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Abstract—This paper considers a multi-source updating system
in which a transmitter powered by energy harvesting (EH)
sends status updates about multiple sources of information to a
destination, where the freshness of status updates is measured in
terms of Age of Information (AoI). The harvested energy packets
and the status updates of each source are assumed to arrive
at the transmitter according to independent Poisson processes,
and the service time of each status update is assumed to be
exponentially distributed. Our focus is on understanding the
distributional properties of AoI under a source-aware preemptive
in service queueing discipline (which only allows preemption
between the status updates generated by the same source to
enhance fairness). In particular, we use the stochastic hybrid
systems (SHS) framework to derive closed-form expressions of
the moment generating function (MGF) and average of AoI. To
the best of our knowledge, this paper is the first to characterize
the AoI performance under a source-aware preemptive policy
for the generic case where the transmitter has an arbitrary
number of sources. The generality of our results is demonstrated
by recovering several existing results for EH-powered single-
source systems as special cases. Our results demonstrate that
the proposed source-aware preemptive policy strikes a balance
between minimizing the sum of average AoI values associated
with different sources (average sum-AoI) and achieving fairness
among the average AoI values of different sources.

Index Terms—Age of information, energy harvesting, queueing
systems, communication networks, stochastic hybrid systems.

I. INTRODUCTION

The ongoing large-scale deployment of Internet of Things
(IoT) will enable a class of real-time updating systems in
which a transmitter node aims to deliver timely status updates
about some physical process(es) of interest to a destination
node [1]. To quantify the freshness of information at the
destination, the authors of [2] introduced the concept of AoI
and derived its average for single-source systems in which
a non-EH transmitter (i.e., it is powered by a reliable energy
source) has a single source of information. While AoI has been
extensively analyzed in single-source systems, the analysis of
AoI in multi-source systems is quite challenging, and hence
the prior work in this direction is relatively sparse [3]–[7].
The average AoI was characterized under non-preemptive and
preemptive in service/waiting queueing disciplines in [3]–[6],
whereas the distribution of AoI was numerically characterized
for various discrete time queues in [7]. Different from [2]–
[7] that considered a non-EH transmitter, our focus in this
paper is on the analytical characterization of the distributional
properties of AoI in EH-powered multi-source systems.

The analyses of the above works were mainly based on
identifying the properties of the AoI sample functions and
applying geometric arguments, which often involve tedious
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calculations of joint moments. This has motivated the authors
of [8] and [9] to build on the SHS framework of [10], and
derive promising results allowing the use of the SHS approach
for the queueing-theoretic analyses of AoI. The analysis of
AoI using the SHS approach becomes much more challenging
when we consider an EH-powered transmitter. This is because
the process of decision-making (i.e., the decisions of discard-
ing or serving new arriving status updates at the transmitter)
is dependent on the joint evolution of the battery state and the
system occupancy with respect to the status updates.

Studies on AoI in multi-source systems with a non-EH
transmitter have shown the superiority of the source-agnostic
preemptive queueing disciplines (which allow status updates of
different sources to preempt each other in service/waiting) over
the non-preemptive ones in terms of the achievable average
sum-AoI. However, this comes at the expense of having unfair
achievable average AoI values among different sources since
the updates of sources with small update arrival rates are more
likely to be preempted by the updates of sources with higher
update arrival rates. To resolve this issue, the authors of [11]
have recently characterized the average AoI for a two-source
system with a non-EH transmitter under several source-aware
preemptive strategies. Different from [11], this paper is the
first to characterize the AoI performance under a source-aware
preemptive in service queueing discipline for the generic case
where the transmitter has an arbitrary number of sources.

For the case where the transmitter is powered by EH, there
are a handful of prior works [12]–[16] analyzing AoI by
applying geometric arguments [12], [13], and by using the
SHS approach [14]–[16]. However, the analyses of [12]–[15]
have been limited to the evaluation of the average AoI in
single-source systems, and the analysis of [16] was focused on
the characterization of the distributional properties of AoI in
single-source systems. Different from these, this paper makes
the first attempt at deriving the average/MGF of AoI in multi-
source systems with an EH-powered transmitter.

