)UReLU<HK1.H2 (K,z) — bﬂ

KEIC b~ blas
= Z BrTxk (px)
KEIChd
= P(x).
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To conclude the proof, let (w(1), b)), ... (b w(")) be independent copies of (w,b), and
define h® € Ly([~1,1]%) fori =1,...,r by

h9(@) i= Aw, Do ((w, ) - b).

Now we apply Lemma 26 to the random variables h®"), ... h("). Note that Eb ) wo) [h(i) (x)] =
P(z). To apply the lemma, we first bound ||h(?) =114

o

< max h(b,w)o w, ) — b
(-1, bG[—2\/E,2\/E},w€Sd*1,xe[—l,l]d| (b, w)orey ({ ) =0

< (maxlonar () -0 ) (yaxlng.w) )

yW,T

Qr.a
= (ol ol + g ) (x2S Bt
’ ’ W Ke’Ck,d,w
1
< 3ViQuamax = 37 3] 60V (I3 + 1)

KeKy,dw
< 360d@k,d6max k2 .

Therefore, with probability 1 — &,

inf P—g|._ <
g€Span(g™),....g") I H[ 1,14

1 S h g N th]
n < T
=1 =1 [—1,1]¢

360d Bmaxk? [ 1
< ﬁmax Qk,d 1+ 21n = <e,
N2 0
which holds as long as we choose r with

36024262, k1Q? 1\’
P> B;‘ @k 1—1—1/21115 .
€

Based on Definiton 5, this gives the desired upper-bound on MinWidth. |

Appendix C. Supporting lemmas for lower-bounds for Lipschitz functions

This appendix supports Section 4 by proving Theorems 10 and 13.

C.1. General lower-bounds for random features

In Theorem 29, we give the most general form of our lower-bound. In this setting, we consider
linear combinations of features drawn independently from some distribution over functions (which
are not required to be ReLUs or even ridge functions). We argue that the span of any r such random
functions in Lo (1) cannot cover more than  dimensions of that function space and that we therefore
cannot approximate most of the members of a family of /V orthonormal functions if NV > r.
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If the family of N functions satisfies a suitable notion of symmetry with respect to the random
features, then we can additionally argue that each function in that family is equally likely to be
inapproximable. This makes it possible to construct a single explicit function that cannot be ap-
proximated with high probability by linear combinations of random features. We give the relevant
notion of symmetry below:

Definition 27 (Symmetry of random functions) Ler g be an Lo(u)-valued random variable for
some measure [i. We say g is symmetric with respect to the set of functions ® = {p1,...,on} C
Lo () if the distribution of (g, ‘pi>u is the same foralli =1,..., N.

In fact, strict orthonormality of the hard functions is not needed for our approach; we introduce
a notion of “average coherence,”

which allows us to quantify how far the family is from being orthogonal and prove lower-bounds
that depend on this quantity.

Definition 28 (Average coherence) For any set of functions ® = {p1,...,on} C Lo(u) with
lpilly = 1foralli=1,..., N, its (average) coherence is £(P) := | />, (i, ;)%

We are particularly interested in large collections of functions with low coherence. Note that a
collection of orthogonal functions has zero coherence. Our main approximation lower bounds in
Theorems 10 and 13 are achieved using an orthogonal collection. However, our general lower bound
(Theorem 29) extends to the case where the family of functions has small (but nonzero) coherence,
and indeed this version for families with small coherence is useful in extending our general approach
to functions over Gaussian space, as we sketch in Appendix E.

The following general lower bound works for any distribution over random features that meets
the above symmetry condition and for any set of “nearly-orthonormal” functions that have a bounded
average coherence k. It is akin to Theorem 19 of Kamath et al. (2020) although that result does not
involve a symmetry notion (and hence does not yield an explicit hard function).

Theorem 29 (Lower-bound for linear combinations of random features) Fix a family of func-
tions ® = {¢1,...,on} C Lo(p) with ||@||2 = 1 foralli =1,...,N. Let g ... g beiid
copies of an Lo(u)-valued random variable. Then, there exists some p; € ® such that

r (1+/€((I))).

N 10)

E inf lg—eill}| =1-
g, g gGSpan(gU));:1

In particular, for any o € [0, 1],

it lg—al > (1- ““‘I’”)] > (1) (1- ")),

Pr
g€Span(g?))7_ N N
(11

g<1)7,,,7g(7)

Moreover, if gV, . ... g") are symmetric with respect to ®, then (10) and (11) hold for i = 1.

