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Abstract

In this paper, we examine the convergence rate of a wide range of regularized
methods for learning in games. To that end, we propose a unified algorithmic tem-
plate that we call “follow the generalized leader” (FTGL), and which includes as
special cases the canonical “follow the regularized leader” algorithm, its optimistic
variants, extra-gradient schemes, and many others. The proposed framework is
also sufficiently flexible to account for several different feedback models — from
full information to bandit feedback. In this general setting, we show that FTGL
algorithms converge locally to strict Nash equilibria at a rate which does not depend
on the level of uncertainty faced by the players, but only on the geometry of the
regularizer near the equilibrium. In particular, we show that algorithms based on
entropic regularization — like the exponential weights algorithm — enjoy a linear
convergence rate, while Euclidean projection methods converge to equilibrium in a
finite number of iterations, even with bandit feedback.

1 Introduction

In the presence of uncertainty, the players of a game may not have full knowledge of its structure, “or
the ability and inclination to go through any complex reasoning process to calculate an equilibrium.
But the participants are still supposed to adapt by accumulating empirical information on the relative
advantages of the various pure strategies at their disposal”. This aphorism — originally due to Nash
[34, p. 21] — constitutes the driving principle of game-theoretic learning, and highlights one of the
field’s most central questions: Does learning with empirical observations lead to a Nash equilibrium?
And, if so, at what rate?

These questions have been at the forefront of game-theoretic research ever since the early days
of the field, and they have recently received renewed attention via their connection to multi-agent
reinforcement learning [43], generative adversarial networks [18], auctions [44], and many other
applications where online decision-making plays a major role. Still, any attempt to provide a positive
answer to these questions must wrestle with a major roadblock: the well-known impossibility result
of Hart and Mas-Colell [19] shows that there are no uncoupled dynamics that converge to Nash
equilibrium in all games, thus shattering any hope of obtaining a universal convergence result.
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In view of the above, contemporary research on game-theoretic learning has focused on relaxing
the feedback requirements of the players’ learning processes, and understanding the stability — and
instability — properties of different kinds of equilibria under popular learning algorithms. One
property that stands out in this regard is the so-called “folk theorem” of evolutionary game theory
[20], which can be stated as follows: Under the replicator dynamics — the continuous-time limit of
the multiplicative / exponential weights (EW) algorithm [2, 29, 45] — a Nash equilibrium is stable
and attracting if and only if it is strict (i.e., if and only if each player has a unique best response).

The replicator dynamics are the most widely studied model for evolution in population games, so
the above equivalence essentially delineates what is and what isn’t achievable in an evolutionary
setting. In the context of online learning (our paper’s main focus), a similar equivalence was obtained
only recently [11, 15, 30], but it extends to the entire family of “follow the regularized leader”
(FTRL) dynamics [41, 42], in both continuous [11, 30] and discrete time [15]. In particular, [15]
studied the convergence of discrete-time FTRL models in the presence of uncertainty, and proved
a high-probability, stochastic version of this equivalence that holds for several different types of
feedback (full information, bandit, etc.). Thus, coupled with the prominence of FTRL in online and
game-theoretic learning, strict Nash equilibria emerge as the only stable limit points of regularized
learning under uncertainty.

Our contributions. One important limitation of the above results is that they are qualitative in
nature. Indeed, even though asymptotic stability guarantees that a learning process converges locally
to a strict equilibrium, it provides no information about the speed of this convergence. In particular,
especially for discrete-time models of regularized learning, asymptotic stability does not provide any
guidance on how to tune the algorithm’s hyperparameters (learning rate, mixing, etc.), and/or what to
expect in terms of the number of iterations required to reach a neighborhood of a Nash equilibrium.

Our paper aims to provide quantitative answers to these questions for a wide array of regularized
learning methods in the presence of uncertainty and limited information. To do so, we first introduce a
flexible algorithmic framework — dubbed “follow the generalized leader” (FTGL) — that incorporates
a broad spectrum of action choice mechanisms and feedback models. In more detail (and in analogy
to FTRL), the FTGL template maintains a cumulative estimate for the payoff of each action available
to the learner, and then selects a mixed strategy via a suitable “regularized” choice map. Specifically:

1. In terms of regularization, the FTGL template includes as special cases the standard logit choice
and Euclidean projection methods (as well as all other standard regularizers used in practice).

2. In terms of the information used to update the “aggregate score” of each pure strategy, FTGL
includes “vanilla” FTRL, its optimistic variants [10, 38—40], extra-gradient and mirror-prox
methods [24, 25, 35], with either full, oracle-based, or bandit feedback.

In this general context, our main result may be summarized as follows. First, we introduce a “rate
function” ¢ that depends only on the regularizer defining the learning process, and which captures
the sensitivity of the induced choice map to external stimuli: for example, ¢(x) = exp(x) for
entropic / logit choice models, whereas ¢(x) = [x]+ for methods run with Euclidean projections. We
then show that, with probability at least 1 — ¢, the algorithm’s local rate of convergence to a strict
equilibrium x* is of the form ||X,, — x*|| < ¢(d — ¢ X_, vs), where y,, is the method’s learning rate
and ¢, d are constants with ¢ > 0.

