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Abstract

Recently, Dwork et al. (STOC 2021) introduced Outcome Indistinguishability as a new desideratum
for binary prediction tasks. Outcome Indistinguishability (OI) articulates the goals of prediction
in the language of computational indistinguishability: a predictor is Outcome Indistinguishable
if no computationally-bounded observer can distinguish Nature’s outcomes from outcomes that
are generated based on the predictions. In this sense, OI suggests a generative model for binary
outcomes that cannot be refuted given the empirical evidence and computational resources at hand.
In this work, we extend Outcome Indistinguishability beyond Bernoulli, to outcomes that live in a
large discrete or continuous domain.

While the idea of OI for non-binary outcomes is natural for many applications, defining OI in
generality is not simply a syntactic exercise. We introduce and study multiple definitions of OI—
each with its own semantics—for predictors that completely specify each individuals’ outcome
distributions, as well as predictors that only partially specify the outcome distributions through
statistics, such as moments. With the definitions in place, we provide learning algorithms for
producing OI generative outcome models for general random outcomes. Finally, we study the
relation of Outcome Indistinguishability and Multicalibration of statistics (beyond the mean) and
relate our findings to the recent work of Jung et al. (COLT 2021) on Moment Multicalibration. We
find an equivalence between Outcome Indistinguishability and Multicalibration that is more subtle
than in the binary case and sheds light on the techniques employed by Jung et al. to obtain Moment
Multicalibration.

Keywords: Indistinguishability, Computational Learning Theory, Generative Models

1. Introduction

Typically, the goal of individual outcome prediction is framed as finding a “best-fit” hypothesis.
For instance, the agnostic PAC model (Valiant, 1984; Kearns et al., 1994) formalizes the goal of
learning by fixing a hypothesis class #, and then asking to find a function f that achieves loss that
competes with the best hypothesis h* € H within the given class. While this paradigm has been
remarkably effective for developing the theoretical foundations of supervised machine learning, a
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downside of the PAC model is that it only considers the overall performance of a predictor, and not
the performance across subpopulations.

In contexts where models are trained to make predictions about people, a major concern with
overall loss minimization is that all of the errors may concentrate on a historically-marginalized
subpopulation. These concerns are far from hypothetical, and have been observed empirically in
diverse application domains including commercial facial recognition software (Buolamwini and
Gebru, 2018) and widely-used medical risk predictors (Obermeyer et al., 2019; Barda et al., 2021).
Given the increasing use of machine learning in making consequential decisions, there is a growing
need to develop formal tools to reason about the quality of predictors that go beyond overall loss
minimization.

Recently, Dwork et al. (2021) introduced a new abstraction for supervised learning—Qutcome
Indistinguishability—in the context of predicting boolean outcomes. Risk assessment tools produce
scores for individual instances, such as the chance that this student will graduate within 4 years, or
the likelihood that this tumor will metastasize under a given course of treatment, that are treated
as probabilities. But what is the probability of a non-repeatable event? How should we specify the
goal of these predictive algorithms? Motivated to ground and strengthen the guarantees of individual
risk prediction, Outcome Indistinguishability (OI) articulates the goals of learning in the language
of computational indistinguishability. Informally, OI requires that the distribution over outcomes
suggested by an outcome predictor be computationally indistinguishable from the true outcome
distribution.

In more detail, OI reasons about the similarity of two joint distributions on individual-outcome
pairs. The first distribution (X,Y™) ~ D*, referred to as Nature, is the true distribution of in-
dividuals X and associated outcomes Y* in the world. The second distribution is induced by a
predictor p : X — [0, 1] that estimates the probability of positive outcome for each individual.
To draw a sample from the modeled distribution (X,Y) ~ D(p), the individual X is sampled
from Nature’s true marginal distribution over individuals; then, conditioned on the individual X,
the outcome Y ~ Ber(p(X)) is resampled according to the Bernoulli distribution with probability
according to the prediction p(X). Given these two distributions, OI defines a requirement on pre-
dictors: a predictor p is outcome indistinguishable from Nature D* if the distributions D* and D(p)
are indistinguishable.

To specify the indistinguishability condition formally, OI is parameterized by a family of ef-
ficient distinguisher algorithms 4. The distinguisher algorithms A C {X x ) x [0,1] — {0,1}}
receive as input an individual z € X, an outcome y € ), and the prediction p(z) € [0, 1] on the
sampled individual. Formally, for some € > 0, a predictor  is (A, €)-outcome indistinguishable'
if for all A € A the acceptance probability of A on samples from D* and D(p) are within ¢ of one
another.

Pr [AX,Y5H(X)=1]-  Pr | AX,Vip(X)=1]|<e

(X,Y*)~D* (X,Y)~D(p)

Importantly, OI requires that the predictions p fool all distinguishers A € A simultaneously. In
this way, OI provides a computational-theoretic perspective on the subtle issue of individual-level
outcome probabilities: an OI predictor p defines a model for “individual probabilities” of positive
outcomes (p(x) for each individual x € X) that cannot be refuted by efficient tests, captured by .A.

1. We focus on the variant of OI that Dwork et al. (2021) refer to as “sample-access” OI.
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On a technical level, Dwork et al. (2021) investigate the complexity of learning OI predic-
tors, formalizing the close relationship to a notion of fairness in prediction called multicalibration
(Hébert-Johnson et al., 2018). They show that Ol is capable of capturing the agnostic PAC model,
and that learning OI predictors is closely related to the task of (weak) agnostic learning. Recent
works even demonstrate a formal sense in which the OI guarantee is stronger than an arbitrary ag-
nostic learning guarantee (Gopalan et al., 2021a). But perhaps most importantly, the work on OI
establishes indistinguishability as an effective qualitative tool for reasoning about formal properties
of predictors. The OI perspective has already seen application in answering questions in compu-
tational learning theory that, on the surface, do not look like questions about indistinguishability
(Rothblum and Yona, 2021). In all, Outcome Indistinguishability defines an extensible framework
for studying formal guarantees in supervised learning.

1.1. Our Contributions

In this work, we define and study a generalized framework for modeling random outcomes through
the lens of Outcome Indistinguishability. Moving beyond Bernoulli outcomes, Outcome Indistin-
guishability becomes a condition about generative outcome models M : X — A()) that map each
individual = € X to a probability distribution M z) over possible outcomes y € ). The general-
ization maintains the intuition behind the original formulation of OI: a generative outcome model
M is Outcome Indistinguishable with respect to a family of distinguishers A if the joint individual-
outcome distribution induced by M is indistinguishable from Nature’s true joint distribution.

While intuitive, generalizing OI from the Bernoulli case to general random outcomes is not
simply a syntactic transformation. When predicting Bernoulli outcomes, the entire distribution is
captured by the estimated probability; thus, given a predictor p : X — [0, 1], the generative model
is implicitly specified by sampling ¥ ~ Ber(5(X)). In contrast, without parametric assumptions
on the outcome distributions, to obtain OI in full generality, we need to reason explicitly about the
choice of generative model. The choice of how to generate outcomes given a set of predictions
results in different possible definitions of OI.

Our contributions include formalizing the “right” generalization of OI to non-Bernoulli random
outcomes, establishing the feasibility of these notions via learning algorithms, and drawing a fur-
ther connection between Ol and multicalibration of statistics. We define a sequence of OI variants,
which formalize the intuition behind outcome indistinguishability for different “plausible” models
of Nature. These models of Nature differ in how they quantify over the outcome generation proce-
dure, ranging from generative outcome models that fully-specify individuals’ outcome distributions
to models that only require the learner to estimate certain statistics of the outcome distributions.
Our results generalize the initial work of Dwork et al. (2021), and set up a general framework for
discussing OI generative models and Ol statistic predictors.

1.2. Generative Outcome Models

We begin by describing the most generic notion of OI we define, which we refer to as Generative OI.
Generative Ol reasons about fully-specified generative outcome models M : X — A()), where
the prediction M (X) gives an explicit description of the predicted probability distribution of Y’
given X. Because we require a complete description of the outcome probability distributions, this
notion is capable of capturing any conceivable variant of OI. In particular, Generative OI can easily
be adapted to handle both discrete or continuous random outcomes.
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For Generative OI, we define the modeled distribution D (M) as follows: given an individual X
(sampled from Nature’s distribution on individuals), we sample the outcome Y ~ M(X) directly
from the predicted distribution. Thus, given a family of distinguishers A, (A, ¢)-Generative OI
requires that D(M) fools each A € A:

Pr [AX, Y M(X)=1]— Pr A(X,Y;M(X)):l] <e.

(X,Y*)~Dx (X,Y)~D(M)

In other words, a generative outcome model M satisfies the OI condition if the conditional distri-
bution on outcomes “fools” every distinguisher A € A into accepting with the same probability as
it accepts on true outcomes. We require that this indistinguishability condition holds even when the
distinguisher may inspect the predicted probability distribution M (X) on sampled individual X.

As such, this notion is very restrictive, and also depends significantly on the way that we specify
M(X) as a probability distribution. The complexity of obtaining Generative Ol is tightly coupled
with the representation of outcome distributions. In Section 5, we demonstrate a generic framework
for learning Generative OI models, under some key assumptions on the underlying outcome distri-
butions. Concretely, this establishes the feasibility of Generative OI for generating outcomes over a
large discrete domain.

We show that a generalization of the Multiplicative Weights algorithm can be used to learn
Generative Ol models. In this statement of the theorem, we give concrete bounds for the sample
and time complexities for learning and evaluating the Generative OI models for general discrete
outcome domains. In fact, the theorem is a special case of a more general result, where we show
how to abstract out the essential components of our analysis, to learn Generative Ol Models for a
broad class of random variables. Given the generality at which we study this notion of OI, in many
applications, it may be possible to exploit domain-specific structure in the distribution of outcomes
in order to improve the complexity over the generic solution.

Parametric OI. In general, specifying a complete generative model for each individual’s outcome
distribution may be overly-complex. To combat this complexity, a natural approach for specifying
the outcome distributions would model each outcomes to be drawn from a fixed parametric family
M. Such a strategy can be very convient, because the predictor only has to specify estimates of
the parameters of the family. Then, given the predicted parameters for a given individual X, the
outcome can be sampled according to the distribution corresponding to these parameters. In Sec-
tion 4.1, we define a special case of Generative OI that we call Parametric OI, which is a condition
on a parameter predictor 6:x >R A predictor 0 is Parametric OI, if model that samples out-
comes Y ~ Myg(0(X)) according to the parametric family with parameters 6(X) is Generative
Ol

Pr AX, Y5 0(X) =1 - Pr AX,Y;0(X)) =1
(X,Y*)~D*[ ( (%)) } (X,¥)~D(Me(8)) ( ) }

<e

As a concrete example, imagine modeling outcomes as Gaussian random variables, where the pa-
rameter predictor returns the estimated mean and variance of a Gaussian outcome; that is, where
0(X) = [(X),5%(X)], and the generative model samples outcomes ¥ ~ N (i(X),5%(X)) ac-
cording to the normal distribution. Additionally, note that we can view the original formulation
of OI of Dwork et al. (2021) as Parametric OI for the Bernoulli distribution, where the parameter
predictor 6(X) = p(X) simply predicts the probability of positive outcome for the individual X .
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While Parametric Ol offers an appealing way to compress the generative outcome model into a
small number of predicted parameters, unfortunately, it is not always feasible. In the case where our
choice of parametric family is misspecified, it could be the case that some A € A is always capable
of distinguishing Nature’s outcomes from the modeled outcomes. For instance, if we elect to model
outcomes as Gaussian random variables, but Nature’s outcomes are far from following a Gaussian,
there will be efficient distinguishers that always have nontrivial distinguishing advantage.

1.3. OI Predictors of Statistics

The challenges associated with Generative OI (and infeasibility of Parametric OI) motivates ad-
ditional notions of OI, that are meaningful in the context of predictors that only partially specify
individuals’ outcome distributions. We formalize the idea of partial specification through statistic
prediction. We think of a statistic p simply as some function of the distribution of outcomes. The
most basic statistic considered is the mean p = p; the original characterization of OI can be viewed
as OI for mean predictors i : X — R. We generalize this basic predictor to handle d-dimensional
statistics. For concreteness, a useful example to have in mind is a 2-dimensional statistic predictor
that estimates the mean and variance of the outcome distribution.

pa(a) = (il), ()

Given a choice of d-dimensional statistic p of the outcome distribution, we consider what it means
for a statistic predictor 5 : X — R? to be OI Given a statistic predictor, we consider the set of
generative outcome models that exhibit the statistics predicted by p(x) for all individuals z € X.
Formally, we say that a model M is individually-consistent with a statistic predictor p if for each
individual x € X, the statistics p of M(x) equal p(z).

