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Abstract: Lieb and Oxford (1981) derived rigorous lower bounds, in the form of 

local functionals of the electron density, on the indirect part of the Coulomb 

repulsion energy. The greatest lower bound for a given electron number 𝑁 depends 

monotonically upon 𝑁,  and the 𝑁 → ∞ limit is a bound for all 𝑁. These bounds have 

been shown to apply to the exact density functionals for the exchange- and exchange-

correlation energies that must be approximated for an accurate and computationally 

efficient description of atoms, molecules, and solids. A tight bound on the exact 

exchange energy has been derived therefrom for two-electron ground states, and is 

conjectured to apply to all spin-unpolarized electronic ground states. Some of these 

and other exact constraints have been used to construct two generations of non-

empirical density functionals beyond the local density approximation: the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the 

strongly constrained and appropriately normed (SCAN) meta-GGA. 

 

1. Applied Mathematics as a Foundation for Theoretical Physics 

      We would like to begin by congratulating Elliott Lieb, on the occasion of his 90th 

birthday, for a long and important career in applied mathematics, and for his 2022 

American Physical Society Medal for Exceptional Achievement in Research, “for 

major contributions to theoretical physics through obtaining exact solutions to 

important physical problems, which have impacted condensed matter physics, 

quantum information, statistical mechanics, and atomic physics”. 

      Applied mathematics and theoretical physics are distinct but intertwined 

activities. The applied mathematician proves theorems that are demonstrably true 
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under the stated assumptions, but chooses those assumptions and theorems that may 

be relevant to theoretical physics or other fields. The theoretical physicist explains 

and predicts what can be found in the physical world, or develops concepts and 

methods that can be used for that purpose.  Both rely on intuition and logic, but the 

theoretical physicist can also rely on the theorems proved by the applied 

mathematician. 

         The field of theoretical physics that we know best is the density functional 

theory of Hohenberg, Kohn, and Sham [1,2]. Important mathematical contributions 

to this field have been made by Lieb [3,4], Levy [5], and others [6]. In Ref. [4], Lieb 

studied the mathematical properties of the associated functionals and proposed 

alternative formulations. Here we want to concentrate on the lower bounds on the 

Coulomb energy derived by Lieb and Oxford [3], and to explain how they have 

guided the development of two generations of practical approximations to the 

density functional for the exchange-correlation energy of a many-electron system, 

and thus to our quantitative understanding of normal matter.  

 

2. Synopsis of Density Functional Theory 

         Atoms, molecules, and solids are composites of electrons and nuclei. In atomic 

units, the electrons have electric charge -1, spin ½ (making them fermions) with z-

components 𝜎 = +1/2 or ↑ and -1/2 or ↓, and light unit identical masses which require 

a quantum mechanical treatment. The nuclei have integer positive charges and much 

heavier masses that make them almost classical. Under normal conditions, these 

systems are often close to their ground states or states of lowest energy.  The allowed 

energies (for the nuclei at rest) are eigenvalues of the Hamiltonian 

𝐻̂ = ∑ −
1

2
∇𝑖

2𝑁
𝑖=1 + ∑ 𝑣(𝑟𝑖

𝑁
𝑖=1 ) + 𝑉𝑒𝑒̂  + 

1

2
∑ ∑ 𝑍𝛼𝛽≠𝛼𝛼 𝑍𝛽/|𝑅𝛽 − 𝑅𝛼|.                            (1)                                    

Electron 𝑖 has three-dimensional position operator 𝑟𝑖 and nucleus 𝛼 has classical 

position 𝑅𝛼 . The first term 𝑇̂ is a sum of one-electron kinetic energy operators. The 

second term is a sum of one-electron potential energy operators, usually but not 

necessarily the Coulomb attraction of the electrons to the nuclei: 

𝑣(𝑟) =  − ∑ 𝑍𝛼/|𝑟 − 𝑅𝛼|𝛼 .                                                                                               (2) 

The third term, which plays a key role in this article, is the potential energy operator 

for Coulomb repulsion between pairs of electrons: 
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𝑉𝑒𝑒̂ = 
1

2
∑ ∑ 1/|𝑟𝑗 − 𝑟𝑖|𝑗≠𝑖

𝑁
𝑖=1 .                                                                                             (3) 

The last term, which is just a number, is the Coulomb repulsion between pairs of 

nuclei. 