This result shows that the convergence speed of FTGL methods depends only on the choice of
regularizer and learning rate: for example, EW methods run with a constant step size converge to an
equilibrium at an exponential rate, whereas Euclidean regularization attains convergence in a finite
number of iterations. From a regret-theoretic point of view, this is somewhat surprising because
the regret guarantees of entropic FTRL (the EW algorithm) are far superior to those of FTRL with
Euclidean regularization [5, 41].

Equally surprising is the fact that the type of feedback employed does not affect the method’s rate
of convergence: ceteris paribus, the base sequence of states generated by an FTGL method attains
the same rate of convergence to strict Nash equilibria, whether run with full, partial, or bandit
/ payoff-based feedback. This comes into stark contrast with the corresponding rates of regret
minimization, which depend crucially on the type of feedback received [6, 27]; in a certain, precise
sense, this robustness in the face of uncertainty shows that regret minimization and convergence to
Nash equilibrium are fundamdentally different questions.



Related work. The convergence speed of methods based on the FTRL template — “vanilla”, opti-
mistic, or otherwise — have been studied extensively in the context of monotone games and variational
inequalities; for a (highly incomplete) list of recent references, see [9, 10, 16, 17, 21, 23, 28, 31-33]
and references therein. In this branch of the literature, there are two distinct threads: results con-
cerning the convergence of the “time-average” of the process [16, 24, 33, 35], and those focusing
on the algorithm’s “last-iterate” [9, 10, 17, 21, 23, 28]. In the latter case (which is the one closest to
our setting), the fastest achievable speed of convergence is exponential when the method is run with
a finetuned constant step-size, perfect payoff gradient observations, and the operator defining the
problem is strongly monotone and Lipschitz smooth. When run with stochastic gradients, the corre-
sponding min-max optimal rate is O(1/T) under the same assumptions (zeroth-order rates are usually
much worse). The apparent gulf between the rates of convergence obtained for monotone games and
those obtained herein have to do with two crucial factors: first, we are studying finite games, which
are typically not monotone; second, we are examining the algorithm’s rate of convergence to strict
equilibria, which are corner points of the problem’s domain. This means that the geometry of the
problem around a strict equilibrium is fundamentally sharper than the geometry around a solution of
a generic monotone variational inequality, a fact which in turn explains the qualitatively different
nature of the rates we obtain.

In the context of finite games, there have been several works examining the speed of convergence to
the game’s set of coarse correlated equilibria (CCE) by leveraging the algorithm’s regret minimization
properties, cf. [3, 4, 12, 13, 36, 44] and references therein. However, in addition to examining the
algorithm’s empirical average — as opposed to the induced day-to-day sequence of play — these results
focus almost exclusively on CCE, which means that it is not possible to draw any conclusions about
convergence to the game’s Nash set — qualitatively or quantitatively. To the best of our knowledge,
the closest work to our own in the literature is the paper of Cohen et al. [8] who showed that the
EXP3 algorithm with explicit exploration converges at a sub-geometric rate in potential games; our
analysis allows for a wider range of learning rates, so we are able to obtain faster convergence rates
than Cohen et al. [8]. We are not aware of any other comparable results in the literature.

2 Preliminaries

Finite games. Throughout this work we consider N-players finite games in normal form. Formally,
each player, indexed by i € ' = {1, ..., N}, has a finite set of pure strategies a; € A; = {1,...,A;},
and a payoff function u;: A — R, where A = []; A; is the space of all pure strategy profiles. For
concision, we will denote such a game as a tuple I' = ['(\\V, A, u).

During play, players can also play mixed strategies, i.e., probability distributions x; € X; = A(A;)
over their pure strategies. In this case, we will write x;,, for the probability that player i € N selects
a; € A; under x;, x = (x1,...,xy) for the players’ mixed strategy profile, and X := []; A; for the
set thereof. Finally, when focusing on the mixed strategy of a particular player i € A/, we will use the
shorthand (x;;x_;) := (x1,...,%;,...,xy) — and, similarly, (a;; @_;) for pure strategies.

Now, the expected payoff of player i in a mixed strategy profile x € X is given by

ui(x) = ui(xi3x-) = Z Z ui(@,...,aN) X0, XN,ay ()
(l]E.Al (INE.AN
where u;(ay,...,ay) is the payoff of player i in the action profile @ = (ay,...,an) € A. For

posterity, we will also write v;,, (x) = u; (a;; x—;) for the payoff that player i would have gotten by
playing a; € A; against the mixed strategy profile x_; of all other players. In this way, the mixed
payoff vector of the i-th player can be seen as a vector field v;: X — ); = R4 which can be written
in components as

vi(x) = (Vi(Yi (x))(liGAi' (2)
Again, we will write v(x) = (v{(x),...,vn(x)) for the ensemble of payoff vectors of all players
and Y = []; ); for the space of payoff vectors respectively. Finally, in a slight abuse of notation,
we will identify @; with the mixed strategy that assigns all probability to «;, and we will write
vi(@) = (u;(@i; @=;))a, e, for the corresponding pure payoff vector.

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash
equilibrium i.e., a (possibly) mixed strategy profile x* € X that discourages unilateral deviations;



formally, x* € X is said to be a Nash equilibrium of T" if
ui(x*) > u;(x;;x7;) forallx; € X;andalli e V. (NE)

The set of pure strategies supported at the equilibrium component x; € &; of each player will
be denoted by supp(x;) = {a; € A; : x, > 0}. In turn, the size of the support of x* leads to
the following dichotomy: x™ is called pure if supp(x}) = [I;cn supp(x}) is a singleton and mixed
otherwise.

