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Abstract

Human mobility analysis plays a crucial role in urban analysis, city planning,

epidemic modeling, and even understanding neighborhood effects on

individuals’ health. Often, these studies model human mobility in the form of

co-location networks. We have recently seen the tremendous success of

network representation learning models on several machine learning tasks on

graphs. To the best of our knowledge, limited attention has been paid to

identifying communities using network representation learning methods

specifically for co-location networks. We attempt to address this problem and

study user mobility behavior through the communities identified with latent

node representations. Specifically, we select several diverse network

representation learning models to identify communities from a real-world

co-location network. We include both general-purpose representation models

that make no assumptions on network modality as well as approaches

designed specifically for human mobility analysis. We evaluate these different

methods on data collected in the Adolescent Health and Development in

Context (AHDC) study. Our experimental analysis reveals that a recently

proposed method (LocationTrails) offers a competitive advantage over other

methods with respect to its ability to represent and reflect community

assignment that is consistent with extant findings regarding neighborhood

racial and socio-economic differences in mobility patterns. We also compare

the learned activity profiles of individuals by factoring in their residential

neighborhoods. Our analysis reveals a significant contrast in the activity

profiles of individuals residing in white-dominated vs. black-dominated

neighborhoods and advantaged vs. disadvantaged neighborhoods in a major

metropolitan city of United States. We provide a clear rationale for this

contrastive pattern through insights from the sociological literature.
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Introduction
The ability to capture the location of individuals using GPS-enabled devices has al-

lowed researchers to analyze human mobility with unprecedented precision. Beyond

individual mobility trajectories, data on spatially delimited groups of individuals
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has provided the opportunity to estimate bipartite, co-location networks where users

and locations are treated as nodes, and location visits are treated as edges. These

co-location networks, however, do not necessarily indicate direct contact between

individuals at specific geographic locations; instead, they capture the potential for

shared experiences and exposures. Co-location networks uncover the structure of

shared exposure in a collective sense, illuminating the potential for contagion (so-

cial or viral), cohesion, and related outcomes such as health and crime [1, 2].

Recent and emerging research suggests that the extraction of communities (con-

sisting of individuals) from such co-location networks that model human activity

spaces can provide important information about the functioning of a city and its

neighborhoods [3, 4, 5]. For instance, understanding the community structure of

co-location networks can shed light on systematic patterns of urban racial and so-

cioeconomic segregation in everyday routines beyond those identified by an exclusive

focus on residential sorting [1]. Estimating communities based on shared routines

also helps identify indirect or higher-order location exposures that may be relevant

for contagion processes (but not necessarily rooted in spatial proximity).

The numerous applications of co-location networks warrant careful consideration

of appropriate methods for their construction. One could adopt a structured data

collection approach, followed by the Los Angeles Family and Neighborhood Study

[6], in which one first samples individuals/households from a region/city and then

prompt subjects for the location of typical routine activity destinations such as

workplaces, schools, or grocery stores; the co-location network is then constructed

based on the locations provided from survey-style instrumentation. An alternative

method is to adopt an unstructured approach in which one could provide GPS-

enabled devices to the sampled individuals/households from a region/city, record

the spatial location of the individual at a short interval, find the stationary locations

where the individuals spend a significant time and then construct a co-location

network between individuals and stationary locations.

The Adolescent Health and Development in Context (AHDC) study [7] follows

both structured and unstructured data collection approaches to capture individu-

als’ mobility in Franklin County, Ohio. To collect structured data on mobility, the

AHDC study surveys caregivers of adolescents about their location visits and then

forms a co-location network (one can denote this network as a coarser-grained co-

location network). The unstructured approach is based on the spatial coordinates

of adolescents over regular intervals and then forms a co-location network (one can

denote this network as a finer-grained co-location network).

In this study, we focus on extracting community structure from the fine-grained

co-location network. Since there is no ground truth available, we assess the extent to

which alternative approaches to community detection align with previous findings

on neighborhood racial and socioeconomic differences in mobility patterns [1, 8].

Our approach for extracting communities relies on computing a meaningful vector

representation of each node in the co-location network (for all location and user

nodes). These vectors can then be utilized by any off-the-shelf clustering algorithms

(such as K-means [9] or Gaussian Mixture Models [10]) to identify meaningful com-

munities of users and their shared exposure locations. We evaluate the use of several

state-of-the-art approaches for computing the representation of each node within

the fine-grained AHDC co-location network. These include:
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Figure 1: Toy example showing an example city (outlined by a box) and its

neighborhoods (outlined by sub-boxes). Individuals are shown by cross marks.

Individuals are placed at their illustrative home locations in an neighborhood.

Individuals shown in same color belong to same community. Residentially proxi-

mate community refers to group of individuals who reside in the same neighbor-

hood and share same community.

• A previous effort by, Xi et al. [1], that focused on identifying communities

from the coarser-grained AHDC co-location network.

• Several neural network based models that have recently shown to be highly

effective for the learning of node representations from such network data.

These include efforts such as DeepWalk [11], and LINE [12].