We recall two tools that will be used in the proof of Theorem 29, namely the Hilbert projection
theorem and the Boas-Bellman inequality.
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Fact 30 (Hilbert projection theorem (Rudin, 1987)) For some measure jn and ¢V, ... ¢ ¢
Lo(p), consider the subspace W = Span(g™), ..., g")) of La(p). For any f € Lo(w), it holds
that

. 2 2 2 2
Jnf llg = I, = ITw f = f15 = 1715 = T A1 (12)

where Iy : Lo(p) — W is the orthogonal projection operator for W. Moreover, the orthogonal
projection Iy f depends on f only through ((gV), Fhus--s (g, )

The following is a generalization of Bessel’s inequality due to Boas (1941) and Bellman (1944),
specialized to our present context.

Fact 31 (Boas-Bellman inequality) Forany g,¢1,...,¢oNn € La(p),

1<i<N

N
> (o < ol (g Il + w{nom) ). (13)
=1

Proof of Theorem 29. By the Hilbert projection theorem (Fact 30), for all ¢ € [N] we have that

|

e

We now upper-bound the sum of the expected norms of the projections of each function in ®
onto Span(g(j))gzl. Let uj,...,uq be an orthonormal basis for Span(g(j))gzl, where d :=

dim Span(g(j));f:l. Then

N
> HHSpan(gU»;:l Pi
=1

i 2
E inf lg—will,| =1—- E {HH @y Pi
g ...g) gGSpan(g(j))]T,zl H g g Span(g@))7_,

d d N
Z (ug, 901 Z Z (ug, @, (Plancherel’s identity, Fact 15)
1 k=1 k=1 i=1

e
M=

%

M=

(1+ k(@) =d-(1+ k(D)) (Fact 31)
1
(14 k(D)) (dim Span(g (7)) 1<)

* i

Hence, we conclude by linearity of expectation that

N
1 . 2 r- (]_ + I‘L(@))
N inf o] > o T AR u
N i=1 gW,.. g(r) [gESpan(g(j))§1 Hg 901’/1] = N (14)

Therefore, there exists some ¢ € [N] such that

: r-(1+ k(P
E inf Hg_%.”i 21_M7
g .. g gESpan(g(]))§:1 N

which gives us inequality (10). Inequality (11) follows by an application of Markov’s inequality
to the random variable 1 — inf g€Span(g);_, llg — @i ||i (which is easily seen to be non-negative),

which by the first part of the theorem has expected value at most 7 - (1 + x(P))/N.
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We conclude by proving the stronger version of the theorem, where we additionally assume
that the random features are symmetric. Suppose g® .. g are symmetric with respect to .
As mentioned in Fact 30, the orthogonal projection Hspan(g(j))r Pl depends on ¢; only through

=

the (random) vector ((g1), 1), ..., (g™, ¢1),). Therefore, by the symmetry assumption on the
distribution of each g(?), the orthogonal projection Hspan(g(]’))rj Pl has the same distribution as
=

Hspan(gm);:l@i for all i € [N]. Then

N
1 2
gn}?,gm [HHSpan(gm) @1” ] I E: (1) [H Span(gld))r_, Pi J- 15)

Plugging Equation (15) into Inequality (14) proves that Inequalities (10) and (11) hold for z = 1.
|

C.2. MinWidth lower-bounds for RBL ReLU networks

Here, we specialize Theorem 29 to the case of ReLU networks, which prepares us to prove the
specific lower-bounds that will be given in the subsequent sections.

Lemma 32 Let D be a symmetric ReLU parameter distribution and 11 be some measure over R%.
Fix any ® = {¢1,...,on} C La(n) such that ||g01\|i = 1 forall i € [N]. Then, for any € > 0,
there exists some @; € ® such that

N

ManldthAle(pl €,y % aM’D Z m .

(16)
Additionally, suppose that the functions in ® are symmetric up to some permutation of variables
and p is invariant to permutation of variables. That is, for all i,i' € [N| there exists a permutation
;0 over [d] such that @; o m; iy = @y. Then, Inequality (16) always holds for i = 1.