Contributions. This paper presents a novel queueing-
theoretic analysis to derive closed-form expressions for the
MGF and average of AoI in EH-powered multi-source systems
with source-aware packet management. In our analysis, we
use the SHS framework where the system discrete state is
modeled as a two-dimensional continuous-time Markov chain
(CTMC) to track both the numbers of update and harvested
energy packets in the system. We analytically demonstrate
that as the aggregate generating rate of status updates from
all the sources other than the source of interest approaches
zero, the MGF/average AoI expression derived in this paper
reduces to its counterpart in [16] for EH-powered single-source
systems. Our numerical results demonstrate the necessity of
incorporating the higher moments of AoI in the implementa-
tion/optimization of multi-source updating systems.



Fig. 1. An illustration of the system setup.

II. SYSTEM MODEL

We consider a real-time updating system in which an EH-
powered transmitter observes N physical processes, and sends
its measurements to a destination in the form of status update
packets. As shown in Fig. 1, the transmitter consists of N
sources and a single server; each source generates status
updates about one physical process, and the server delivers the
status updates generated from all the sources to the destination.
In particular, each status update packet generated by source i
carries some information about the value of the i-th physical
process and a time stamp indicating the time at which that
process was sampled. This system setup can be mapped to
many scenarios of practical interest, such as an IoT network in
which an aggregator (represents the transmitter in our model)
delivers measurements sensed/generated by the N IoT devices
(represent the sources) in its vicinity to a destination.

Status update packets generated by the i-th source are
assumed to follow a Poisson process with rate λi. Further,
the energy packets are assumed to arrive at the transmitter
according to a Poisson process with rate η, and are stored in
a battery queue of length B packets at the server (for serving
the update packets generated by the different sources). We
consider that each energy packet contains the energy required
for sending one status update from any of the sources [12]–
[15], and hence the length of the energy battery queue reduces
by one whenever a status update is successfully received at
the destination. Given that the transmitter node has at least
one energy packet in its battery queue, the time needed by its
server to send a status update packet is assumed to be a rate
µ exponential random variable [2]–[4]. Let ρ = λ

µ and β = η
µ

respectively denote the server utilization and energy utilization
factors, where λ =

∑N
i=1 λi. Further, we have ρi = λi

µ ,
λ−i =

∑N
j=1, j 6=i λj , and ρ−i = λ−i

µ .
We quantify the freshness of information about each phys-

ical process at the destination (as a consequence of receiving
status update packets from the transmitter) using the concept
of AoI. Formally, AoI is defined as follows [2].

Definition 1. Let ti,k denote the arrival time instant of the
k-th update of source i at the transmitter. Further, define
Li(t) to be the index of the source i’s latest update received
at the destination by time t. Then, the AoI associated with
the physical process observed by source i at the destination
(referred henceforth as the AoI of source i) is defined as the
following random process: ∆i(t) = t− ti,Li(t).

We analyze the AoI performance at the destination under
the last-come-first-served with source-aware preemption in
service (LCFS-SA) queueing discipline. Under this queueing
discipline, a new arriving status update at the transmitter enters
service upon its arrival if the server is idle, given that the

battery contains at least one energy packet. Further, when the
server is busy, a new arriving status update preempts the update
in service only if the two updates are generated from the same
source; otherwise, the new arriving status update is discarded.

With regards to the EH process, we consider that the
transmitter can harvest energy only if its server is idle. This
case corresponds to the scenario where the transmitter is
equipped with a single radio frequency chain, and thus can
either transmit a status update or harvest energy at a certain
time instant. The case where the transmitter can harvest energy
anytime (i.e., even when its server is busy) is left as a
promising direction of future work.