• A recently proposed low-resource (efficient) neural approach called Location-

Trails [13]. Unlike other neural methods, LocationTrails explicitly leverages

the sequential ordering of a user’s visits to specific locations that is available

in such fine-grained co-location networks.

We present a toy example in Figure 1 that defines the terminology we use to

explain our findings. A neighborhood is dominated by a given race if its percent

population is higher than 70% [14, 15]. In Figure 1, note the presence of residen-

tially proximate communities in the white-dominated neighborhoods and the lack

of residentially proximate communities in the black-dominated neighborhoods.

Our key findings can be summarized as follows. First, a qualitative examination

of the communities extracted by different methods suggests that the community

structures extracted by LocationTrails identify patterns that are consistent with

our understanding of urban racial and socioeconomic segregation in everyday rou-

tines. Second, among the other neural approaches (DeepWalk [11] and LINE [12])

appear to offer the strongest performance, although these methods do appear to be

biased towards residentially proximate community structures, potentially mischar-

acterizing the routine activity patterns of more segregated and socioeconomically

disadvantaged neighborhoods [8]. Third, several important patterns identified by

LocationTrails and the other neural models largely agree with the results Xi et
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al. observed from the coarse-grained AHDC co-location network analysis study [1].

However, our qualitative analysis suggests that [1] was less effective on the fine-

grained co-location network data, when compared to LocationTrails. Fourth, a quan-

titative examination of the activity profiles of the individuals residing in neighbor-

hoods with different characteristics (white-dominated vs. black-dominated, advan-

taged vs. disadvantaged) reveals that individuals who reside in white-dominated

neighborhoods are more likely to share the same cluster than their black counter-

parts. While individuals who reside in black-dominated neighborhoods often do not

share the same cluster as they seem to have dissimilar activity profiles.

The rest of the paper is organized as follows. The next section describes the

data collection, data cleaning, and formation of the fine-grained co-location network

from the AHDC study - an important contribution of this study. The Methods

section overviews related work and summarizes the selected methods utilized for

our evaluation. The Results section presents the analysis of the selected methods

on the AHDC fine-grained co-location network dataset. We present the conclusions

and contributions of our work in the Conclusions section.

AHDC Activity Pattern Data
Overview

The Adolescent Health and Development in Context (AHDC) study [7] is an ongo-

ing longitudinal data collection study. The goal of the AHDC study is to explore the

relationship between aspects of the social and spatial contexts of everyday routines

and the health and wellbeing of urban youth. To that end, the AHDC study col-

lects data on multiple contexts of youth development from a representative sample

of 1,347 adolescents (age 11-17 years old) residing within Franklin County (con-

tains the city of Columbus – Ohio’s largest city) using a prospective cohort design.

Franklin County is racially and ethnically diverse – White (Non-Hispanic) (62%),

Black or African American (Non-Hispanic) (22.9%), Asian (Non-Hispanic) (5.38%),

and White (Hispanic) (3.25%) [16]. In terms of social and economic characteristics,

the Columbus metropolitan area is representative of the average US metropolitan

area [17]. The data collection from youth and their caregivers occurs in two waves

(Wave 1 and 2) separated over one year period. In this work, we focus on data

collected in Wave 1. Wave 1 data collection took place between April 2014 and July

2016. The data collection design is as follows. The AHDC study first performs an

Entrance Survey – the structured data collection approach – with the adolescents and

their caregivers. The survey covers a broad range of topics related to demographic

and socioeconomic background, household composition, family structure and mar-

ital status, employment and income, health, social support, and alcohol/substance

use. The entrance survey included a “location generator” [18] in which caregivers

and adolescents provided information about the locations of the youth’s everyday

routine activities (e.g., school, work, grocery shopping, etc.).

Xi et al. [1] construct a co-location network from the above mentioned Entrance

survey where the reported locations are aggregated to the census block group. The

authors [1] perform data cleaning based on the missing data and the density of care-

givers in a block group. The resultant coarser-grained co-location network consists

of 1307 caregivers (out of 1405 caregivers) and has 883 block groups. Census block
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Figure 2: Visualization of the AHDC co-location network. Adolescents are shown

in red color nodes while the locations are shown in blue color nodes. An edge

represents a location visit by an adolescent. Here, edge is considered to be un-

weighted. We use ForceAtlas2 algorithm [21] to visualize the co-location network.

groups are statistical divisions of census tracts and are generally defined to contain

between 600 and 3,000 people [19].

The Entrance Survey of the AHDC study was followed by geographically explicit

ecological momentary assessment (GEMA) [20] for a period of seven days – the

unstructured data collection approach. During this period, adolescents carried a

study provided GPS-enabled smartphone that collected real-time assessments of

locations, activities, and experiences as well as near-continuous Global Positioning

System (GPS) coordinate data. The spatial coordinate data were collected through

GPS satellites every 30 seconds. However, if no GPS satellite coordinates were

collected for a period of 10 minutes or more, location coordinates were recorded

from the cell network tower connection every minute to obtain an approximate

location.

Next, we describe the data cleaning and construction of the finer-grained co-

location network from the unstructured data collection approach.

