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Abstract

This paper is concerned with test of the conditional independence. We first establish an
equivalence between the conditional independence and the mutual independence. Based on
the equivalence, we propose an index to measure the conditional dependence by quantifying
the mutual dependence among the transformed variables. The proposed index has several
appealing properties. (a) It is distribution free since the limiting null distribution of the
proposed index does not depend on the population distributions of the data. Hence the
critical values can be tabulated by simulations. (b) The proposed index ranges from zero
to one, and equals zero if and only if the conditional independence holds. Thus, it has
nontrivial power under the alternative hypothesis. (c) It is robust to outliers and heavy-
tailed data since it is invariant to conditional strictly monotone transformations. (d) It has
low computational cost since it incorporates a simple closed-form expression and can be
implemented in quadratic time. (e) It is insensitive to tuning parameters involved in the
calculation of the proposed index. (f) The new index is applicable for multivariate random
vectors as well as for discrete data. All these properties enable us to use the new index as
statistical inference tools for various data. The effectiveness of the method is illustrated
through extensive simulations and a real application on causal discovery.
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1. Introduction

Conditional independence is fundamental in graphical models and causal inference (Jordan,
1998). Under multinormality assumption, conditional independence is equivalent to the
corresponding partial correlation being 0. Thus, partial correlation may be used to mea-
sure conditional dependence (Lawrance, 1976). However, partial correlation has low power
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in detecting conditional dependence in the presence of nonlinear dependence. In addition,
it cannot control Type I error when the multinormality assumption is violated. In gen-
eral, testing for conditional independence is much more challenging than for unconditional
independence (Zhang et al., 2011; Shah and Peters, 2020).

Recent works on test of conditional independence have focused on developing omnibus
conditional independence test without assuming specific functional forms of the dependen-
cies. Linton and Gozalo (1996) proposed a nonparametric conditional independence test
based on the generalization of empirical distribution function, and proposed using bootstrap
to obtain the null distribution of the proposed test. This diminishes the computational
efficiency. Other approaches include measuring the difference between conditional charac-
teristic functions (Su and White, 2007), the weighted Hellinger distance (Su and White,
2008), and the empirical likelihood (Su and White, 2014). Although these authors estab-
lished the asymptotical normality of the proposed test under conditional independence, the
performance of their proposed tests relies heavily on consistent estimate of the bias and
variance terms, which are quite complicated in practice. The asymptotical null distribu-
tion may perform badly with a small sample. Thus, the authors recommended obtaining
critical values of the proposed tests by a bootstrap. This results in heavy computation bur-
dens. Huang (2010) proposed a test of conditional independence based on the maximum
nonlinear conditional correlation. By discretizing the conditioning set into a set of bins,
the author transforms the original problem into an unconditional testing problem. Zhang
et al. (2011) proposed a kernel-based conditional independence test, which essentially tests
for zero Hilbert-Schmidt norm of the partial cross-covariance operator in the reproducing
kernel Hilbert spaces. The test also required a bootstrap to approximate the null distri-
bution. Wang et al. (2015) introduced the energy statistics into the conditional test and
developed the conditional distance correlation based on Székely et al. (2007), which can
also be linked to kernel-based approaches. But the test statistics requires to compute high
order U-statistics and therefore suffers heavy computation burden, which is of order O(n?)
for a sample with size n. Runge (2018) proposed a non-parametric conditional indepen-
dence testing based on the information theory framework, in which the conditional mutual
information was estimated directly via combining the k-nearest neighbor estimator with
a nearest-neighbor local permutation scheme. However, the theoretical distribution of the
proposed test is unclear.

In this paper, we develop a new methodology to test conditional independence and
propose conditional independence tests that are applicable for continuous or discrete random
variables or vectors. Let X, Y and Z be three continuous random variables. We are
interested in testing whether X and Y are statistically independent given Z:

Hy: X1UY |Z, versus Hj: otherwise.

Here we focus on random variables for simplicity. We will consider test of conditional
independence for random vectors in Section 3. To begin with, we observe that with Rosen-
def def

blatt transformation (Rosenblatt, 1952), i.e., U = Fx|z(X | Z), V = Fyz(Y | Z) and

wWEFR 7(Z), X1Y | Z is equivalent to the mutual independence of U, V and W. Thus
we convert a conditional independence test into a mutual independence test, and any tech-
nique for testing mutual independence can be readily applied. For example, Chakraborty
and Zhang (2019) proposed the joint distance covariance to test mutual independence and



CONDITIONAL INDEPENDENCE TEST

Drton et al. (2020) constructed a family of tests with maxima of rank correlations in high
dimensions. However, these mutual independence tests do not consider the intrinsic proper-
ties of U, V and W. That is, U, V and W are all uniformly distributed, U 1L W and V 1L W.
This motivates us to develop a new index p to measure the mutual dependence. We show
that the index p has a closed form, which is much simpler than that of Chakraborty and
Zhang (2019). In addition, it is symmetric, invariant to strictly monotone transformations,
and ranges from zero to one, and is equal to zero if and only if U, V and W are mutually
independent. Based on the index p, we further proposed tests of conditional independence.
We would like to further note a recent work proposed by Zhou et al. (2020), who suggested
to simply test whether U and V are independent. However, this is not fully equivalent to
the conditional independence test and it is unclear what kind of power loss one might have.

The proposed tests have several appealing features. (a) The proposed test is distribution
free in the sense that its limiting null distribution does not depend on unknown parameters
and the population distributions of the data. The fact that both U and V are independent of
W makes the test statistic n-consistent under the null hypothesis without requiring under-
smoothing. In addition, even though the test statistic depends on U, V and W, which needs
to be estimated nonparametrically, we show that the test statistic has the same asymptotic
properties as the statistics where true U, V and W are directly available. This leads to
a distribution free test statistic when further considering that U,V and W are uniformly
distributed. Although some tests in the literature are also distribution free, the asymptotic
distributions are either complicated to estimate (e.g., Su and White, 2007) or rely on the
Gaussian process, which is not known how to simulate (e.g., Song, 2009) and would require
a wild bootstrap method to determine the critical values. Compared with existing ones, the
limiting null distribution of the proposed test depends on U, V' and W only, and the critical
values can be easily obtained by a simulation-based procedure. (b) The proposed test has
nontrivial power against all fixed alternatives. The population version of the test statistic
ranges from zero to one and equals zero if and only if conditional independence holds.
Unlike many testing procedures that are weaker than that for conditional independence (e.g.,
Song, 2009), the equivalence between conditional independence and mutual independence
guarantees that the newly proposed test has nontrivial power against all fixed alternatives.
(c) The proposed test is robust since it is invariant to strictly monotone transformations
and thus, it is robust to outliers. Furthermore, U, V and W all have bounded support,
and therefore it is suitable for handling heavy-tailed data. (d) The proposed test has
low computational cost. It is a V-statistic, and direct calculation requires only O(n?)
computational complexity. (e) It is insensitive to tuning parameters involved in the test
statistics. The test statistics are n—consistent under the null hypothesis without under-
smoothing, and is hence much less sensitive to the bandwidth. The proposed index p is
extended to continuous random vectors and discrete data in Section 3. All these properties
enable us to use the new conditional independence test for various data.

The rest of this paper is organized as follows. In Section 2 we first show the equivalence
between conditional independence and mutual independence. We propose a new index to
measure the mutual dependence, and derive desirable properties of the proposed index in
Section 2.1. We propose an estimator for the new index in Section 2.2. The asymptotic
distributions of the proposed estimator under the null hypothesis, global alternative, and
local alternative hypothesis are derived in Section 2.2. We extend the new index to the
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multivariate and discrete cases in Section 3. We conduct numerical comparisons and apply
the proposed test to causal discovery in directed acyclic graphs in Section 4. Some final
remarks are given in Section 5. We provide some additional simulation results as well as all
the technical proofs in the appendix.

2. Methodology

To begin with, we establish an equivalence between conditional independence and mutual
independence. In this section, we focus on the setting in which X, Y and Z are continuous
univariate random variables, and the problem of interest is to test X Il Y | Z. Throughout
this section, denote U = Fxz(X | Z), V = Fy|z(Y | Z) and W = Fz(Z). The proposed
methodology is built upon the following proposition.

Proposition 1 Suppose that X and Y are both univariate and have continuous conditional
distribution functions for every given value of Z, and Z is a continuous univariate random
variable. Then X LY | Z if and only if U, V and W are mutually independent.

We provide a detailed proof of Proposition 1 in the appendix. Essentially, it establishes
an equivalence between the conditional independence of X 1Y | Z and the mutual inde-
pendence among U, V and W under the conditions in Proposition 1. Therefore, we can
alleviate the hardness issue of conditional independence testing (Shah and Peters, 2020)
by restricting the distribution family of the data such that U, V and W can be estimated
sufficiently well using samples. As shown in our theoretical analysis, we further impose
certain smoothness conditions on the conditional distributions of X,Y | Z = z as z varies
in the support of Z. This distribution family is also considered in Neykov et al. (2021)
to develop a minimax optimal conditional independence test. We discuss the extension of
Proposition 1 to multivariate and discrete data in Section 3.

According to Proposition 1, any techniques for testing mutual independence among three
random variables can be readily applied for conditional independence testing problems. For
example, Chakraborty and Zhang (2019) proposed the joint distance covariance and Patra
et al. (2016) developed a bootstrap procedure to test mutual independence with known
marginals. However, a direct application of these metrics may not be a good choice because
it ignores the fact that the variables U, V and W are all uniformly distributed, as well as
U1lLW and VILW. Next, we discuss how to develop a new mutual independence test while
considering these intrinsic properties of (U, V, W).

2.1 A mutual independence test

In this section, we propose to characterize the conditional dependence of X and Y given Z
through quantifying the mutual dependence among U, V and W. Although our proposed
test is based on the distance between characteristics functions, our proposed test is much
simpler and has different asymptotic distribution as well as different convergence rate from
the conditional distance correlation proposed by Wang et al. (2015). Let w(-) be an arbi-
trary positive weight function and pyvw(-), vu(:), v (-), and w(-) be the characteristic



CONDITIONAL INDEPENDENCE TEST

functions of (U, V, W), U, V and W, respectively. Then

U,V and W are mutually independent
<= puvw(ti,ta, t3) = ou(ti)ev(t2)ew(ts) for all t,t2,t3 € R

= /// levvw (t1, t2, t3) — @U(t1)¢v(t2)90w(t3)HQw(tl,t2,t3)dt1dt2dt3 =0,

where ||[)]|? = ™) for a complex-valued function ¢ and 1) is the conjugate of 1. By choosing
w(t1,te, t3) to be the joint probability density function of three independent and identically
distributed standard Cauchy random variables, the integration in the above equation has a
closed form,

Ee—|U1—U2\—|V1—V2|—|W1—W2\ _ 2E6—|U1—U3|—|V1—V4|—|W1—W2|

+Ee” -0l gemVimVal ge=IWa=Wa| (1)

where (Ug, Vi, W), k = 1,...,4, are four independent copies of (U, V, W). Here the choice of
the weight function w(t,t2,t3) is mainly for the convenient analytic form of the integration.
Different from the distance correlation (Székely et al., 2007), our integration exists without
any moment conditions on the data, which is more widely applicable. Furthermore, the
integration has an exact upper bound. To see this, with the fact that ULLW and V1LW,
(1) boils down to

E {SU(Ul,U2)SV(V1,V2)6_|W1_W2|}, (2)
where Sy (U, Us) and Sy (Vi, Va) are defined as
Su(U,Us) = E {e*IUrUZ‘ 4 e IUs=Usl _ o= lU1=Usl _ =|U2=Us| | (Ul,Ug)},
Sy(Vi,Va) = E {€—|v1—v2| 4o VaVal = Vim Vil o=[Va=Yal |y VQ)} ‘

Recall that U, V and W are uniformly distributed on (0, 1). With further calculations based
on (2), we obtain a normalized index and define it as p to measure the mutual dependence:

p(X,Y | Z) = cF{ (e_lUl_UQ‘ +e Uyl g ol g gU2ml 4 9e=l 4)

<6_|V1_V2| +e V14V i eV g et2ml pgem! 4) 6_‘W1_W2|}7 (3)

where cg = (1373 — 40e~2 4 13e71)~!. Several appealing properties of the proposed index
p(X,Y | Z) are summarized in Theorem 2.