Existential OI. With this setup, we can define the first notion of OI for statistic predictors, which
we call Existential OI. The intuition for the definition is to define OI for predictors by (existentially)
quantifying over models that are invidually-consistent with the predictor. Specifically, we say that
a statistic predictor p is Existential-Ol if there exists a generative outcome model M, which is
individually-consistent with p, that fools the distinguishers A € A:

<e

Pr AX, Y p(X)=1]— Pr AX,Y;p(X)) =1
B [ACRY55(0) =1] = Pe | ALY 5(0) = 1

Existential OI is a condition defined for statistic predictors, but implies that the statistics are con-
sistent with some generative outcome model that simultaneously fools every test A € A. In other
words, the predictions globally “explain” the statistics of the distributions on outcomes in a way
that plausibly could come from Nature’s model. In the case of predicting the mean and vari-
ance po, Existential Ol requires that there exists a mechanism for generating individual’s outcomes
Y ~ M j» () for € X such that the mean and variance of Y equals the predicted values specified
by p2(x) = (fi(x),52(x)) and no distinguisher A € A can meaningful tell the difference between
samples Y* and Y.

In Section 4.2, we develop an understanding the properties of Existential OI. We establish that
Existential OI is a relaxation of Generative OI, showing how to turn any procedure for learning
Generative OI models into one for learning Existential OI predictors. The argument is intuitive, but
is also subtle because the “types” of Existential OI predictors and Generative OI models differ.
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Oblivious Distinguishers. In Existential OI, even though the condition is defined for predictors
of statistics, the distinguishers A € A can, in principle, test properties of the resulting generative
outcome model that are not captured by the predicted statistics. This fact makes it important to
quantify over the choice of individually-consistent model. In our final notion of OI, we consider
a natural restriction on the family of distinguishers that, intuitively, restricts the distinguishers to
only “care about” the statistic being predicted. For a statistic p, for any probability distribution
Fy € A(Y), we denote the true value of the statistic over Y ~ Fy as p {Fy}. We say that a
distinguisher A is p-oblivious if for all individuals 2 € X and predicted statistics v € R?, the
acceptance probability of A(z,Y’; ) on an outcome Y ~ Fy is a function of p { Fy }. That is, there
exists a function k., : R% — [0, 1] such that for any outcome distribution Fy € A(Y),

Pr[ A(e,Yiv) =1] = heo(p {Fy )
For instance, if our statistic predictor ps estimates the mean and the variance of the outcomes, then
an oblivious distinguisher’s acceptance probability can be parameterized by the individual X and
the predictions po(X) = (f1(X),52(X)), but may only depend on the sampled outcome Y ~ Fy
through its mean and variance p {Fy},o02 {Fy}. We say that a statistic predictor 5 is (A, ¢)-
Oblivious OI if it fools every p-oblivious A € A. Intuitively, oblivious distinguishers focus all
of their attention on the statistics, and not other aspects of the outcome distribution. As such,
obliviousness is a natural restriction to make on statistics predictors.

We show that Oblivious Ol is a strict relaxation of Existential OI: non-oblivious tests can enforce
global consistency of statistic predictors that are not captured by oblivious predictors. While weaker,
Oblivious OI gives the intuitively strong guarantee that no distinguisher A € A can refute the
statistic predictions on its own. For each such distinguisher, there exists a consistent generative
model that produces outcomes that are indistinguishable from Nature, so the statistics can only
appear inconsistent when considering at multiple distinguishers at once.

Oblivious OI and Multicalibrated Statistics. Our main technical result investigates connections
between OI and multicalibration in the context of general random outcomes. The work of Dwork
et al. (2021) established a tight computational equivalence between (the main variant of) Outcome
Indistinguishability and multicalibration, a notion introduced in the study of algorithm fairness of
predictors (Hébert-Johnson et al., 2018). Given this equivalence, it is natural to ask whether there
is a similar connection between the generalized version of OI and an appropriate generalization
of multicalibration. Typically, multicalibration has been studied in the context of predicting the
probability of a binary outcome. A key exception to this general trend is the work of Jung et al.
(2021), who initiated a study of multicalibration for statistics beyond mean estimation. Jung et al.
(2021) show how their generalization—moment multicalibration—suffices to provide Chebyshev-
style inequalities for uncertainty quantification based on the predicted moments, rather than the true
moments of the underlying distribution on outcomes.

Building on the work of Jung et al. (2021), we generalize moment multicalibration and de-
fine multicalibration in the context of estimating general statistics. A key algorithmic and analytic
step in achieving moment multicalibration involves conditioning on the predicted mean, in order to
obtain linearization of the moments. We demonstrate an equivalence between statistic predictors
that satisfy Oblivious OI and our novel generalization of multicalibration, that crucially relies on
linearization.
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Theorem 1 (Informal) For any linearizing statistic, for any class of functions C, there exists a
family of oblivious distinguishers A such that (A, €)-Oblivious OI implies (C, «)-multicalibration
for a < O(e). For any family of oblivious distinguishers A, there exists a class of functions C, such
that (C, o)-multicalibration implies (A, €)-OI for ¢ < O(a).

The analysis of Oblivious Ol and multicalibrated statistics further clarifies the approach used by
Jung et al. (2021) to achieve moment multicalibration, showing in a sense, their techniques are nec-
essary. In particular, we show that without mean-conditioning, OI (even Existential OI) is incapable
of providing any recovery guarantee for central moments.

2. Technical Overview

The formal definitions of each variant of OI and the relationship between notions is presented in
Section 4. Here, we begin with a high-level overview of the algorithm for learning Generative OI
models. We focus our overview on the setting where the outcomes come from a large discrete
domain. Then, we discuss the connection between Oblivious Ol and Multicalibrated statistics.
In particular, we highlight the technical concept of linearization and how it plays a key role in
establishing the equivalence. The results are presented in full detail in Section 5 and Section 6,
respectively.

2.1. Learning OI Models.

Our goal is as follows: for any family of distinguishers .4 and constant € > 0, given a small set of
samples from Nature’s distribution D*, return an (A, )-Generative O Model M : X — A(Y).
First, we recall the high-level approach that Dwork et al. (2021) use to learn Bernoulli OI predictors
p: X — [0,1]. The learning algorithm follows a simple intuition: if there is some A € A that
distinguishes between Nature D* and the model of Nature D(p), use A to update p; else, D* and
D(p) are indistinguishable, so we are done. This strategy can be viewed through different lenses,
as a form of boosting or gradient descent, and is closely connected to the strategy used by Hébert-
Johnson et al. (2018) to learn multicalibrated predictors.

An Abstraction for Learning OI Models. Intuitively, when we move beyond Bernoulli OI, the
specifics of the learning strategy and the complexity of operations may depend intimately on the
characteristics of the outcome space Y (e.g., discrete vs. continuous, dimensionality, smoothness of
density, etc.) and on the particular OI variant we aim to achieve (e.g., generative Ol vs. parametric
OI). One of our contributions is presenting a general and flexible framework that can be adapted to
the many variants of OI that we study in this work (and, hopefully, beyond).

A key issue is the representation of outcome distributions assigned for each individual, as we
discuss below. Once a representation is fixed, we identify two main algorithmic tasks that suf-
fice for running our learning algorithm: sampling from an individual’s outcome distribution, and
reweighting an individual’s outcome distribution (for the algorithm’s update step, see above).

Fixing an outcome domain ), we define a collection R of representations of distributions in
A(Y). For a distribution Fy € A()), we take R(Fy ) to be its representation (which is in the set R).
We also assume that the representation can be used to sample from the distribution, using a sample
generation procedure G (see below). For instance, the representation may be an explicit histogram,
listing the probability of each element in ) (up to some discretization). Or the representation may
be implicit, e.g. a small circuit that can be used to sample from Fy .
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The following two algorithmic tasks are central to our Ol learning algorithm:

» Sample Generation: Given the representation of Fy- € A()), sample from Fy-.

G : R — Y is a randomized map, where G(R(Fy)) should produce an outcome distri-
bution that is equal to Fy (or very close to it in total variation distance, e.g. because of
discretization issues).

* Reweighting: Given the representation of a distribution over ) and a predicate B : ) —
{0, 1}, produce the representation of a reweighted distribution, where the probabilities of
elements in ) that satisfy the predicate are increased, and the probabilities of elements
that do not satisfy the predicate are decreased. We use a multiplicative reweighting, whose
magnitude is controlled by a parameter 7.

We take WB : R(A(Y)) x [~1,1] — R(A(Y)) to be an oracle procedure, where
B :Y — {0,1} computes the characteristic function of a subset of ). Given a reweight-
ing parameter € [—1,1] and a representation » € R of the distribution Fy = G(r),
W5 (r;n) returns a representation 7’ € R of a new distribution Gy = G(r'), where:

Pr[YGB]oce”-I;r[YeB] gr[YgB]mgr[YgB}.

Gy Y

Concretely, one can think of W as abstracting away the computational procedure needed to
normalize distributions. In the discrete case, this may involve a summation over domain elements.
In the continuous case, the reweighting procedure may involve numerical integration. In either
case, it is important that JV is given as a uniform computational procedure, which is fixed for all
updates we may want to make; this allows us to build up the generative outcome model. The
reweighting assumption is a direct generalization of the multiplicative weights update used in the
learning algorithm for Bernoulli OI (Dwork et al., 2021). Abstracting these two tasks allows us to
present a unified treatment of learning for the many variants OI variants we consider in this work.
We discuss different representations below, but we begin with a concrete instantiation: a learning
algorithm for Generative Ol models that uses the above framework.

Learning Generative OI Models. Intuitively, the algorithm follows the same high-level strategy
of that of Dwork et al. (2021). The algorithm starts with a naive predictor M, which maps individ-
uals in X to representations of distributions over )). The distributions are all initialized to return a
chosen prior M(x) = Py (say, the uniform distribution over )). Then, the algorithm iteratively
identifies whether there is any A € A that distinguishes between Nature D* and the current mod-
eled distribution D(M) with absolute advantage greater than €. If not, then we are done: the failed
search certifies that M is already (A, £)-Ol. If we find some A € A that distinguishes successfully,
then we update the model Mto bring A’s acceptance probability closer to its acceptance probability
on D*.

With this algorithm in mind, several remarks are in order. First, the algorithm accesses Nature’s
distribution D* and the distribution of the learned model M in a fairly restricted way: in each
iteration, the algorithm evaluates the acceptance probability of each A € A on D* and on D(M)
This estimation can be implemented using random sampling. For Nature, the algorithm can use

true samples from D*, and for the model of Nature, it uses the sample generation procedure G to
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obtain samples from D(M) If M is not OI, then the algorithm updates M using the reweighting
procedure. We emphasize that these two steps involving Sample Generation and reweighting are the
only ways that the algorithm interacts with M.

Generative OI Learning Algorithm (Overview)

Given. Family of distinguishers .A; advantage ¢
Initialization. For all - € X, initialize M () to prior Py
Iterate. fort =1,...,T

* Let €4 be the (signed) distinguishing advantage

eq=Pr| AX, Y M(X)) = 1} — Pr [A(X, Y M(X)) =1
D* D(M)

If maxgca |ea| < e, return M.
Else, let A; <— argmax 4 |e4l.

* Implicitly update the predictor M. For each z € X, the reweighted predictor outputs the
following distribution:

1. Let B, = {y eV: Az, y; M(z)) = 1}
2. M(z) « WBs(M(z),n)

The algorithm does not maintain an explicit representation of the outcome distribution for each
x € X—and this is crucial! Instead, the distribution for each x € X is described implicitly using
the list of distinguishers (A1,..., Ax) found in each update iteration, as well as the magnitudes
(and directions) of the updates (¢4,,...,£4,). Thus, in each intermediate iteration, and in its
final output, the algorithm uses a model M: X - A(Y), where the distribution described by
M(w) is obtained by starting with the prior Py and reweighting according to the distinguishers
and magnitudes in prior iterations. In this sense, we will really incorporate copies of YW into the
learned model M.

In all, we show that with minimal assumptions on Nature’s true outcome distribution, it is pos-
sible to obtain the very strong outcome indistinguishability guarantee of Generative OI. Still, to
obtain such a strong notion, we require fairly strong requirements on the ability to generate sam-
ples and reweight the underlying distribution. To obtain Generative OI in full generality, the costs
can be bounded modestly in terms of data, but can be costlier in terms of computation. Thus, in
future applications of OI, it is advisable to bring domain-specific assumptions (e.g., smoothness or
sparsity) that may aid in the computational efficiency. Exploring the efficiency of Generative Ol in
more structured outcome distributions seems to be an interesting direction for future research.