Finally, we will also say that a Nash equilibrium x* is strict if (NE) holds as a strict inequality
whenever x; # x7; obviously, strict equilibria are also pure, but the converse need not hold. Strict
Nash equilibria play a key role in game theory because any unilateral deviation incurs a strict loss
to the deviating player; put differently, if x* is strict, every player has a unique best response. In
addition, they are the only equilibria that remain invariant under small generic perturbations of the
game [14]; these robustness properties of strict equilibria will play a key role in the sequel.

3 Regularized learning

Throughout our paper, we will focus on a wide family of learning schemes that unfold as follows:
At each stage n = 1,2,. .., every player maintains a “score vector” ¥; , € ); whose components
indicate the player’s propensity to play a given pure strategy. More formally, this is captured by a
player-specific “regularized choice” map Q;: Y; — X; which outputs the player’s mixed strategy
Xin = Q;(Y:i,) as a function of ¥; ,, (see below for a detailed definition). Then, after selecting their
actions and collecting their rewards, players also receive — or otherwise construct — an estimate V; ,,
of their mixed payoff vectors, which is used to increment their score variables and continue playing.

Formally, this learning process, which we call “follow the generalized leader” (FTGL), can be
described via the round-by-round recursive rule

Xin=0i(Y;n)

(FTGL)
Yi,n+1 = Yi,n + ')’nVi,n

where y, > 0 is a “learning rate” parameter such that ), y, = co. The terminology FTGL alludes
to the widely known “follow the regularized leader” algorithm, which is, historically speaking, the
parent-scheme of FTGL. The link to regularization is provided by the method’s choice map, which
we detail below; the assumptions for the signal sequence V; ,, are provided right after.

3.1. The choice map. The guiding principle behind the definition of the players’ choice maps
Q;: Vi = X, i € N, as follows: Because the players’ score variables Y; ,, are assumed to represent
an estimate of each strategy’s cumulative payoff over time, Q; is defined as a “regularized” version
of the best-response correspondence y; > argmax,. ¢ x, (yi»x;).! On that account, we will consider
regularized best responses of the general form

Qi(y;) = argmax{(y;, x;) — h;(x;)} 3)

Xi €X;
where h; : X; — R denotes the i-th player’s regularization function.

For concreteness, we will focus on a class of decomposable regularizers of the form h;(x;) =
Ya;eA,; 0i(xi) where the so-called “kernel function” 6;: [0,1] — R is assumed continuous on
[0, 1], twice differentiable on (0, 1], and strongly convex, i.e., inf 0,11 67" > 0. Of course, different
regularizers give rise to different instances of (FTGL); two of the most widely used and cited examples
are as follows:

Example 3.1 (Entropic regularization and multiplicative/exponential weights). Perhaps the most
common representative of regularization functions is given by the entropic kernel 8(x) = xlogx
ie., h(x;) = Xg,eA, Xia; 10€Xiq;. This choice of regularizer is well-known to provide the logit
choice map A;(yi) = (exp(Yia;))ared; | Ya;eA; €Xp(Viq; ). The resulting algorithm is known in the
literature as the multiplicative/exponential weights algorithm [1, 2, 29, 41, 45].

Example 3.2 (Euclidean projection). Another popular regularizer is the quadratic penalty A(x) =
>« Xa” /2, which yields the payoff projection map TI(y) = argmin, ., ||y — x||, cf. [26, 46].

UIn this context, regularization can be seen as a means to reinforce exploration so as to avoid committing prematurely to a
given strategy.



Remark 3.1. Examples 3.1 and 3.2 are archetypes of a fundamental dichotomy between regularization
functions: in the former case, we have 6’(0) = —oo, so & becomes steep at the boundary of the
player’s strategy space; in the later case, 6 is differentiable at 0, so 4 is non-steep. We will see that
this steep/non-steep dichotomy has a crucial impact on the method’s rate of convergence.

3.2. The feedback model. As we mentioned in the beginning of the section, the “payoff signal”
V,, contains information about the structure of the algorithm as well as the setting under consideration.
Thus to account for as broad a range of algorithms as possible, we will assume that the players’ signal
sequence is of the general form

Vi = V(Xn) +Zn 4)
for some abstract error process Z,, = (Z; ,)ien- Tp be clear though, we should stress that we do not
assume that V,, is directly correlated to — or obtained by — the chosen mixed strategy X,,; this will be
made clear in the range of models we present below.

To distinguish between random (zero-mean) and systematic (non-zero-mean) errors, we will further
decompose Z, as Z, = U, + b,,, where

ban[Zn|]:n] and ]E[Unl]:n] =0 (5)

with F,, denoting the history of X, up to stage n (inclusive). Notice that, since the feedback signal
is generated only after the player chooses a strategy, V,, is not F,,-measurable in general. On this
account, we will make the following blanket assumptions for the input signal sequence V,;:

1. Vanishing bias: b, converges uniformly to 0 as n — co. (Al)
2. Bounded variance: E[|U,|| | Fn] < o for some g > 2. (A2)

In the above o7, is assumed to be a deterministic, stage-specific, and possibly increasing bound on
the variance of the noise component U,,; our precise assumptions for its growth (relative to b, or
otherwise) will be detailed later in this section.