Theorem 2 Suppose that the conditions in Proposition 1 are fulfilled. The index p(X,Y |
Z) defined in (3) has the following properties:
(1)0<p(X,Y | Z) <1, p(X,Y | Z) =0 holds if and only if X LY | Z. Furthermore,
if Fx\2(X | Z) = Fy12(Y | Z) or Fx (X | Z)+ Fy1z(Y | Z) = 1, then p(X,Y | Z) = 1.
(2) The index p is symmetric conditioning on Z. That is, p(X,Y | Z) = p(Y, X | Z).
(8) For any strictly monotone transformations mq(-), ma(-) and ms(:), p(X,Y | Z) =
p{mi(X),me(Y) | m3(Z)}.
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The step-by-step derivation of p(X,Y | Z) and proof of Theorem 2 are presented in the
appendix. Property (1) indicates that the index p ranges from zero to one, equals zero
when the conditional independence holds, and is equal to one if Y is a strictly monotone
transformation of X conditional on Z. Property (2) shows that the index p is a symmetric
measure of conditional dependence. Property (3) illustrates that the index p is invariant to
any strictly monotone transformation. In fact, p is not only invariant to marginal strictly
monotone transformations, but also invariant to strictly monotone transformations condi-
tional on Z. For example, it can be verified that p(X,Y | Z) = p[mu{X—-E(X | 2)},Y | Z].

2.2 Asymptotic properties

In this section, we establish the asymptotic properties of the sample version of the proposed
index under the null and alternative hypothesis. Consider independent and identically
distributed samples {X;,Y;, Z;}, i = 1,...,n. To estimate the proposed index p(X,Y | Z),
we apply the nonparametric kernel estimator for the conditional cumulative distribution
function (Li and Racine, 2007). Specifically, define

~

fz(Z) = 7’L_1 ZKh(Z — Zz),
i=1

U=Fxz(x|2)=n"1Y Ku(z— Z)L(X; < 1)/ fz(2),
=1

n
V= Bryzly | 2) =0t S Kz — Z01(Y; < )/ Fo(2),
i=1
where Kj(-) = K(-/h)/h, K(-) is a kernel function, and h is the bandwidth. Besides,
we use empirical distribution function to estimate the cumulative distribution function,
ie, W = Fz(2) = n 13, 1(Z; < 2). The sample version of the index, denoted by
p(X,Y | Z), is thus given by

PX.Y|Z) = con? Z { (e‘lﬁ"_ﬁj| + Ui + Ui + e~ Us + i1 + 27t — 4)
(2]

(67“71'471‘ + 67‘71' + 6‘271 + 67@ + ef/f1 + 271 — 4) eilﬁ/\i*wj'} .

One can also obtain a normalized index pp, which is a direct normalization based on (1)
without considering U LW and V ILW:

(XY [2) = o {Berlh VMVl 4 g
—2F (2 —e U1 eUl_l) (2 —e V1 - eVl_l) (2 —e ™ er_l)} .

The corresponding moment estimator is

XY 2) = coqn Y e 0Tl VTil-W-Wil g3
.3

n
—2n~1 Z (2 —e Ui eUi_l) (2 —e Vi eVi_1> (2 —e Wi eWi_l) } .

i=1
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Although p(X,Y | Z) = po(X,Y | Z) at the population level, those two statistics p(X,Y |
Z) and po(X,Y | Z) exhibit different properties at the sample level. This is because
p(X,Y | Z) considers the fact that U LLW and V ILW. But on the other hand, po(X,Y | Z)

is only a regular mutual independence test statistic, where UZ, VZ, and W are exchangeable.

When X 1LY | Z, under Conditions 1-4 listed below, p(X,Y | Z) is of order (n=! + hi™),

while po(X,Y | Z) is of order (n™! + h?™) because of the bias caused by nonparametric

estimation. Note that m is the order of kernel functions and equal to 2 when using regular

kernel functions such as Gaussian and epanechnikov kernels. This indicates that p(X,Y | Z)

is essentially n consistent without under-smoothing while po(X,Y | Z) typically requires

under-smoothing. In addition, our statistic p(X,Y | Z) has the same asymptotic properties
as if U,V and W are observed, but po(X,Y | Z) does not. See Figure 1 for a numerical
comparison between the empirical null distributions of the two statistics.

We next study the asymptotical behaviors of the estimated index, p(X,Y | Z), un-
der both the null and the alternative hypotheses. The following regularity conditions are
imposed to facilitate our subsequent theoretical analyses. In what follows, we derive the
limiting distribution of p(X,Y | Z) under the null hypothesis in Theorem 3.

Condition 1. The univariate kernel function K(-) is symmetric about zero and Lipschitz
continuous. In addition, it satisfies

/K(U)dUZl, /viK(v)dU:O,lgigm—l, O#/va(v)dU<oo.

Condition 2. The bandwidth h satisfies nh?/log?(n) — oo, and nh*™ — 0.

Condition 3. The probability density function of Z, denoted by fz(z) is bounded away
from 0 to infinity.

Condition 4. The (m — 1)th derivatives of Fx|z(z | 2)f(2), Fy|z(y | 2)f(z) and fz(z)
with respect to z are locally Lipschitz-continuous.

Theorem 3 Suppose that Conditions 1-4 hold and the conditions in Proposition 1 are
fulfilled. Under the null hypothesis,

np(X,Y | Z) = co > Xx;(1)

j=1
in distribution, where X?(l), j=1,2,... are independent chi-square random variables with
one degree of freedom, and \;js, j =1,2,... are eigenvalues of

h(u,v,w; v, v, w') = (e "%l et 4 vl pev e’ =1 4 271 — 4)(elv—V
fe V4 et lpeV 41 4 2em1 = 4)6"”“”_“’/'.

That is, there exists orthonormal eigenfunction ®;(u,v,w) such that

1,1 p1
/O/0/0h(u,’u,w;u’,v',w')¢j(u',v',w')du'dv'dw':)\jCI)j(u,v,w).

7
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The proof of Theorem 3 is given in the appendix. To understand the asymptotic distri-
butions intuitively, we showed in the proof that np(X,Y | Z) can be approximated by
degenerate V-statistics, i.e.,

np(X,Y | Z) = con™ "> h(Us, Vi, Wiz Uy, Vi, Wj) + 0p(n 1),
2%

and E{h(U;, Vi, Wi; U;, V3, W;) | (Ui, Vi, W;)} = 0. By the spectral decomposition,
h(u, v, wiu’, v, w') = Z N®j(u, v, w)®;(u', 0, w').
j=1

Therefore, np(X,Y | Z) = co > 52, N{n=V23 L ®(UL, Vi, W) Y2 + op(n™1), which con-
verges in distribution to the weighted sum of independent chi squared distributions provided
in Theorem 3 because n~ /2 Yo, ®,(Us, Vi, W;) is asymptotically standard normal (Ko-
rolyuk and Borovskich, 2013). Moreover, the Ajs, j = 1,2,... are real numbers associated
with the distribution of U, V' and W, all of which follow uniform distributions on [0, 1]. In
addition, U, V and W are mutually independent under the null hypothesis. This indicates
that the proposed test statistic is essentially distribution free under the null hypothesis.
However, the critical value may be difficult to calculate because of the complicated form of
limiting distribution. Therefore, we suggest a simulation procedure to approximate the null
distribution and decide the critical value, which is commonly used in the literature (e.g.,
Székely et al., 2007; Zhu et al., 2018). The simulation procedure can be independent of the
original data and hence greatly improved the computation efficiency. In what follows, we
describe the simulation-based procedure in detail to decide the critical value c,.

1. Generate {U},V,*, W*}, i =1,...,n independently from mutually independent stan-
dard uniform distributions;

2. Compute the statistic /;k based on {U, V;*, W*},i=1,...,n, ie,

i Con_2 E { (€*|Ui —U;| LUl L eli-1 e Uj + Uil +2e7 1 — 4)
2
(e—|V¢ VeV VT e e T 20! — 4) e IWi=W; |} :

3. Repeat Steps 1-2 for B times and set ¢, to be the upper a quantile of the estimated
p* obtained from the randomly simulated samples.

Because (U*,V*, W*) has the same distribution as that of (U, V,W) under the null hy-
pothesis, it is straightforward that this simulation-based procedure can provide a valid
approximation of the asymptotic null distribution of p(X,Y | Z) when B is large. The
consistency of this procedure is guaranteed by Theorem 4.

Theorem 4 Under Conditions 1-4, it follows that

o0
np* — co Z )\jsz(l)
j=1
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in distribution, where X?(l), j = 1,2,... are independent x*(1) variables, and \;, j =
1,2,... are the same as that of Theorem 3.

Theorem 4 shows that the simulation based approximation is valid. It also serves as
the practical tool we use in the numerical analysis. Different from other conditional in-
dependence tests, our test only require one round of simulation to approximate the null
distribution, which saves huge computation costs in practice.

Next, we study the power performance of the proposed test under two kinds of alternative
hypotheses, under which the conditional independence no longer holds. We first consider
the global alternative, denoted by H,4, we have

Hyg: XULY|Z
We then consider a sequence of local alternatives, denoted by Hy;,
Hy: Fxiz(z|Z=2)-Fxyplz| Y =y, Z=2)}= n Y20z, y, 2).

The asymptotical properties of the test statistics p(X,Y | Z) under the global alternative
and local alternatives are given in Theorem 5, whose proof is in the appendix. Theorem 5
shows that the proposed test is consistent against all fixed alternatives, and can detect local
alternatives at rate O(n~1/2),

Theorem 5 Suppose that Conditions 1-4 hold and the conditions in Proposition 1 are
fulfilled. Under Hig, when nh*™ — 0,

n2{p(X,Y | Z) - p(X,Y | Z)} = N(0,02),

in distribution, where o3 ot 4c3var(Pyq + Py1+ P31+ Pyi), and (Pi1, Poa, P31, Pyq) are
defined in (7)-(10) in the appendiz, respectively.
Under Hy;,

np(X,Y | Z) - /// ¢ (E1, t2, t3)||? w(ty, b2, ts)dty dbadts,

in distribution, where ((t1,ta,t3) stands for a complex-valued Gaussian random process with
mean function E [it1€(X,Y, Z)e™U {2V — oy (tg) } €*3W] and covariance function defined
in (11) in the appendizr, and w(ty,ta,t3) is the joint probability density function of three
independent and identically distributed standard Cauchy random variables.