In Section 5, we describe the algorithm formally. Then, we analyze key quantities, like the
iteration complexity and how this informs quantities like the sample complexity, time complexity of
evaluation, and time complexity of learning. While a direct generalization of the approach of Dwork
et al. (2021), the analysis in the generic version is much more subtle. We analyze the algorithm in
generality, in terms of the generation and reweighting time complexities. Then, we instantiate the
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general bound for the special case of learning generative outcome models for outcomes that are
drawn from a large discrete distribution.

2.2. Oblivious OI captures Multicalibration

Multicalibration was originally introduced by Hébert-Johnson et al. (2018) as a notion of fairness
in binary prediction. Informally, a predictor p : X — [0, 1] is multicalibrated over a collection
of subpopulations, if for every subpopulation S C C in the collection, p is well-calibrated even
when restricting our attention to the individuals in .S. More technically, we work with the following
generalization of multicalibration? that is defined in terms of functions, instead of subpopulations.
For a class of functions C C {X x [0,1] — [0,1]} and an approximation parameter « > 0, a
predictor p is (C, «)-multicalibrated if for all ¢ € C

| ELCa00)- (V= 500) ]| <

That is, the predictions p are c-accurate in expectation, even when we restrict our attention to the
images of functions in C. Equivalently, by linearity of expectation we can write this condition in
terms of the true probability of positive outcomes, p*(z) =Pr[Y =1 | X ==z |.

] E (60X, 50X)) - (°(X) — (X)) | ] <a

In the case of Bernoulli OI, Dwork et al. (2021) establish a tight computational equivalence
between OI and multicalibration. The reductions show how to translate between calibration tests
and distinguishers. Intuitively, the key idea is to design distinguishers that accept with probability
proportional to the statistic of interest, e.g., the expectation of the outcome on the image of a given
function ¢ € C

PrA%(X,Y;p(X)) = 1] o E[ (X, p(X)) - Y],

Similarly, given a distinguisher A, the goal is to construct a function c4 such that the multicalibra-
tion condition on ¢ enforces indistinguishability by A.

Multicalibrated Statistics. When moving to predicting statistics beyond Bernoulli parameters,
we need to formalize the idea of calibration and multicalibration of general statistics. This simple
definitional question turns out to be subtle.

Suppose we are interested in learning a statistic predictor p : X — R? for some d-dimensional
statistic p. Denote by p* : X — R? true statistics according to Nature. Then, a natural gen-
eralization of multicalibration to general statistics would be the following condition that checks
the accuracy of p in expectation over a class of functions C. To test calibration of d-dimensional
statistics, it is natural to take C C {X x R4 — Rd} to be a collection of vector-valued functions,
assumed to be bounded in ¢;-norm. We say that p is (C, a)-multicalibrated, if for all ¢ € C,

E [((X, 5(X), (5" (X) = 50N ] | < o

2. In the subsequent technical sections, we show how to implement the original framework of multicalibration as an
instance of this generalization.

10



OUTCOME INDISTINGUISHABILITY BEYOND BERNOULLI

While natural, this generalization of multicalibration encounters issues when working with general
statistics. For arbitrary statistics p, this multicalibration condition is information-theoretically in-
feasible, even to certify. In particular, it is not obvious—from a small sample—how to evaluate
p*(X). Crucially, the Bernoulli case relied on linearity of expectation, to use outcomes Y, as a
surrogate for the probability parameters p* (X).

Building off of the work on moment multicalibration by Jung et al. (2021), we show how a tech-
nical condition on the statistic p—Iinearization—allows us to make progress. In effect, linearization
ensures that the generalization of calibration to general statistics works in the same manner as stan-
dard Bernoulli calibration. Specifically, for any joint distribution D over individual-outcome pairs,
we require that the expected statistic value (averaged over individuals) is equal to the statistic on the
marignal distribution of outcomes,

1% [p{DY|X} } =p{Dy}

where Dx is the marginal on individuals, Dy x is the conditional outcome distribution given an
individual, and Dy is the marginal on outcomes. Linearization allows us to reason about the pre-
dicted statistics, not just in terms of individuals, but in terms of the average value across a group of
individuals, which we can estimate from a small sample of outcomes.

An equivalence with Oblivious OI.  As in the Bernoulli case, we connect the idea of multicalibra-
tion to OLI. In particular, for linearizing statistics p, we show a computational equivalence between
(C, a)-multicalibration and (.A, €)-oblivious OI. The first direction—implementing multicalibration
using OI—follows similarly to the Bernoulli case. Given a function ¢ € C, we design a distinguisher
A€ to accept with probability proportional to E [ (c¢(X, p(X)), p*(X)) ], when given samples from
Nature, and E [ (¢(X, p(X)), p(X)) ] when given modeled samples. As such, the distinguishing ad-
vantage for any such A€ upper bounds the multicalibration violation. Note also that the acceptance
probability is a function of the statistic of interest, and thus, the distinguishers are oblivious.

To gain intuition for the construction, consider a concrete example where p is simply the mean
p of the outcome. Then, as in the Bernoulli case, given some ¢ € C, we can define a randomized
distinguisher Af, that accepts with probability proportional to the expected mean. For simplicitly,
assume that c(x, p(z)) € [0,1] and y € [0, 1]. Then, we define Af, as follows:

_ L wp. c(z, p(x)) -y
Al (. y; px)) = {
0 o.w.
Similarly, consider a different example where p is the second (non-central) moment 2. We can
implement a distinguisher that accepts with probability proportional to this moment.

w.p. c(z, p(x)) - y?
Azz(x,y;mx»:{l P el @)

0 ow.

Given a collection of functions C, we can build the corresponding family of distinguishers A4 =
{A€ : ¢ € C}. It’s not hard to see that any mean or moment predictor that fools these distinguishers
must also be multicalibrated with respect to the original class C. Following the intuition in these
examples, our reduction shows how to implement multicalibration for any linearizing statistic into
an OI condition. As with these examples, the distinguishers are randomized, but efficient: each
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A€ € A makes a single oracle call to the associated ¢ € C. We present and analyze this reduction
formally in Section 6.2.1.

The reverse direction—implementing OI using multicalibration—requires analytic tools that
differ significantly from the Bernoulli case. In particular, it is not immediately obvious how to
write the acceptance probability of an arbitrary p-oblivious distinguisher as a calibration condition.
To this end, we show that for a linearizing statistic p, the acceptance probability of a p-oblvious
distinguisher satisfies a certain separability condition. In particular, we show that without loss of
generality, we can assume that the acceptance probability of such an A is a linear function of the
outcome statistic. Specifically, for any fixed individual x € X and prediction p(z) = v, for an
outcome distribution Fy € A()), the acceptance probability of A can be written as follows.

Il;;'[A(x,Y;l/) =1] o (ca(z,v), p{Fy})

The argument itself is technical, but follows from some simple observations. First, the acceptance
probability for any distinguisher can be re-written as an expectation over Fy-.

%’;‘[A(x,Y;V):l] =E[A(z,Y;v)]

Further, by p-obliviousness, this acceptance probability must also be a function of the statistic of the
outcome distribution p { Fy'}. We show that linearization of p implies that p { Fy'} can be written
as an expectation over Fy. As such, the acceptance probability is an expectation over Fy, which is
a function of p { Fy }. In combination, these observations imply the that the acceptance probability
must be a linear function of p { Fy }, implying the separability result.

Given the separability condition, we can easily rewrite the OI constraints as multicalibration
constraints over p. In particular, we construct the collection of functions C = {c4 : A € A}; then,
(C, )-multicalibration implies (\A, €)-Oblvious OI. Some care is needed to ensure that the distin-
guishing advantage ¢ translates smoothly from the approximation parameter «. The full analysis
and reduction are presented in Section 6.2.2.

Note that unlike the reduction from multicalibration to OI (and the reductions that connected
OI to multicalibration in the Bernoulli case), the complexity of this reduction is less obvious. Our
techniques here are analytical rather than explicit, demonstrating that for every A € A there exists
some corresponding function ¢4 € C, such that multicalibration over C implies .A-OI. The con-
structed function c4 does not use A as an oracle, but is simply guaranteed to exist by the assumed
properties of p and A. Thus, it is not immediately clear how to bound the complexity of C compared
to A. Nevertheless, we argue that C cannot be significantly more complex than A. We show that
there is a way to “decode” the function ¢4 using oracle calls to A, assuming p satisfies some natural
non-degeneracy conditions. The number of calls needed scales with the dimension d of the statistic
and the desired approximation of c4.

On Mean-Conditioning for Moment Multicalibration. Finally, we remark that our study of
Oblivious OI and statistic Multicalibration sheds light on the work of Jung et al. (2021) on Moment
Multicalibration. In language of the present work, Jung et al. (2021) study how to obtain multical-
ibration for a statistic p that contains central moments of the outcome. A key technical hurdle to
obtaining moment multicalibration is that central moments do not linearize on their own. Instead, to
obtain algorithms for learning multicalibrated moment predictors, Jung et al. (2021) condition not
only on the predicted moments, but also on the mean. They show that mean-conditioned moments
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do linearize, and thus, mean-conditioned moment multicalibrated predictors can be learned from
random samples. We show a sweeping converse to this result. Roughly speaking, when predict-
ing central moments, any OI guarantee (including those implementable by multicalibration) with
respect to a family of distinguishers that do not “condition” on the mean, is meaningless. We give a
construction in Section 6.3 demonstrating that even Existential OI can be fooled by central moments
that are predicted to be uniformly 0 when the distinguisher class A does not take the predicted mean
of Y as input. Collectively, our results show that, in some strong sense, the seemingly-technical
tools developed by Jung et al. (2021) are necessary for obtaining central moment multicalibration.

2.3. Related Works and Discussion

The study of OI grew out of the literature on fairness in prediction tasks. To address the limitations of
learning fair predictors via constrained loss minimization (identified first by Dwork et al. (2012)), a
recent line of work, initiated independently by Hébert-Johnson et al. (2018) and Kearns et al. (2018),
has proposed an alternative paradigm for achieving “multi-group” fairness. Multicalibration has
emerged as a prominent notion from this line of work, requiring that predictions be well-calibrated,
not simply overall, but even when restricting attention to structured subpopulations. Rather than
fixating on a singular, global objective defined by a fixed hypothesis class 4, multicalibration is
parameterized by a collection of subpopulations C, which represent groups of individuals that can
be efficiently-identified by the individuals’ data. By tuning the choice of C based on the available
data and computational resources, multicalibration allows for precise control of the performance
across subpopulations, and thus, the downstream fairness of the predictions.

Since the initial work of Hébert-Johnson et al. (2018) that defined and described learning al-
gorithms for obtaining multicalibrated predictors, multicalibration has been studied in a growing
number works within the literature on fairness and, more generally, computational learning theory
(Kim et al., 2018, 2019; Dwork et al., 2019; Shabat et al., 2020; Dwork et al., 2021; Jung et al.,
2021; Gupta et al., 2021; Gopalan et al., 2021b; Rothblum and Yona, 2021; Gopalan et al., 2021a).
Unlike most notions of fairness, multicalibration does not exhibit an accuracy-fairness tradeoff and
can be used to obtain high-quality predictors that perform well across diverse subpopulations (Kim
et al., 2019). In fact, recent work of Gopalan et al. (2021a) demonstrates that multicalibration is
sufficient to guarantee a novel learning desideratum, dubbed omniprediction, which requires a pre-
dictor be an agnostic learner not for a single loss function, but simultaneously for a collection of loss
functions. They show that any multicalibrated predictor is also an omnipredictor, formally estab-
lishing a sense in which multicalibration can be viewed as a strengthening of the standard agnostic
PAC solution concept. Their work also recognizes a connection between multicalibration and the
boosting by branching programs learning paradigm (Mansour and McAllester, 2002; Kalai, 2004;
Kalai and Servedio, 2005).

3. Preliminaries
To begin, we establish notation and review the prior work on Outcome Indistinguishability.

Individuals and outcomes. Let A’ denote the space of individual inputs. Throughout, we assume
that X" is discrete and that each individual x € X has a finite, known representation; without
loss of generality, we may assume X C {0,1}" for some n € N. Let ) denote the outcome
sample space and A()) denote probability distributions over elements in )). We consider both
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discrete and continuous outcome distributions. For discrete outcome spaces, A()Y) is the set of
all discrete distributions. For continuous outcomes, we typically restrict our attention to the case
where ) = [—B, B] C R for some bound B € R. For any continuous domain, we consider events
defined by half-open intervals (a, b] for a,b € RU {—o00, 0o} and take A()) to be Borel measures.
Generically, we use D to denote a joint distribution supported on X' x ). We use Dx to denote the
marginal distribution over individuals, Dy to denote the marginal distribution over outcomes, and
Dy |x to denote the conditional outcome distribution given X.