Proof. By applying Theorem 29 for any » < N/(4 + 4x(®)) and for « = 1/3, there exists some
i € [N] such that

Pr

1
g, g 2

it il < 7| <
in ; — -
gESpan(g(j))rzl vi g s 4
Note that for all f, there exists g € Span(g/ )) _; with || f — g/, < € if and only if there exists
g € Span(g(j));:1 with || f/4e — ¢'||, < 1/4. Thus, we conclude the following:

inf. . ||46901_9H,u,<€] = HSOz Q/HM<Z < —.

Pr = Pr inf
gW,...g | geSpan(g®);_, gm,...g | g'eSpan(g®));_,

To prove the stronger version of the theorem that assumes permutation symmetry for ®, we
apply the stronger version of Theorem 29. To do so, we must show that each g(*) is symmetric with
respect to P.
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Because the ReLU feature parameters b() are chosen independently w(®) and the distribution of
w(? is invariant to variable permutation, each g(@ is drawn from a distribution that is also invariant
to permutation. We prove the symmetry property by showing that the inner product distributions
are identical for g(!), without loss of generality. Because each function in ¢, . . . , ¢ is symmetric
to a permutation of variables, there exists some permutation 7; ;+ such that for all @ € p, p;(z) =
@i (i #(2)). To show that the two inner products induce the same distribution, consider any z € R.
Then:

Pr (g, i), > 2]

g
— oy | B 0] > 2
g |x~p
= Pr | E [gW(x)p;(m0(x))] > z] (Existence of 7; ;1)
g | x~u
= I(’r) E [g(l)(mﬂv (x))pj(mii(x))] > 2} (Symmetry of g(!)’s distribution)
gl [x~p
= Pr | E gV (x)¢0 ()] 2 } (Symmetry of )
g [x~p
= Pri(g™, i), > 7]
g
Hence, recalling Definition 27, g(!) is symmetric with respect to ¢, . . . , ¢ . By invoking The-
orem 29 with the additional symmetry assumption, inequality (16) holds when 7 = 1. |

C.3. Asymptotically tight lower-bounds for RBL ReLU networks over [—1, 1]¢

To finalize the proof of Theorem 10, we first show that some low-degree trigonometric polynomial
cannot be approximated by a combination of random ReLU features.’

Lemma 33 Forany k > 0, any € > 0, and any symmetric ReLU parameter distribution D, there
exists some K € N with | K|, < k such that

. . 1
Man1dth4ETK767%7[_171%@ > sz,d.

Proof. Let 7, := {Tx € T : K € K}, 4} be a subset of trigonometric basis elements with bounded
degree. Because 7T is an orthonormal family of functions, 7% is as well, and x(7;) = 0. Then,
Lemma 32 implies the existence of some T € T}, such that

— Tl _ 1
MmWIdth4eTK,e,%,[—l,l}d,D > T ZQIMI' u
We prove Theorem 10 by applying Lemma 33 and bounding the Lipschitz constant of the inap-

proximable function.

5. We prove Lemma 33 separately from Theorem 10 since we also make use of Lemma 33 in Appendix D.2 when
proving lower-bounds based on the Sobolev norm of a function, rather than its Lipschitz constant.
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Proof of Theorem 10. Consider any T € T with || K|, < k. Then, for all 2,2’ € [-1,1]¢,
T () — T ()| < V2m(K,z —2') <V2r | K|, lz — 2'|la < V2rk|z — /2.

Thus, | Tk ||lLip < V27k and || f||Lip < 4v27mke < 18ke. By applying Lemma 33 with k :=
L /18e, there exists a satisfactory f such that || f||ip, < L. [ |

C.4. Explicit lower-bounds for RBL ReL.U networks over [—1,1]¢

As in the previous section, we prove Lemma 34 by applying Lemma 32 to a family of orthonormal
functions. In order to obtain an explicit function f that is hard to approximate, we invoke the
stronger version of Lemma 32, which requires showing that that the family of functions exhibits
symmetry up to a permutation of variables.

Lemma 34 Forany { € Z* with ¢ < d, any € > 0, and any symmetric ReLU parameter distribu-
tion D, define f : R? — R to be the function f(x) := 4v/2esin(m Zle x;). Then,

. . 1/d
MmW1dthf,e,%,[71,1]d,D > 1 <£)

Proof. We prove the claim by constructing a family of functions ®, with 4% f € ®, and applying
Lemma 32. We define a family of functions

Dy = {(pg:.%i—) V2sin (WZJ:Z) | S Cld,|S| :e}.