Theorems 3 and 5 reveal that, p is m-consistent under the null hypothesis while root-n
consistent under the fixed alternative, indicating that the proposed test is consistent to
detect the fixed alternative when p is bounded away from zero. Under the local alternative
hypothesis, p is n-consistent and the limiting distribution is different from that of the
limiting null distribution, implying that the proposed test would have nontrivial power
when the distance between the alternative and the null is O(n~1/2).
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3. Extensions
3.1 Multivariate continuous data

The methodology developed in Section 2 assumes that all the variables are univariate.
In this section, we generalize the proposed index p to the multivariate case. Let x =
(X1,..., Xp)"T e Ry = (Y1,...,Y,)" € R and z = (Z1,...,Z,)" € R" be continu-
ous random vectors. More specifically, all elements of x, y and z are continuous ran-
dom variables. Define F,|,(X; | z) for the cumulative distribution function of X; given
z and Fx, |5 x,,. x, (Xt | 2,X1,...,X}1) for the cumulative distribution function of
Xy given z, Xy,..., X1 for kK = 2,---  p. Similar notation apply for y and z. Denote
Ur = Fx, (X1 | 2), Vi = Fy,,(V1 | 2), W1 = Fz,(Z1),

ﬁk = FXk\z,Xl,...,Xk_l(Xk ‘ z, X1,. .. 7Xk71)7 k=2,...,p,
‘7143 = FYk|Z,Y1,...,Yk,1(Yk | Zu}/l) . '7Yk—1)7 k= 27 -4,
Wk = FZ;C|Z1,...,Z;€,1 (Zk ‘ Zl, ceey Zkfl), k= 2, Y i

Further denote u = ((71, cee ﬁp)T, v = (‘71, cee %)T, w = (Wl, . WT)T. Similar to test
of conditional independence for random variables, we first establish an equivalence between
the conditional independence x 1Ly | z and the mutual independence of u,v and w, which
is stated in Theorem 6.

Theorem 6 Assume that all the conditional cumulative distribution functions used in con-
structing u,v and w are continuous for every given values, then x 1Ly | z if and only if u,v
and w are mutually independent.

The proof of Theorem 6 is illustrated in the appendix. Theorem 6 established an equiv-
alence between the conditional independence x 1Ly | z and the mutual independence among
u, v and w. It is notable that when p,q,r are relatively large, (u,v,w) may be difficult
to estimate because of the curse of dimensionality. In this paper, we mainly focus on the
low dimensional case. Next, we develop the mutual independence test among u,v and w.
Similar as the univariate case, we set the weight function to be the joint density of (p+q+7)
independent and identically distributed standard Cauchy random variables. We may further
derive the closed form expression of p(x,y | z)

px,y | 2) = E {Su(ur,uz)S (vi, vo)e mimweli L
where (uy,vi,wy) and (ug, vy, we) are two independent copies of (u, v, w). Moreover,
Su(up,uy) = FE {6*||u1*u2||1 + e sl _ o=llm—uslh _ o=fluz—uslly | (ul,uz)} 7
SV(V1,V2) _ E{e—||v1—vzl|1 + e—||v3—v4H1 _ e—HVl—VB.Hl _ e—HVQ—VBHI | (Vl,Vg)}.
and ||-]|1 is the £; norm. Then p(x,y | z) is nonnegative and equals zero if and only if x 1Ly |

z. By estimating p(x,y | z) consistently at the sample level, the resulting test is clearly
consistent. To implement the test, it is still required to study the asymptotic distributions

10
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under the conditional independence using independent and identically distributed samples
{xi,yi,2i}, i = 1,...,n. We also apply kernel estimator for the conditional cumulative
distribution functions when estimating u;, v; and w;. Specifically, we estimate F'y|p, .. B, (a |
bi,...,by) with

S (A < a) [Ty Kn(Big — by)
Z?:l Hi:l Kh(Bz‘k - bk)

where (A, Bl, ey Bg)T are (Zk, Zl, ceey Zk_l)T, k= 2, e,y (Xg,Xl, ce ,Xg_l,ZT)T, { =
L,...,p,or (Y;,Y1,...,Y;_1,2")", j = 1,...,q when estimating w, u and v, respectively.
The sample version of p(x,y | z) is given by

px,y|z) = m?ZEHe—nai—ﬁjul+6—||u—u'u1_e—nﬁi—unl_e—nu—ﬁjnl,(ﬁhﬁj)}
i?j

ﬁA|Bl,...,Bé(a | b1,...,be) =

v, —% . —_ —v/ I~ — _ . o~ o~ I —sar
E{e 9=l 4 e=lv=v'lh _ o=I9i=vlL _ o=Iv=Tills | (Vz.,vj)}e ¢ wgnl},

where (u/, v') is an independent copy of (u, v), and further calculations yield that p(x,y | z)
is equal to

.
i

L 9 4q = q = = A
—I¥i—v;ll “\g _ 9 — e Vik=l _ o=Viry _ 92— ¢ Vik=l _ o= Vik —[|Wi—w;l1 )
{e + (e) | | (2—e e ) | | (2—e e )} e ]

k=1 k=1

~ o~ 2 p = = p = =
— 49— |1 “\p _ 9 _ ¢ U1 _ o=Uir) _ 9 — e Uik=1 _ o=Uji
{e TN | (CET R LOI § (R >}

k=1 k=1

We next study the asymptotical behaviors of p(x,y | z) under the null hypothesis in The-
orem 7, whose proof is given in the appendix. We begin by providing some regularity
conditions for the multivariate data.

Condition 2. The bandwidth h satisfies nh>"+P=1) /1og?(n) — oo, nh2("+4=1 /log?(n) —
00, and nh*™ — 0.

Condition 3'. The probability density function of the random vector (Zi,...,Z)",
E=1,...,r, (2", X1,...,Xp)", £=1,...,p—1,and (2", Y1,...,Y;)", j=1,...,¢ — 1, are
all bounded away from 0 to infinity.

Condition 4'. The (m — 1)th derivatives of Fyg(a | b) fg(b), and fg(b) with respect to
b are locally Lipschitz-continuous, where (A, BT)T can be any one of (Zy, Z1,...,Zx_1)",
k=2,...,r, (Xe, X1,..., Xp_1,2")", 0=1,...,p,or (Y;,Y1,....Y;_1,2")", j=1,...,q.

Theorem 7 Suppose that Conditions 1 and 2'-4’ hold and the conditions in Theorem 6 are
fulfilled. Under the null hypothesis,

np(x,y | z) = > i),

j=1
in distribution, where X?(l), 7 =1,2,... are independent chi-square random variables with
one degree of freedom, and \;js, j = 1,2,... are eigenvalues of

h(u7 Vv, W; u/7 vlv W/) = Su(u7 UI)SV(V, V/)€7”W7WI”1.

11
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That is, there exists orthonormal eigenfunction ®;(u,v,w) such that
/// h(u, v, w;u, v, w')®; (0, v/, w')du'dv'dw' = \;j®;(u, v, w).
[0,1]p+a+tr

3.2 Discrete data

In this section, we discuss the setting in which X, Y and Z are univariate discrete random
variables. Specifically, we apply transformations in Brockwell (2007) to obtain U and V.
Define Fyz(z | 2) = Pr(X <z | Z = 2), Fxiz(v— | 2) = Pr(X <z | Z = 2), Fy;z(y |
z) =Pr(Y <y | Z=2z2),and Fy|z(y— | z) = Pr(Y <y | Z = 2z). We further let Ux and
Uy be two independent and identically distributed U (0, 1) random variables, and apply the
transformations

U = (1-Ux)Fx;z(X—|2)+UxFxz(X | Z),
Vo= Q-U)Fyz(Y=1|2Z)+UyFy;z(Y | Z).

According to Brockwell (2007), both U and V are uniformly distributed on (0,1). In
addition, U1l Z and V1L.Z. In the following proposition, we establish the equivalence
between the conditional independence and the mutual independence.

Theorem 8 For discrete random variables X, Y and Z, X LY | Z if and only if U,V and
Z are mutually independent.

The proof of Theorem 8 is presented in the appendix. With Theorem 8, we turn a discrete
conditional independence problem into a mutual independence one. Hence similar tech-
niques can be readily applied for the mutual independence test and we omit them to avoid
verbosity.

4. Numerical Validations

4.1 Conditional independence test

In this section, we investigate the finite sample performance of the proposed methods. To
begin with, we illustrate that the null distribution of p(X,Y | Z) is indeed distribution free
asif U, V and W can be observed, and is insensitive to the bandwidth of the nonparametric
kernel. In comparison, the null distribution of po(X,Y | Z) does not enjoy such properties.
To facilitate the analysis, let X = Z +¢e1 and Y = Z + &9, where Z, €1 and 9 are
independent and identically distributed. We consider three scenarios where Z, €1, €9 are
independently drawn from normal distribution N (0, 1), uniform distribution U(0, 1), and
exponential distribution Fxzp(1), respectively. It is clear that X and Y are conditionally
independent given Z. The sample size n is set to be 100.

The simulated null distributions based on np(X,Y | Z) and npy(X,Y | Z) are depicted
in Figure 1. The estimated kernel density curves of np(X,Y | Z) based on 1000 repetitions
are shown in Figure 1(a), where the reference curve is generated by the simulation-based
statistic np*(X,Y | Z) defined in (4). Clearly all the estimated density curves are close
to the reference, indicating that limiting null distribution of the estimated index is indeed
distribution free as if no kernel estimation is involved. In comparison, we apply the same

12
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Table 1: Empirical power of tests of conditional independence for Models M2 - M6 for
different bandwidth chg, where ¢ increase from 0.5 to 1.5. The significance level a = 0.05,
n = 100.

05 06 07 08 09 1.0 11 1.2 1.3 14 15
M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
M3 0.957 0.962 0.98 0.977 0.975 0.971 0.972 0.968 0.955 0.960 0.956
M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
M5 0.999 1.000 0.997 0.998 0.999 0.997 0.995 0.997 0.999 0.997 0.997
M6 0.999 0.999 0.999 1.000 0.999 0.999 0.996 1.000 0.999 1.000 1.000

simulation settings for po(X,Y | Z) and plot the null distributions in Figure 1(b), from
which it can be seen that the involved estimation of U and V significantly influences the null
distribution of py(X,Y | Z). To show the insensitivity of the choice of the bandwidth, we
set the bandwidths to be chg, where ¢ = 0.5, 1, and 2, respectively, and hg is the bandwidth
obtained by the rule of thumb. The estimated kernel density curves of np(X,Y | Z) and
npo(X,Y | Z) based normal distributions with 1000 repetitions, together with the reference
curve, are shown in Figure 1(c) and (d), from which we can see that the null distributions
of np(X,Y | Z) almost remain the same for all choices of the bandwidths, implying that
our test is insensitive to the bandwidth of the nonparametric kernel. However, the null
distributions of npy(X,Y | Z) can be dramatically influenced when the bandwidth changes.

Next, we perform the sensitivity analysis under the alternative hypothesis using Models
M2 - M6, which will be listed shortly. We fix the sample size n = 100 and set the significance
level @ = 0.05. To inspect how the power performance is varied with the choice of the
bandwidth, we set the bandwidths to be chg, where hg is the bandwidth obtained by the
rule of thumb and increase ¢ from 0.5 to 1.5 step by 0.1. The respective empirical powers
are charted in Table 1, from which we can see that the test is the most powerful when ¢
is around 1. Therefore, we advocate using the rule of thumb (i.e., ¢ = 1) to decide the
bandwidth in practice.