Generative outcome models. The key objects of study in OI are generative outcome models
M:X = AQY)

that map individual inputs to outcome probability distributions. In particular, for a given individual
x € X, a model evaluates to M(xz) = Fy for some outcome distribution Fy € A(Y). The
underlying representation of outcome distributions in A()), and thus models M, is important but
varies throughout the presentation based on the setting. We defer details of representing outcome
distributions to the subsequent technical sections.

In addition to mapping from individuals to outcome distributions, we need a way to map from
outcome distributions to random outcomes. To this end, we let the generator

G:AY) =Y

be a randomized map from probability distributions to sampled outcomes. In particular, given any
distribution Fy» € A(Y), we use Y = G(Fy) to denote a random draw of an outcome Y ~ Fy
sampled according to the specified distribution. We assume that each call to G uses independent
internal randomness.

Statistics. Throughout, we specify and estimate properties of outcome distributions, which we
refer to as statistics. We typically denote the statistics of interest as p. Formally, for d € N, a
d-dimensional statistic

p:AQ) = R?

is a function mapping distributions to real-valued vectors. Examples of statistics include func-
tions of distributions like the mean, median, or variance. A natural d-dimensional statistic p =
(15, - - ., Bbg) is the vector of the first d moments of the distribution pt;, {Fy } = £ Ep, [ Y* ]+
Tk, for some choice of /i, 71, € R to scale and shift the moments to live in [—1, 1].

Generically, we can define statistics over R4, but for the sake of computational estimation, it is
useful to have some prior bound on the magnitude of the statistics’ values. Throughout, we assume
that statistics are coordinate-wise scaled and shifted to live in the /., unit ball.> We use the following
notation for the ¢; and /. balls for d-dimensional vectors.

Bd = {w eR?: ||w|, < 1} Bl = {w eR: |lw, < 1} = [-1,1]

For any outcome distribution Fy € A()) we use p {Fy} € B to denote the true value of the
statistic on the distribution.

3. The choice to make the range of the prior on p symmetric around O is arbitrary and for convenience. Equally, we
could imagine scaling and shifting statistics to lie in [0, 1]% or to have a different bound for each individual statistic.
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3.1. Outcome Indistinguishability

Outcome Indistinguishability is a requirement on a generative outcome model that stipulates that
the generated outcomes should be “indistinguishable” from the true outcome model, which we
refer to as Nature. In fact, OI refers to a family of related definitions that vary based on the way
distinguishers may access the predictions and samples from the outcome distributions. Dwork et al.
(2021) originally studied the notion of OI in the context of predicting binary outcomes. We discuss
the high-level framework of OI and review the variants defined in the prior work (Dwork et al.,
2021).

Models of Nature. Outcome indistinguishability considers two joint distributions on individual-
outcome pairs, Nature and a Model of Nature. Throughout, we denote samples from Nature as
follows.

(X,Y*) ~D"

We assume Nature D* is a valid joint distribution over individuals X and outcomes )/, but as in the
agnostic PAC learning model, we make no further assumptions about the relationship between X
and the distribution over outcomes D;‘ X

Given Nature, the goal of outcome indistinguishability is to learn a generative outcome model
M : X — A(Y) that “looks like” Nature. Specifically, every generative outcome model M induces
a model of Nature where we draw an individual X ~ D% from Nature’s marginal distribution
over individuals, then resample their outcome ¥ = G(M (X)) according to the modeled outcome
distribution. In this way, we can represent modeled samples as

(X,Y) ~ D(M)
where X ~ D% and Y ~ M(X).

Distinguishers and OI. If our goal is to model Nature, then ideally, the distributions D* and
D(M) would be similar. OI formalizes this intuitive goal for learning through the language of
computational indistinguishability as follows. Consider a distinguisher algorithm A : X x Y —
{0,1} that takes as input an individual and outcome pair and maps the input to either 0 or 1. For
any given distinguisher A, we say the distinguishing advantage of A between Nature D* and the
modeled distribution D (M) is the difference in the acceptance probabilities

ca=| PrlACYT) =1] - Pr A(X,Y)_1H

when the outcome is generated by Nature Y* and by the model of Nature Y = G(M(X ). We
say that the two distributions are e-indistinguishable to A, when the advantage is upper bounded
by €4 < e. Outcome Indistinguishability requires indistinguishability, not just for a single distin-
guisher A, but instead simultaneously for a rich family A C {A : X x J — {0, 1}} of distinguisher
algorithms.

Definition 2 (Dwork et al. (2021)) For a collection of distinguisher algorithms A, a model M
is (A, €)-outcome indistinguishable from Nature if D* and D(M) are e-indistinguishable to each
Ae A
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If A is taken to be the class of all (possibly-inefficient) statistical distinguishers, then the only
way to obtain .A4-OI would be to learn Nature’s probability law in statistical distance. Without
any assumptions on the complexity of D*, however, learning in statistical distance is information-
theoretically impossible from a bounded sample. To obtain a feasible notion, Dwork et al. (2021)
take A to be a class of distinguishers that can be implemented within some bounded complexity.
On a technical level, to achieve OI with a bounded sample complexity, the main requirement is that
the cardinality (or some equivalent measure of complexity of the class of .4) is bounded.

Definition 2 is actually a generalization of the original formulation of Dwork et al. (2021). In
this work, Outcome Indistinguishability is defined in terms of predictors of a Bernoulli probability
p: X — [0,1], which implicitly induces a generative outcome model. Specifically, any predictor
p implies a model of Nature D(p): sample an individual X ~ D%, then resample their outcome
Y ~ Ber(p(X)). With this notion of modeled distribution, we recover the basic definition of OI for
binary outcomes.

Definition 3 (Bernoulli OI) For a collection of distinguisher algorithms A, a predictor p : X —
[0, 1] is (A, €)-outcome indistinguishable from Nature if

Pr[A(X,Y*5(X)=1]— Pr [A(X,f/;ﬁ(X)) =1 H <e.
D~ D(p)

Variants of OI. With this general framework in place, Dwork et al. (2021) defined a number of

specific variants of OI that differ in strength and complexity. The different variants of OI differ

based on their access to the predictions of the model of Nature. For the following four variants of

distinguishers, a predictor p is (A, ¢)-outcome indistinguishable if:

* No-Access: Distinguishers only observe the individual and outcome and no prediction p(X).

PrAX,Y")=1]- P

D(g) [A(X,f/)zl]' <e

» Sample-Access: Ol as defined in Definition 3.

* Oracle-Access: Distinguishers have oracle access to p.

Pr[A7(X,Y") = 1] - P [Aﬁ(X,ff):1” <e

* Code-Access: Distinguishers receive an explicit description of the code (circuit) implement-
ing p.

D(p)

PrLACKY ) = 1]~ Pr [ACC Y3 = 1]| <

In each level, the distinguishers receive increasing degrees of access to the predictor p. The primary
results of Dwork et al. (2021) characterize the complexity of obtaining each level of OI.

In addition to defining and characterizing variants of OI based on access to p, Dwork et al. (2021)
also show that the definitions extend naturally when distinguishers are given access to multiple
individual-outcome pairs. For sufficiently expressive classes of distinguishers .4, a standard hybrid
argument shows that single-sample OI implies multiple-sample OI with an increase in € that grows
linearly with the number of samples.

16



OUTCOME INDISTINGUISHABILITY BEYOND BERNOULLI

Multicalibration and OI. Beyond defining Outcome Indistinguishability and its variants, the
main result of Dwork et al. (2021) shows a tight connection between OI and the notion of mul-
ticalibration, defined by Hébert-Johnson et al. (2018) in the context of learning fair predictors. The
results show a tight computational equivalence between the concepts of multiaccuracy and mul-
ticalibration and No-Access and Sample-Access OI, respectively. These notions of multi-group
fairness have been studied in a growing list of works in the algorithmic fairness literature and be-
yond (Hébert-Johnson et al., 2018; Kim et al., 2018, 2019; Dwork et al., 2019; Shabat et al., 2020;
Jung et al., 2021; Gupta et al., 2021; Gopalan et al., 2021b; Rothblum and Yona, 2021; Gopalan
etal., 2021a).

Multiaccuracy and multicalibration define a set of accuracy constraints on a predictor that need
to hold, not simply overall, but even when we restrict our attention to structured subpopulations of
the domain. A convenient generalization that captures both multiaccuracy and multicalibration* is
the following technical reformulation of multicalibration, that defines the “subpopulations” in terms
of a class of functions C C {X x [0,1] — [0, 1]}.

Definition 4 (Multicalibration, generalized) For a class of functions C and an approximation
a >0, apredictorp : X — [0,1] is (C, «)-multicalibrated over a distribution D* if for all ¢ € C

E [e(X,p(X) - (V" =p(X))] | < .

Intuitively, we can strengthen the guarantees of multicalibration by increasing the complexity of the
functions ¢ € C. For example, we may think of C as the class of functions implementable within
some concrete complexity class (decision trees of depth 3, linear functions with bounded weights,
or Neural Networks of bounded size, etc.). Dwork et al. (2021) show that how to efficiently reduce
any class of subpopulations C into a class of distinguishers .4 (and vice versa) such that (C, «)-
multicalibration is equivalent to (A, €)-Sample-Access-Ol.

4. Defining Outcome Indistinguishability

Here, we define variants of OI for general random outcomes. The variants differ in the way they
quantify over the outcome generation process in the modeled distribution.

4.1. Outcome Indistinguishability for Generative Models

The first notion of OI which we define requires the most of the predictor. In this notion of Generative
OlI, we require the predictor to be a complete generative outcome model M : X — A()) that for
each individual, returns a fully-specified probability distribution over outcomes. Intuitively, the
model M is Ol if M is indistinguishable from Nature’s true conditional outcome distribution ng/‘ x
given individuals.

4. For the reader familiar with multiaccuracy and multicalibration, as defined by Hébert-Johnson et al. (2018), we argue
that this generalization is without loss. To implement multiaccuracy, we can define a class of functions C, where for
each subpopulations S C X, we define a function cg that ignores p(X) and returns 1 if and only if X € S. To
implement the original subpopulation formulation of multicalibration, we can use a similar class of functions that
returns 1 if and only if X € S and p(X) ~ v. Finally, we must also scale the choice of « to account for the fact
that Definition 4 requires bounded absolute error, rather than error normalized by the probability of X € S and
p(X) = .
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Definition 5 (Generative OI) Fix a family of distinguishers A C {X x Y x A(Y) — {0,1}} and
an advantage € > 0. A generative outcome model M : X — A()) is (A, €)-generative-outcome
indistinguishable if for all A € A,

aPT o [ACCY S MO0) | = P [ACXGMOX)): M) ]| <

Here, we define Generative OI abstractly, for outcome models that output a probability distribution
M(x) € A(Y). This notion is mathematically well-defined, but for an effective computational no-
tion, we must also fix an explicit representation for distributions in A()). We delay our discussion
of the choice of representation until Section 5, where we turn to learning Generative OI Models.

In a sense, Generative Ol is the most natural generalization of the notion defined by Dwork et al.
(2021), because it is a condition on a predictor, which specifies the complete generative model for
each individual’s outcome. As such, we don’t need to quantify over the way we generate outcomes
to be consistent with the model. Further, the notion is always definitionally feasible, as we can
always take M to be D;‘ x-

Parametric generative models. As discussed, a technically subtle but important point in defin-
ing Generative-OlI is how to represent the outcome distribution for a given individual. Rather than
working in full generality, in many applications, it may make sense to restrict our attention to dis-
tributions that have an efficient and explicit representation. Parametric families are one way to
represent distributions succinctly.

Definition 6 (Parametric Family) A model Mg : RY — A(Y) implements a parametric family if
there exists a d-dimensional statistic @ such that for each parameter setting t € RY, there exists a
unique, explicit probability distribution Fy . € A(Y) where

Mo(t) = Fyy
0 {Fy;t} =t.

In other words, given a setting ¢t € R of the parameter @, the outcome distribution is perfectly
specified. Common parametric families for modeling outcomes include the Bernoulli, Gaussian,
and Poisson distributions (all of which are exponential families).

Remark 7 We make two remarks about the definition of parametric families:

* First, note that our usage of this notion refers only to the conditional outcome distribution,
given an individual. In particular, we do not make any assumptions across individuals, in
contrast to parametric models of prediction (e.g., well-specified linear regression). Our as-
sumption that the conditional outcome distribution of each individual follows a parametric
family is substantially weaker.