Deriving Finer-Grained Co-Location Network from the Unstructured Activity Data

The collected GPS data are subject to error and contain noise [22]. We process

the collected GPS using the convex hull-based binning algorithm [23] to capture an
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Figure 3: Histogram of trail lengths. A trail corresponds to the sequence of loca-

tions visited by an individual in a day.

# Adolescents # Locations # Edges Mode length Mean length # of Trails

1,347 1,347 (home) + 4,225 (activity) 10,057 4 4.33 6,483

Table 1: The statistics of the trails on the AHDC dataset. Mode and Mean are

computed on the distribution of length of all the trails.

accurate estimate of the location. The algorithm gives us the stationary and travel

periods of the adolescents [24] and the convex hull centroid over the stationary

periods GPS coordinates is estimated as the visited locations. The visited locations

are then presented to the adolescents on a map using a recall-aided interactive

space-time budget application [24]. The application has a graphical user interface

(GUI) showing Google Maps and has several other data collection functionalities.

Using the application, the adolescents in the AHDC study corroborate the estimated

visited location and also provide the labels of the location. The collected latitude

and longitude values of stationary locations need to be converted to a location id

so that we could form a co-location graph between user-ids and location-ids. This

conversion process is known as reverse geocoding, and we utilize the OpenStreetMap

API [1] for this purpose.

The visualization of the constructed co-location network is shown in Figure 2. In

Figure 2, we observe that there exist several locations (such as schools) commonly

visited by most adolescents. We also observe that at the periphery there are few

locations (such as a relative’s house) that are visited by a small number of adoles-

cents. The statistics of the constructed fine-grained co-location network are shared

in Table 1. We also share the location visits statistics in the table. A trail represents

the number of locations visited by adolescents in a day. The mean and mode of the

trails are 4.33 and 4, while the histogram of trail lengths is shown in Figure 3. From

the visualization, one can observe that there are certain locations (shown in blue)

that were only visited by few adolescents. These locations could be the home of

the adolescents, their relative’s house, or local stores that were not visited by other

adolescents in the study. We also observe a significant number of locations (such as

schools, shopping malls) that were visited by multiple adolescents. The anonymized

[1]https://photon.komoot.io/
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Figure 4: The activity and home locations of the adolescents. The locations are

anonymized (anonymization process is explained below (see Figure reference in

main text)).

home locations and activity locations of the adolescents are shown in Figure 4.

Here, the locations are anonymized as follows: given the latitude and longitude of

the location, we first identify the block group of the location and then set the home

location of the adolescent to be a random point in the block group.

Methodology
The extent to which activity spaces—the collection of an individual’s routine ac-

tivity locations—overlap with those of their neighbors or those with similar back-

grounds provides important information about the functioning of a city and its

neighborhoods. The identification of communities from the co-location network can

provide additional insight into the structure of shared urban routines. In this work,

we evaluate both network representation learning (NRL) methods [11, 12, 13, 1, 25]

and standard network science methods [26, 27, 28, 29] to identify such communities.

In the case of NRL methods, the first step is to identify a meaningful representa-

tion of individuals (adolescents in our co-location networks) as well as that of the

routine areas they visit (locations in our co-location network). To compute the rep-

resentation of nodes within a two-mode co-location network, we draw on exemplars

from general-purpose network representation learning and human-mobility network

representation learning. In the case of standard network science methods, we select
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two popular methods that rely on pre-defined metrics to identify communities. We

discuss both NRL and network science methods in the next sections.

Network Representation Learning

The network representation learning (NRL) models aim to learn a representation of

nodes such that the similarity of nodes in graph space is approximated by the close-

ness of nodes in the representation space. One of the initial network representation

learning models is Laplacian Eigenmaps [30] which learns node representations by

preserving the first-order proximity between the nodes – connected nodes should

have node representations with low L2 distance. Inspired by the effectiveness of

neural networks, Perozzi et al. [11] proposed Deepwalk that performs truncated

random-walk on the graphs and then applies skip-gram [31] objective function on

the random-walks to learn the node representations. Node2vec [32] proposed an

approach to bias the random-walks and then adopt the Deepwalk strategy to learn

the node representations. LINE [12] proposes two objective functions that preserve

both first-order and second-order proximity – nodes with similar neighbors should

have node representations with low L2 distance – for learning the node embed-

dings. NetMF [33] argues that the skip-gram based models with negative sampling

optimization such as Deepwalk [11], Node2vec [32], LINE [12] and PTE [34] are

implicitly factorizing matrices formed with graph laplacians. Recently, Huang et

al. [35] provided an analytical framework for random-walk based graph embedding

methods and categorizes several existing random-walk based methods.

Given the plethora of network representation learning methods, Gurukar et al. [36]

performed an experimental analysis of the popular network representation learning

methods to understand the scientific progress in this field. They found that if one

tunes the parameter of the Deepwalk method [11] it performs in a competitive

manner on both node classification and link prediction tasks. Given the competi-

tive nature of Deepwalk, we select it as one of the approaches to learn meaningful

representation of individuals and locations. We also select LINE [12] as one of the

approaches for representation learning, as it was found to be both efficient (in terms

of running time) and effective (in terms of predictive tasks) [36]. We also performed

experiments with BiNE method [25], a network representation learning method

designed for bipartite networks. These results are presented in the supplementary

section (see section “Cluster Analysis: BiNE”) along with a rationale for its rela-

tively poor performance. The summaries of the selected methods are also presented

in the supplementary section (see section “Methods summary”).