We compare our proposed conditional independence test (denoted by “CIT”) with some
popular nonlinear conditional dependence measure. They are, respectively, the conditional
distance correlation (Wang et al., 2015, denoted by “CDC”), conditional mutual informa-
tion (Scutari, 2010, denoted by “CMI”), and the KCI.test (Zhang et al., 2011, denoted
by “KCI”). We conduct 500 replications for each scenario. The critical values of the CIT
are obtained by conducting 1000 simulations. We first consider the following models with
random variable Z. In (M1), X 1LY | Z. This model is designed for examining the em-
pirical Type I error rate. While (M2)—(M6) are designed for examining the power of the
proposed test of conditional independence. Moreover, for M1 - M3, we generate )~(1, X, and
Z independently from N(0,1). For M4 - M6, we let Z ~ N(0, 1), and generate X1, Xo ~t
independently to investigate the power of the methods under heavy tailed distributions.

ML X=X, +2Z,Y =Xy+ Z.

M2: X=X 4+2Z,Y=X2+2.

M3: X =X, +Z,Y =05sin(7X,) + Z.

13
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Figure 1: (a) and (b) are the simulated null distributions for np(X,Y | Z) and npy(X,Y | Z)
when data were generated from different distributions, while (c¢) and (d) are the simulated
null distributions for np(X,Y | Z) and npo(X,Y | Z) using different bandwidths, respec-
tively.

Md&: X=X1+Z,Y=X1+Xo+ 7.

M5: X = /| X1 Z|+ Z,Y =0.25X2X3 + Xo + Z.

M6: X =log(|X1Z|+ 1)+ Z,Y =0.5(X2Z) + Xo + Z.

The empirical sizes for M1 and powers for the other five models at the significance levels
a = 0.05 and 0.1 are depicted in Table 2. In our simulation, we consider two sample sizes
n = 50 and 100. Table 2 indicates that the empirical sizes of all the tests are all very close
to the level «, which means that the Type I error can be controlled very well. As for the
empirical power performance of models M2—MG6, the proposed test outperforms other tests
for both normal data and heavy tailed data, especially when n = 50.

14
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Table 2: Empirical size and power of tests of conditional independence when Z is random
variable at significance levels with o = 0.05 and 0.1 and n = 50 and 100.

n « Test M1 M2 M3 M4 M5 M6
CIT 0.056 1.000 0.572 1.000 0.954 0.888
CDC 0.050 0.886 0.338 0.837 0.881 0.473
CMI 0.048 0.380 0.070 0.829 0.898 0.448
KCI 0.038 0.884 0.250 0.191 0.048 0.010

CIT 0.098 1.000 0.712 1.000 0.974 0.938
CDC 0.134 0.970 0.562 0.934 0.930 0.642
CMI 0.088 0.484 0.132 0.854 0.912 0.485
KCI 0.088 0.968 0.344 0.323 0.145 0.042
CIT 0.048 1.000 0.960 1.000 1.000 0.997
CDC 0.066 0.998 0.694 0.918 0.971 0.624
CMI 0.054 0.402 0.070 0.877 0.904 0.424
KCI 0.040 1.000 0.444 0.371 0.095 0.020

CIT 0.112 1.000 0.998 1.000 1.000 0.999
CDC 0.158 1.000 0.834 0.974 0.985 0.745
CMI 0.098 0.496 0.124 0.902 0.926 0.455
KCI 0.088 1.000 0.598 0.513 0.199 0.057

0.05

50

0.1

0.05

100

0.1

We next examine the finite sample performance of the tests when Z is two-dimensional
random vector, i.e., z = (Z1,Z2). MT is designed for examining the size since X 1LY | z.
Five conditional dependent model M8-M12 are designed to examine the power of the tests.
Similar as M1-M6, we generate )Nfl, )~(2, 71 and Z3 independently from N(0,1) in each of
the following model.

M7: X = X1+ Z1+ 20, Y = Xo+ Z1 + Zo.

MS8: X = X2+ Zy + Zy, Y =log(X1 + 10) + Z1 + Zo.

M9: X = tanh(X1) + Z1 + Za, Y = log(X2 + 10) + Z1 + Zs.

M10: X = X2+ Z) + Zy, Y = log(X1Z1 + 10) + Z1 + Z,.

M1l: X = X, + Z1 4 Z, Y =sin(X121) + Z1 + Z».

M12: X = log(X1Z; + 10) + Z1 + Za, Y = exp(X122) + Z1 + Za.

Lastly, we study the finite sample performance of the tests when X, Y and Z are all
multivariate. Specifically, x = (X1, X2), y = (Y1,Y2), z = (Z1,Z2). M13 is designed to
examine the size of the tests, while M14 -M18 are designed to study the powers. We generate
X1, X9, Y, Zy and Z, independently from N (0, 1) for each model in M13-M18.

M13: X1 = X1+ Z1, Y1 = Z1 + Zo.

M14: X; = log(X1Z1 + 100) + Zy + Z2, Y1 = exp(X1Z1) + Z1 + Zo.

M15: X = log(X2 4 100) + Z) + Zo, Y1 = 0.1X3 + Z1 + Zo.

M16: X = log(X1 % Z1 4+ 100) 4+ Z1 + Zo, Y1 = 0.5X3 23 + Z1 + Zo.

M17: X =0.1 exp()?l) + 21+ 25, Y] = Sin()A(Zl) + ’5(:1’ + Z1 + Zs.

M18: X = tanh(X)) + Z, + Z», Y1 = 0.51og(X2 + 100) + 0.5X5 + Z; + Zo.
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Table 3: Empirical size and power of conditional independence tests with z being random
vector, level a = 0.05 and 0.1, and sample size n = 50 and 100.

n « Test M7 M8 M9 M10 M11 Mi12
CIT 0.046 0.672 0.906 0.686 0.440 0.788
CDC 0.052 0.408 0.850 0.054 0.128 0.134
CMI 0.072 0.426 0.192 0.392 0.118 0.300
KCI 0.046 0.030 0.088 0.026 0.662 0.248

CIT 0.092 0.792 0.948 0.798 0.582 0.874
CDC 0.126 0.670 0.976 0.194 0.298 0.264
CMI 0.120 0.506 0.292 0.500 0.210 0.386
KCI 0.098 0.092 0.190 0.074 0.820 0.492
CIT 0.048 0.936 0.998 0.936 0.664 0.988
CDC 0.084 0.890 1.000 0.920 0.972 0.306
CMI 0.044 0.412 0.164 0.392 0.126 0.300
KCI 0.044 0.038 0.172 0.028 0.990 0.358

CIT 0.104 0.958 1.000 0.966 0.766 0.996
CDC 0.168 0.978 1.000 0.986 0.992 0.456
CMI 0.128 0.486 0.240 0.460 0.194 0.390
KCI  0.090 0.092 0.358 0.108 0.998 0.608

0.05

50

0.1

0.05

100

0.1

Simulation results of models M7—M12 and models M13—M18 are summarized in Tables
3 and 4, respectively, from which it can be seen that the proposed method outperforms all
other tests in terms of type I error and power. Furthermore, the numerical results seem to
indicates that when the conditional set is large, the conditional mutual information and the
kernel based conditional test tend to have relatively low power. The conditional distance
correlation has high power but suffers huge computational burden.

4.2 Application to causal discovery

In this section, we consider a real application of conditional independence test in causal
discovery of directed acyclic graphs. For a directed acyclic graph G = (V, E), the nodes
V ={1,2,...,p} corresponds to a random vector x = (X1,...,X,) € RP, and the set of
edges £ C V xV do not form any directed cycles. Two vertices X; and X5 are d-separated
by a subset of vertices S if every path between them is blocked by S. One may refer to
Wasserman (2013) for a formal definition. Denote the joint distribution of x by P(x). The
joint distribution is said to be faithful with respect to a graph G if and only if for any
i,7 € V, and any subset S C V,

X; L X; | {X,:r € S} < node i and node j are d-separated by the set S.

One of the most famous algorithms for recovering the graphs satisfying the faithfulness
assumption is the PC-algorithm (Spirtes et al., 2000; Kalisch and Bithlmann, 2007). The
algorithm could recover the graph up to its Markov equivalence class, which are sets of
graphs that entail the same set of (conditional) independencies. The performance of the PC—
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Table 4: Empirical size and power of conditional independence tests when x, y and z are
random vectors. Level a = 0.05 and 0.1, and sample size n = 50 and 100.

n « Test M13 M14 Mi15 Mleé M17 MI1R
CIT 0.05 1.000 1.000 1.000 0.363 0.986
CDC 0.019 0.022 0.984 0.304 0.120 0.833

0-05 CMI 0.01 0.582 0.812 0.205 0.082 0.020
50 KCI  0.036 0.036 0.047 0.042 0.052 0.688
CIT 0.100 1.000 1.000 1.000 0.564 0.997
01 CDC 0.092 0.064 1.000 0.733 0.262 0.939
' CMI 0.028 0.6 0915 0.294 0.170 0.054
KCI 0.086 0.081 0.099 0.083 0.118 0.886
CIT 0.026 1.000 1.000 1.000 0.873 1
0.05 CDC 0.048 0.032 1.000 0.965 0.38 0.999
CMI 0.004 0.498 1.000 0.211 0.218 0.036
100 KCI 0.044 0.042 0.052 0.05 0.068 0.999
CIT 0.077 1.000 1.000 1.000 0.965 1.000
01 CDbC 0.127  0.13 1.000 1.000 0.567 1.000

CMI 0.013 0.523 1.000 0.338 0.378 0.077
KCI  0.087 0.077 0.102 0.091 0.119 1.000

algorithm relies heavily on the (conditional) independence tests because small mistakes at
the beginning of the algorithm may lead to a totally different directed acyclic graph (Zhang
et al., 2011). One of the most popular approach for testing conditional independence is the
partial correlation, under the assumption that the joint distribution P(x) follows Gaussian
distribution and the nodes relationship is linear (Kalisch and Biithlmann, 2007). Conditional
mutual information (Scutari, 2010) is another possible option. Zhang et al. (2011) proposed
a kernel-based conditional independence test for causal discovery in directed acyclic graphs.
In this section, we demonstrate how the proposed conditional independence index can be
applied for causal discovery in real data. Additional simulation results are relegated into
the appendix.