                    The mean number of electrons in volume element 𝑑3𝑟  is 𝑛(𝑟)𝑑3𝑟.                                             

Hohenberg and Kohn [2] showed that the ground-state electron density 𝑛(𝑟)  

determines the external potential 𝑣(𝑟), and that there exists a universal density 

functional 𝐹[𝑛], such that minimization of 

𝐸𝑣[𝑛] = 𝐹[𝑛] + ∫ 𝑑3 𝑟𝑣(𝑟)𝑛(𝑟)                                                                                     (4) 

at fixed electron number 𝑁 =  ∫ 𝑑3 𝑟 𝑛(𝑟) and external potential 𝑣(𝑟) yields the 

ground-state electron density and energy (excluding the last term of Eq. (1)). Kohn 

and Sham [2] made this approach practical by writing  

𝐹[𝑛] =  𝑇𝑠[𝑛] + 𝑈[𝑛] + 𝐸𝑥𝑐[𝑛],                                                                                      (5) 

where 𝑇𝑠[𝑛] is the ground-state kinetic energy of non-interacting electrons of density 

𝑛(𝑟), 

𝑈[𝑛] =
1

2
∫ 𝑑3𝑟 𝑑3 𝑟′𝑛(𝑟)𝑛(𝑟′)/|𝑟′ − 𝑟|                                                                         (6) 

is the Hartree electrostatic interaction of the density with itself, and the residue 

𝐸𝑥𝑐[𝑛] =  𝐸𝑥[𝑛] + 𝐸𝑐[𝑛] is called the exchange-correlation energy. It is often a 

relatively small contribution to the total energy, but a large contribution to the 

binding energy of one atom to another, making it “Nature’s glue”. Then one can in 

principle find the exact ground-state energy, related energy differences, and the 

electron density by replacing the cumbersome 𝑁 − electron Schrödinger equation 

by 𝑁 tractable self-consistent one-electron Schrödinger equations: 

[−
1

2
∇2 + 𝑣(𝑟) +

𝛿𝑈

𝛿𝑛(𝑟)
+

𝛿𝐸𝑥𝑐

𝛿𝑛(𝑟)
] 𝜑𝑎,𝜎(𝑟) =  𝜖𝑎,𝜎𝜑𝑎.𝜎(𝑟),                                        (7) 

𝑛(𝑟) =  ∑ |𝜑𝑎,𝜎(𝑟)|
2

𝑎,𝜎 𝜃(𝜇 − 𝜖𝑎,𝜎).                                                                        (8) 

𝜇 is a Lagrange multipler determined by constraining 𝑛(𝑟) to integrate to 𝑁 

electrons. The Heaviside step function 𝜃 in Eq. (8) restricts the sum to one-electron 

states that are occupied in the ground state. The Kohn-Sham one-electron 

wavefunctions or orbitals 𝜑𝛼,𝜎(𝑟) are by Eq. (7) functionals of the electron density 

𝑛(𝑟).  Kohn and Sham [2] also proposed the local density approximation  
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𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛] =  ∫ 𝑑3 𝑟 𝑛(𝑟)𝜀𝑥𝑐

𝑢𝑛𝑖𝑓
(𝑛(𝑟)),                                                                                  (9) 

in which 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓

(𝑛) is the known exchange-correlation energy per electron in an 

electron gas of uniform density 𝑛. Levy [5] extended the domain of densities on 

which the exact functionals are constructed, and gave precise definitions to all the 

exact functionals. Those definitions involve expectation values of operators using an 

antisymmetric interacting wavefunction 𝛹𝑁,𝜆=1 that yields the density 𝑛(𝑟) and 

minimizes the expectation value of 𝑇̂ + 𝑉𝑒𝑒 ,̂  and a non-interacting antisymmetric 

wavefunction 𝛹𝑁,𝜆=0 that yields the same density and minimizes the expectation 

value of 𝑇.̂ 𝛹𝑁,𝜆=0 is typically a single Slater determinant of the occupied Kohn-

Sham orbitals 𝜑𝑎,𝜎(𝑟). Here 𝜆 is the coupling constant that scales the physical 

electron-electron interaction. Levy’s “constrained search” over all antisymmetric 

wavefunctions yielding a given density 𝑛(𝑟) makes it easy to generalize from 

density (𝑛) to spin-density (𝑛↑, 𝑛↓) functional theory. 