III. SHS: A VERY BRIEF INTRODUCTION

Our analysis is focused on deriving the distributional prop-
erties of AoI through the characterization of its MGF. To
do so, we resort to the SHS framework of [10], which was
first tailored for the analysis of AoI in [8] and [9]. In the
following, we provide a very brief1 introduction of the SHS
framework, which will be useful in understanding our AoI
MGF analysis in the next section. The SHS is represented by
a hybrid state (q(t),x(t)), where q(t) ∈ Q = {1, · · · ,m} is
a finite-state CTMC modeling the system discrete state and
x(t) = [x0(t), · · · , xn(t)] ∈ R1×(n+1) describes the evolution
of the system continuous state over time. In the CTMC q(t),
a transition l ∈ L from state ql to state q′l occurs with a
rate λ(l)δql,q(t) and causes x to reset to x′ = xAl, where
Al ∈ B(n+1)×(n+1) is a binary reset map matrix and the
Kronecker delta function δql,q(t) ensures that l occurs only

when q(t) = ql. Further,
·
x(t) ,

∂x(t)

∂t
= 1 holds as long

as the state q(t) is unchanged, where 1 is the row vector
[1, · · · , 1] ∈ R1×(n+1). Denote by L′q = {l ∈ L : q′l = q} and
Lq = {l ∈ L : ql = q} the sets of incoming and outgoing tran-
sitions for state q. Further, let vq(t) = [vq0(t), · · · , vqn(t)] ∈
R1×(n+1) denote the correlation vector between q(t) and x(t),
and vsq(t) = [vsq0(t), · · · , vsqn(t)] ∈ R1×(n+1) denote the
correlation vector between q(t) and the exponential function
esx(t), where s ∈ R. Thus, we have
vq(t) = [vq0(t), · · · , vqn(t)] = E[x(t)δq,q(t)], ∀q ∈ Q, (1)

vsq(t) = [vsq0(t), · · · , vsqn(t)] = E[esx(t)δq,q(t)], ∀q ∈ Q. (2)
Using the above notations, it has been shown in [9, Theo-

rem 1] that under the ergodicity assumption of the CTMC q(t),
if we can find a non-negative limit v̄q = [v̄q0, · · · , v̄qn], ∀q ∈
Q, for the correlation vector vq(t) satisfying

v̄q
∑
l∈Lq

λ(l) = π̄q1 +
∑
l∈L′q

λ(l)v̄qlAl, q ∈ Q, (3)

where π̄ = [π̄0, · · · , π̄m] is the unique state stationary vector
satisfying

π̄q
∑
l∈Lq

λ(l) =
∑
l∈L′q

λ(l)π̄ql , q ∈ Q,
∑
q∈Q

π̄q = 1, (4)

then:
• The expectation of x(t), E[x(t)], converges to the follow-

ing stationary vector:
E[x] =

∑
q∈Q

v̄q. (5)

1Interested readers are advised to refer to [8] and [9] for a detailed
discussion about the use of the SHS approach in the analysis of AoI.



• There exists s0 > 0 such that for all s < s0, vsq(t)
converges to v̄sq that satisfies

v̄sq
∑
l∈Lq

λ(l) = sv̄sq +
∑
l∈L′q

λ(l)[v̄sqlAl + π̄ql1Âl], q ∈ Q,

(6)

where Âl ∈ B(n+1)×(n+1) is a binary matrix whose elements
are constructed as: Âl(k, j) = 1 if k = j and the j-th column
of Al is a zero vector; otherwise, Âl(k, j) = 0. Further, the
MGF of the state x(t), which can be obtained as E[esx(t)],
converges to the following stationary vector:

E[esx] =
∑
q∈Q

v̄sq. (7)

From (5) and (7), when the first element of the continuous
state x(t) represents the AoI at the destination node, the
expectation and the MGF of AoI at the destination node
respectively converge to:

∆1 =
∑
q∈Q

v̄q0, (8)

M(s) =
∑
q∈Q

v̄sq0. (9)

IV. ANALYSIS OF THE MGF OF AOI

It is clear from [9, Theorem 1] (stated in Section III) that
in order to use (6) to derive the MGF of AoI, one needs to
find a non-negative limit v̄q (∀q ∈ Q) satisfying (3). We
have rigorously shown the existence of a non-negative v̄q
satisfying (3) in the expanded journal version of this paper
[17, Thoerem 3]. Note that the solution of the equations in (3)
can be obtained along the same lines of the analysis presented
in this paper for solving the equations in (6). Thus, for the sake
of brevity, we next focus on evaluating v̄sq0,∀q ∈ Q, satisfying
(6), using which the MGF of AoI is obtained as in (9).