We analyze a real data set originally from the National Institute of Diabetes and Di-
gestive and Kidney Diseases (Smith et al., 1988). The dataset consists of serval medical
predictor variables for the outcome of diabetes. We are interested in the causal structural
of five variables: age, body mass index, 2-hour serum insulin, plasma glucose concentration
and diastolic blood pressure. After removing the missing data, we obtain n = 392 samples.
The PC-algorithm is applied to examine the causal structure of the five variables based on
the four different conditional independence measures. We implement the causal algorithms
by the R package pcalg (Kalisch et al., 2012). The estimated causal structure are shown in
Figure 2. The proposed test gives the same estimated graph as the partial correlation, since
the data is approximately normally distributed. To interpret the graph, note that age is
likely to affect the diastolic blood pressure. The plasma glucose concentration level is also
likely to be related to age. This is confirmed by the causal findings of (a), (b) and (c) in
Figure 2. Besides, serum insulin has plausible causal effects on body mass index, and is also
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related to plasma glucose concentration. The causal relationship between age and blood
pressure is not confirmed in part (c), the test of conditional mutual information. This is
not a surprise given the high false positive rate reported in Table 5 in the appendix. The
kernel based conditional independence is a little conservative and is not able to detect some
of the possible edges. To further illustrate the robustness of the proposed test, we make a
logarithm transformation on the data, and apply the same procedure again. The estimated
causal structures are reported in Figure 3. We observe that the proposed test results in
the same estimated structure as the original data, which echos property (4) in Theorem
2, i.e., the proposed test is invariant with respect to monotone transformations. However,
the partial correlation test yields more false positives, since the normality assumption is
violated.

age
glucose blood pressure glucose blood pressure
insulin (@) body mass index insulin (b) body mass index

(a) (b)

age age
glucose blood pressure glucose blood pressure
insulin ) body mass index insulin ) body mass index

(c) (d)

Figure 2: The estimated causal structure of the five variables by using the proposed test
in (a), partial correlation in (b), conditional mutual information in (c¢) and kernel based
conditional independence test in (d).
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age age
glucose blood pressure glucose blood pressure
insulin (© body mass index insulin ) body mass index

(a) (b)

age

glucose blood pressure

insulin body mass index

()

glucose blood pressure

insulin body mass index

(d)

Figure 3: The estimated causal structure of the log-transformed five variables by using the
four tests. Refer to the caption of Figure 2 for the four tests.

5. Discussions

In this paper we developed a new index to measure conditional dependence of random
variables and vectors. The calculation of the estimated index requires low computational
cost. The test of conditional independence based on the newly proposed index has nontrivial
power against all fixed and local alternatives. The proposed test is distribution free under
the null hypothesis, and is robust to outliers and heavy-tailed data. Numerical simulations
indicate that the proposed test is more powerful than some existing ones. The proposed
test is further applied to directed acyclic graphs for causal discovery and shows superior
performance.
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Appendix A. Technical Proofs
A.1 Proof of Proposition 1

For 0 < u < 1, define quantile function for X | Z as
F);llz(u | Z =2)=inf{x: Fx|z(xv | Z = 2) > u}.

Similarly, we can define F;‘lz(v | Z = z), the quantile function for Y | Z, for 0 < v < 1.

Since X and Y have continuous conditional distribution functions for every given value of
7, it follows that when 0 < u <l and 0 <wv < 1,

Pr{Fxz(X | Z) <u,Fy;z(Y | Z) <v | Z =z}

= Pr{X < F)alz(u | 2),Y < Fpy(v|2)| Z =z}

This implies that X ILY | Z is equivalent to ULV | Z. In addition, conditional on Z = z,
Fx7(X | Z = z) is uniformly distributed on (0, 1), which does not depend on the particular
value of z, indicating Fi (X | Z)I1LZ. That is, UlLZ. Similarly, V1 Z. Thus, the
conditional independence fy vz (u,v | 2) = fyz(u | 2)fy|z(v | 2) together with fiz(u |
z) = fu(u) and fyz(v | z) = fy(v) implies that

fuviz(u,v | 2) = fu(u)fv(v).

Thus, U, V and Z are mutually independent.

On the other hand, the mutual independence immediately leads to the conditional in-
dependence U 1LV | Z. Therefore, the conditional independence X 1LY | Z is equivalent to
the mutual independence of U, V and Z. We next show that the mutual independence of
U, V and Z is equivalent to mutual independence of U, V and W.

Define F,'(w) = inf{z : F(z) > w} for 0 < w < 1. If U, V and Z are mutually
independent, then

Pr(U <u,V <u,W <w)=Pr{U <u,V <v,Z <F,*(w)}
= Pr(U <uw)Pr(V <v)Pr{Z < F;*(w)} = Pr(U < u)Pr(V < v)Pr(W < w)

holds for all u, v and w. On the other hand, if U, V and W are mutually independent, it
follows that

Pr(U<u,V<u,Z<z)=Pr{U <u,V <ov,W < Fz(z)}
= Pr(U <u)Pr(V <o)Pr{W < Fz(2)} = Pr(U < u)Pr(V <v)Pr(Z < z2),

holds for all u, v and z. Thus, the mutual independence of U, V and Z is equivalent to the
mutual independence of U, V and W. This completes the proof. 0

A.2 Proof of Theorem 2

We start with the derivation of the index p. U, V and W are mutually independent if and
only if

/ / lova (t1, 2. t5) — u )y (2)ow (t3) |2 w(ty, b, t3)dtrdtadts = O, (5)
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for arbitrary positive weight function w(-). We now show that the proposed index p is
proportional to the integration in (5) by choosing w(t1,t2,%3) to be the joint probability
density function of three independent and identically distributed standard Cauchy random
variables.

With some calculation and Fubini’s theorem, we have

][ Tovwattnto,ta) = ooty taron el wies, to ta)dtdeadty
_ E/// it1 (U1 =Ua) +ita (Vi V) its(Wa=Wa) 0 4Gt ot

—E/// it (Ur=Us) it (Vi=Va) it (Wa=Wo) iy (41 4o 40t byt

—E/// it (Us=Un)Fita (Vim V)it (Wa = WAy (1) 4o 0t byt

) /// eitl(Ul—Uz)-‘ritz (V3—V4)+it3(W5—W6)w(t1, t2, t3)dt1dt2dt3

According to the property of characteristic function for standard Cauchy distribution, we
have

/ U=V =11 4 42)=1gt = ¢~IU1-Ual

Then by choosing w(ty,t2,t3) = 7 3(1 + 1) (1 + t3)71(1 + t3)71, i.e., the joint density
function of three i.i.d. standard Cauchy distributions, we have

// v (t1,t2,t3) — ou(t)ev (t2)ow (t3) 1> w(ty, ta, ts)dt dtadts
— Ee [Ui=U2|=[Vi=Va|=[W1i-W2| _ o pro—|U1=Us|=[Vi—=Va|—|W1—-Wp2| (6)

+ Be 102l pemVimVal e IWi-Wal,
Furthermore, with the fact that U LW and V 1LW, (6) is equal to
E{Su(U1,U2)Sy (i, Va)e W= al
where Sy (U, Us) and Sy (Vi, Va) are defined as

Sy(Vi,Va) = E {€—|V1—V2| + e IVa=Val _ o=IVi=Va| _ —[Va—V5] | (VhVZ)}o

22



CONDITIONAL INDEPENDENCE TEST

Now we calculate the normalization constant cg. It follows by the Cauchy-Schwarz inequality
that

E{Su(Ur,U2) Sy (i, Va)e™ W= Wal}
- E [e—lwl Wal B £y, (Uy, Uz) Sy (Vi, Va) | (Wl,wz)}}
< E[e"wl Wal R1/2 £ S2 (U, Uy) | (W, W)} Y2 {S2 (W4, V3) | (Wl,WQ)}}
- E[ WY (S (1, Un) } BV {83 (Vi )}
— 2¢71(6.5¢72 — 20e~! 1 6.5)
w1

= CO’

where the equality holds if and only if Sy(Uy,Us2) = A {Sy(V1,V2)} holds with probability
1, where A > 0 (because E {Sy (U1, Us2)Sy(V1,V2)} is nonnegative). Recall that U, V and
W are all uniformly distributed on (0, 1), further calculations give us

Sy(Up,Uy) = e 0=lel g o=l g U=l g 07Uz 4 JUa=l g 9=l gy
Sy(Vi,Va) = e MVl eV Viml g omVe g oVoml 9ol _y

This, together with the normalization constant ¢y, yield the expression of the index p(X,Y |
Z). Subsequently, the properties of the index p(X,Y | Z) can be established.

(1) p(X,Y | Z) > 0 holds obviously. It equals 0 only when U, V, W are mutual
independent, which is equivalent to the conditional independence X LY | Z. p(X,Y |
Z) < 1 holds obviously according to the derivation of the index p. The equality holds if
and only if Sy (Ur,Uz) = A{Sv(V4,V2)}. Because ESE(Ur,Us) = ESE(V4,Va), we have
A=1. fU=VorU+YV =1, it is easy to check Sy(Ui,Us) = Sy(V1,Va). That is, if
Fxiz(X | Z) = Fyj2(Y | Z) or Fxz(X | Z) + Fyiz(Y | Z) = 1, then p(X,Y | Z) = 1.
To understand this condition better, we suppose Y = m(X, Z). It is clear that Fiz(X |
Z) = Fy|z(Y | Z) when m(:,-) is monotonically increasing on the first argument, whereas
Fx1z2(X | Z) + Fy|z(Y | Z) = 1 when m(-,-) is monotonically decreasing on the first
argument. Therefore, the index p is equal to one if Y is a strictly monotone transformation
of X conditional on Z.

(2) This property is trivial according to the definition of p.

(3) For strictly monotone transformations mg(-), we have when mq(-) is strictly in-
creasing, Uy = Fop (X)jma(z){m1(X) | m3(Z)} equals U = Fxz(X | Z), while when
mq(-) is strictly decreasing, it equals 1 — U. It can be easily verified that Sy (U, Us) =
Su(1 — Uy, 1 — Us), then we have Sy, (Uni,Un2) = Su(Ui,Us) no matter whether m;(-)
is strictly increasing or decreasing. Similarly, let Vi, = Fy,(v)ma(2)im2(Y) | ms(Z)}, we
obtain that Sy, (Vin1,Vin2) = Sv(Vi,V2). Tt is clear that Wy, = F,,,(5{m3(Z)} equals

either W or 1 — W, implying e~ IWm1=Wmz| — ¢=[W1-W2|

Therefore, we have
E {80, (Un, U2) St (Vint, Vima)e™ Wi Woel L — 5 {5 (U, Up) Sy (i, Ve MWl
and it is true that p {m1(X),mo(Y) | m3(2)} = p(X,Y | 2). 0O
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A.3 Proof of Theorem 3
For simplicity, we denote by g(z) = e *l and Sp(z,y) = gz —y) + e T+ e L +e¥ +
eV~! 4 2e7! — 4. We write ¢; ' p(X,Y | Z) as
023" {80(T:, 0)S0(Vi, Vi)g(Ws — W)}
4.J
With Taylor’s expansion, when nh*” — 0 and nh?/log®(n) — oo, we have
So(Us, Uy)
{g’ (UZ - Uj) + Vimt — G_Ui} AU; — {g/ (Ul — Uj) —eUiml + €_Uj} AU]'
2_1 {g" (UZ — U]) (AUl — AU]')2 + (6_Ui + 6Ui_1> (AUZ)Q + (B_Uj + er_l) (AUJ)Q}
6~ {g" (Ui — U;) (AU; — AU;)? + (V71 — e7 V) (AU;)? + (e¥i 7 — e7%9) (AU;)?)
So (Ui, Uj) + op(n™")
= S1(U, Uj) + So(Us, Uj) + S3(Ui, Uj) + So(Us, Uy) + op(n™1),
where AU; = U; — Ui, and Si(U;,U;), k = 1,2,3 are defined to be each row in an obvious
way. Similarly, we expand So(V;,V;) as
So(Vi, Vi) = So(Vi, Vi) + S1(Vi, Vi) + S2(Vi, Vi) + 85(Vi, Vi) + 0p(n 7).
As for g(Wl - Wj), we have
9(Wi = W) = g(Wi—W)) + g (W; = W))(AW; — AW))
+2_1g”(Wi — WJ)(AWz — AWj)2 + op(n_l).