          Density functional theory is formally exact for the ground-state energy and 

density of a system with the Hamiltonian of Eq. (1). There are in fact several exact 

variants of the theory, depending in part on how the ground-state density is defined, 

and some of those are more suitable to accurate and computationally efficient 

approximation than others. For example, using the separate spin densities 𝑛↑(𝑟) and 

𝑛↓(𝑟) instead of the total density 𝑛(𝑟) provides more information to an 

approximation and makes it more accurate, even at the level of the local spin density 

approximation. Constructing the density from wavefunctions or pure states also 

provides more information than using one from ensembles or mixed states, and it is 

now clear that advanced approximations are more accurate for the former case [CP]. 

          After several generations of refinements beyond the LDA of Eq. (9) and its 

spin-density generalization, approximate spin-density functionals can now more 

accurately predict what atoms, molecules, and solids can exist, and with what 

properties. The most predictive functionals are constructed by satisfying known 

exact constraints: mathematical properties that have been derived for the exact 

functional 𝐸𝑥𝑐[𝑛]. Among these are lower bounds based on the work of Lieb and 

Oxford [3]. 

 

3. Synopsis of the Lieb-Oxford Lower Bounds on the Coulomb Energy 
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The expectation value of the electron-electron repulsion for an 𝑁-electron 

wavefunction of density 𝑛(𝑟) can be written as the sum of a positive direct or Hartree 

term and an indirect term 𝐼[𝛹𝑁]: 
 

 < 𝛹𝑁/ 𝑉𝑒𝑒̂  /𝛹𝑁 > = 𝑈[𝑛] + 𝐼[𝛹𝑁]                                                                   (10) 

 

with 𝑈[𝑛] defined in Eq. (6). The wavefunction 𝛹𝑁 is not restricted to be a ground-

state, and it can be anti-symmetric or symmetric; in fact, the expectation value can 

be taken in an ensemble of wavefunctions. There is no upper bound on 𝐼[𝛹𝑛], but 

there is a negative greatest lower bound [3] that depends on 𝑁 (but not on the spin 

of the electron): 

 

𝐼[𝛹𝑁]  ≥ −𝐶𝑁 ∫ 𝑑3𝑟 𝑛
4

3 (𝑟).                                                                                     (11) 

The optimal constant 𝐶𝑁 increases with 𝑁: 

𝐶1  ≤  𝐶2 ≤ ⋯  ≤ 𝐶∞,                                                                                             (12) 

 

where 𝐶1 = 1.092, 𝐶2  ≥  1.234    (or 1.256 [7]), and 𝐶∞  ≤ 1.68.  Chan and Handy 

[8] improved the last bound slightly to 𝐶∞ ≤ 1.64. The bounds are much tighter and 

thus more useful than the earlier [L] 𝐶∞  ≤ 8.52 .  There is thus a greatest lower 

bound independent of 𝑁: 
 

𝐼[𝛹𝑁]  ≥  −𝐶∞ ∫ 𝑑3𝑟 𝑛
4

3(𝑟).                                                                                (13) 

 

        The significance for density functional theory is that the Lieb-Oxford bounds 

are all local functionals of the density, like the LDA itself and relevant to more 

advanced approximations. But the indirect part of the Coulomb interaction enters 

density functional theory only indirectly. From the adiabatic connection fluctuation 

dissipation theory [9,10], we find [11,12] 

 

0 ≥  𝐸𝑥[𝑛] = 𝐼[𝛹𝑁,𝜆=0]  ≥  𝐸𝑥𝑐[𝑛] =  ∫ 𝑑𝜆 𝐼[𝛹𝑁,𝜆
1

0
]  ≥  𝐼[𝛹𝑁,𝜆=1]  ≥

 −𝐶𝑁 ∫ 𝑑3 𝑟 𝑛4/3(r),                                                                                             (14) 

  

where 𝛹𝑁,𝜆 is now that N-electron antisymmetric wavefunction that yields the 

density 𝑛(𝑟) and minimizes the expectation value of 𝑇̂ + λ𝑉𝑒𝑒̂ , providing a 
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continuous connection between the non-interacting and interacting systems.  The 

exchange-correlation energy of density functional theory is an integral over the 

coupling constant 𝜆 from 0 to 1, which includes a positive kinetic energy of 

correlation in addition to the negative indirect Coulomb energy at the physical λ= 1. 