» Second, in addition to the requirements listed in Definition 6, we require that a parametric
SJamily corresponds to a collection of “explicit” probability distributions. In this work, we use
this term to mean there is an efficient (randomized) procedure that, given t € R%, produces
samples from the probability distribution Fy ;. For instance, we could model the conditional
outcome distributions as Gaussians, assuming there is an efficient procedure that given a
predicted mean [i(x) and variance 52(z) produces a sample Y ~ N (ji(x), 5% (x)).
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Of course, if we have no prior knowledge of Nature’s distribution of outcomes, parametric
models may not be capable of achieving indistinguishability from Nature. In particular, infeasibility
could arise due to quantitative limitations of the family (the best-fit parametric model may not fit
the outcome distribution to sufficient accuracy) and qualitative differences between the family and
Nature’s outcomes (e.g., if we use a continuous parametric family to model a discrete Nature).
That said, in the case where we do believe it’s reasonable to model the outcomes via a parametric
model, we may aim to learn an OI generative outcome model, by learning a parameter predictor
6: X — R%and generating outcomes according to the family M.

Definition 8 (Parametric OI) For a parameteric family Mg with d-dimensional parameter 0, fix
a family of distinguishers A C {X x Y x R? = {0, 1}} and an advantage € > 0. A parame-
ter predictor 6:x — RYis (A, €)-parametric-outcome indistinguishable from Nature D* if the
composition Mg o 6 is (A, €)-generative-outcome indistinguishable.

In other words, we require that the distribution induced by the parametric family Mg using param-
eters 0 satisfy the OI condition,

Pr [AX,Y*;@X :1}— Pr [AX, Me(6(X))): (X :1} <e.
R (Ao =1 ] = pe [ 4G GMa(d)):800) =1 ] <
In this sense, parametric-Ol is a special case of generative-OI, where we fix the model to be a para-
metric family Myg. If Nature’s conditional distribution over outcomes D%  1s actually determined

by the parametric family My, then there is some true parameter predictor #* : X — R¢ such that

;I v = Mpg(6%). In such a setting, parametric OI is guaranteed to be feasible: taking 6 = o
guarantees that the constraints are satisfied.

Note also, that the original formulation of OI given in (Dwork et al., 2021), can be viewed as

a special case of parametric-Ol, for the parametric Bernoulli distribution. In the setting of (Dwork

etal., 2021), the goal is to learn a predictor p : X — [0, 1] that predicts the probability that a given

individual’s outcome is positive; then, given the prediction for an individual X, modeled outcomes
are sampled according to Y ~ Ber (5(X)).

4.2. Outcome Indistinguishability for Statistic Predictors

While generative OI gives a strong notion of indistinguishability from Nature, the constraints may
be too demanding in some circumstances. Learning a complete generative outcome model requires
specifying a complete outcome distribution for each individual. In many cases, due to sampling and
computational constraints, such a complete model may be out of reach, and the learner may instead
elect to estimate statistics of individuals’ outcome distributions. Here, we define notions of outcome
indistinguishability for partial models, which consist of a predictor that for each individual returns

an estimate of the statistic on the individual’s outcome distribution p {D;*,| x }

Intuitively, for a statistic p, a predictor p : X — R? is outcome indistinguishable from Nature if
it is consistent with some generative model that produces indistinguishable outcomes. Unlike gener-
ative OI, a predictor p only specifies values for statistics p of the individuals’ outcome distributions,
rather than a full probability distribution. To discuss this notion of OI, we need to formalize the
idea of models that are consistent with a predictor p. Such models take as input both an individual
x € X and a prediction j(x) = v € RY, and satisfy the following definition.
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Definition 9 (Individually-Consistent Model) For a d-dimensional statistic p, a model M : X x
RY — A(Y) is individually consistent over p if for all x € X, for all v € R?

p{M(z;v)} =v.

In other words, given a predictor p, for each individual x € X, an individually-consistent model M
evaluated on the individual-prediction pair M (z; p(x)), returns a distribution where the statistic p
of the modeled outcome distribution equals the predicted statistic p(z).

Existential OI. With this definition in place, we can define notions of “existential” OI: a pre-
dictor p satisfies this variant of OI if there exists a consistent model that generates indistinguish-
able outcomes based on the statistics specified in p. Here, the family of distinguishers A4 C
{X x )Y x RY — {0, 1}} take in the individual, outcome, and d-dimensional statistic.

Definition 10 (Existential OI) For a d-dimensional statistic p, fix a family of distinguishers A
and an advantage € > 0. A predictor p : X — R% is (A, ¢)-existential-outcome indistinguishable
from Nature D* if there exists an individually-consistent model M : X — A(Y), such that for all
Aec A

o A Y (X) = 1] = Pr [ARX, GM(X3 (X)) p(X)) =1]| <e.

In other words, a statistic predictor is Existential OI if there exists a single, global generative out-
come model M that is consistent with the statistics and satisfies the indistinguishability conditions.
In this sense, it suggests that there is a generative outcome model that exhibits the predicted statistics
that fools the distinguishers.

In existential OI, the distinguishers receive only the predicted statistics p(X ), not the full pre-
dicted distribution M(X). It is tempting to think that the restricted access to predictions implies
that the distinguishers are simply a function of the statistic of interest, but this intuition is wrong.
Recall, the distinguishers receive the outcomes directly. By using these outcomes, distinguishers
can depend nontrivially on the distribution of the outcome, not just the predicted statistics. For
instance, consider a family of distinguishers that implement threshold tests, where for 7 € R

Ar(z,y;v) =1[y < 7].

Such thresholding tests can effectively be used to the marginal outcome distribution for closeness
in CDF. As the CDF characterizes the entire distribution of the outcomes, then such tests depend
on aspects of the distribution that go beyond any statistic that does not (at least approximately)
characterize the entire distribution.

We observe that Generative OI can be used to obtain Existential OI, by taking a generative
outcome model that fools the distinguishers in .A and “flattening” it into a statistic predictor p.

Proposition 11 Suppose A C {X x Y x R? = {0, 1}} is a family of existential-distinguishers.
There is an explicit family of generative-distinguishers A" C {X x Y x A(Y) — {0,1}} such that
forany € > 0, if a model M : X — A()) is (A, e)-generative-Ol, then, the statistic predictor
p=p{M()}is (A, e)-existential-Ol.
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Proof Fix a family of distinguishers A C {X x Y x R? — {0,1}}. We derive a new family
A’ of distinguishers that take as input full probability distributions Fy € A()), but simulate the
distinguishers in A using the relevant statistics of Fy. Specifically, for each A € A, consider a
distinguisher A’, where for z € X,y € V, and Fy € A()), A’ is defined as follows:

A,(xa y7FY) = A(SU, Y, p{FY})

Then, if a model M : X — A(Y) thatis (A’, )-Generative OI, the statistics of M

plz) = p{M(z)}
are (A, e)-existential-OL. [ |

In practice, to bound the complexity of the distinguishers and the computation of p, we need an
estimation procedure for p { M (z)}. This introduces some technical complications. In particular,
we either need the family of distinguishers A to be Lipschitz in the estimated statistics, so that small
changes in the estimated statistics do not result in large changes in acceptance probability, or we
need an effective deterministic procedure for computing p { Fy }, given the representation of Fy .

An alternative quantification. We can better understand the guarantee of existential Ol by con-
sidering an alternative quantification. Existential Ol says that there exists an individually-consistent
generative outcome model that fools every test in 4. A weaker notion would flip the quantification:
for every test in A, there exists some individually-consistent model that fools the test. Intuitively,
this framing views each distinguisher A € A as some an independent audit of the predicted statis-
tics. Following this intuition, we define the following variant of OI, that captures the idea that no
distinguisher A € A can refute the predicted statistics on its own.

Definition 12 (V3-OI) For a d-dimensional statistic p, fix a family of distinguishers A and an
advantage € > 0. A predictor p: X — R% is (A, )-V3-outcome indistinguishable from Nature D*
if for all A € A, there exists an individually-consistent model M 4 : X — A(Y) such that,

T [ACGYSp00) = 1] = P [ACXGMA(X; pX))):P(X) = 1]| <=
Immediately, we can observe that existential Ol is at least as strict as V3-OI: if there exists a single
model that fools all distinguishers, this model can witness the constraint for each distinguisher indi-
vidually. That is, a single consistent model M from Definition 10 satisfies the conditions required
of the models M 4 for each A € A in Definition 12.

In fact, we argue that existential OI derives significant power by requiring global consistency:
fooling many tests simultaneously is strictly harder than fooling them individually. That is, exis-
tential Ol is a strictly stronger notion than V3-OI. This separation holds even if we simply consider
distinguishers of outcomes: in the construction, we can assume that for every individual x € & the
outcome ¥ is identically distributed.

Consider a pair of distinguishers A, /5 and A, 4, with the behaviors:

Ap(Y)=1[Y <1/2]
Ag(Y)=1[Y <1/4].
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Ay /2 tests the probability that the outcome is at most 1/2 and A, /4 tests the probability that the
outcome is at most 1/4. Suppose our goal is to estimate the mean of the outcome, and suppose that
Nature’s outcome Y™ satisfies

Priv*<1/2]=1
Pr(Y* <1/4]=1/2.

Suppose we estimate i = 1/2. It is not hard to see that i does not fool both distinguishers simul-
taneously: there is no single model M that generates outcomes with mean {f/} = 1/2 where

Pr [}7 <1/2 } = 1and Pr [f/ < 1/4} = 1/2. Nevertheless, it is possible to fool each test sep-

arately while respecting p {}7} = 1/2: to fool A /5, take the constant model that always outputs
Y = 1/2; to fool Ay 4, take the model that outputs Y ~ Ber(1/2).

4.3. Oblivious Distinguishers

While existential Ol is a condition on the predicted statistics, we have seen how it can enforce
constraints that go beyond the statistics themselves. A natural restriction of existential OI would
only consider distinguishers that constrain the statistics themselves. Here, we formalize the idea
that a distinguisher only depends on the statistic of interest. We say that a distinguisher is oblivious
with respect to a statistic p if its acceptance probability on an outcome sampled ¥ ~ Fy is a
function of p { Fy }.

Definition 13 (Oblivious Distinguisher) For a d-dimensional statistic p, a distinguisher A is p-
oblivious if for all individuals © € X and predicted statistics v € RY, there exists a function
he o : RY — [0, 1] such that for any outcome distribution Fy € A(Y),

EJ[A(Z‘,Y,V) = 1] = hx,u(p{FY})

For { € R, a p-oblivious distinguisher is (p, {)-Lipschitz if for all v € X and v € R%, for any
Fy,Fy/ S A(y),

PrA(e,Yiv) =1] = Pr [A(e.Yi0) = 1] | <o {Fr} — p (B}l
Obliviousness captures the idea that the only aspect of the outcome distribution of Y that the dis-
tinguisher tests is the statistic p { Fy' }. In other words, the acceptance probability of an oblivious
distinguisher must be constant on individually-consistent models that are fed the same estimate of
p. Specifically, if A is p-oblivious, then for any pair of individually-consistent models M, M’, for
all z € X and any v,/ € R?

Pr [A(l‘, GM(z;v)); V) =1 ] =Pr [A(.Z‘, GM' (x;v));0) =1 ]

over the randomness of G. The observation motivates a final notion of outcome indistinguishability,
that can be viewed as a VV-variant of OI.
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Definition 14 (Oblivous OI) For a d-dimensional statistic p, fix a family of distinguishers A C
{X x Y xR?— {0,1}} and an advantage € > 0. A predictor p : X — R% is (A, ¢)-oblivious-
outcome indistinguishable from Nature D* if for all p-oblivious distinguishers A € A, for all
individually-consistent M : X — R4,

p AX, Y5 p(X)=1]— P AX, GIM(X;p(X)));p(X)) =1]| <e.
BT [ACGY5p(0) = 1] = P [A(XGMX:p(X))):p(X)) = 1] < &
We study Oblivious-Ol in detail in Section 6. As an initial observation, we show that Oblivious-OI
is the weakest notion yet, and is implied by existential OI (even the V3 variant).

Proposition 15 If a statistic predictor - X — R% is (A, £)-Y3-OI, then p is (A, €)-Oblivious-Ol.

The proposition follows by the above observations. Assuming p is (A, £)-¥Y3-Ol, then for each
A € A, there is some individually-consistent model M 4 such that the acceptance probability on
(X, G(M(X;p(X)))) for X ~ D% is within ¢ of the acceptance probabililty on (X,Y ™) ~ D*.
For any p-oblivious distinguisher A, the acceptance probability is the same for Y generated from
any individually-consistent model M. Thus, the acceptance probability of all p-oblivious A € A
under any individually-consistent M must be the same as that on M 4, and thus e-close to the
probability on Nature.