Specific models. So far, the formulation of (FTGL) has been kept intentionally abstract and devoid
of any modeling assumptions for how the players’ payoff signals are generated or estimated. To
illustrate the width and breadth of (FTGL), we present of series of specific models below, including
the popular FTRL and optimistic FTRL methods:

Model 1 (FTRL with oracle-based feedback). Assume that each player chooses an action based on a
given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round n = 1,2, . . ., each player chooses a
pure strategy «; , € A; based on a mixed strategy X; , € A; and subsequently observes the payoff
vector

Vin = vi(an) = (”i(ai§a—i,n))aie.Ai~ (6)
Thus, in this case, (FTGL) boils down to the standard “follow the regularized leader” (FTRL)
algorithm of [41, 42]. As for our basic feedback assumptions, we readily see that b; , = 0 and
Uin =vi(a,) —vi(X,); hence:

* (Al) is trivially satisfied since b; , = 0.
* (A2) is again satisfied because |U; ||« = ||vi(@n) — vi(Xn)ll« < 2maxqeallvi(a@)]l«, so U, has
uniformly bounded moments for all ¢ € [1, co]. §

Model 2 (FTRL with bandit feedback). If the players only observe their realized rewards, they
have to construct a model for V,, based on incomplete information. This is the standard setting for
multi-armed bandits [5, 6, 27], so it is often referred to as the “bandit feedback™ model. In this case,
the players’ action selection process is as in Model 1 above, but the feedback signal sequence V), is
now reconstructed by means of the importance-weighted estimator

Vieyw = 2n =01} ) (IWE)

ia,-,,,

where X; , = (1 — &,)X;.n + &x/]A;| is the mixed strategy of the i-th player at stage n. Compared to
X; » the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
&, — 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under X, it will still be sampled with positive probability
thanks to the mixing factor &,,.



Feedback FTRL OptFTRL EG/MP
Full information n=0 1bnlls = O(yn) 1o Il = O(yn)
M, =0 M, =0 M, =0
Oracle-based b, =0 [1brll« = O(yn) 16nll« = O(yn)
M, =0O(1) M, =0O(1) M, =0O(1)
Bandit 1bnlls = O(en) 1Bn |l = O(&n) Ibnlls = O(en)
(payoff-based) Mp =0(1/&n) M =0©(1/&n) My =0(1/&n)

Table 1: Recasting different online learning algorithms within the general template of (FTGL).

The importance-weighted estimator (IWE) estimator may be seen as a special case of the model
(4) with U; ,, = Vi, — vi(Xy) and b; ,, = v;(X,) — vi(X,,). Both assumptions (A1),(A2) are again
satisfied; indeed:

» For (Al): A standard calculation performed in ?? reveals that ||b; »||l« = O(g,). Thus our
assumption is satisfied since &, — 0.

» For (A2): Again a standard calculation presented in ?? reveals that ||V; ,, — v;(X,)|l. = O(1/g,)
and thus the noise has bounded moments, o, = ©(1/¢g,) forall g € [1, ].

Model 3 (OptFTRL with oracle-based feedback). Following Rakhlin and Sridharan [40], the so-
called “optimistic” variant of FTRL is given by the recursive formula:

Yin=Yin+v¥nVina Xin=0i(¥in) Yine1 =Yin+vuVin (OptFTRL)
In the above the payoff signal V; ,,, which depends on the state X,,, is generated as follows: at each
round n = 1,2, ..., every playeri € N picks an action «; , € A; based on X; ,, € X; and observes

the pure payoff vector v;(a,) = (u;(@i; @—in))a;eA,- At first glance, it seems difficult to reconcile
the above update structure with that of (FT'GL); however, it is indeed possible to integrate (OptFTRL)
within (FTGL) by considering the auxiliary states X,, = Q(Y;,) (which are never played and are only
used here for the analysis).

Indeed, each player’s input signal is a special case of (4) with payoft feedback V; , = v;(ay), zero-
mean noise U; ,, = v;(a@,) —v;(X,) and bias b; ,, = v;(X,,) —v;(X,,) that satisfy both the assumptions
(A1),(A2). In more detail, we have:

o For (A1): ||bjnll« = [Ivi(Xy) = vi(Xn)|l« = O(yy,), which goes uniformly to 0 whenever y,, — 0.
s For (A2): ||Uinlls = Ivi(an) — vi(Xu)|ls < 2maxgeal[vi(@)|. and thus the noise has bounded
moments for all g € [1, oo].

Remark 3.2. Based on the structure of the aforementioned algorithms, it is easy to check that we
capture a-fortiori the model of a full-information payoff signal; for a more complete account of the
different algorithms and feedback models see Table 1.

4 Analysis & Results

We are now in a position to state our main convergence results for (FTGL). We begin with a precise
statement and discussion in Section 4.1; subsequently, we present the main proof techniques in
Section 4.2.

4.1. Statement and discussion of our main results. Our analysis will focus exclusively on strict
Nash equilibria. As we discussed in the introduction, the reason for this is that only strict Nash equi-
libria can be asymptotically stable under FTRL [11, 15], so they are the only reasonable candidates
to consider when examining the rate of convergence of a regularized learning algorithm.”