Human Mobility Network Representation learning

The human mobility network representation learning model focuses on a form of

co-location network constructed from the human mobility dataset. These models

learn representations such that one can efficiently perform human mobility-related

downstream tasks such as location prediction [37], location recommendation [38],

and travel time estimation [39]. LBSN2vec [37] focuses on Location-Based Social

Networks to study user mobility and their social relationships using a hypergraph-

based random walk approach to learn user and location embeddings. However, such

an approach requires the social network of users, which is not always available.
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Location2vec [40] collects the Geo-tagged tweets to learn the location representation

and employ skip-gram model [41] on the collected corpus. The representations of

Point of Interest (POI) are learned by Yan et al. [38] by proposing a novel method

of training corpus generation based on augmented spatial contexts for word2vec

model [41]. Note that both Location2vec [40] and the approach by Yan et al. [38]

focus on only learning representations of locations and not individuals. Hence, we

focus on the following two approaches – one based on Latent Dirichlet Allocation

[42] and another based on the sequence of location visits (LocationTrails) – to

learn representations of both individuals and locations. The summaries of these

selected approaches are present in the supplementary section (see section “Methods

summary”).

Clustering representations for community assignment

The learned representations of adolescents can be clustered with any off-the-shelf

clustering algorithm. The adolescents belonging to the same cluster are then as-

signed to the same community. In this work, we present the results with Gaussian

Mixture Models (GMMs) [10] clustering method. However, we have also experi-

mented with other clustering methods such as K-means [9], and Bisecting K-means

[43] and found the results obtained to be consistent with GMMs. GMMs are proba-

bilistic models that assume the data is generated from a mixture of Gaussians with

unknown parameters where the parameters are identified with the Expectation-

Maximization (EM) algorithm. The output of GMMs is the community-membership

probability matrix [2] that contains the probability of an adolescent i belonging to

a cluster (community) k. The adolescent is assigned the community that has the

highest probability in the community-membership matrix. We utilize GMMs on the

representations learned by Deepwalk, LINE, and LocationTrails. Xi et al. [1], on

the other hand, directly learn the community-membership affiliation probabilities

via the Latent Dirichlet process.

Network Science Methods for Community Identification

The network science methods for identifying communities in both homogeneous and

bipartite networks rely on pre-defined community metrics such as normalized cuts

[44, 45] or ratio cuts [46, 47]. We consider two popular community identification

methods: Metis [26] and Graclus [27]. These methods are multi-level algorithms and

consist of three phases: i) coarsening phase in which graph is repeatedly transformed

into smaller graphs by combining set of nodes and their corresponding edges, ii)

base-clustering phase in which clustering is performed on the coarsest graph. Here,

clustering is efficient due to the small size of the coarsest graph and the ability

of the coarsest graph to capture the global structure of the graph [48], and iii)

refinement phase in which identified clusters are propagated to the larger graphs

till the clusters are identified for the input graph. We also performed experiments

with a network science method BRIM [29] that is designed for bipartite networks.

However, we found that BRIM performs poorly (like BINE) on our dataset. Hence,

we do not include BRIM in our analysis. The readers are encouraged to refer to

[2]The clustering output from GMMs is a probability vector - similar to the approach

utilized by Xi et al.[1] – another reason for using GMMs to cluster users in our study.
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the papers for the detailed algorithm. We apply these methods to our undirected

co-location network and analyze the identified adolescents clusters.

Method’s Hyperparameters

For all the experiments, we tune the parameters of the methods Deepwalk (walk

length = [10, 20, 40], number of walks = [40, 80], context window = [3, 5, 10]), LINE

(negative samples = [3, 10], number of samples = [5 billion, 10 billion]), LDA (Gibbs:

number of iterations = [10,000, 100,000]), Metis (cut objectives=[‘normalized cut’,

‘volume’]), and Graclus (cut objectives=[‘normalized cut’, ‘ratio association’]), and

report the best observed results. Note that the mobility pattern related inferences

drawn for the methods are consistent across hyper-parameters (more details in

the supplementary section “Cluster Analysis: Hyper-parameter results”). We have

also included a map of Columbus, Ohio and map of frequently mentioned regions

in the supplementary (see Figure 1 and Figure 2) to help the reader locate the

neighborhoods referenced in the analysis.

Ground Truth

Precise ground truth for our study is not available. We note that the lack of ground

truth is a common problem in community discovery literature (see Hennig [49] for a

detailed discussion). Often, the ground truth is ill-defined. Hennig echos this point

as “In most cluster analysis literature, however, explanations of what ‘true’ or ‘real’

clusters are, are rather hand-waving”. The deficiencies in the current clustering

evaluation are also pointed out by Von Luxburg et al. [50]. They point out that

“whether a clustering of a particular data set is good or bad cannot be evaluated

without taking into account what we want to do with the clustering once we have

it.”. In this work, we want to study human mobility with the help of clustering,

hence we rely on existing studies on human mobility (Xi et al. [1], Browning et al.