€S
Note that |®,| = (zl) and that ¢ := if = ¢ € P4 Because &, C T and 7T is an orthonormal

basis for La([—1,1]%) (Fact 17), the functions in ®, are orthonormal and #(®;) = 0. Thus, because
the &, satisfies the symmetry conditions for the special case of Lemma 32,

o 1/d
Manldthf7€7%7[,1,1]d,D 2 4 <€) -

Proof of Theorem 13. This is immediate from Lemma 34 and from the fact that || f{|;;, =

4mev/20 < L. The right-hand side of the bound follows by lower-bounding (Z) for our choice
of 4.
If ¢ = [d/2] and d > 2.5 then

(> ()" (2)* 5 erioian
Otherwise, £ < d/2 and

()= (7) zom (e (s (F+2))) =ow (e (s (5+2))) -

This matches the exponent asymptotically up to logarithmic factors of the corresponding Lips-
chitz upper-bound, Theorem 6.

6. There is no need to consider the d = 1 case, because then MinWidthﬁe’%’[_l’l]d,D > 1 = exp(©(1)), which
satisfies the claim.
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Appendix D. Upper- and lower-bounds for Sobolev functions

In this section, we present upper- and lower-bounds on the width required for depth-2 RBL ReLU
approximation of functions in a larger family of smooth functions, namely the order-s Sobolev
functions. Sobolev spaces are normed function spaces arising in the study of partial differential
equations, and their norms quantify the effective “bumpiness” of their constituent functions in terms
of their weak derivatives. Let 1 denote the uniform probability measure on an open subset of R
Following Leoni (2017), we denote the order-s Sobolev space of functions in Ly(u) for s € N by’

Ho (1) = {f R? 5 R: DM feLg()VMENds.t.|M]§s}.

The norm on this space is

1oy = [ D [DODF2.

|M|<s

(We do not consider Sobolev spaces in L, (1) for p # 2 since we rely on Hilbert space structure.)

We focus on the classical spaces H*(u) in La(p), where g is the uniform product probability
measure on the torus T¢ and T = R/(2Z). As a short-hand, we refer to this space as H*(T¢)
in Ly(T?). Recall that T is obtained by identifying points in R that differ by 2z for some z € Z.
Functions on T¢ can be regarded as functions on [—1, 1]¢, which, along with their derivatives, satisfy
the periodic boundary conditions. Note that 7 is also an orthonormal basis for T¢, because all of
the trigonometric polynomials in 7 and all their derivatives have periodic boundary conditions and
because the probability density of the uniform distribution on T is the same as the density over the
uniform distribution on [—1, 1]%.

D.1. Upper-bounds for functions in H*(T%)

We prove an analogue to Theorem 6 that places an upper-bound on the minimum width RBL ReLLU
network that approximates a function with bounded order-s Sobolev norm.

Theorem 35 Fix some § € (0,1/2], e,y > 0, and s € Z*. Let k := \/5v'/5/e'/*. Then,
there exists some ReLU parameter distribution D such that for any fixed f € H*(T?) that satisfies
17l ouy < 7 we have

) . 82’72+4/8d2 1
MIHWIdthfﬁ’S’Td"D S O (({2+4/5Q’2€’d In <5> .

Remark 36 When s =1,

1
MinWidth . 574 p < O( ;% Q'y/ed n <5)> ,

which is a near-perfect match to the upper-bound for Lipschitz functions in Theorem 6. This is
unsurprising, because all L-Lipschitz functions f with |E [f]| < L have a squared 1-order Sobolev
norm with the following bound:

17 sn = 11+ _E [IVFI] < ().

7. Technically, D™ f is interpreted as the M-th weak partial derivative of f. However, it satisfies the integration-by-
parts formulas that appear in the proof of Lemma 20, which is all we require.
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Thus, the two theorems give nearly identical upper-bounds for L-Lipschitz functions that satisfy
periodic boundary conditions.

Remark 37 Applying Fact 3 to Theorem 35 implies that

N 1 _ sv?/* 57/ de’/*
MinWidth 5 ¢ p < In (5) exp (O (mm (d log <de2/s + 2) 7P log T +2 .