2 As a sidenote, we should remark here that FTGL also contains the optimistic FTRL algorithm, which does converge to
mixed Nash equilibria in bilinear zero-sum games with perfect, deterministic feedback [16, 25, 32]. At first glance, this would
seem to contradict the results of [11, 15], but one needs to bear in mind that the convergence of (OptFTRL) to mixed equilibria
only occurs in settings with perfect information (i.e., V,, = v(Xy) foralln = 1,2, .. .). In the presence of uncertainty, this
convergence is destroyed [7, 22], so there is no contradiction with the results of [15]. Because we are primarily interested in
learning with limited information and/or under uncertainty, we will not treat this somewhat fragile case.



To proceed, we will need one technical assumption linking the learning rate of (FTGL) and the
bias/variance parameters of the driving feedback sequence V,,. This is as follows:

1+
n 2 -4
2p=1Vr O

[ZZ=1 Vk] rehal?

Assumption (A3) imposes a growth condition on the method’s learning rate relative to the bias and
variance parameters of the input signal sequence V,,, but it is otherwise a technical prerequisite for
the analysis to come. What is more important for our purposes is that the concrete models that we
discussed in the previous section satisfy it for a wide range of the player-chosen parameters y, (and
&, in the case of bandit-based algorithms); to streamline our presentation, we postpone a more precise
discussion of this issue until after the statement of our main results.

The sequence ¢, = is summable for some 8 < 1. (A3)

The last element that we need to introduce concerns the players’ choice of regularizer: clearly, since
propensities are transformed to strategies via each player’s individual choice map Q;: V; — A&, it
stands to reason that the underlying regularization function % plays a major role in the method’s
rate of convergence. Indeed, given an update of the form Y, « Y, +v,,V,,, the method’s strategy
variable will move forward as X,y < X,, + y,JQ(V)V,, + O(y2), where JQ denotes the Jacobian
matrix of Q. Thus, to leading order in vy, the update X,,;; < X, is dominated by the first derivatives

of 0.

By a relatively straightforward application of the Legendre identity from convex analysis (Q = (0h)™!
in our context; see below for a precise statement), this rate of change is related to the inverse mapping
of the derivative each 6; (the kernel of the underlying regularizer). Motivated by this observation, we
introduce below the algorithm’s so-called rate function:

@)1 ift > 0/(0%),

¢i() = {O otherwise. ™

The definition of the rate function ¢ captures the sensitivity of the choice map Q in a very precise
way: If the score difference corresponding to two pure strategies @, 8 € A; grows as yg — yo = ¢
for some ¢ > 0, then the probability of playing the strategy with the lesser score must be less than
the probabiity of playing the strategy with the higher score. The precise amount of this disparity of
course depends on the player’s choice function Q and ¢ acts as a “transfer” function in this regard.
Specifically, as we show in detail later, we have x, = ¢(—0(?)), i.e., ¢ determines the rate at which
xo vanishes. For different regularizers we present the corresponding rates in Table 2.

With all this in hand, our main result can be stated as follows:

Theorem 1. Let x* be a strict Nash equilibrium of I, and fix some confidence level 6 > 0. If
Assumptions (A1)—(A3) hold, there exists an unbounded open set of initial conditions Winie € Y and
constants d;, le with clf > 0 such that, if Y1 € Wi, we have:

1. X, converges to x* with probability at least 1 — 6.

2. Conditioned on the above, the rate of convergence for each player i € N is given by

* 4 "
1 Xin = xilh <2 Za-eA-\supP(xi*) ¢i(di TG Zk:l ')’k)- ®

Armed with this general result, we readily obtain the following immediate consequences thereof:

Corollary 1. Ifthe regularizer employed is non-steep (i.e., 0; is differentiable at 0), X,, converges to
x* in a finite number of iterations.

Corollary 2. Suppose that FTRL is run with oracle-based feedback as per Model 1 and a learning
rate of the form vy, o« 1/nP, p € [0, 1]. Then the conclusion of Theorem 1 holds.

Corollary 3. Suppose that FTRL is run with bandit feedback as per Model 2, a learning rate of the
form vy, o 1/nP, p € [0, 1] and a mixing parameter &, < 1/n", r € (0, 1/2). Then the conclusion of
Theorem I holds.

Remark 4.1. We stress out here that for all the bandit—fpedback derived results, the convergence
rates refer to X; , instead of the explicit exporation term X; , whose rate is always dominated by the
mixing parameter &,.

Corollary 4. Suppose that Optimistic FTRL is run with oracle-based feedback as per Model 3 and a
learning rate of the form vy, o< 1/n?, p € (0, 1]. Then the conclusion of Theorem 1 holds.



ALGORITHM KERNEL 6 (x) RATE ¢(-y)

Multiplicative Weight Updates xlog x exp(-y)
Projection Gradient Descent x2/2 -y
Inverse Updates —logx -1/y
g-Replicatorg g [q(1-q)]7! (x - x9) g7+ (1 —gq)y]Va!

Table 2: Regularizers & correspinding rates.

More generally, we show in the supplement that the conclusion of Theorem 1 holds for all algorithms
and feedback models presented in Table 1: in all cases therein, players can employ step-size policies
of the form vy, o< 1/nP, p € [0, 1], and a mixing parameter &, oc 1/n” with r € (0, 1/2) for the
bandit models. The only case that does not follow as an immediate corollary of Theorem 1 is the case
of constant step-sizes for Optimistic FTRL and EG/MP; however, a slightly more refined argument
(that we present in the ??) shows that constant step-sizes are also covered by the convergence rate
guarantee (8) of Theorem 1.