[8]) as well as the sociological studies to assess clustering quality [51, 52, 53]. We

describe the sociological studies in the next section.

Sociological studies on the activity profiles

To access the quality of clustering, we would like to bring forth two sets of so-

ciological findings. The first set of findings is from the “activity space” literature

in which individuals’ activity locations (within and beyond the neighborhood) are

the focus of measurement. Studies in this literature have found that many activity

locations lie outside of the individual’s residential neighborhood unit. For instance,

Basta et al. [51] found that the adolescents spent 70% of the non-home time outside

their residential neighborhood. Sastry et al. [52] found that only 16% of individuals’

routine grocery stores and only 12% of individuals’ places of worship lie in their

residential neighborhood. Our own findings from the AHDC study suggest that

youth spend about 6% of their waking-time in their neighborhood but not at home,

60% at home, and 34% outside their home neighborhood [8]. These studies offer

evidence that the clusters of adolescents identified based on their activity locations

should not always be residentially proximate – it is not necessary that adolescents

who reside in the same neighborhood will share the same cluster, provided they are

clustered based on their activity locations.
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The second set of findings is drawn from research examining mobility for the

purpose of accessing organizational resources [3]. Small and McDermott [53] found

that as the proportion of blacks in the neighborhood increases, the number of es-

tablishments decreases. In analyses of the AHDC data, Browning et al (2021) find

that segregated, higher poverty neighborhoods had fewer schools present within the

neighborhood, indicating that youth from these neighborhoods are more likely to

be regularly traveling outside the neighborhood to reach school locations. AHDC

data indicate that black youth residing in high proportion black neighborhoods en-

countered more heterogeneous exposures to neighborhood racial composition than

other youth and spend a nontrivial proportion of their time in low proportion black

neighborhoods, largely in the context of organizational resource seeking [8]. There-

fore, we expect that for adolescents residing in black-dominated neighborhoods, the

probability of falling in residentially proximate clusters will be lower. Moreover, ado-

lescents who reside in the same black-dominated neighborhood will have a higher

probability of not sharing the same cluster, provided they are clustered based on

their activity profiles.

Neighborhood nomenclature: We collect demographic information on neigh-

borhoods from 2009-2013 American Community Survey data. A neighborhood is

considered to be dominated by ethnicity if its percent population is higher than

70%. A neighborhood is considered advantaged if the poverty index is lower than

20% and is considered disadvantaged if the poverty index is greater than 40% [54].

Results
In this section, we evaluate the efficacy of the methods to identify communities [4] on

the finer-grained co-location network. Next, we perform experiments to study if the

identified communities can help in understanding the neighborhood’s functioning.

Community Analysis

In this section, we perform the community analysis of the adolescent representations

learned by all the selected representation learning methods. We render the identified

adolescent communities on the Columbus map, where each adolescent is represented

through their approximate home location. We select the number of communities to

be 18 – similar to the one reported in Xi et al. [1] – and also observe the perplexity

metric [42] value with 18 number of communities to be one of the lowest. The

identified communities for Deepwalk, LINE, LocationTrails, LDA (Xi et al. [1]),

Metis and Graclus are shown in Figure 5a, Figure 5b, Figure 6b, Figure 6a, Figure

7a and Figure 7b respectively. Next, we analyze the identified communities from a

sociological lens.

Qualitative Holistic Analysis of Results

We observe that in white-dominated neighborhoods the evaluated methods often

identify residentially proximate communities (refer Figure 1). For instance, we ob-

serve that all methods identify a community present at Bexley, Ohio (community

[3]Organizational resources refers to the establishments which have a physical loca-

tion and offer services or sells goods essential to day-to-day living
[4]We use the term community and cluster interchangeably.
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Figure 5: Number of clusters = 18. (Home location anonymized)
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(b) LocationTrails

Figure 6: Number of clusters = 18. (Home location anonymized)
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Figure 7: Number of clusters = 18. (Home location anonymized)
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number: 10, color: blue). Bexley is a white-dominated area (86.5% of its population

is white). The median household income of its residents is double than that of res-

idents living in Columbus city. Bexley is also rich in organizational resources and

was historically considered a relatively insular community given its spatial embed-

dedness in a largely lower-income context. The emergence of the Bexley community

shows that many of its residents share the same activity profiles, and this might be

due to the abundance of organizational resources (an advantaged neighborhood).

Moreover, a few white-dominated neighborhoods such as Upper Arlington, Grand-

view Heights, and Worthington are commonly identified by Deepwalk, LINE, Lo-

cationTrails, Metis, and Graclus.

A few of the methods (Deepwalk, LINE, Metis, and Graclus) that rely solely on the

graph structure place adolescents in the same community if they reside in the same

black-dominated neighborhoods (such as Near East Side (Census Tract 29 and 36,

Franklin, OH) and Milo Grogan (Census Tract 15 and 23, Franklin, OH)). This re-

sult does not align well with existing sociological studies [51, 52, 8, 53]. These studies

mention that the lack of organizational resources (grocery stores, schools) in black-

dominated neighborhoods result in adolescents spending a nontrivial proportion of

their time outside of their residential neighborhoods and they encounter more het-

erogeneous exposure to neighborhood racial composition than other adolescent [8].