Like the proof of Theorem 6, we first show that every function in H*(T%) can be approximated
by low-degree trigonometric polynomial in Lemma 38, which is a parallel result to Lemma 7. Unlike
Theorem 6, however, we require that f and its first s derivatives satisfy the periodic boundary
conditions, which is assured by the fact that f € H*(T%). Thanks to this assumption, we eliminate
the need for the “reflection” trick from Lemma 7, which simplifies the proof.

Lemma 38 (Approximating Sobolev functions with low-degree trigonometric polynomials) Fix
any values v,e > 0 and s € ZF. Consider any f € H*(T?) with [flgrs(ray < v Let k =

V/57Y/% /(2€)V/5. Then, there exists a trigonometric polynomial

Px)= Y BrTk(z)

KEICk,d

such that || f — P||lpa < €. Moreover,

Br| <N fllpa < v forall K € Ky q.

Proof. Because 7 is an orthonormal basis over T%, we express f as the expansion

Since f can be regarded as a function on [—1, 1]¢ whose first s partial derivatives satisfy boundary
conditions, Lemma 20 implies that this expansion of f can be differentiated term-by-term. By
taking term-by-term partial derivatives of f, applying Parseval’s identity (Fact 15), and using the
known norms of partial derivatives of T, (Fact 18), we obtain the following closed-form Lg(’]I‘d)
norm for D) f for all M € N? with |M| < s:

|peo f\; = Y ek (nK)M,
Kezd

Therefore, the squared H*(T¢)-norm of f can be written as

1 = 3 [p6]0, = 3 5 akek = Y akexs ()

|M|<s |M|<s Kezd Kezd

where

CK;s = Z (rK)*M,

IM[<s
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We lower-bound cg s in terms of s and || K ||, with the multinomial theorem:
> K)2M > w2 s! F2M w2 K2 > m HK”% )
CK,S_Z(W) —?ZM —jH 13" = - |-
|M|=s |M|=s

We define Sk := ag forall K € K}, g and Sx := 0 for all other K € Z¢. Note that if K € Z¢
has | K|, > k > /57" /m€'/5, then ¢, > 72 /e2. By Parseval’s identity, we have 52 < || f||2a.
Moreover,

2
CK,S €
I7=Plte= 3 ks 3 aks ¥ ekogi5s5 Y ekexssé

KeZN\Kg,q Kezd: Kezd: Kezd
CK,5>’72/E2 CK,S>72/€2
Above, the first equality uses Parseval’s identity, and the final equality uses Equation (17). |

Proof of Theorem 35. This proof is identical to the proof of Theorem 6 in Section 3.3, except that
we make use of Lemma 38 instead of Lemma 7, and instead set k := /sv"/*/e!/*and p:=1. W

D.2. Lower-bounds for functions in 7°([—1, 1]%)

Similar to Section 4, we give lower-bounds on the width of RBL ReL.U neural networks required
to approximate certain functions (now ones with bounded s-order Sobolev norm). As before, we
present two variants of the lower-bound, one non-explicit tight bound and one looser explicit bound.

e Theorem 39 is analogous to Theorem 10. It shows the existence of some sinusoidal function

with bounded Sobolev norm which matches the upper-bound Theorem 35 by depending on the
same combinatorial term.

e Theorem 41, like Theorem 13, offers an explicit sinusoidal function with bounded Sobolev
norm whose minimum width can be bounded by a term that differs from the asymptotics of the
exponent of the upper-bound by a logarithmic factor.

These results follow from proofs that directly apply Lemmas 33 and 34 respectively and bound
the s-order Sobolev norms of the resulting functions.
D.2.1. A TIGHT LOWER-BOUND

We give a bound on the minimum width depth-2 RBL ReL.U network needed to approximate some
function with bounded Sobolev norm, which is a scaled version of some function in 7. The family
of functions is identical to that of Theorem 39; the only difference is that we parameterize the
bounds by the s-order Sobolev norm of the function, rather than its Lipschitz constant.

Theorem 39 Fix some €,y > 0 and s € Z, with~y?/e> > 16(s + 1). Let

1/s

ko= 7
’ 7r41/s€1/s(8+1)1/23'

Then, there exists some K € Ky, q such that for f := 4€T and for any symmetric ReLU parameter
distribution D,
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S 1
1\/[1I1VV1C].JEhf767 % T4 D > ZQk,d?
and |l oy <

Remark 40 By invoking Fact 3, we have

_— . Ve v de*/*
MinWidthy . 1 /9 re p > exp | €2 | min | dlog d62/s+2 ’ﬁlog 25 +2 .