Thus Eq, (14) yields lower bounds on the exchange energy functional and on the 

exchange-correlation energy functional. 

 

            For comparison, 

 

0 ≥  𝐸𝑥
𝐿𝐷𝐴[n] = -0.739∫ 𝑑3r 𝑛

4

3
 ≥  𝐸𝑥𝑐

𝐿𝐷𝐴[𝑛]  > ~ − 1.43 ∫ 𝑑3 𝑟 𝑛
4

3  ≥ 

−𝐶∞ ∫ 𝑑3𝑟 𝑛4/3,                                                                                                 (15) 

 

obeys the Lieb-Oxford bound for a system with an arbitrarily large number of 

electrons, because LDA is by construction exact for an electron gas of uniform 

density. The lower bound on 𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛] in Eq. (15) arises from the low-density limit 

of the uniform gas correlation energy per electron, as parametrized (accurately but 

not exactly) in Ref. [13] using a formula from Ref. [14] and quantum Monte Carlo 

data from Ref. [15]. In fact, LDA inherits several exact constraints from its exactness 

for an infinite class of uniform densities, explaining its better-than-expected 

performance for real systems.         

    

       The Lieb-Oxford bounds for 𝑁 ≫ 1 are not expected to be close unless the 

electron-electron Coulomb correlation is strong.   In the low-density limit of the 

uniform electron gas, the electrons are perfectly correlated, forming a body-centered 

cubic Wigner crystal that minimizes the expectation value of the Coulomb repulsion 

energy. Thus Perdew [11] and Levy and Perdew [16] conjectured that this limit 

provides the optimal 𝐶∞ ≈ 1.43, where the numerical value comes from the fit 

discussed in the previous paragraph; a more precise 1.44 comes from the energy of 

the Wigner crystal, but the difference is negligible for the construction of 

approximate functionals. Lewin and Lieb [17] derived a tight bound 𝐶𝑈𝐸𝐺  ≈ 1.45 

for the uniform electron gas, but suggested that the combination of surface effects 

with long-range interactions might rule out the equivalence between the energies per 

electron of the infinite Wigner crystal and of the ground-state of a large finite jellium 

in the low-density limit. That equivalence was later proved rigorously [18,19,20]. 

Some mathematical properties of the uniform electron gas have been derived in Ref. 

[21]. 
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           For the generalization of the Wigner crystal to the description of strong 

correlation in inhomogeneous electron densities, see Refs. [22,23]. 

 

                                                                                         

4. Tight Bound on the Exchange Energy of a Two-Electron Ground State, and Its 

Conjectured Generalization 

.          The exact exchange energy in density functional theory is  

     𝐸𝑥 = 𝐼[𝛹𝑁,𝜆=0] =  −
1

2
∑ ∫ 𝑑3

𝜎 𝑟 ∫ 𝑑3𝑟′|𝜌𝜎(𝑟, 𝑟′)|2/|𝑟′ − 𝑟|,                                      (16) 

where the one-particle density matrix of Kohn-Sham orbitals of spin 𝜎 is 

       𝜌𝜎(𝑟, 𝑟′) =  ∑ 𝜑𝑎,𝜎
∗ (𝑟′)𝜑𝑎,𝜎𝑎 (𝑟)𝜃(𝜇 − 𝜖𝑎,𝜎).                                                                       (17) 

 The diagonal of Eq. (17) is the electron spin density 𝑛𝜎(𝑟). Apart from the small 

differences between the Kohn-Sham and Hartree-Fock orbitals, the exchange energy 

defined by Eqs. (16) and (17) is just the Hartree-Fock exchange energy of the system. 

Because the Kohn-Sham orbitals are functionals of the density, so is the Kohn-Sham 

exchange energy.This exchange energy has coordinate-scaling equalities that the 

correlation energy does not have, so each has to be approximated separately. For a 

system of many electrons, the Lieb-Oxford lower bound does not seem to be tight 

for the exchange energy, or even for the exchange-correlation energy except possibly 

for strongly-correlated systems. In the two-electron case, however, the sum in Eq. 