This often results in dissimilar activity profiles among adolescents residing in these

disadvantaged neighborhoods. Hence, it is surprising that few methods (Deepwalk,

LINE, Metis, and Graclus) identify residentially proximate communities in black-

dominated neighborhoods. LocationTrails, which relies on the sequence of locations

visited by the adolescents, does not identify residentially proximate communities in

black-dominated neighborhoods. We present a detailed community analysis of each

method in the next few sections.

Community Analysis: LocationTrails

The communities identified by LocationTrails on the finer-grained co-location net-

work are consistent with the ones identified by the peer reviewed study done by

Xi et al. [1] on the AHDC coarser-grained co-location network constructed using

a structured data collection approach. Specifically, we observe that LocationTrails

places adolescents in the same clusters who reside in Grandview Heights (cluster

number: 8, color: light green), Upper Arlington (cluster number: 2, color: black),

and Worthington (cluster number: 7, color: green). All these regions have more

than 90% white residents, and the median household income of the residents in

these regions is double that of residents living in Columbus. These communities

share similar characteristics as that of Bexley, however, Deepwalk, LINE, and LDA

methods are unable to find these communities. For the adolescents living in the

black-dominated neighborhoods, LocationTrails place them in different communi-

ties. Specifically, the adolescents who reside in Near East Side (Census Tract 29

and 36, Franklin, OH), Milo Grogan (Census Tract 15 and 23, Franklin, OH) are

placed in different communities. The median household income of residents in these

regions is less than that of residents living in Columbus. The adolescents in these

disadvantaged neighborhoods need to travel further, on average, to access organiza-

tional resources and have few common activity profiles. Therefore, LocationTrails

assigned them to different communities.
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Community Analysis: Deepwalk and LINE

From Figure 5a, we observe that Deepwalk and LINE identify communities that are

often residentially proximate – adolescents who reside in the same neighborhood

often share the same communities. The identified residentially proximate commu-

nities are present for most of the neighborhoods (both white-dominated and black-

dominated). This result runs counter to expectations in that residentially proximate

communities are less likely to occur in high poverty neighborhoods. As mentioned

previously, youth from high poverty neighborhoods often spend a nontrivial pro-

portion of their time outside of their residential neighborhoods and encounter more

heterogeneous exposure to neighborhood racial composition than other youth (in

order to seek organizationally-based resources) [8]. This often results in dissimi-

lar activity profiles among youth residing in these disadvantaged neighborhoods.

Drilling down on the raw activity profiles of individuals in this community, we find

that they do indeed have activity profiles that differ and are quite heterogeneous.

The results observed here suggest that LINE and Deepwalk are pre-disposed (bi-

ased) to identifying residentially proximate neighborhoods.

The reason both Deepwalk and LINE identify residentially proximate communities

even for the segregated high poverty neighborhoods can be explained as follows.

Both these methods rely solely on the structure of the graph to learn the node

representations. Deepwalk relies on the random walks on the co-location network,

while LINE relies on both explicit (first-order proximity) and implicit (second-order

proximity) connectivity between nodes to learn the node representations. Hence,

if two adolescents residing in the same neighborhood visit few common locations

(e.g. local stores) present in that neighborhood, these methods would put a high

constraint on learning similar representations of those adolescents, as there exists an

implicit link between those adolescents. The clustering method would then assign

these two adolescents in the same cluster as they would have similar representations.

Community Analysis: LDA

From Figure 6a, we observe that LDA identifies clusters at Bexley ( cluster number:

10, color: blue ) and Upper Arlington (cluster number: 2, color: black). However, it

failed to identify clusters in white-dominated, advantaged neighborhoods that were

identified by LocationTrails.

Community Analysis: Metis and Graclus

The communities identified by standard network science algorithms Metis [26] and

Graclus [27] are shown in Figure 7a and Figure 7b, respectively. We observe that

Metis and Graclus identifies clusters that are residentially proximate for both white-

dominated and black-dominated neighborhoods. Metis and Graclus clustered ado-

lescents residing in black-dominated neighborhoods such as South Columbus, south

of Grandview Heights in the same communities. As mentioned earlier, these clusters

are not aligned with the sociological findings mentioned in the section “Sociological

studies on the activity profiles”.

To summarize, the above analysis of the identified communities suggests that a

method that is cognizant to the sequence of locations visited by the adolescents

while learning node representations (LocationTrails [13]) is effective in identifying

higher-quality communities from the co-location networks.
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Deepwalk LINE LocationTrails LDA Metis Graclus

Deepwalk 1.00 0.53 0.47 0.27 0.49 0.51
LINE 0.53 1.00 0.48 0.25 0.44 0.44
LocationTrails 0.47 0.48 1.00 0.25 0.38 0.40
LDA 0.27 0.25 0.25 1.00 0.24 0.21
Metis 0.49 0.44 0.38 0.24 1.00 0.46
Graclus 0.51 0.44 0.40 0.21 0.46 1.00

Table 2: Normalized mutual information between communities identified by meth-

ods on white-dominated neighborhoods.