+ + 4+

o
5

Therefore, it follows that
GAXYZ) = 2SS0 (ULUy) So (Vi Vy) o (Wi — W) (AW, — AW,)?

%]
+n Y 0 S (UL U) S (Vi Vi) g (Wi = W) (AW — AW)
i.j 0<k+<1
072y Y Sk (Ui Uy) St (Vi Vi) g (Wi = Wj) + op(n")
1,j 0<k+I<3
def

= 2711+ Q2+ Q3+ 0p(n7 ).
We first show that @ is of order o,(n~1!). In fact,

Q1 = 1Y S0 (Ui, Us) So (Vi, V) g" (Wi — Wy) (AW; — AW;)?

1,3
= n2 Z So (Ui, U;z) So (Vi, Vy) g" (Wi = W) {(AWi)2 + (AWj>2}
—|—2n_g Z So (Ui, Uj) So (Vi, Vy) g" (Wi — W) (Wi AW, + W;AW;)
—on 2 227]: So (Ui, Uj) So (Vi, V}) g”(VVi - W])(WZW] - VVZVVJ)
,J
= Qi1+ Q2+ Qs
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Under the null hypothesis, U, V and W are mutually independent, it is easy to verify that
E {S() (UZ', Uj) ’ (Ui, VZ’, Wi, Vj, W])} == O, and hence

E{So (Ui, U;) So (Vi, Vy) g" (Wi = W) | (Us, Vi, Wi) } = 0.
Then for each fixed ¢, we have

n”! Z So (Ui, Uj) So (Vi, V;) " (Wi — W) = Op(n~Y?).
J

Thus, Q11 is clearly of order 0,(n~!) because (AW;)? = 0,(n~'/2). Now we deal with Q1 5.
n=2Y2, 80 (Ui, Uj) So (Vi, Vi) " (Wi — W) W; AW
=n"%% 5180 (Ui, Uj) So (Vi, Vi) ¢ (Wi = W) Wi {T(Wy < W) — W}

Under the null hypothesis, because £ {Sy (U;, Uj) | (Us, Vi, Wi, V3, W)} = 0, W is uniformly
distributed, we have E{1(W), < W;) | W;} = W;. Thus, the corresponding U-statistic of
the equation above is second order degenerate. In addition, when any two of 7,7, k are
identical, we have

E [So (Ui, Uj) So (Vi, V5) ¢" (Wi = W)W {L(W), < W) — W;}] = 0.

Then the summations associated with any two of the 4, j, k are identical is of order op(1).
Therefore, Q12 = o0p(n~1). It remains to deal with Q3. Similarly, the corresponding
U-statistic of

n~t Y S0 (Ui, Uy) So (Vi, Vi) g (Wi = Wy) {L(W, < Wi) L(W, < W5) — W, W}
1,5,k,l

is second order degenerate and hence we obtain that Q13 = 0,(n™1).
Next, we show Q2 = 0,(n™!). Recall that

Qx = n7?) So(Ui,Uj) So (Vi, Vy) g (Wi = W) (AW; — AW)

1]
+2n72 " 81 (U3, Uj) So (Vi, V) o' (Wi — W) AW,
Z'7j
+2n72 ) " S (U, Uy) St (Vi, Vi) o' (Wi — W) AW
i7j

def

= (21 +2Q22+2Q23.

Similar to dealing with Q1 2, we have Q21 = op(n_l). We now evaluate Q2.

Q2 = n? Z {g (U= Uj) + eVt —e Vil AU,S, (Vi V;) g (W — W) AW;

7]
—n 2> g (Ui —Uy) — ¥+ eV} AUSS, (Vi V) (Wi — W) AW
.3
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Because under the null hypothesis, £{Sy (V;,V;) | (Us, Vi, W;,U;, W)} = 0, it follows that
for each i,

Y g U= ) + B = e S (Vi Vi) o (Wi = W) = Op(n ),
J

and the first term of Qa9 is of order 0,(n™") because AW; = O,(n~'/?) and AU; = 0,(1).
In addition, for each j,

n2Y {d U = Uj) =7+ &7} S0 (Vi Vy) o (Wi — W) {1(W, < Wi) — Wi}
ik

is degenerate and hence the second term of Qa2 is also of order o,(n™!) because AU; =
0,(1), indicating Q22 = op(n~1). Similarly, we have Q23 = o,(n™!). Thus it follows that
Q2 = 0p(n71).

Finally, we show that Q3 = n~?2 2250 (Ui, Uj) So (Vi, Vi) g (Wi — Wj) + op(n71). Or
equivalently, we show that Q3 1,Q32 and @33 are all of order op(n_l), where

Qs = 0y N S (ULUy) S (Vi Vy) g (Wi = W),

ij k=1

Qs2 = n2) > S (ULU)) S (Vi, Vi) g (Wi = W),
1,7 k+1=2

Qs = n2) )" S (ULU) S (Vi, V) g (W — W)
1,5 k+1=3

We first show that Q31 4 Q311+ @312 = op(n_l), where

Qs11 = n 2 Si(Ui,Uj)So(Vi,V;) g (Wi — W),
0,

Q312 = n 2 ZSO (Ui, Uj) S1(Vi, V) g (Wi — W) .
0,

Without loss of generality, we only show that Q311 = 0,(n™!). Calculate

Sl (UZ',U]') = {g’ (Ui—Uj)-i-eUiil —eiUi}AUi— {g/ (UZ‘—U]‘) —€Uj71+€7Uj}AUj
AU; = -t Zn: {Kh(zk - Z) (X, < X;) U Ui{Kn(Zr — Z;) — f(Z)}
k=1

f(Zi) ' f(Zi)
+0,(h*™ +n~th~tlog? n).
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Thus, when nh*™ — 0 and nh?/log®(n) — oo,

Qs11 = 272 {g (U= Uj)+ eV — eV} S (Vi, V) g (W — W;) AU,
.7]‘

= 207y ( {d Ui = Uy) + " = eV} 5y (Vi, V) g (Wi — W)
2,5,k
‘ {Kh(Zk —Z)1Xe < Xi) o UidKn(Zk = Zi) — f(Zv:)}} > + op(nY)

1(Z:) - 1(Z:)
2 . ,
S oD <{g’ (Ui = Uj) + €71 = e} S (V;, V) g (Wi = W)
i#]
_ [E{Kh(zk — Zi)U( Xy, < X;) — Ui Kp(Zy — Zi) | (Xi,Zi)}] )
f(Z)

where the last equality holds due to equations (2)-(3) of section 5.3.4 in Serfling (2009) and

the fact that var{Ky(Z; — Z;)} = O(h™!). Therefore, since

sup. ‘E{Kh(Zk - ZZ)]I(Xk < Xz) — UZKh(Zk - Zz) ‘ (Xi7 Zz)} ‘ = O(hm),

41

+ op(n_l),

when the (m — 1)th derivatives of Fix |z (x| 2)fz(z) and fz(z) with respect to z are locally
Lipschitz-continuous, (31,1 is clearly of order op(n_l) by noting that the summation in the
last display is degenerate.

Next, we consider ()32, where

Qsz = n2Y 81 (U,Uy) S1(Vi,Vy) g (Wi — W)

,J

+ 0728 (UL U;) So (Vi, Vi) g (Wi — W)
,J

+ 7Py S0 (Ui Uy) Sa (Vi Vi) g (W = W)
2]

def

= Q3211+ Q322+ Q323
We first show that Q321 = op(n_l). It follows that

Q321 = 2n? Z [{9/ Ui =Uj) + eVt —e Vit {g/ (Vi = V) + e —e7Vi}
i,J

g (W; — W) AUZ-AVZ»] +2n 72 Z {{g’ (U; = Uj) + Vit —e7 Ui}
1,J
g V= V) — 5 e} g (Wi — W) AUiAVJ}

def

= (321,11 @321,2-
Because E{g' (U; — U;) + eVi™t — e~ Vi | (U;, V;, W;, V;,W;)} = 0. For each 4,

n~! Z [{9/ (U; — Uj) + Vimt — e_Ui} {g' Vi—=V;) + Vit — e_vi} g (W; — W])}
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is of order Op(nfl/Q). Then Q3211 = o/p(nfl) because AU;AV; = op(nfl/Q). For 3212,
—AU;AV; = (UiAVj+UjAVi)+(ﬁﬂ7j —U;Vj). By expanding the ﬁi, ﬁj, TA/i, TA/] in Q3212 as
U statistics and apply the same technique as showing (31,1 = op(nfl) and Q13 = op(nfl),
it follows immediately that (3212 is of order op(n_l). Thus Q32,1 is of order op(n_l).

For Q322 and 323, we only show that (322 is of order op(nfl), for simplicity. Recall
that S (U;, Uj) is defined as

Sy (U3, Uy) = 271 g" (U = Uy) (AU)? + ¢" (Ui = Uy) (AU;)? + (e + %7 1) (AUL)?
+ (7Y + %) (AUy)? — 29" (U; — U;) AU AU |

The summations associated with either (AU;)? or (AU;)? are of order oy(n~1) following
similar reasons as showing Q3211 = op(n~ 1), and that associated with AU;AU; are of
order op(n_l) similar to dealing with @32,1,2. As a result, Q32 is of order op(n_l).

For (3.3, we have

4 1
Qs3=n""> > Su (Ui, Uj) Spc1 (Vi, Vi) g (Wi = W) =) Qs34

ij k=1 k=1
We only show that Q331 = 0,(n™!) because the other terms are similar. Calculate

653 (Ula U])
_ g/// (U; — Uj) {(AUZ.)3 — 3(AU¢)2AUJ‘ + 3AUi(AUj)2 - (AUj)B}
+ (6U¢71 o e*Ui) (AUZ)?) + (erfl o G*Uj) (AUJ)3

Then the summations associated with either (AU;)? or (AU;)? are of order o,(n~!) similar
to dealing with Q321,1, and that associated with AU;(AU;)? or (AU;)?AU; are of order
0p(n~1) similar to the second term of Q.

To sum up, we have shown that

o' PX.Y | Z) =02 8o (Ui, Uy) So (Vi, Vi) g (Wi = W) + 0p(n ™),

0]

where the right hand side is essentially a first order degenerate V-statistics. Thus by
applying Theorem 6.4.1.B of Serfling (2009),

(o]
~ d
np(X,Y | Z) S co > AxG(1)
j=1
where X?(l), j =1,2,... are independent x?(1) random variables, and \;, j = 1,2,... are

the corresponding eigenvalues of h(u, v, w;u’,v',w’). It is worth mentioning that the kernel
is positive definite and hence all the Ajs are positive. Therefore, the proof is completed.
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A.4 Proof of Theorem 4

Since we generate {U*, V*, W}, i = 1,...,n independently from uniform distribution, it is
quite straightforward that U*, V* and W* are mutually independent. In addition, we can
write p* as

pr=nt ZCOSO (U7,07) So (Vi*Vi7) g (Wi = W),
]

which clearly converges in distribution to ¢ Z;’il Xj X?(l), where X?(l), j=1,2,... arein-
dependent x?(1) random variables, and A;, j = 1,2, ... are the eigenvalues of h(u, v, w;u/,v', w’),
implying A\; = A;, for j = 1,2,..., and hence the proof is completed.