4.2. Sketch of proof and main techniques. At a high level, the main idea of the proof of The-
orem 1 relies on a tandem application of martingale limit theory and convex analysis in order to
exploit the specific structure of (FTGL). While martingale limit theory emerges naturally to control
the components of the noise, a delicate analysis of the contribution of #; in the solution of the convex
constrained optimization problem, that x = Q;(y) induces, is necessary to derive the aforementioned
generic rates. Below we provide a sketch of the main steps in this analysis

Step 1. Our starting point is to explore the geometric properties that are induced by the existence of a
strict Nash equilibrium. Indeed, the fact that (NE) holds as a strict inequality for each pure strategy
against the equilibrium’s strategy, ensures convergence properties for strict Nash equilibria. More
precisely, an immediate implication of (NE) is that there exist neighborhood ¢/ of x* and constants
cq,...,cn such that

Via: (X) = Vig; (x) 2 ¢; forallx e U and @; # o, a; € Aii € N )

In other words, in the neighborhood U/ the payoff of the equilibrium’s strategy strictly dominates
all other strategies’ payoffs for each player. However, since the linchpin of (FTGL) is the interplay
between X’ and ), for the purpose of our analysis, we need to investigate the variational structure of
U in both spaces.

Informal Lemma 1. There exists a neighborhood U, constants cy,...,cny and My, ..., My for
which (9) holds such that [1;cnr Qi Whw,) © U, where Wy, are open sets of the form >
W, ={Y: : Yia: = Yia; > M; forall a; # o}, a; € Aj} for M; > 0,i e N (10)

Step 2. We now focus on one player i € A" and drop the index i altogether. First we prove that there
exists an open set of initializations Wiyj; of (FTGL), for which with arbitrary high probability the
dual variable (Yj)xen never exits Wy, and thus its image remains in the desired neighborhood U.
We start by writing the score differences between each pure strategy a € A and @* € supp(x*)

n

Yont1 = Yornt1 =Ya1 —Yaor 1 + Z vk (drifty + noisey + biasg) (11)
k=1
where drifty = vo(Xk) — vor (Xik),noisex = Ug.k — Uqg+ k,biasg = bo k — o+ k. We will prove by
induction our forward-invariant statement; let Y, € W, and thus X, € U forall k = 1, ..., n then

* By (9) we have 3} _, yrdrifty < —c X}_, yx forallk =1,...,n.

* By the triangle inequality and (A1), the term }}}'_, yxbiasy is dominated by the term X} _, yxdrifty
foralln=1,2,....

* Subsequently, by leveraging the machinery of martingale’s maximal inequalities and assumption
(A2), which we present in ?? and using learning rates that respect (A3), we prove that with
probability at least 1 — &, for any fixed confidence level &, 3.}_, yxnoisex, which is a martingale, is
also dominated by the term 3} _, yxdrifty foralln =1,2,...

* We now define the open set of initial conditions Wjp;;, which is of the form described in (10), with
constant Mp;;. By choosing* M > M + Yr—1 vk(noisex + biasy) — (¢ — ¢’) X}, vk, for any
¢’ < candanyn > 1, since Y1 € Wipi we have that Yy 41 — Yo ne1 < —M foralln > 1.

31t is worth mentioning that the images of these open sets belong to neighborhoods of x*, which are nested as M; increases.
4such a Mig;; exists since both the bias and the noise terms are dominated by the term — (¢ — ¢’) 22:1 Vi-



By substituting the inequality for Min; in (11) we get Yo ni1 — Yorne1 < =M — ¢’ X7_, vk and
convergence occurs as an immediate consequence; Indeed X+ ,, — 1, since whenever Y, — Yo« —
—oo, it holds that each @ € A \ supp(x*) becomes extinct i.e., X, — O.

Step 3. We now proceed to the delineation of the rates of convergence. Using the KKT conditions
(??) combined with Eq. (11),Eq. (9) and the fact that Y; € Wi,;; we have

n n
0" (Xan+1) =0 (Xarn+1) = Yane1 = Yor net < —Minic — ¢ Z Yk + Z Y (noisey + biasg)
=1 =1

Recall that 6 is strong convex, or equivalently 6’ is strictly increasing; by rearranging and substituting
to the above inequality we get

n n
0 (Xanet) S0 Xar i) =M =" Y ye <d=c' > ye (12)
k=1 k=1

where d = -M + 6’(1) and @ € A, a # a*. By aggregating over all @ € A, @ # a*

n

" = Xoetlli =201 = Xar o) <2 3" g(d =" > ye) (13)

acA+a* k=1

which indicates the rate of convergence and completes our proof.

Remark 4.2. The bounds we provide are indeed sharp. To see this, consider a single-player game
with two actions “0” and “1”, and payoffs u(0) = 0, u(1) = 1. Then, if e.g., FTRL is run with “full
information” feedback, the probability that the player plays “1” at time t is exactly equal to

X =1=¢(c— ) yu(1) =1=¢(c- ) ¥)
s=1 s=1

where ¢ is the rate function of Eq. (7) and c is an initialization constant. This simple derivation
shows that MWU converges to thg game’s (s.t;.'ict.) equilibrium at a rate of exqctly §Xp(—@(Z§:]_ Vs)),
whereas Euclidean methods achieve an equilibrium after a finite number of iterations — in particular,
as soon as 22:1 vs exceeds c. It thus follows that the rates provided by Theorem 1 are, in general,
unimprovable.