5. Learning OI Generative Models

In this section, we discuss how to learn Generative OI Models. That is, given some class of dis-
tinguishers .4 and an acceptable distinguishing advantage ¢, produce a generative outcome model
M : X — A(Y) that is indistinguishable from Nature’s conditional distribution on outcomes Dg“,| X
In order to learn a model that encodes and outputs probability distributions over the outcome space,
a few key questions need to be answered first. In particular, for a given outcome space ), how
do we represent the distributions Fy € A()). Even ignoring measure-theoretic pathologies, there
can be many ways to write down a given probability distribution. Different methods of specifying
probability distributions are more or less efficient for different tasks, and will change the complexity
of obtaining OI.

As such, we identify an abstraction through which we will interact with the learned probability
distributions. We show how the abstract algorithmic methods we define suffice to learn a generative
outcome model satisfying OI. In this way, given any outcome space ) for which there is a reasonable
representation that supports these distributional operations efficiently will lead to efficient learning
of OI models.

Representing Outcome Distributions. For a given outcome space ) with outcome distribution
space A(Y), we denote the Representation Space as R. For a distribution Fy € A()), we use
R(Fy) € R to denote its representation. Throughout, we will assume that R is of fixed complexity;
that is, for any R € R, there exists some fixed finite upper bound on the description length. For
instance, R may be a subset of RM for some fixed M € N. To be concrete, for discrete random
variables over a finite domain ) = [N] = {1,..., N}, R may be an explicit approximation to the
probability mass function, and for continuous random variables over a bounded range, R may be
a circuit that on input y € ), outputs the probability density of y. In generality, we may think of
‘R as giving an efficient (discretized) approximation to the cumulative distribution function of the
probability distributions in A(}).
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The importance of working with a fixed representation R is algorithmic. In particular, we will
define the learning algorithm for Generative OI Models to operate on and return represenations
R € R, corresponding to Fy € A(Y). Importantly, we assume that the representation R supports
the following two operations.

* Sample Generation. A sample generator
G- R—=>Y

is a randomized map that given the representation R(Fy ) of some distribution, G(R(Fy))
returns a random outcome Y ~ Fy drawn from the corresponding distribution.

* Reweighting. The reweighting procedure is a fixed algorithm (i.e., uniform computation) that
computes a multiplicative weights update. In particular, the algorithm

WERx[-1,1] =R

is an oracle-algorithm, that has access to an oracle to the characteristic function of some subset
B C ), assumed to have non-zero (and non-unit) measure. Given the representation R(Fy-)
and some constant € [—1, 1], the reweighting W®(R(Fy );n) returns the representation
R(Gy) for some distribution Gy € A(Y) where

Pr(YeB]xe-Pr|Y € B| gr[YQ’B]ocl;r[Ygz/B].

Gy Fy

With these two methods, we can describe the learning algorithm for Generative Ol Models.

Generative OI Learning Algorithm.

Given. Family of distinguishers .A; advantage ¢ > 0; Prior Py € A(Y); step size n > 0
Output. Generative outcome model M : X — R

Initialization.

Initialize Mg : X — R to be the constant model that returns the representation of prior R(Py).
Iterate. fort =0,1,...,T

For each A € A, evaluate the (signed) distinguishing advantage ¢ 4,

eq=Pr [A(X, Y M(X)) = 1] — Pr [A(X,?;Mt(X)) —1
2 D(My)

using random samples from D* and random generated samples from D(Mt)
If maxacq |ea| < e, return M,.

Else, select any A; € {A € A:|ea| > e}
Let By(-) = {y €V Ay, My(-) = 1}
Reweight the model M1 (-) < WB O (M, (-);sgn(eq,) - n)

The algorithm proceeds as follows. Initially, the model M is initialized to return the same prior
distribution for all individuals x € X. Importantly, we don’t maintain the distributions for each x
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explicitly, but rather implicitly. In particular, we build up the logic of M into a circuit that takes an
input z € X, and returns the representation of the outcome distribution M (x).

Then, the algorithm executes the following iteration until convergence. The first stage of the
iteration searches for some A € A that successfully distinguishes between Nature D* and the
current model of Nature D(M) If the algorithm cannot find such an A, then M e-fools all of the
distinguishers in A, so it is (A, €)-Generative OI and we are done.

The second stage occurs when we do find a distinguisher A with significant advantage. Intu-
itively, such a distinguisher contains information that may be useful for pulling the distributions
defined by M closer to the true conditional outcome distribution D;‘ X

As such, we devise and update based on a successful A € A. Specifically, the update to the
circuit for M must occur implicity, such that in a constant overhead of logic, the distributions
defined by M(m) are simultaneously updated for all z € X'. To begin, consider a fixed . We want
to run the multiplicative weights update to M (x), such that we increase/decrease the density on the
set of outcomes defined as follows.

Blz] = {y eY: Az, y; M(x)) = 1}

For a fixed representation M(x) € R, we can use the Reweighting algorithm W5 ] to return the
representation of the distribution, where the probability of y € B[z] has been reweighted by e”.
Importantly, we assume that the logic of YW can be implemented by a uniform oracle procedure,
that runs the same code independent of the actual predicate 5.

This uniformity assumption is crucial: it allows us to update the distribution for all x € X
simultaneously by taking x as an input to the oracle. That is, rather than defining a pre-specified
Blz] for each z, we instead define a parameterized oracle B(-) = A(-,y; M(-)) that takes = € X
as input. Then, when we wish to evaluate M( -) on a specific input z € X, we feed the input x into

By(+) corresponding to the update for each iteration t.

Returned predictor. The final predictor M will be (A, e)-generative OI by the fact the termina-
tion condition. The “hypothesis class™ of predictors that the algorithm can output is built up from
individual A € A as well as from the logic of W. In particular, the evaluation of M (z) follows a
sequence of calls to the Reweighting algorithm, using a subpopulation oracle determined by A; for
each iteration ¢. In particular, if M is returned after 7T iterations, we can express M () as

whrt) (WBT’I(') ( L WBORPY)im) . ;77T—1) ;nT)
where:

* Bi(-) = {y eV Ay, My(-)) = 1}; on a fixed input x € X, then By(z) is the set of

outcomes that make the distinguisher A(x,y, M, (x)) = 1 given the prediction M; () in the
tth iteration.

« Mo(z) = R(Py) for all = € X is the representation of the prior distribution on outcomes
e n € {—n,n} indicates whether the ¢th update should be positive or negative.

To begin the analysis, we discuss the complexity of evaluating the learned model M returned by
the algorithm. A key assumption that we will make is that the representation returned by M, (x) €
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A(Y) is of a fixed size; in some models, this complexity could scale as the complexity of computing
/\;lt increased.

With this assumption in place, we can decompose the cost into costs per iterate. Evaluating
the predictor requires evaluating W5t for each t € [T]. This complexity scales with the cost of
Reweighting and the cost of evaluating A € A, which are required to evaluate the oracle B;.

Proposition 16 (Time Complexity of Evaluation) When the algorithm returns M after T itera-
tions, the complexity of evaluating M requires T executions of Reweighting, which may make calls
to A € Aas an oracle.

Note that in the worst case, B; may make a call to A; for each y € ). For instance, for discrete
distributions, the time complexity can be upper bounded by O(T - |)| - time_4) plus the time to
compute the reweighting. As such, a key quantity in understanding the complexity of the predictive
model is the iteration complexity.

Iteration Complexity. The first step in bounding the complexity of the learning algorithm is to
argue that the algorithm converges to an (A, £)-OI model in a bounded number of iterations 7". This
argument follows by identifying a potential function ¢k1, based on the expected KL-divergence
between M (X) and D;‘,‘ > and arguing that any successful distinguisher A € A suggests an update
that causes the potential to drop significantly.

We measure progress in expected KL Divergence. For concreteness, we focus on the case of
discrete probability distributions, but a similar analysis follows for the continuous case. For two
probability mass functions fy, gy, the KL-divergence is defined as follows.

Dxi(frigy) =Y fy(y) - log (fy(y)>

yeY gy(y)

We define the potential function as the KL-divergence from D;‘/‘ X

dxLM) = E | D (Dyxi M(X)) |
X~D%
We argue that if there is a distinguisher A € A that has nontrivial advantage, the multiplicative
update under Reweighting causes the potential function to drop.

For notational convenience, we use f* : X x ) — [0, 1] to denote the conditional probability
mass function of Nature D;‘,| anduse m : X x Y — [0, 1] to denote the probabiltiy mass function

of M, for a given individual x € X. Suppose there exists A € As.t. |e4| > ¢, for

ca=Pr [A(X, Y5 M(X)) = 1} - p [A(X,?;M(X)) - 1}

= E [ A Y () LB [ A, 7 Mm(x)) |

~ E D AKX,y M(X)) - (fH (X5 y) — (X))

:
X yey
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Consider the update under Reweighting. Let M refer to the initial model, and M the updated.
Let Z(x) denote the normalization constant on individual z € X'.
_ Z oz y) - esen(ea) - Alz,y,Mo(z))
yey

By a standard argument, we can bound the difference in potential as follows.

dxL(Mo) — dxr(M1) = E | sgn(ea) -1 ) AX,y; Mo(X)) - f*(X3y) — log (Z(X))
X yey

By the fact that ) € [—1, 1] and the fact that log(1 — ) < —x, we derive the following in equality
for the log partition function.

log(Z(X)) = log Z fing(X;y) - 8 (Ea) AKXy Mo(X))
yey

<log | Y- rme(Xiy)- (1= sen(ea) -0+ ALy, Mo(X)) + 7 - A(X,y, Mo(X))

yey

<log | 1 —sgn(ex) Zmo (Xs5y) - A(X, y,/\/lo( )+ + 7
yey

< sgn(eq) ZmoX y) - A(X,y, Mo(X)) + 7
yey

Thus, we can bound the difference as follows.

> E | sgn(ea) 0 ) Ay Mo(X)) - (f*(Xsy) = im(Xzy)) =’
X yey

:sgn(aA).n<g£[A(X,Y*;M(X)):1}— Pr [A(X,f@/ﬁl(X))zl})—n2

= leal-n —n?
Thus, provided we take n < £/2, then the potential function is guaranteed to drop by at least 2 /4

in each update.

Proposition 17 (Iteration complexity) Tuking n = /2, the algorithm is guaranteed to return a
(A, e)-Generative Ol Model in T iterations for

r<o (2

22
where ¢x1,(Py ) is the KL-divergence between D;‘,‘ y and Py, averaged over X ~ D.

That is, the worst-case number of iterations is upper bounded in terms of the quality of the prior.
For discrete probability distributions of finite support, this quantity can be bounded finitely; for
distributions of unbounded support, then to achieve convergence in the worst-case, we need to
assume a prior that is bounded in KL for all individuals’ outcome distributions.
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Sample Complexity. Using the bound on the iteration complexity, we can derive an upper bound
on the sample complexity. In particular, we can bound the sample complexity generically by obtain-
ing a per-iteration bound and then resampling to estimate the acceptance probabilities each iteration.

Note that the algorithm’s only interaction with Nature’s samples is in determining the acceptance
probability of each A € A for the current M. Given that we care about e-indistinguishability, it
suffices to obtain estimates that are € /c-accurate for some constant ¢ for all A € A. Thus, it suffices
to take enough samples from D* to guarantee uniform convergence over A. By standard arguments,
we can bound the sample complexity by mg = O((log |A| + log(T))/£?).

Proposition 18 (Sample complexity) With success probability 1 — 0, the algorithm can be imple-
mented using m samples, for

mST'O<10g(TE|QA|/5)) SO~<¢KL(77Y)~bg(’§‘/5)>.

Time Complexity of Learning. To bound the time complexity of running the learning algo-
rithm, we decompose each iteration into three tasks: (1) Sample Generation, (2) Searching, and
(3) Reweighting. We first state the bounds generically, then analyze it concretely for the case for
discrete outcome distributions.

To bound the cost of sampling, we note that the sample complexity analysis of Nature’s samples

equally bounds the number of samples we need from the modeled distribution D(M). In particular,

over the course of the algorithm, we need to generate m < O ((bKL(PY) . bg(‘g%) modeled sam-

ples. This involves drawing m unlabeled samples from X ~ D%, then as needed, calling G (M (X))
to obtain a modeled label for each sample. Thus, the sample generation cost of the algorithm is pro-
portional to the sample complexity times the time complexity of generating a sample, which we
denote timeg.