Deepwalk LINE LocationTrails LDA Metis Graclus

Deepwalk 1.00 0.37 0.24 0.18 0.42 0.35
LINE 0.37 1.00 0.33 0.20 0.36 0.27
LocationTrails 0.24 0.33 1.00 0.18 0.26 0.23
LDA 0.18 0.20 0.18 1.00 0.19 0.15
Metis 0.42 0.36 0.26 0.19 1.00 0.36
Graclus 0.35 0.27 0.23 0.15 0.36 1.00

Table 3: Normalized mutual information between communities identified by meth-

ods on black-dominated neighborhoods.

Quantitative analysis of the communities

We measure the overlap between the identified communities by the methods using

Normalized Mutual Information (NMI) [55]. From the qualitative analysis, we ob-

serve that adolescents who reside in white-dominated neighborhoods, often share

the same cluster. This clustering pattern is observed across different methods. In our

quantitative analysis, we focus on the adolescents who reside in white-dominated

neighborhoods. We then identify their clusters with different methods and present

the NMI between the identified clusters in Table 2. A similar analysis for adolescents

residing in black-dominated neighborhoods are shown in Table 3. We observe the

NMI between clusters identified Deepwalk, LINE, LocationTrails, Metis, and Gr-

aclus in the white-dominated neighborhood is relatively high. The relatively high

NMI coupled with visual analysis of identified clusters suggest that adolescents who

reside in white-dominated neighborhoods often share the same cluster. In black-

dominated neighborhoods, the NMI value between clusters identified by Deepwalk,

LINE, Metis, and Graclus is relatively higher than NMI between these methods and

LocationTrails. The relatively high NMI of Deepwalk, LINE, Metis, and Graclus in

black-dominated neighborhoods coupled with visual analysis of identified clusters

suggest that these methods are identifying clusters even in black-dominated neigh-

borhoods. As mentioned earlier, this suggestion does not align well with existing

sociological studies. We will shortly discuss in the context of neighborhood affinity

that further amplifies this point. Note that NMI of LDA is relatively lower in both

Table 2 and Table 3. The NMI between identified clusters of adolescents residing

in all the neighborhoods is shared in the supplementary (see section “Quantitative

analysis”).

Quantitative Analysis: Neighborhood Affinity

In this section, we quantitatively analyze the communities present in the neigh-

borhoods. Following the literature [1], we consider the census tract as a proxy for

neighborhood and compute the percentage of adolescents who reside in a census
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Figure 9: Average neighborhood affinity score in white and black dominated

neighborhoods. Number of communities=18.

tract and share the same cluster. The neighborhood affinity of a neighborhood is

the probability that two randomly selected adolescents who reside in the same cen-

sus tract also share the same cluster. Since there are multiple neighborhoods, we

report the average neighborhood affinity over all the neighborhoods. While com-

puting the average neighborhood affinity, we filter out the neighborhoods that have

fewer than five residents. The average neighborhood affinity scores of different meth-

ods are shown in Figure 8. We also report the average neighborhood affinity scores

of the Randomization method to know the expected average neighborhood affinity

score under uniform community assignment. In Randomization method, we assign

adolescents to communities at random in a uniform manner over 1000 times and

then compute the average of average neighborhood affinity score.

From Figure 8, we observe that the average neighborhood affinity score of the

Deepwalk method is the highest, irrespective of the number of communities. LINE

also identifies residentially proximate clusters and has the second highest average
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Figure 10: Average neighborhood affinity score in the advantaged (Poverty ≤
20%) and disadvantaged neighborhoods (Poverty ≥ 40%) [54]. Number of com-

munities=18.

neighborhood affinity score, irrespective of the number of communities. The high-

affinity score of Deepwalk and LINE quantitatively show that they find residentially

proximate clusters. LocationTrails affinity score is lower than Deepwalk as Loca-

tionTrails places adolescents who reside in black-dominated disadvantaged neigh-

borhoods in different communities. On the other hand, LocationTrails affinity score

is higher than LDA, as LocationTrails identifies more clusters with similar char-

acteristics (white-dominated, advantaged neighborhoods). The difference between

the average neighborhood affinity score of LDA and Randomization is statistically

significant at significance level 0.01 (Z-score ≥ 26.0 for all clusters).

Next, we compare the average neighborhood affinity score across white vs. black

dominated neighborhoods and advantage vs. disadvantaged neighborhoods. The re-

sults are shown in Figure 9 and Figure 10. The average neighborhood affinity score

is multiplied by 100. We observe that the average neighborhood affinity score of

the adolescents living in the white-dominated neighborhood is higher than that

of i) black-dominated neighborhoods and ii) all the neighborhoods, for the four

representation learning methods (Deepwalk, LINE, LocationTrails, and LDA). We

also observe that the average neighborhood affinity score of the adolescents living

in the advantaged neighborhood is higher than that of i) disadvantaged neigh-

borhoods and ii) all the neighborhoods, for the same four representation learning

methods. This analysis suggests that white adolescents or adolescents residing in

advantaged neighborhoods tend to share more similar activity profiles than their

black or disadvantaged neighborhood counterparts. The average neighborhood affin-

ity score of black-dominated/disadvantaged neighborhoods is lower than that of

all the neighborhoods. This is because adolescents who reside in these neighbor-

hoods are less likely to have common activity patterns, and this non-commonality

in activity patterns might be due to a lack of organizational resources in the black-

dominated/disadvantaged neighborhoods.