0

A.5 Proof of Theorem 5

We use the same notation as the proof in Theorem 3. With Taylor’s expansion, when
nh*™ — 0 and nh?/log?(n) — oo, we have

So(UU;) = So(Us,Uj) + S1(Us, Uj) + 0p(n~/?),
So(Vio Vi) = So(Vi, Vy) + S1(Vi, V;) + op(n /%),
G(Wi = Wy) = g(Wi = Wy) + g/ (Wi = W))(AW; = AW)) + op(n /%),

y S

I

)

Therefore, we have

G'PXY [ Z) = 0> S (U, U;) So (Vi, V) g (Wi — W)

i,J
+n72 Y So (Ui, Uj) So (Vi, Vi) g (W = W) (AW; — AW)
2
+n72 3" Sy (U3, U;) So (Vi, V) (Wi = W)
i,J
+n72> " 8o (Ui, Uy) S1 (Vi, V) g(Wi = W) + 0, (n™1/?)
4,J

= P+ P+ Py + Py +oy(n” ).

We deal with the four terms, respectively. For P;, by applying Lemma 5.7.3 and equation
(2) in section 5.3.1 of Serfling (2009), we have

Pi—cy'p(X,Y | Z) = 207" ) E[{So (Ui, U)So (Vi, V) g (Wi = W)} | (Ui, Vi, Wi)]

i=1
—2¢5 (X, Y | Z) 4 0,(n~Y/?)
= ™) {PLi— g p(X,Y [ 2)} + op(n?). (7)
=1

29



CAl1, L1 AND ZHANG

Next, we deal with P». Recall that
Py = 0 S0 (Ui Uj) So (Vi, Vi) g (Wi = W) (AW; — AW;)
2%
= 207 8o (Ui, U;) So (Vi, Vi) g (Wi = W) {T(W, < W3) — Wi}
i,k
By applying Lemma 5.7.3 and equation (2) in section 5.3.1 of Serfling (2009) again, we can
obtain that

P, = 2n7t zn: E [So(U,U)So(V, V') g (W — W) {I(W; < W) — W} | W;] +0p(n~1/?)
=1

n
= ot Z Py + op(n~1/?), (8)
=1

where (U’, V', W’') is an independent copy of (U, V,W).
It remains to deal with P3 and P;. P equals

Py o= 207 | {g (Ui = Uj) + ¥t — eV} S (Vi V) g(W; — W)
igk

Ky(Zy — Z) 1( X, < X;) — U Kyp(Zy, — Z; _

{ W(Zk — Zi) (X < Xi) — Ui (Zg )}]+Op(n1/z)_
f(Zi)

By definition, we have V 1LW and hence it can be verified that

E{So (Vi, V;) g(Wi — W) | Vi, Wi} = 0.
Denote P;’Z = {Kh(Zk - ZZ)]I(Xk S X,L) - UlKh(Zk - Zl)}/fz(zl) Thus,
B (Yt — %) 8o (Vi, V) g(Wi — W) PYY | X, Zk}
= B{(e" e ) Sy (Vi Vy) g(Wi = W) PY | X, 24, Ui} =0,

Thus when nh?>™ — 0 and nh — oo, we have

Py = 20"y E[{I(X >Xy)—-U}g'(U-U)So(V,V')
k=1
g(W = W') | Xi, Zi] + 0p(n~"/?)
d:Ef 27171 Z P377; + Op(nil/z). (9)
=1

Following similar arguments, we can show that

P = 27! ZE [{I(Y >Yi) =V} (V= V)So(U,U")

=1
(W = W')| Z = Z;] + op(n/?)
= ) Pt op(n?). (10)
=1
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To sum up, it is shown that ¢y 'p(X,Y | Z) could be written as
cglﬁ(X,Y | Z) —cg'p(X,Y | Z)

= on7! Z {Pl,i + P+ P3i+ Pyi— Cglp(X, Y | Z)} + Op(n_1/2),
i=1
where Py ;, P, P3; and Py; are defined in (7)-(10), respectively. Thus the asymptotic
normality follows.
Under the local alternative, we have U = F(X | Y, Z)+n~'/2((X,Y, Z), and it is easy to
det

verify that U £ F (X 1Y,Z2), Vand W are mutually independent. With Taylor’s expansion,
we have

= {g/(ﬁ, —U;)) + Uimt e*a} AU; — {g’(ﬁl —Uj)—eYiTl te ﬁJ}AU]

+ 27O - T)(AT; = AU + (7% 4 Pt) (AT + (7 + P71 ) (AT,
+ 67 {g" (U = Up)(AT: = AT + (P71 — e 0) (AT)* + (7 = 75 (al)}
+ So(Ui, U;) + op(n)

ST, Uj) + So(Us, Uy) + S3(Us, U;) + So(Us

NQ

where AU; = U; — U;. Then we can write ¢y ' p(X,
G PX,Y | 2)
2- 1TL_2 ZS@ [u] [jv S() Vz, V}) ”(Wi - W])(AWZ - AWj)Q

ZZ > Skl Uj)S (Vi, Vi) g (Wi = W) (AW — AW)
1,j 0<k+I<1
n2> N ST U8 (Vi, Vi) g (Wi = Wy) + 0p(n )
i,j 0<k+I<3
= 27101 + Qo + Q3 +op(n ).
With the same arguments as that in deriving Q1 = op(n_l) in the proof of Theorem 3, we
have Q1 = op(n™1).
Now we deal with Q5. For easevof notation, we write ¢(X;,Y;, Z;) as ¢; in the remaining
proof. By decomposing AU; as AU; = AU; + n~1/2¢;, we have

Q = n’ Z S1(Ui, Uj)So (Vi, Vi) §' (Wi = W) (AW; — AW;) + 0y(n ™)
= -2 Z { [? [jv '_1 _Ui} A[ZS@ (Vz, VJ) g’(Wi — Wj)AWZ‘

22{ (05 = Ty) + eVt — U AT
-So (Vi, V;) ¢ (W — W) AW + 0,(n™ 1)
= 2@2,1—2©2,2+0p(n’1).
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@2,1 is clearly of order o,(n~1) because for each fixed i,
E Hg/(ffﬁ —U) + eVt - ffa} So (Vi V5) g' (Wi — W) ‘ (Ui, Vi, Wz‘)} =0.
@2,2 is also of order o,(n™!) because for each i,

—22[{ (T = ) 4+ 57t = O 80 (1, O, = W) (L0% < 15) = W3 |

is degenerate.
Then we deal with the last quantity, (Q3, where

Q3 = *225()& U:)So (Vi, V;) g (Wi — W)

22 > Se(Us, U))S) (Vi V5) g (W; — W)

1,5 k+l=1

072N ST U)S (Vi Vy) g (Wi — W)
1,j k+1=2

072y D SeUsU)Si (Vi Vi) g (Wi = W) + 0p(n ")
1,7 k+1=3

= @3,0 + @3,1 + @3,2 + @3,3 +op(n7h).

We simplify @371 first. According to the proof of Theorem 3, we have
Qs1 = n2 251 (Ui, U;)So (Vi, Vi) g (Wi — Wy) + 0p(n™1)

- 2n*5/2 S {o Wi = U) + 7 = T LSy (Vi V) g (Ws = W)
6,J

+92n73 Z

7:7j7k

(U = Uy) + eVt - G*Ui} So (Vi, Vi) g (Wi = W)

{9
[ EKn(Z — Zi) WXy < Xi)  UiKp(Zi — Zi) o (n-1

{ 7Z) 1y }] e
& C53,1,1 + 2@3,1,2 +op(nh).

As we can see, Kn(Zk= ?()Z )(Xk<X i) Ui K’}(é’“) Zi) is of order h™. Then we can derive that
Q312 = nt ZE [{ (U; — Uj) + eV = e_U’} So (Vi, V) g (Wi — W)

' {Kh(Zk - Zi)1( X, < X)) Ui Kp(Zy

F(Zi) - f(Zi)_ Zi)} ' (Xj7}/}7Zj):| + Op(n~'n™).
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It can be verified that

Kn(Zp = Z)WXe < Xi)  UKn(Zk = Z) | .
7{ 77 - e
Kz - Z)F(Xi | %) UiKn(Ze—Z) | 5
- E{ 7 Z> il leal
= /K F(X; | Ys, Zi +uh) +n~ V20X, Y5, Z; —i—uh)}f(uh—i—Zi)du

— YN ZNGE{KW(Z, — Zi) | Zi} —n 2N Z)GE {Ky(Z — Z3) | Zs)
And

/K F(X; | Ys, Zi +uh) f(uh + Z3)du — f~HZ)UE{Ky(Z) — Zi) | Zi}

is of order A" and is only a function of ((v]l, Z;), which is independent of V;. Substituting
this into @3,1,2, we have

Q312 = _B/QZE<{ U; — l?j)+eUi_1—e_Ui}So(Vi,Vj)g(Wi—Wj)

_[f (){E(Xi,lﬁ,ziwh)—zi}f(Zﬁuh)du] ‘

; : . n*l my .
f(Zi) (Xa%’ZJ))JrOp( h™)

Then @371,2 is clearly of order o,(n~1) by noting that the conditional expectation of the
above display is of order h™ while the unconditional expectation is zero.
Next, we deal with (J32. It is straightforward that

Q32 = —QZslﬁ Uj)Si (Vi, V;) g (W; = W5)
QZSQU U)So (Vi, Vi) g (Wi — W;) + 0p(n™1)
def

= Q3,2,1 + Q3,2,2 +op(n7h).

Similar to dealing with @371,2, we can show that

Q321 = 20772 Z {g/((u]i —U;j) eVt — €_Ui}€z'51 (Vi Vi) g (Wi = W) + op(n1).

.3
Then @372,1 is of order o,(n~1) because S (V;, V;) = 0,(1) and
1(TT g '—1 [77,
{9Wi-0;)+ } 481 Vi, V3) g (Wi = W)
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is also 0,(1) with the expectation being zero. Similar as before, we can show that
Q322 = 32 [{ (U — Uj) (s — £5)° + (e_fj" + eﬁi_l) 4
+ (e‘UJ + eUﬂ'_l) 5]2-}50 Vi, Vi) g (W; — WJ)} + op(n_l)
= 27p7E |: {g/l(ﬁl — ﬁQ)(fl - 62)2 + (6_[71 + 601_1) f% + (6_02 + 602_1) f%}
“So (V1,V2) g (W — W2)] +op(nt)
- nlE {g"(ﬁ'1 — Us)t12S0 (Vi Vi) g (Wi — WQ)} .
Now we show that @3,3 = 0,(n™1). Because (AU;)? = 0,(n~/?), we have
Q33 = QZ{ U - U;) Uit _e_ﬁi}AUiSQ (Vi, Vi) g (Wi — W)
yolp2 Z { (U; — U;)(AU; — AU, + (e_ﬁi n effi—1> (AU;)?
+ <6*UJ’ + eUﬂ'*1> (AUj)Q}Sl (Vi, V;) g (W; — W;)
+67 2 Z { " (U = U)(AU; = AU + (V7! — 70 (AU
+ (Bt =) (AUj)S}SO (Vi V) g (Wi = Wy) + 0p(n~V/2).