The next key cost is searching in each iteration for some A € A that distinguishes between D*
and D(M) for the current model M. Here, we perform an exhaustive search by iterating through
the |.A| distinguishers, and evaluating €4 for each A € A. This complexity will be dominated by
iterating through .4, with O(mg) evaluations of the distinguisher A per iterate to estimate 4. We
denote an upper bound on the time required to evaluate A € A as time 4.

Finally, at the end of the iteration, the algorithm incorporates the reweighting algorithm into
the generative outcome model based on the identified distinguisher. This process implicitly updates
M() to have a new normalized probability function, given any input x € X. In order to feed
representations of the predicted outcome distributions into the distinguishers at the next level, we
need to evaluate the Reweighting process WE() in each iteration, which we assume uses timeyy.

Proposition 19 (Time Complexity of Learning) The time complexity to learn (A, €)-generative
OI models can be upper bounded by T' < O (¢KL (Py)/ 62) iterations where each iteration makes

* O(my) calls to Sample Generation G from M,
* O(myg) evaluations of each distinguisher A € A

* One call to Reweighting WW5¢(")
totally time bounded by

time < O (m - timeg +m - |A| - timea + T - timeyy) .
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Implementing Sample Generation and Reweighting. In all, to learn Generative OI Models for
any Nature, it suffices to exhibit a concrete representation of outcome distributions from A())
that supports efficient Sample Generation and Reweighting. For concreteness, we consider how
to instantiate the abstraction for outcomes that come from some large, but finite, discrete domain
Y =[N]={1,...,N}. Inthis case, we can represent the distribution explicitly as a discrete CDF,
where M : X x Y — [0, 1] is used to approximate the true conditional probability law,” where for
each y € [IV],

M(z;y) = Pr[Y <y [ X =z].

With this representation fixed, we can analyze the complexity necessary to implement Sample Gen-
eration and Reweighting for a given predicted distribution M(x) € A()).

* Sample Generation: Draw a uniform random 7 € [0, 1], and binary search through M(x)
for the maximum y € [N], such that M(x;y) < 7. Then, return y with probability

_T=M(zy)

M(z;y +1) — M(x5y)

and y + 1 otherwise.

* Reweighting: Compute the probability mass function m : X x ) corresponding to M, by
differencing. Then, multiply m(-;y) by e” for all y € B, compute the normalization factor
by summing over all y € ), and divide each entry by the normalization.

As such, using the CDF representation, Sample Generation is possible using polylog (V) time (in
a RAM model, with two calls to uniform randomness), and Reweighting is possible using O(N )
arithmetic operations. The main computational cost of sample generation, then, involves evaluating
M(x) € A(Y) to obtain the CDF representation. By the proposition above, this procedure requires
at most 7" calls to Reweighting. In the worst case, each of these calls could make |)| calls to some

A € A to implement the oracle B. Thus, we can bound timeg as follows.

timeg < T -timey - O(N)

To bound the complexity, we use the fact that the KL.-divergence for a discrete distribution is
upper bounded by log | )|, so the iteration complexity is bounded by 7' < O(log |))| /€?) and the

sample complexity m < %. In all, we can bound the expression for time as
time < m - T - timeq - O(|Y|) +m - |A| - timeq + T - O(|Y))

Subsituting in the bounds, we obtain the following guarantee, where the O notation suppresses
polylogarithmic factors in the arguments.

5. Throughout, we assume that the marginal distribution of individuals DY is supported on a discrete domain X

29



OUTCOME INDISTINGUISHABILITY BEYOND BERNOULLI

Theorem 20 There exists an algorithm for learning an OI Generative Outcome Model over a dis-
crete outcome domain ). For any given distribution D* over X x Y, class A of distinguishers and
indistinguishability parameter ¢, the sample complexity is bounded by:

o ((exPLosiAl).

o4
Assuming that the distinguishers in A can be evaluated in time time 4, the running time is:

5 (Iy! timea - log| Al | |A| - timea -log M)

time < O
- b gt

The algorithm produces a generative model M : X =Y. Givenan input x € X, the model M can
be evaluated (i.e. used to generate a sample) in time:

B <|y| - timea - l0<%“|«4|> _

e2

Improved Efficiency for No-Access Distinguishers. Finally, we remark that the complexities we
derive here can vary quantitatively depending on the qualitative aspects of the distinguisher model.
For instance, in the original work Dwork et al. (2021) define a variant of OI, which they call “No-
Access,” where distinguishers do not look at the value of the predictions M (X). If we restrict our
attention to No-Access Distinguishers for generative outcome models, then the complexities can be
bounded more tightly. In particular, the sample complexity and evaluation time complexity avoid
costs associated with processing the predictions M (X). Specifically, for the sample complexity, we
only need to obtain valid estimates of the acceptance probability of the distinguishers once (as there
is no dependence on M), so we can avoid the factor 7" blow-up and only take m = O(log |A| /£2)
labeled samples from D*. For the evaluation time complexity, we need not Reweight M at every
step, and can instead process all of the updates, then Reweight; again, this saves a factor T" on the
Reweighting cost.

6. Multicalibrated Statistic Fool Oblivious Distinguishers

Here, we explore the expressiveness of Oblivious Outcome Indistinguishability. Intuitively, obliv-
ious distinguishers focus their attention on the statistics being modeled, and nothing else. In this
sense, to capture the constraints of Oblivious OI, it may be sufficient to reason directly about the
statistics of interest, rather than a generative model for outcomes. Here, as in the original work on
Bernoulli OI, we show a tight connection between Oblivious OI and Multicalibration. Multicalibra-
tion, defined by Hébert-Johnson et al. (2018) in the context of fair binary prediction, requires that
predictions be well-calibrated not simply on the population as a whole, but even when we restrict
our attention to structured subpopulations.

To begin, we generalize the idea of multicalibration to predictions of arbitrary statistics. With the
appropriate generalization in hand, we show an equivalence between multicalibrated statistics and
oblivious outcome indistinguishable statistics. Finally, we conclude with a discussion of the work
of Jung et al. (2021) on moment multicalibration and how it relates to multicalibrated statistics and
OI. We show how the connection between oblivious Ol and multicalibration, and specifically the
technical requirement of linearization, sheds light on approach of mean-conditioning used by Jung
et al. (2021) to achieve moment multicalibration.

30



OUTCOME INDISTINGUISHABILITY BEYOND BERNOULLI

6.1. Multicalibrated Statistics

Before we can define multicalibration in the context of general statistics, we must first fix a definition
of calibration for general statistics. We begin with a technical notion of calibration, that requires the
predicted statistics be accurate in expectation, even after conditioning on the predictions themselves.

Definition 21 (Calibration, accuracy in expectation) A predictor p: X — A()) for statistic p is
calibrated over Nature D* if for all v € supp(p),

E[p{D;}‘X} ‘ﬁ(X):I/] =

This notion of calibration generalizes the Bernoulli formulation, where the constraint is required
to hold for the predicted probabilities, Pr[Y = 1| p(X) = v ] = v. Calibration via accuracy in
expectation is a natural desideratum for learning because the true outcome statistics satisfy the

constraints. That is, if we take p*(X) = p {D;}‘ < }, then

E[p{Dix} |o(X)=v] =Elv]p(x)=v]=v.

As in the Bernoulli case, calibration on its own is a very weak condition for recovery, and
does not require that a predictor be informative. For instance, the constant predictor p(X) = v =

E [p{ ;“,‘ X} ] that predicts the expected statistic on the marginal distribution of outcomes is
calibrated.

8o (o1} 3007 =8 o {50} ] -

Of course, this statistic predictor is constant over /X', and thus, gives no information about D’{,‘ x
beyond that conveyed by D5.. This observation motivates the idea of enforcing multicalibration,
a strengthening of calibration, that requires calibration over a rich collection of structured sub-
populations. As in Definition 4, we formulate the idea of “conditioning” on members of a sub-
population S C X that receive a certain prediction 5(X) = v, in terms of a class of functions
C C {X x R4 — Bil } That is, we consider vector-valued functions ¢ € C that map individual-
prediction pairs to vectors of unit ¢1-norm; this choice is somewhat arbitrary, but plays nicely with
the assumption that the predicted statistics j : X — BZ are £,,-bounded.

Definition 22 (Statistic Multicalibration) Fix a class of functions C C {X x R% — Bf} and
an approximation o > 0. For a bounded d-dimensional statistic p : A(Y) — B2, a predictor
p: X = Reis (C,a)-multicalibrated if for all ¢ € C

E[ (X, 5(X)), (p{Pyx} - 5(1)) | e

Definition 22 is yet a further generalization of the Bernoulli variants of multiaccuracy and multical-
ibration. Note that, as with calibration, Nature’s true statistics p* are feasible for multicalibration,
for any collection C. Thus, for any Nature D*, there exists some multicalibrated statistic predictor
p = p*. The strength of the multicalibration guarantee is parameterized by the complexity of C:
as the functions ¢ € C become more complex, the multicalibration constraints enforce a tighter
consistency with Nature.
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Linearizing statistics. Despite the fact that multicalibration is definitionally feasible by taking
p = p*, in general, achieving multicalibration from a small set of samples may be practically
challenging or impossible. In particular, for arbitrary statistics, it is not even clear how to estimate

whether a given p satisfies calibration. Without repeated samples from D;“,| x_, for various fixed

choices of z € X, it may be impossible to evaluate the expectation of p {Dy| X}. Even though
the information-theoretic optimal p* may exist, in general, it will be impossible to obtain a close
estimate of p* without strong assumptions on D*,

This shortcoming of the accuracy-in-expectation definition of calibration motivates a different
definition, where rather than averaging over the true statistic values on individuals, we average over
the mixture outcome distributions, induced by averaging over individuals.

Definition 23 (Calibration, consistency over mixtures) A predictor p : X — R for statistic p is
calibrated over Nature D* if for all v € supp(p)

P {Dy|px)=v} = V-

Indeed, one practical appeal of the mixture definition of calibration is that it allows us to use
“repeated” outcomes from within a subpopulation (e.g., the individuals that receive prediction
p(X) = v) to reason about whether the predicted statistics are accurate in expectation. This framing
of calibration suggests the following interpretation of the constraint: over the mixture of individuals
that receive predicted statistic p(x) = v, the true statistic is actually v.

For calibration of Bernoulli predictions, the two framings of calibration coincide. When mov-
ing to calibration of more general statistics, however, the mixture definition encounters issues. To
begin, the mixture constraints are not generally satisfied—even by Nature’s statistics—as discussed
by Jung et al. (2021). For instance, the variance of outcomes amongst individuals who have true
variance o2 is not necessarily 0. To see this, consider a collection of individuals who all have
deterministic outcomes (i.e., 02 = 0), but half have Y = 0 and half have Y = 1. The variance of
the outcome Y in the uniform mixture over individuals will be 1/4, not 0. In this sense, without
further restrictions, the semantics of calibration do not extend to arbitrary statistics.

To deal with these issues of feasibility, we restrict our attention to statistics where we can use the
mixture and accuracy-in-expectation defintions interchangeably. In such cases, it will be possible
to derive algorithms that work from a small sample of training data and achieve Definition 22. The
key property that we exploit is linearization.

Definition 24 (Linearization) A statistic p linearizes if for any distribution D over X x ),
p{Dy}=E [p{Dyix}].
X

As defined, linearization immediately resolves the discrepancy in the two notions of calibration:
for any linearizing statistic p, the statistic on the mixture over X must equal the expectation of the
individual statistics. A useful technical observation is that linearization is equivalent to requiring
that p is a linear function of the probability density (mass) function, with coefficients that may
depend on y € ); that is, p is an expectation.

Lemma 25 A statistic p linearizes if and only if p is an expectation of some function r : Y — R?
over outcomes,

piFy}=E[r(Y)].

32



OUTCOME INDISTINGUISHABILITY BEYOND BERNOULLI

Proof For any input-outcome distribution D, the marginal distribution on outcomes Dy can be
viewed as a convex combination of outcome distributions Dy |y, where the combination weights
over X are determined by Dx. By linearization, we know that the statistic of this convex combina-
tion p {Dy } is equal to the convex combination of the individual statistics Ep [ P {Dy‘ X} ] . This
property holds if and only if p is a linear functional of its input probability distribution, where the co-
efficients may depend on the outcome value y. Thus, there is some coefficient function r : J — R,
such that for any Fy € A()), we can write the statistic

pitvi= [r(y)-fy(y)dy=E [r(Y)]

Y

as the expectation of 7(Y') over Y ~ Fy-. [ ]

6.2. Equivalence of Multicalibration and Oblivious OI

We show a tight connection between multicalibrated statistics and statistics that satisfy Oblivious
OL In particular, we show an equivalence between the two notions for linearizing statistics.