Without loss of generality, we consider that source 1 is the
source of interest in the AoI analysis in the sequel. The AoI
performance of the other sources can then be obtained using
the same expressions derived for source 1, as will be evident
shortly. While analyzing the AoI of source 1, the status update
packets associated with the other sources are generated accord-
ing to a Poisson process with rate λ−1 =

∑N
j=2 λj . Using

the notations of the SHS approach (presented in Section III),
the continuous process x(t) is given by x(t) = [x0(t), x1(t)],
where x0(t) represents the value of the source 1’s AoI at the
destination at time instant t (i.e., ∆1(t)), and x1(t) indicates
the value that the source 1’s AoI at the destination will become
if the existing update packet in the system completes its service
at time instant t (i.e., the packet is delivered to the destination
at t). Recall from Section III that as long as there is no change
in q(t), the elements of x(t) increase linearly with time.

The CTMC q(t) is depicted in Fig. 2. Recall that according
to the mechanism of the LCFS-SA queueing discipline, a new
arriving status update preempts the update in service only if the
two updates are generated from the same source. Thus, q(t)
needs to not only account for the number of status updates
in the system but also track the index of the source which
generated the current update in service. Because of that, we
observe from Fig. 2 that for a state q = (eq, uq), we have
uq ∈ {0, 1, · · · , N}. In particular, uq = 0 indicates that the
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Fig. 2. The Markov chain modeling the discrete state in the LCFS-SA
queueing discipline.

TABLE I
TRANSITIONS OF THE LCFS-SA QUEUEING DISCIPLINE IN FIG. 2

(2 ≤ i ≤ N , 2 ≤ k ≤ B).

l ql → q′l λ(l) xAl v̄qlAl π̄ql1Âl

1 1 → 2 η [x0, 0] [v̄s10, 0] [0, π̄1]
2 2 → 3 λ1 [x0, 0] [v̄s20, 0] [0, π̄2]

1 + i 2 → 2 + i λi [x0, 0] [v̄s20, 0] [0, π̄2]
2 +N 3 → 3 λ1 [x0, 0] [v̄s30, 0] [0, π̄3]

1 +N + i 2 + i → 2 + i λi [x0, 0] [v̄s2+i,0, 0] [0, π̄2+i]

2 (N + 1) 3 → 1 µ [x1, 0] [v̄s31, 0] [0, π̄3]
1 + 2N + i 2 + i → 1 µ [x0, 0] [v̄s2+i,0, 0] [0, π̄2+i]

(3N + 1) k − 3N 2 + (N + 1)(k − 2) → 2 + (N + 1)(k − 1) η [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

(3N + 1) k − 3N + 1 2 + (N + 1)(k − 2) → 3 + (N + 1)(k − 2) λ1 [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

(3N + 1) k − 3N + i 2 + (N + 1)(k − 2) → 2 + i+ (N + 1)(k − 2) λi [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

(3N + 1) k − 2N + 1 3 + (N + 1)(k − 2) → 3 + (N + 1)(k − 2) λ1 [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

(3N + 1) k − 2N + i 2 + i+ (N + 1)(k − 2) → 2 + i+ (N + 1)(k − 2) λi [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

(3N + 1)k −N + 1 3 + (N + 1)(k − 1) → 2 + (N + 1)(k − 2) µ [x1, 0] [v̄sql,1, 0] [0, π̄ql ]

(3N + 1)k −N + i 2 + i+ (N + 1)(k − 1) → 2 + (N + 1)(k − 2) µ [x0, 0] [v̄sql,0, 0] [0, π̄ql ]