(17) has only one term, making 

        |𝜌𝜎(𝑟. 𝑟′)|2  = 𝑛𝜎(𝑟′)𝑛𝜎(𝑟).                                                                                          (18) 

 The two-electron ground state is spin-unpolarized (𝑛↑=𝑛↓ =
𝑛

2
), so its exchange   

energy is                     

         𝐸𝑥
𝑁=2[n]=2𝐸𝑥

𝑁=1[n/2]≥ 2(−1.092) ∫ 𝑑3𝑟 (
𝑛

2
)4/3=-0.867∫ 𝑑3r 𝑛4/3,                      (19) 

        where we have used the optimal Lieb-Oxford lower bound for the xc = x energy of 

a one-electron density (which also follows from the earlier work of Gadre, 

Bartolotti, and Handy [24]). Eq. (19) is a very tight lower bound for the exchange 

energies of compact spherical two-electron densities (e.g., the He atom), for which 

it is almost an equality. For the spin-symmetry-unbroken (unpolarized) hydrogen 

molecule H2, the lower bound of Eq. (19) is very tight at the equilibrium bond 
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length, but it becomes much more negative than the exact exchange energy as the 

bond is stretched and the density becomes more lobed [25].            

                  The bound of Eq. (19) was derived by Perdew, Ruzsinszky, Sun, and Burke 

[26], who conjectured that it might provide a lower bound on the exchange energy 

of a spin-unpolarized density of any electron number 𝑁. No counter-example is 

known to the authors, and the strongly-constrained and appropriately normed 

(SCAN) meta-GGA [27] for the exchange-correlation energy, based in part on that 

conjecture, has had remarkable successes. 

                   Because the spin-density functional for the exact exchange energy 

obeys a spin-scaling relation [28] 

          𝐸𝑥[𝑛↑, 𝑛↓] =
1

2
{𝐸𝑥[2𝑛↑] + 𝐸𝑥[2𝑛↓]},                                                                             (20) 

        we only need to approximate 𝐸𝑥[𝑛] for spin-unpolarized densities. Unlike the Lieb-

Oxford bounds, the greatest lower bound on the exchange energy depends upon the 

spin quantum number (1/2 for electrons) and on the relative spin polarization 
𝑛↑−𝑛↓

𝑛
. 

                   From Eq. (16), an obvious upper bound on the electronic exchange energy 

is zero, but that limit is reached only when the density tends to zero everywhere. 

Appendix A argues that there is no tight upper bound of Lieb-Oxford form. A 

rigorous tight lower bound like Eq. (19) for spin-unpolarized densities at all 

electron numbers would be of great value for the construction of constraint-based 

density-functional approximations, because it would constrain what is typically the 

largest part of the approximated exchange-correlation energy. 

 

5. Importance of the Lower Bounds on the Indirect Coulomb Energy as Exact 

Constraints for Density Functional Approximations 

            Kohn and Sham [2] constructed the local density approximation of Eq. (9) 

to be exact for slowly-varying inhomogeneous densities; a proof of exactness is 

given in Ref. [LLS]. The next step might be expected to be the second-order 

gradient expansionMB,KL, 

         𝐸𝑥𝑐
𝐺𝐸2[n]=∫ 𝑑3𝑟 𝑛𝜀𝑥𝑐

𝑢𝑛𝑖𝑓(𝑛) + ∫ 𝑑3 𝑟 {𝐶𝑥 + 𝐶𝑐(𝑛)}|∇𝑛|2/𝑛4/3.                                  (21) 

         This expression is asymptotically correct in the limit of densities that vary slowly 

over three-dimensional space, but it actually worsens the predictions of LDA for 
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real systems, because this truncated expansion does not inherit many of the exact 

constraints satisfied by LDA. The known gradient coefficient for exchange, 𝐶𝑥, is 

negative, so that lower bounds on the exchange energy are violated by Eq. (21) for 

densities that vary sufficiently rapidly. That is not such a serious problem for real 

systems, but it is still one that needs to be corrected. More seriously, the known 

gradient coefficient for correlation, 𝐶𝑐(𝑛), is positive and large, leading to 

incorrectly positive correlation energies for real systems.  The exact constraints 

satisfied by LDA can be restored, and others can be satisfied, by generalized 

gradient approximations (GGAs): 

           𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] =  ∫ 𝑑3𝑟 𝐹𝑥𝑐

𝐺𝐺𝐴(𝑛, 𝑠)𝑛𝜀𝑥
𝑢𝑛𝑖𝑓

(𝑛),                                                                    (22) 

          where 

            𝜀𝑥
𝑢𝑛𝑖𝑓(𝑛) =  −0.739𝑛1/3                                                                                          (23) 

is the exact exchange energy of Eq. (16) per electron in a non-interacting electron 

gas of uniform spin-unpolarized density (already used in Eq. (15)) and                                

          𝑠 = 0.1616|∇𝑛|/𝑛4/3.                                                                                              (24) 

          The GGA enhancement factor over local exchange can be written as [11,12,29] 

           𝐹𝑥𝑐
𝐺𝐺𝐴 (n,s) = 𝐹𝑥

𝐺𝐺𝐴(𝑠) + 𝐹𝑐
𝐺𝐺𝐴(𝑛, 𝑠).                                                                 (25) 

 From Eqs. (14), (15), (20), and (21), the GGA exchange enhancement factors can 

be constructed to satisfy 

           1.68/[0.739 × 2
1

3] = 1.804 ≥  𝐹𝑥
𝐺𝐺𝐴(𝑠)  ≥  𝐹𝑥

𝐺𝐺𝐴(s=0) = 1.                              (26)                                                                            

The Perdew-Wang 1991 (PW91) [13,14] GGA and the widely-used Perdew-

Burke-Ernzerhof 1996 (PBE) [29] GGA were constructed to satisfy the bounds 

            𝐸𝑥
𝐺𝐺𝐴[𝑛↑, 𝑛↓]  ≥  𝐸𝑥𝑐

𝐺𝐺𝐴[𝑛↑, 𝑛↓] ≥ -1.68∫ 𝑑3 𝑟 𝑛4/3.                                            (27)                                                             

         as well as other exact constraints. However, the final inequality in Eq. (27), 

approached by PBE exchange energy at large s, is not very important for the 

exchange energies of most real atoms, molecules, and solids, where the 

energetically-important regions have 0 ≤ 𝑠 < 3. 

               Above the first (LDA) and second (GGA) rungs of the ladder of density 

functional approximations [30] is the third or meta-GGA (MGGA) rung, which 
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depends upon the Kohn-Sham kinetic energy density 𝜏(𝑟), e.g., in the SCAN [27] 

MGGA (based in part on the conjectured tight bound of Eq. (34)), 

         𝐸𝑥𝑐
𝑀𝐺𝐺𝐴[n] = ∫ 𝑑3 𝑟 𝐹𝑥𝑐

𝑀𝐺𝐺𝐴(𝑛, 𝑠, 𝛼)𝑛𝜀𝑥
𝑢𝑛𝑖𝑓(𝑛).                                                             (28) 

        where 

          𝛼 =
𝜏−𝜏𝑊

𝜏𝑢𝑛𝑖𝑓
 ≥ 0 ,                                                                                                           (29) 

          𝜏 =
1

2
∑ |∇𝜑𝑎,𝜎(𝑟)|

2
𝜃(𝜇 − 𝜖𝑎,𝜎)𝑎𝜎 ,                                                                     (30) 

         𝜏𝑊 =
|∇𝑛|2

8𝑛
 ,                                                                                                                    (31) 

          𝜏𝑢𝑛𝑖𝑓 = 2.871𝑛
5

3.                                                                                                          (32) 

         The exchange enhancement factor becomes 𝐹𝑥
𝑀𝐺𝐺𝐴(𝑠, 𝛼): 

         0.867/0.739 = 1.174 = 𝐹 𝑥
𝑀𝐺𝐺𝐴(𝑠 = 0, 𝛼 = 0)  ≥  𝐹𝑥

𝑀𝐺𝐺𝐴(𝑠, 𝛼).                         (33)                                                           

          𝛼 = 0 recognizes two-electron spin-unpolarized ground states, or more generally 

regions of space in which a single orbital shape is dominant, 𝛼 ≈ 1 with 𝑠 ≪ 1 

recognizes slowly-varying densities for which GGA can be accurate, and 𝛼 ≫ 1 

recognizes regions of space in which density tails overlap. Comparison of Eqs. (26) 

and (33) shows that SCAN exchange is substantially different from PBE exchange. 