Similar to dealing with @371,2, we can obtain that @3,3 = op(n1h).
Combining these results together, we have

& PX.Y | 2)
= —2250(? U)So (Vi, Vj) g (W; — W)

g Z{ (Us = Uj) + %71 = T L 0S) (Vi, V) g (Wi — W)
—n 'E {g”(Ul — U2)€1€250 (Vl, sz) g (W1 — Wg)} + OP(TL_I).
Then we can verify that ¢; 'p(X,Y | Z) can be written as

n
Y [{el‘“% —pp(t) {2V = gy (ta)} o)
j=1

&' PX,Y | Z)

2

+7;t1n_1/2€j6itlfjj {eibvj - (pv(s)} €it3wj:| w(tl, tQ, tg)dtldtgdtg + Op(n_l).
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It is clear that the empirical process
n o . o .
n-1/2 Z [{emUj _ wg(h)} {emv- —pv(ta)} ¢t3Wi 1 ity 0,0 {ethVj — py(t2)} its W
j=1
converges in distribution to a complex valued gaussian process ((t1,t2,t3) with mean func-
tion

B [iti0(X, Y, Z)e7 {2V — oy (t2)} V] |
and covariance function cov{((t1,te,t3), ((t10, t20,t30)} given by

{eu(ti —tio) — pu(ti)pu(—ti0)} {ev(t2 — t20) — @v(t2)ev(—t0)} ew(ts —ts0).  (11)

Therefore, by employing empirical process technology, we can derive that

c'np(X,Y | 7) -5 /// 1€ (E1, tas t3)]|? wlty, ta, ts)dt1 dtadts.

Hence we conclude the proof for local alternatives.

A.6 Proof of Theorem 6

Firstly, x Ly | z is equivalent to (X1,...,X,)1ly | z. According to Proposition 4.6 of Cook
(2009), it is also equivalent to

Xilly |z, Xolly|(z, X1), ..., X,lly|(z, X1,...,Xp-1).

Following similar arguments for proving the equivalence between X 1Y | Z and ULV | Z
in the proof of Proposition 1, the above conditional independence series are equivalent to

Uilly |z, Uslly | (z,X1), ..., Uplly|(z,X1,..., X, 1).

According to the proof of Proposition 1, we know that ULy | (z, X1,...,Xk_1) is equiva-
lent to Uy Ly | (z,Ui,...,Ux—1) for k =1,...,p — 1. Hence the conditional independence
series hold if and only if

(71J_Ly | z, (72J_Ly | (z,ﬁl), el ﬁpj_l_y ] (z,ﬁl, . .,ﬁp_l).

Then by applying Proposition 4.6 of Cook (2009) again, we know that (X1,...,X,)lly |z
is equivalent to ully | z. Furthermore, with the same arguments for dealing with y,
we can obtain that it is additionally equivalent to ullv | z. Besides, with the fact that
ullz and vz, we can get the conditional independence x1ly | z is equivalent to the
mutual independence of u, v and z. Therefore, the proof is completed by following similar
arguments with the proof of Proposition 1. 0
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A.7 Proof of Theorem 7

Following the proof of Theorem 3, we denote by g(up,up) = e w2l Gy, vy) =
e Ivi=valli and §(wy, wo) = e~ IW1=W2lli, Then we have

Su(u,uz) = E{g(ui,uz) + g(us,ug) — g(ug, uz) — g(uz,us) | (ur,u2)},
Sy(vi,ve) = E{g(vi,v2) +g(vs,va) — g(v1,v3) — g(v2,v3) | (v1i,v2)}.

Therefore, p(x,y | z) can be written as

px,y|z)=n 22{5 (T, U;) Sy (Vi, V)G (Wi, W) } -

With Taylor’s expansion, when nh*" — 0, nh2("tP=1) /1og?(n) — oo, under conditions 2’
and 3', we have

3
g(up,u2) = g(ug,uz) + Z Auf, Aud)®* D®G(uy, ug) + op(n1),
k=1

where A®* denotes the k-th Kronecker power of the matrix A, Au; = U; — u; and

8k~(u1 UQ)
D®k‘ )
o2 = Gt ug))
In addition, we can expand g(uj,us) as
3
gt up) = gluy,up) + Y ()~ (Auf, 0")*F D g(uy, up) + 0p(n ).
k=1

Therefore, by the definition of Sy(u1,uz), we have

Su{ﬁivﬁj)
= E{g(uyuy)+g(u,u') —g(u;,u) — glu,uy) | (us,uy)}
3
+ )T B (Auf, Au)) P DG (i, w) — (Auf, 07 Dy, u)
k=1
(0", Au))*F DG (u,y) | w, s b+ op(n ),
3
= Z S’vk(uiv uj) + Op(n_l)a

k=0

where :S’Vo(ui,u]) = Su(uj,u;) and Sk(ul,uj) k = 1,2,3 are defined obviously. Similarly,
when nh2(r+4=1) /1og%(n) — oo, and nh*™ — 0, we can expand Sy (v;,V;) as

3

Sy(¥i,¥;) = ZSk(Vz',Vj)‘i'Op(n_l),
k=0
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and it follows that

ﬁ(x7y | z = 722 Z Sk ul)u] Sl(v’uv]) (W’Hw])

2,j 0<k+I1<3
+n_22 Z §k(ui,uj)§l(vi,vj)(Aw AW )Dg(wi, w;)
3,j 0<k+1<2
272y 0 Y S(w,wy)Si(vi, vi) (AW, AwT)®2 DS G(wy, wj)
i,j 0<k+I<1
—|—6_1n_2Zgo(ui,uj)go(vi,vj)(Aw Aw; )O3 DD3G (Wi, W) + op(nt)
2%

= QI+ QY+ Q5+ Q) +op(n7h).

Then following similar arguments in the proof of Theorem 3, we have @5, Q5 and @) are all
of order 0,(n~!) and @} equals n=2 > Sulwi, u))Sv(vi, v;)g(wi, wj) + op(n~1). Combing
these results, we have

Py | 2) =172 Su(wi,u;)Sy(vi, v;)g(wi, w;) + op(n"),
Y]

where the right hand side is a first order degenerate V statistics. Thus by applying Theorem
6.4.1.B of Serfling (2009),

o0

Xy|Z Z]X]

J=1

where X?(l), j =1,2,... are independent x?(1) random variables, and \;, j = 1,2,... are

the corresponding eigenvalues of ﬁ(u, v,w;u’, v/, w’). Therefore, the proof is completed.

A.8 Proof of Theorem 8

It suffices to show that X 1LY | Z if and only if ULLV | Z because ULLV | Z is equivalent
to U,V and Z are mutually independent under U1l Z and V 1 Z.

We only show that X 1LY | Z if and only if ULLY | Z, because similar arguments will
yield that it is also equivalent to ULV | Z. It is quite straightforward that X 1Y | Z
implies ULLY | Z. While when ULY | Z, we have for each Z = 2, u and y in the
corresponding support,

Pr(U<u,Y <y|Z=2z)=uFy;z(y|2).

Substituting U = (1 — Ux)Fx|z(X— | Z) + UxFx|z(X | Z) into the above equation, with
some straight calculation, the left hand side is

Pr{Pr()?<XyX,E:z)JrPr(X’:X\X,Z:z)UXgu,ng\Z:z}

- Pr{Pr()~(<X|X,Z:z)+Pr()~(:X\X,Z:z)UX §u,Fy|X,Z(y|X,z)|Z:z}.
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Because Ux is standard uniformly distributed, we obtain

=uFy|z(y | 2),

{u—Pm%<nyZ:Z:z)

= = F yl| X,z
Pr(X =X | X,Z =7 = 2) }YWA‘ )

where ¢(-) is the cumulative distribution function of a standard uniformly distributed ran-
dom variable. Now assume that conditional on Z = z, the support of X is {x1,...,zn},
where z1 < ... < xy. Therefore, when 0 < u < Fx|z(z1 | 2), the expectation in the above
equation is
i u—Pr(X <z | Z=2)
P Pr(X=u;|Z=2)
u—Pr(X <z | Z=2)
Pr(X=x|Z2=2%2)
= uly|xz(y|x1,2).

}FY.X,Z@ 2 2)Pr(X = ;| Z = 2)

Pr(X =m|Z=2)Fyxzy|r,2)

The expectation equals uFy z(y | z). That is, Fy|x,z(y | #1,2) = Fy|z(y | 2).
When Fxz(z1 | 2) <u < Fx|z(z2 | 2), we can calculate the expectation as

N
u—Pr(X <z | Z=z)
F P (X —2:| 2=
;g{ Pr(X:.I,L | Z:Z) Y|X,Z(y|f13z,22) I'( LIZ‘,L| Z)

= Fyixzylr,2)Pr(X =21 | Z=2)+{u—Pr(X <z | Z=2)} Fyxz(y|x22).

Since we have shown that Fyx z(y | 71, 2) = Fy|z(y | 2), with the fact that the expectation
equals uFy|z(y | ), we can get Fy|x z(y | z2,2) = Fy|z(y | 2).

Similarly, we can obtain that Fyx z(y | =&, 2) = Fyz(y | 2), k = 3,..., N. Conse-
quently, we have Fy|x 7 (y | #,2) = Fy|z(y | ) for all x,y and z in their support. That is,
X 1LY | Z. Therefore, the proof is completed.

O

Appendix B. Additional Simulations Results

We consider the directed acyclic graph with 5 nodes, i.e., X = (Xi,...,X5), and only
allow directed edge from X; and X; for ¢ < j. Denote the adjacency matrix A. The
existence of the edge follows a Bernoulli distribution, and we set Pr(A4;; = 1) = 0.4, for
i < j. When A; ; = 1, we replace 4;; with independent realizations of a uniform U(0.1,1)
random variable. The value of the first random variable X7 is randomly sampled from some
distribution P. Specifically,

€1 NP, and X1 = €1.

The value of the next nodes is

j—1
€5 ~ P, and Xj = ZAj’ka + €5
k=1
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for j = 1,---,p. All random errors €1,...,¢, are independently sampled from the distri-
bution P. We consider two scenarios, where P follows either normal distribution N(0,1)
or uniform distribution U(0,1). We compare our proposed conditional independence test
(denoted by “CIT”) with other popular conditional dependence measure. They are, respec-
tively, the partial correlation (, denoted by “PCR”) conditional mutual information (Scutari,
2010, denoted by “CMI”), and the KCIl.test (Zhang et al., 2011, denoted by “KCI”). We
set the sample size n = 50, 100, 200 and 300. The true positive rate and false positive
rate for the four different tests are reported in Tables 5, from which we can see that as the
sample size increases, the true positive rate of the proposed method steadily grows, and the
proposed method outperforms the other tests, while the false positive rate remains under
control with slightly decrease.

Table 5: The true positive rate and false positive rate for the causal discovery of the directed
acyclic graph with different tests

Samples 50 100 200 300 50 100 200 300

Tests P~ N(0,1)
true positive rate false positive rate
CIT 0.555 0.658 0.734 0.789 0.117 0.112 0.107 0.103
PCR 0.479 0489 0.546 0.589 0.101 0.110 0.130 0.135
CMI 0.472 0.530 0.604 0.590 0.097 0.127 0.143 0.150

KCI 0.360 0.516 0.592 0.634 0.072 0.135 0.144 0.168
Tests P ~U(0,1)
true positive rate false positive rate
CIT 0.468 0.587 0.734 0.736 0.070 0.099 0.095 0.113

PCR 0.469 0.526 0.588 0.545 0.111 0.129 0.140 0.140
CMI 0.497 0.568 0.566 0.633 0.103 0.127 0.138 0.149
KCI 0.386 0.458 0.523 0.564 0.082 0.099 0.123 0.122
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