Note that we can drop (s + 1)'/* terms from the asymptotics of the exponent, because (s + 1)'/% €
(1,2] for all s € Z*. The asymptotics of the exponents match the upper-bound on the minimum
width presented in Remark 37, when § = 1/2 and s is regarded as a small constant.

Proof. To prove the existence of f, we need only invoke Lemma 33 for our choice of k. It remains
to bound the s-order Sobolev norm of f. We do so by expanding the squared Sobolev norm of f and
applying Fact 18 to obtain an exact representation of the norms of derivatives of the basis elements
Tk €T.

ey = > HDW)fH;:me? 3 HD(M>TKH;:16€2 S Rl

M:|M|<s M-\M\<s M:|M|<s
S
=162 > " Y KM < 16¢° Z Ny K‘KQM = 16€> Z | K3
m=0 |[M|=m m=0 |[M|=m

i 2/s m
2 27.2\m __ 2 Y
< 16¢ Z k‘ = 16¢ Z_O (161/562/5(8 + 1)1/8>

Because of our assumed lower-bound on 72 /2, the final term of the sum cannot be smaller than
any preceding terms. Therefore, we conclude with the following trivial bound on the sum.

s 2/s m 2/s s
2 2 ° 2 i .2
||f||HS(Td) < 16e mZ:() <161/862/s(8+ 1)1/3) < 16e (S + 1) (161/562/8(8 + 1)1/5) =7

D.2.2. A LOWER-BOUND FOR AN EXPLICIT SINUSOIDAL FUNCTION

We give an explicit lower-bound that bounds the Sobolev norm of the function f used in Lemma
34. In that way, it is nearly identical to Theorem 13.

Theorem 41 Fix some ¢,y > 0 and s € Z, withy*/e®> > 16(s + 1). Let

E . d 72/8
= min [2“ ) 7r2161/562/5(5+ 1)1/s .
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Fix any symmetric ReLU parameter distribution D. Then, the function f(x) := 4v/2esin(n Ele x;)
satisfies || f|| s (pay < v and

. . 1 d . ’)/2/8 d€2/s
M1nW1dthf7E7%7Td’D > 1 <£) > exp (Q (mm (62/8 log <72/s +21,d .

Proof. The width bound is immediate from Lemma 34 and from the lower-bounds on (‘g) shown in
the proof of Theorem 13. Note that f can be written as f = 4€Tx for some K with

1/s
ol
= <
”KHQ \/z— 7-‘-41/361/3(8_’_1)1/28’

Thus, we conclude that || f1| ;- (1) < 7 by applying the same chain of inequalities from Theorem 39,
making use of our lower-bound on 2 /€2 |

Appendix E. A similar approach for the Gaussian measure

The techniques underlying our upper- and lower-bounds on approximation by depth-2 RBL net-
works are rather general, and can be applied in a broader range of settings than are captured by
Theorems 1 and 2. These settings include other activation functions beyond ReLU gates and other
functions spaces beyond Ls([—1,1]%). In this Appendix, we briefly sketch how several of the key
ingredients for Theorems 1 and 2 have analogues over Gaussian space, and how results similar to
Theorems 1 and 2 can be proved over Gaussian space.®

E.1. The setting and key background results

We consider the domain R? endowed with the standard d-dimensional Gaussian measure (0, I,)
with mean zero and identity covariance matrix. It is well known (see e.g. Section 11.2 of O’Donnell
(2014)) that the set { H } e Of all multivariate normalized Hermite polynomials is an orthonor-
mal basis for Lo (N (0, 1)), where for K = (K7, ..., Ky) the function Hg is

d

Hg =[] hx, (z))
j=1

where h; is the degree-¢ normalized univariate Hermite polynomial. These multivariate Hermite
polynomials are analogous to the trigonometric basis polynomials 7% that are introduced in Ap-
pendix A for the function space Lo([—1, 1]%).