Drilldown analysis of communities: LocationTrails

In this section, we present a drilldown analysis of communities identified by Loca-

tionTrails and provide commentary on the activity profiles of adolescents placed in
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a community. We do not disclose the name of the locations that adolescents visit

to preserve their privacy. The information about the types of public and private

schools in the United States are provided in these articles [56, 57]. The population

statistics, economic and political information of Franklin county and the below-

mentioned neighborhoods can be found on several web portals [58, 59].

We observe that several communities identified by LocationTrails are residentially

proximate. Specifically, Communities 0 and 3 (Upper Arlington), 2 and 17 (Clin-

tonville), 6 (Hillard), 7 (Whitehall), 10 and 15 (Bexley), 13 (East of German village),

14 (Worthington), and 16 (Grandview Heights). Communities 0, 3, 6, 10, 14, 15,

and 16 are present in white-dominated neighborhoods with rich organizational re-

sources. Whitehall has a more diverse racial composition (43% white and 39% black

residents) and is moderately affluent. Adolescents in residentially proximate Com-

munity 13 commonly visit one public magnet high school in East of German village

and two public parks within 6 miles from East of German village.

We see that Community 0 and 3 both fall in Upper Arlington, but the adolescents

in Community 0 are middle school students and commonly visit two middle schools

in Upper Arlington while the adolescents in Community 3 are high school students

and commonly visit one high school in Upper Arlington. Essentially, LocationTrails

is able to distinguish the middle vs. high school adolescents based on their activity

profiles even though their home locations lie in the same neighborhood. We also note

that community 10 is extremely cohesive and centered in Bexley (students attending

the local high school) whereas community 15 is also largely centered in the Bexley

area, but it does have a spread of adolescents with neighborhood homes from largely

advantaged neighborhoods in the rest of Franklin county. Drilling down, we observe

that the rationale for this is largely driven by the fact that many of the students

with shared activity profiles in this cluster attend one of several expensive private

schools situated in Bexley. We point both of these out (two distinct clusters in Upper

Arlington and Bexley) as this type of fine-grained analysis is not immediately visible

when examining communities identified by the other methods in our study. Next,

we observe that there are a few communities such as Community 5, 8, 11, and 12

in which the home locations of adolescents are spread out over Columbus city. We

observe that in these communities, the adolescents often visit schools that have an

open enrollment policy and often serve as magnet schools (for STEM, STEAM, and

the Arts) or alternative high schools – the policy allows adolescents residing in one

school district area to attend schools in another district area. Specifically,

• Adolescents in Community 5 commonly visit one arts middle school near

Downtown and a public magnet school near Downtown.

• Adolescents in Community 8 commonly visit three public magnet high schools

(one near Clintonville, one north of North Linden and one in Marion-Franklin).

• Adolescents in Community 11 commonly visit one stem school in South Linden

and a public-magnet alternative high school in North Linden.

• Adolescents in Community 12 commonly visit two public magnet high schools

(one between Worthington and Easton and another near downtown) and one

public-magnet alternative high school (with intensive arts curriculum).

Finally, we note that community 4 is spread out over Columbus city as the adoles-

cents in those communities share non-school activities such as a popular swimming

club, visiting community centers, malls and church.
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Conclusion
We focus on the problem of identifying communities in the co-location networks

by using latent representation learning models and community detection methods.

Our analysis revealed that the network representation learning model, Location-

Trails [13], which relies on the sequence of location visits of adolescents, can iden-

tify high-quality communities that are consistent with extant knowledge regarding

urban racial and socio-economic differences in neighborhood functioning and ac-

tivity spaces. We observe that other neural approaches such as Deepwalk [11] and

LINE [12] identify residentially proximate clusters – if the adolescents reside in the

same or nearby neighborhoods, these methods would often assign them to the same

community.

To study the neighborhood functioning of the city, we compare the activity pro-

files of individuals through an average neighborhood affinity score – the probability

of two adolescents sharing the same cluster given that they reside in the same neigh-

borhood. We then compare the average neighborhood affinity score across neigh-

borhoods with different characteristics. Our analysis reveals that the individuals

residing in the white-dominated and advantaged neighborhoods have similar activ-

ity profiles. Hence, they are assigned to the same clusters by most of the models. In

contrast, individuals residing in black-dominated and disadvantaged neighborhoods

are often assigned to different clusters. This is because individuals residing in black-

dominated/disadvantaged neighborhoods encounter more heterogeneous exposures

to neighborhood racial composition than other individuals and spend a nontriv-

ial proportion of their time in low proportion black/disadvantaged neighborhoods

[8], largely in the context of organizational resource seeking, thereby resulting in

dissimilar activity profiles.
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