The SCAN [27] meta-GGA is substantially more accurate [31,32,33] than the PBE 

GGA, in part because its exchange energy satisfies the conjectured tight bound for 

spin-unpolaized densities at all electron number of section 4, 

           𝐸𝑥[𝑛]  ≥  −0.867 ∫ 𝑑3𝑟 𝑛4/3.                                                                              (34) 

         That accuracy gives us extra confidence that the bound of Eq. (34) is exact or nearly 

exact for all 𝛼, and not just for 𝛼 = 0. In fact, the SCAN exchange energy is closest 

to its lower bound of Eq. (34) when 𝛼 = 0, as shown in Fig. 1 of Ref. [27]. Greater 

computational efficiency and slightly greater accuracy is achieved by the smoother 

r2SCAN [34] meta-GGA, which satisfies 16 of SCAN’s 17 exact constraints, 

including Eq. (34). 

                 For the H2 molecule with spin-symmetry breaking, which localizes the ↑ and 

↓ electrons on different nuclei at large bond lengths, the SCAN exchange-

correlation functional is accurate at all bond lengths [35].            
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                 There are of course other reasons for the success of SCAN, including its 

satisfaction of all 17 known exact constraints that a meta-GGA can satisfy (listed 

in the supplementary information of Ref. [27]), and its fitting to non-bonded 

“appropriate norms” such as the uniform electron gas and some atoms [27]. Since 

density functionals are primarily used to predict how atoms bond together, LDA, 

PBE, and SCAN, which are not fitted to any bonded system, are regarded as “non-

empirical functionals”. 

                 Rigorous proof of tight bounds like the conjectured lower bound of Eq. (34) 

on the exact exchange energy of a spin-unpolarized electron density for all electron 

numbers would be a valuable contribution to density functional theory. 
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Appendix A: Upper Bound on the Exact Exchange Energy 

            From Eq. (16), the exact exchange energy 𝐸𝑥[𝑛] of a spin-unpolarized 

electronic system has an upper bound of zero, which is achieved only when 𝑛 → 0. 
Here we will show that there is no upper bound of the form 

𝐸𝑥[n] ≤ −𝐶 ∫ 𝑑3 𝑟 𝑛4/3                                                                                       (35) 

for any 𝐶 > 0. 

            Consider the non-uniform density scaling [34] in Cartesian coordinates 

𝑛(𝑥, 𝑦, 𝑧) → 𝛾𝑛(𝛾𝑥, 𝑦, 𝑧),                                                                                   (36) 

which leaves the electron number  

𝑁 =  ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑛(𝑥, 𝑦, 𝑧)                                                                                (37) 

unchanged. In the 𝛾 → ∞ limit, a three-dimensional density is collapsed to two 

dimensions, and  

∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑛
4

3 (𝑥, 𝑦, 𝑧)  →  𝛾
1

3 ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑛
4

3 (𝑥, 𝑦, 𝑧),                                      (38) 
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which diverges to ∞.  But the exact exchange energy per electron, 𝐸𝑥[𝑛]/N, must 

approach the finite (Eq. (45) of Ref. [36]) and negative definite exchange energy 

per electron of the two-dimensional system ([37], numerical evidence for a slab 

model ). That would not happen if Eq. (38) were true for any 𝐶 > 0. 

              For a slab of uniform electron density and periodic boundary conditions 

in the xy plane, with the width in the z direction collapsing to zero around the plane 

z = 0, one can use the definition of Eq. (16) and the separability of the Kohn-Sham 

orbitals to show on one page that the exact exchange energy per unit area 

approaches that of a truly two-dimensional uniform electron gas with the same 

number of electrons per unit area. In this limit, the LDA and PBE exchange 

energies per electron diverge, while SCAN has a qualitatively (but not 

quantitatively) correct finite limit [38] by virtue of its non-uniform scaling 

constraint. 

             The conclusion of this Appendix is consistent with exact and LSDA 

exchange energies for one-electron densities of increasing nodedness [27].  
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