5 Numerical experiments

In this section we perform a series of numerical experiments to validate our theoretical findings.
Specifically we are interested in verifying both the correctness in the computation of the rates via ¢;
for different regularizers and at the same time the fact that convergence speed is invariant to different
feedback models and algorithmic variants of (FTGL).

To do this, we start by examining variations of (FTGL) in the archetypal game of Battle of the Sexes,
a popular two-player benchmark of the coordination games, which however involves elements of
conflict as well. This game exhibits two strict Nash equilibria and one mixed equilibrium (for the
exact definition, see ??). We then seek to experimentally study the performance of (FTGL) while the
number of the players scales up. To do this we use the atomic version of classical Pigou’s congestion
game [37], where N units of traffic (e.g., rush-hour drivers) leave from O (origin) to D (destination)
at the same time and each driver has the same dominant pure strategy/path for this trip. Accordingly
to Table 2 the decay rate for the entropic regularization is exponential while for the case of euclidean
is linear, which indeed yield linear and constant-time convergence as Fig. 1 illustrates.

We defer a detailed exposition of various configurations with different step-sizes, alternative dis-
cretization methods like MirrorProx and ExtraGradient and feedback models with the presence (or
not) of extra heavy-tailed/uniform/gaussian noise again to the paper’s supplement.

It is worth mentioning that the sharpness of the provided rates of Theorem 1 can clearly be observed
in the list of the extensive numerical experiments we present in Fig. 1 and ??. In particular, the faster
convergence rate of Euclidean algorithms is somewhat surprising since a regret-based viewpoint
would suggest the use of entropic regularization (which, ceteris paribus, has much better regret
guarantees) as optimal in this regard. Interestingly, however our analysis shows that a Euclidean
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Figure 1: For the Battle of the Sexes experiment, we initialize uniformly randomly our executions from
Yinit € [-1,1] X [-1, 1] and examine the instantiations of Model 1-3 using constant-step size and exploration
rate &, o 1/+/n. For the Pigou’s game, our setup includes two alternative disjoint paths for N = 1000 drivers.
The first path has linear latency ¢ (x) = x/N while the second one has constant unit congestion, £, (x) = 1,
where x denotes the population of the drivers that uses the corresponding path.

regularizer is much more suitable for achieving convergence to equilibrium in a game-theoretic
setting. It is for this reason that we insisted on the comparison between entropic and Euclidean
regularization in the simulations. (The Pigou network example of Fig. 1b is especially telling in this
regard.)

6 Concluding remarks

A key take-away from this study is that the questions of regret minimization and convergence to Nash
equilibrium are fundamentally different. In particular, much of the conventional wisdom that has
been accrued for regret-minimization strategies (such as which regularizer to use, with what learning
rate, etc.) ceases to apply when the figure of merit is convergence to an equilibrium. Because the
only states that are stable under leader-following policies are the game’s strict Nash equilibria, the
agents can be significantly more firm and confident in their choices, without compromising their final
limit state; as a result, this extra degree of "confidence" allows for rates of convergence that are well
beyond the operational envelope of regret minimization problems. We believe that this polar shift
in perspective constitutes an important - and under-explored - issue in game-theoretic learning, and
charting out its ramifications for multi-agent learning is a particularly fruitful direction for future
research.

Acknowledgments and Disclosure of Funding

This research was partially supported by the COST Action CA16228 “European Network for Game Theory”
(GAMENET) and the Onassis Foundation under Scholarship ID: F ZN 010-1/2017-2018. P. Mertikopoulos
is also grateful for financial support by the French National Research Agency (ANR) in the framework of the
“Investissements d’avenir” program (ANR-15-IDEX-02), the LabEx PERSY VAL (ANR-11-LABX-0025-01),
MIAI@Grenoble Alpes (ANR-19-P31A-0003), and the grant ALIAS (ANR-19-CE48-0018-01). E.V. Vlatakis-
Gkaragkounis is grateful to be supported by NSF grants CCF-1703925, CCF1763970, CCF-1814873, CCF-
1563155, and by the Simons Collaboration on Algorithms and Geometry.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A meta-algorithm and
applications. Theory of Computing, 8(1):121-164, 2012.

[2] Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.

[3] Avrim Blum and Yishay Mansour. Learning, regret minimization, and equilibria. In Noam Nisan, Tim Roughgarden,
Eva Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, chapter 4. Cambridge University Press, 2007.

10



[4

=

[5

=

[6
[7

[ R

[8

[t

[9

—

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]
(27]

[28]

[29]

Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to Nash equilibria of regret-
minimizing in routing games. In PODC ’06: Proceedings of the 25th annual ACM SIGACT-SIGOPS symposium on
Principles of Distributed Computing, pages 45-52, 2006.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends in Machine Learning, 5(1):1-122, 2012.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

Tatjana Chavdarova, Gauthier Gidel, Francois Fleuret, and Simon Lacoste-Julien. Reducing noise in GAN training
with variance reduced extragradient. In NeurlPS ’19: Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 2019.

Johanne Cohen, Amélie Héliou, and Panayotis Mertikopoulos. Learning with bandit feedback in potential games. In
NIPS ’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and constrained min-max
optimization. In ITCS ’19: Proceedings of the 10th Conference on Innovations in Theoretical Computer Science, 2019.
Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with optimism. In /CLR
"18: Proceedings of the 2018 International Conference on Learning Representations, 2018.