Restatement of Theorem 1 Suppose p linearizes. For any class of functions C, there exists a family
of p-oblivious distinguishers A such that:

» Foreach c € C, there exists some A° € A that makes a single oracle call to ¢, and
* (A, e)-Oblivious OI implies (C, «)-multicalibration for a < 2e.

For any family of p-oblivious distinguishers A, there exists a class of functions C, such that (C, «)-
multicalibration implies (A, €)-OlI for e < a.

In the remainder of the section, we prove the theorem, explaining the nuances in the reductions as
we go.
6.2.1. OBLIVIOUS OI CAPTURES MULTICALIBRATION

In the first direction, we show that for any class of functions C, there is an efficient reduction to a
family of oblivious distinguishers .4, such that .4-OI implies C-multicalibration. For each ¢ € C,
there is an associated distinguisher A € A, such that evaluating A€ requires a single call to ¢ and a
constant amount of additional logic.

Proposition 26 (Oblivious OI captures Multicalibration) Suppose that p : A(Y) — BL is a
bounded linearizing statistic. Then, for any class of functions C C {X x RY — Bf}, there is an
efficient black-box reduction to a family of distinguishers A C {X x Y x R? — {0, 1}} such that:

» Foreach c € C, there is some A° € A that makes a single call to c.
* Every A® € Ais (p,1/2)-Lipschitz, and thus, p-oblivious.

s For any Nature D*, if a predictor p : X — R% is (A, ¢)-OI from Nature, then j is (C, a)-
multicalibrated on D* for a < 2e.
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Proof Consider p. By linearization and Lemma 25, we know that there exists some 7 : J) — B%
such that for any Fy € A()), the statistic is the expectation of 7(Y"),

p{Fy}=E [r(Y)] € BL

Starting with a class of functions C, we show how to construct a family of distinguishers that accept
with probability proportional to the expectations in the multicalibration constraints. Specifically, for
each ¢ € C, we build a randomized oblivious distinguisher A€ as follows.

L, L)) 41

Az,yv) =4 P 2
0 o.w.

First, we note that the stated acceptance rate for a fixed y € ) is a valid probability, because by
Hoélder’s inequality for c¢(x,v) € Bf and r(y) € BL, (c(x,v),7(y)) € [~1,1]. Next, we consider
the acceptance probability of A€ for any fixed z € X and v € Bgo, on an outcome distribution
Fy € A(y )
DO TNEL . p )y
_ wn).p (B 1

2 2
Note that this equality implies that every A€ is p-oblivious: the acceptance probability is a function
of p{Fy}. In fact, it is also (p, 1/2)-Lipschitz. Using the equality, we can rewrite the multicali-
bration violation in terms of the acceptance probabilities of the worst A°. That is, for all ¢ € C, we
have the following equality

E [ (e 500), (D | — i) ) |

X

Pr|[ A%z, Y;v)=1] :/<C(

Fy

— 2+ (B[4 Y 5500) = 1] = Br [ AT p(x) = 1]

where Y = G(M (X;p(X))) for any individually-consistent model M. Importantly, because
A is p-oblivious, the equality holds for all individually-consistent models. In all, taking A =
{A€: c € C}, if a predictor p is (A, £)-OI, then p is (C, ov)-multicalibrated for o < 2e. [

6.2.2. MULTICALIBRATION CAPTURES OBLIVIOUS OI

We show that for a linearizing statistic p, the acceptance probability of an oblivious distinguisher
factorizes into a term that depends on the individual and prediction (x, p(x)) and a term that depends
on the outcome y. This factorization can be leveraged for each A € A to derive a function c4,
such that multicalibration over the class of C = {ca} implies OI over .A. In this direction, the
computational complexity of computing c4 given an oracle for A is less direct.

Proposition 27 (Multicalibration captures Oblivious OI) Suppose that p : A(Y) — BL is a
bounded linearizing statistic. Then, for any family of p-oblivious distinguisher algorithms A C
{X x Y x R? = {0, 1}}, there is a class of functions C C {X x R% — Bil} such that for any
Nature D*, if a statistic predictor  : X — B is (C, o)-multicalibrated on D*, then j is (A, £)-OI
from Nature for € < .
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Proof We begin by showing that for a linearizing p, the acceptance probability of any p-oblivious
distinguisher satisfies a certain separability condition, into a term that depends on X and 5(X)
and another term that depends on Y. First, we observe that because distinguishers output a binary
decision, the behavior on y ~ Fy is a Bernoulli random variable. Specifically, for A € A, we can
write the acceptance probability directly as an expectation.

Pr(A(@,Y.0) = 1] = E [AGw. Vo)) = [ Ao,y fy()dy

Next, by p-obliviousness, we can also express the acceptance probability directly as a function of
p{Fy}, ha: X x B x BL —[0,1].

Pr{A(z,Y;v) = 1] = ha(z, p{Fy};v)
Y
Finally, by linearization, p {Fy } = [ r(y) fy (y)dy can be expressed as the expected value of (Y"),

as in Lemma 25. Combining the equalities, we have two expressions for the acceptance probability
of A.

[ Ay 5@y = ha (e, p (B} 50) = (x [rws @y )

The left-most expression is an expectation, and thus, a linear functional of the probability densities
fv(y). This quantity is equal to the right-most expression, which takes a linear functional of the
probability densities fy (y), as the input p { Fy }. From this equality, we conclude that h 4 must act
on p {Fy} linearly. In other words, for some scalar /4 € R and constant 74 € R, there exists a
function c4 : X x R? — B¢ such that

ha (x [rwivas ) . <c,4<x,u>, / r(y)fy<y>dy> -
=ls-{ca(z,v),p{Fy})+ Ta.

Note by the assumption that ¢4 maps to 3¢, we may assume without loss of generality that £4 > 1
(as B‘li is closed under multiplicative contractions). By taking an expectation over X, we can bound
the distinguishing advantage of A in terms of the expectation of ¢4 and the difference between the
true and predicted statistics. For some individually-consistent model M, let Y = G(M (X, 5(X)))
be sampled according to the prediction p.

Pr{A(X,Y;5(X) = 1] = Br [ A(X,V35(X) =1

= B [ha (X0 {Dyyx ) 10(X)) — ha (X, 5(X): ) |

:EA-DE;( [ <cA(X,ﬁ(X))- (P {D%X} _ﬁ(X))> }

Taking C = {c4 : A € A}, if pis (C, a)-multicalibrated, then the distinguishing advantage for each
A € Ais upper bounded by «/¢ 4. Because £4 > 1 forall A € A, then pis (A, e)-Olfore < o. B

Note that this reduction is analytical, rather than computational. In particular, c4 does not
directly use A as an oracle, but rather must exist due to the properties of linearizing statistics and
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oblivious distinguishers. Still, we argue informally that in well-motivated settings, the complexity
of ¢4 cannot greatly exceed that of A.
In particular, suppose that p is is non-degenerate, in the sense that we can choose a selection

of distributions {Fi(/’) }, such that { p {Fi(; )}} form a basis for R%. Then, assuming the basis is

sufficiently well-conditioned, then we can “decode” c4 using oracle calls to A. In particular, for

any given x, v, using the equality derived above for each F: (l),

;’(;) [A(z,Y;v)=1]=ha (x,p{Fg)} ;y) =Aly- <cA(ac,1/),p{Fy)}> + 74

we can set up a linear system to evaluate c4(x,v). Specifically, we can call A on samples from

each F& ) to approximate the acceptance probability on the left-hand side, and explicitly calculate

)

(or estimate) the statistic p {F}(,Z } on the right-hand side. Then, we can solve for c4(z,v) (up to

the Lipschitz constant) with a linear system solver. The number of calls to A needed to invert the
linear system accurately will depend exactly on the choice of basis based on properties of p. While
this method of deriving c4 from A is indirect, it establishes the fact that the complexity of ¢4 cannot
grow unbounded compared to that of A.

6.3. Understanding Moment Multi-Calibration

We discuss how the connection between oblivious OI and multicalibrated statistics sheds light on
the work on moment multicalibration of Jung et al. (2021). In this work, the goal is the predict
central moments for individual outcomes that satisfy multicalibration. Here, they must be careful
because central moments do not linearize; thus, they instead work with a technical notion of mean-
conditioned moment multicalibration, which allows the statistics to linearize and thus is feasible.

We start by arguing that we can achieve the guarantees of moment multicalibration directly as a
variant of statistic multicalibration using linearizing statistics. In this sense, we can similarly imple-
ment it in the oblivious Ol framework. The idea is to avoid central moments all together, and instead,
simply design distinguishers that accept with probability proportional to the non-central moments.
Then, by conditioning on individuals’ predicted means, the non-central moments distinguishers will
imply central moment multicalibration.

For simplicity, we explain the construction in the case of predicting the mean and variance. In-
stead of working with the variance, we will work directly with the non-central second moment. For
any given subpopulation S C X', we can define the following functions® that effectively “condition”
on membership in S, as well as the predicted mean fi; (x) and predicted second moment fig(x).

CSmy,ma (T3 fi1(2), fiz(z)) = 1[x € S A fir(x) = mq A fig(x) =~ ma |

Note that the non-central moments linearize. Thus, by the arguments above, we can define corre-
sponding distinguishers, whose acceptance probabilities are proportional to the statistics of interest.
In particular, for any Fy € A(Y),

r [ AL (2, Y (1), in()) = 1] o a3 (@), o) - iz {F'}

Pr [ A1, (23 01 (2), 2(2)) = 1] 06 €8s (25 (2), o) - o {F}

Y

6. Note that we describe the indicator functions on predictions informally, using ~ as shorthand for the formal rounding
strategy discussed in Jung et al. (2021).
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Importantly, by restricting attention to individuals who received a given mean prediction fi;(X) =
m1 and second moment prediction fig (X ) = ma, fooling the distinguishers implies multicalibration
for the variance predictor derived as

5(x) = fiz() — (f(2))*.

In particular, when we condition on both predictions fi1 (X) and fi2(X ), the linearizing statistics are
still accurate in expectation, and thus, give a valid multicalibrated estimate of the variance.

Mean-conditioning is necessary. Finally, we argue that, in a sense, the techniques of Jung et al.
(2021) to obtain central moment multicalibration are necessary. We argue that, without condition-
ing on the mean, there is no hope for a meaningful guarantee for central moments from multical-
ibration, or even from Existential OI. In particular, it would be impossible to derive any sorts of
concentration inequalities from the predicted statistics, as Jung et al. (2021) show is possible with
mean-conditioned moment multicalibration.

This argument follows from the following proposition, which intuitively says that the trivial
central moment predictor, that claims all central moments are 0, can always pass any OI tests,
provided the distinguishers has no information about the predicted mean. For convenience we state
the proposition in terms of a predictor i : X — R that predicts the first d + 1 central moments,
excluding the mean.

Proposition 28 Suppose ji : X — R? that predicts the first d + 1 central moments, excluding
the mean. For any family of distinguishers A, the trivial predictor [ig(x) = O for all x € X, is
(A, e)-existential-OI for any constant £ > 0.

Proof Consider, for the sake of argument, drawing a random sample Y, ~ Dy |x for each z € X'
Further, consider the model M : X — A()) that for each x € X, returns the singleton distribution
where Pr(,) [ Y =Y, | = 1. Note that because each outcome under M is deterministic, every
central moment beyond the mean of each of M(z) is 0. Thus, M is individually-consistent with
Ho-

But now, consider the acceptance probability of any distinguisher A on samples from D* versus
on samples from D(M). By the choice of M, samples from D(M) are true empirical samples from
D*. Thus, the acceptance probability on D(M) can be viewed as an empirical approximation of the
acceptance probabilty on D*. Thus, provided that D% has sufficient min-entropy to avoid repeatedly
sampling the same individual X regularly, the acceptance probability on D(M) will concentrate
around that on D*. By choosing D% appropriately, we can obtain e-closeness in distinguishing
advantage for arbitrarily small € > 0. |

This construction is a specific example of a general phenomenon: without conditioning on the mean
of the outcome distribution, the set of individually-consistent models includes unreasonable, and
largely inaccessible generative outcome models. For example, because our choice of M is random,
it will be highly incompressible.

In this sense, some variant of this construction can be made to work with any notion of OI,
provided the distinguishers only look at consistency with the predicted central moments. In contrast,
the results of Jung et al. (2021) show the power of conditioning on the mean. Once we condition on
the mean, then even the weakest notion of oblivious Ol is capable of enforcing strong consistency
with Nature, allowing us to derive Chebyshev-style concentration inequalities based on the predicted
statistics.
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