Well known results (see, e.g., Section 5.5 of Szegd (1989)) show that partial derivatives of
multivariate normalized Hermite polynomials can be conveniently expressed in terms of other mul-
tivariate normalized Hermite polynomials, very analogous to Equation 4. By combining this with
a well-known recurrence relation for Hermite polynomials (again, see Szegd (1989)), it is possible
to prove the following result, which is closely analogous to Lemma 20 but now for Lo (AN(0, 1))
rather than Lo ([—1, 1]9):

8. Coarse analogues of the results from Appendix D for Sobolev spaces may also be obtained with these techniques.

37



HSU SANFORD SERVEDIO VLATAKIS GKARAGKOUNIS

Lemma 42 (Term-by-term differentiation for Hermite representation) Consider some f €
Lo(N(0,14)) and i € [d] such that f is differentiable with respect to x; and é% € La(N(0, Iy)).
Then, f and its partial derivative O f /Ox; have Hermite expansions of the form

f=> axHg & 8]“' =) ozKaHI'(.

E.2. The upper-bound approach

Recall that our positive results for depth-2 RBL ReLU approximation are proved in two stages.
In the first stage (Lemma 7, restated as Lemma 22 in Appendix B.1), we argued that any Lipschitz
function over [—1, 1]¢ can be approximated as a low-degree trigonometric polynomial with bounded
coefficients. In the second stage (Lemma 9), we argued that low-degree trigonometric polynomials
can be approximated with depth-2 RBL ReL.U networks.

For the first stage, with Lemma 42 in hand as an analogue of Lemma 20, it is possible to ob-
tain an analogue of Lemma 22; in the current Gaussian setting, this result shows that functions in
Lo(N(0, 1)) with bounded Lipschitz constant can be approximated with low-degree Hermite poly-
nomials whose coefficients (in terms of the orthonormal basis of normalized multivariate Hermite
polynomials) are not too large. (The argument is in fact simpler than for Lemma 22 because there
are no issues with periodic boundary conditions, which were responsible for steps 1, 2, 4 and 5 of
the outline provided at the beginning of the proof of Lemma 22.)

For the second stage, some technical challenges arise because the Hermite basis functions (un-
like the trigonometric polynomials defined in Appendix A) are not ridge functions. These challenges
can be overcome: using techniques from Andoni et al. (2014), it is possible to show that the small-
coefficient, low-degree Hermite polynomials we are dealing with can indeed be approximated by
depth-2 RBL ReLU networks. It turns out that the resulting width of the RBL ReL.U networks
obtained using this approach is roughly (dL/ e)O(LQ/ ), ie., polynomial in the dimension d but
exponential in L /e; this corresponds to a somewhat weaker analogue of Theorem 6 in which the
“min(L? /€2, d)” is replaced with just L? /€2, and gives a good upper bound when d is large com-
pared to L2 /2. For the complementary regime where L?/¢? is large compared to d, using different
techniques® it can be shown that in fact depth-2 RBL ReLU networks of width roughly (dL/e)O(®)
also suffice; combining these two regimes, this gives an overall approximation result for Lipschitz
functions over Gaussian space that is quite closely analogous to Theorem 6. The arguments to es-
tablish these results are somewhat lengthy for each of the two regimes, though, so we omit both the
arguments and detailed claims of the results in this paper.

9. Roughly speaking, the approach (inspired by Ji et al. (2019)) is to (i) truncate the function by setting it to a constant
outside of a ball of carefully chosen radius; (ii) approximate the truncated function with a superposition of “Gaussian
bumps;” (iii) approximate this superposition of Gaussian bumps by a weighted average of random ReL U gates.
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E.3. The lower-bound approach

Recall that our main lower bound tool, Theorem 29, only requires small average coherence (rather
than strict orthogonality) for the set of “hard” functions . Exploiting this flexibility, it is not difficult
to adapt Theorem 29 to the setting of Gaussian space.

In a bit more detail, it turns out that taking a family ® = {¢1,...,¢n} of “hard” functions
that corresponds to points vV, ..., v(¥) in a suitable packing of the unit sphere, where the function
@;i(z) is defined to be (a suitably normalized version of) sin(L{v("), z)), results in ® having small
average coherence, and from this it is not difficult to obtain lower-bounds on depth-2 RBL ReLLU
network width, following the approach of Section 4. The resulting lower bounds can be shown to be
quite close to matching the upper-bounds for Gaussian space sketched in the previous subsection.
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