Lampros Flokas, Emmanouil Vasileios Vlatakis-Gkaragkounis, Thanasis Lianeas, Panayotis Mertikopoulos, and Georgios
Piliouras. No-regret learning and mixed Nash equilibria: They do not mix. In NeurIPS *20: Proceedings of the 34th
International Conference on Neural Information Processing Systems, 2020.

Dean Foster and Rakesh V. Vohra. Calibrated learning and correlated equilibrium. Games and Economic Behavior, 21
(1):40-55, October 1997.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic
Behavior, 29:79-103, 1999.

Drew Fudenberg and Jean Tirole. Game Theory. The MIT Press, 1991.

Angeliki Giannou, Emmanouil Vasileios Vlatakis-Gkaragkounis, and Panayotis Mertikopoulos. Survival of the strictest:
Stable and unstable equilibria under regularized learning with partial information. In COLT '21: Proceedings of the 34th
Annual Conference on Learning Theory, 2021.

Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial networks. In ICLR ’19: Proceedings of the 2019 International Conference on
Learning Representations, 2019.

Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis. Tight last-iterate convergence rates for no-regret learning
in multi-player games. In NeurlPS ’20: Proceedings of the 34th International Conference on Neural Information
Processing Systems, 2020.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS ’14: Proceedings of the 28th International Conference on Neural
Information Processing Systems, 2014.

Sergiu Hart and Andreu Mas-Colell. Uncoupled dynamics do not lead to Nash equilibrium. American Economic Review,
93(5):1830-1836, 2003.

Josef Hotbauer and Karl Sigmund. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4):
479-519, July 2003.

Yu-Guan Hsieh, Franck Iutzeler, Jérome Malick, and Panayotis Mertikopoulos. On the convergence of single-call
stochastic extra-gradient methods. In NeurIPS ’19: Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pages 6936-6946, 2019.

Yu-Guan Hsieh, Franck Iutzeler, Jérome Malick, and Panayotis Mertikopoulos. Explore aggressively, update conser-
vatively: Stochastic extragradient methods with variable stepsize scaling. In NeurIPS ’20: Proceedings of the 34th
International Conference on Neural Information Processing Systems, 2020.

Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive learning in continuous games: Optimal
regret bounds and convergence to Nash equilibrium. In COLT ’21: Proceedings of the 34th Annual Conference on
Learning Theory, 2021.

Anatoli Juditsky, Arkadi Semen Nemirovski, and Claire Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Ekonom. i Mat. Metody, 12:
747-756, 1976.

Ratul Lahkar and William H. Sandholm. The projection dynamic and the geometry of population games. Games and
Economic Behavior, 64:565-590, 2008.

Tor Lattimore and Csaba Szepesvdri. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.

Tianyi Lin, Zhengyuan Zhou, Panayotis Mertikopoulos, and Michael I. Jordan. Finite-time last-iterate convergence for
multi-agent learning in games. In ICML '20: Proceedings of the 37th International Conference on Machine Learning,
2020.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Computation, 108(2):
212-261, 1994.

11



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44

[45]

[46]

Panayotis Mertikopoulos and William H. Sandholm. Learning in games via reinforcement and regularization. Mathemat-
ics of Operations Research, 41(4):1297-1324, November 2016.

Panayotis Mertikopoulos and Zhengyuan Zhou. Learning in games with continuous action sets and unknown payoff
functions. Mathematical Programming, 173(1-2):465-507, January 2019.

Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chandrasekhar, and Georgios
Piliouras. Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile. In ICLR ’19: Proceedings
of the 2019 International Conference on Learning Representations, 2019.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. Convergence rate of O(1/k) for optimistic gradient and
extra-gradient methods in smooth convex-concave saddle point problems. https://arxiv.org/pdf/1906.01115.pdf,
2019.

John F. Nash. Non-cooperative games. PhD thesis, Princeton University, 1950.

Arkadi Semen Nemirovski. Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15
(1):229-251, 2004.

Noam Nisan, Tim Roughgarden, Eva Tardos, and V. V. Vazirani, editors. Algorithmic Game Theory. Cambridge
University Press, 2007.

Arthur Cecil Pigou. The Economics of Welfare. Macmillan, London, UK, 1920.

Leonid Denisovich Popov. A modification of the Arrow—Hurwicz method for search of saddle points. Mathematical
Notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In COLT ’13: Proceedings of the
26th Annual Conference on Learning Theory, 2013.

Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. In NIPS ’13:
Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4
(2):107-194, 2011.

Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and Fenchel duality. In NIPS’ 06: Proceedings of the
19th Annual Conference on Neural Information Processing Systems, pages 1265-1272. MIT Press, 2006.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and logical foundations.
Cambridge University Press, 2008.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence of regularized learning in

games. In NIPS ’15: Proceedings of the 29th International Conference on Neural Information Processing Systems, pages
2989-2997, 2015.

Vladimir G. Vovk. Aggregating strategies. In COLT ’90: Proceedings of the 3rd Workshop on Computational Learning
Theory, pages 371-383, 1990.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML "03: Proceedings
of the 20th International Conference on Machine Learning, pages 928-936, 2003.

12



	1 Introduction
	2 Preliminaries
	3 Regularized learning
	3.1 The choice map
	3.2 The feedback model

	4 Analysis & Results
	4.1 Statement and discussion of our main results
	4.2 Sketch of proof and main techniques

	5 Numerical experiments
	6 Concluding remarks