system is empty and hence the server is idle, and uq = i
indicates that there is an update in service and the index of
its generating source is i. Further, due to the finite capacity of
the battery queue at the server, we have eq ∈ {0, 1, · · · , B}.
Table I presents the set of transitions L and their impact on
the values of both q(t) and x(t). We denote the set of states
in the i−th row of the CTMC by ri. From Fig. 2, we observe
that the states in r1 correspond to the time when the system
is empty, and thus the subset of transitions represented by
l = (3N + 1) k − 3N in Table I occurs when a new energy
packet is harvested by the transmitter when its server is idle.
The rest of transitions in Table I occur due to either the arrival
of a new status update at the transmitter or the delivery of
the status update in service to the destination. Since the first
component of x(t) is only impacted by the delivery of a
status update generated from source 1 (with rate λ1) to the
destination, we further observe that the first component of
updated age vector xAl only changes to x1 (age of the update
in service) when a transition from the subset of transitions
l = (3N + 1) k − N + 1 (corresponding to the reception of
an update of source 1 at the destination) occur. Finally, we
note that the second component of xAl is always 0. This
happens since this component either becomes irrelevant (when
the system becomes empty or the new arriving update does not
belong to source 1) or represents the age of an update of source
1 upon its arrival at the transmitter (l = (3N + 1)k− 3N + 1
and l = (3N + 1)k − 2N + 1).

Now, in order to obtain v̄sq satisfying (6), one needs to
compute the state probabilities {π̄q}, and the vectors v̄sqlAl

and π̄ql1Âl. The calculations of v̄sqlAl and π̄ql1Âl are listed
in Table I, and {π̄q} are given by the following proposition.

Proposition 1. The steady state probabilities {π̄q} can be



expressed as

π̄2+(k−1)(N+1) =

(
β

ρ

)k
π̄1, (10)

π̄2+i+(k−1)(N+1) = ρi

(
β

ρ

)k
π̄1, (11)

where 1 ≤ k ≤ B, 1 ≤ i ≤ N , and π̄1 is is given by

π̄1 =


1

1 +B(1 + ρ)
, if ρ = β,

ρB (β − ρ)

ρB (β − ρ) + β (1 + ρ) (βB − ρB)
, otherwise.

(12)

Proof: The expressions in (10) and (11) follow directly
from the solution of (4).

Having the steady state probabilities {π̄q} in Proposition 1
and the set of transitions L in Table I, we are now ready to
derive the MGF of AoI in the following theorem.

Theorem 1. The MGF of AoI of source 1 under the LCFS-SA
queueing discipline is given by

SA

M1(s̄) =
ρ1

[
(1 + ρ− s̄)

∑
q∈r1∪ r2/{1} π̄q + (1 + ρ1 − s̄) v̄s10

]
(1 + ρ1 − s̄)

[
(1− s̄) (ρ− s̄)− ρ−1

] ,

(13)
where s̄ = s

µ and v̄s10 is given by

v̄s10 =
µρ1

1 + ρ1 − s̄

B−1∑
j=0

π̄2+j(N+1) + π̄3+j(N+1)∏j
h=0 c̄

s
h−1

(
µρ−1

1− s̄

)j−1

,

(14)
where the set {c̄s−1, c̄

s
0, · · · , c̄sB−1} is defined as

c̄sh =


λ− s, h = B − 1,

η + λ− s− µηλ−1

c̄sh+1 (µ− s)
, 0 ≤ h ≤ B − 2,

(µ− s) (η − s)
µλ−1

− η

c̄s0
, h = −1.

(15)

Proof: See Appendix.
Note that the MGF of AoI for source i ∈ {2, 3, · · · , N}

can be obtained directly using (13) by replacing λ1 with λi
(which results in replacing {λ−1, ρ1, ρ−1} with {λ−i, ρi, ρ−i}
as well). This argument applies to all the following results.

Corollary 1. When ρ−1 = 0 (i.e., ρ1 = ρ),
SA

M1(s̄) in (13)
reduces to the following MGF of AoI derived in [16, Theo-
rem 3] for EH-powered single-source systems under the LCFS
with preemption in service (LCFS-PS) queueing discipline

PS

M1(s̄) =
ρ (1 + ρ) π̄1

[
s̄2θ − s̄θ (1 + ρ+ β) + β (1 + θ + θρ)

]
(1− s̄) (ρ− s̄) (1 + ρ− s̄) (β − s̄)

,

(16)
where θ is given by

θ =


B, if ρ = β,

β
(
βB − ρB

)
ρB (β − ρ)

, otherwise.
(17)

Proof: When ρ−1 = 0, v̄s10 reduces to
ρ1(1 + ρ1)π̄2

(1 + ρ1 − s̄)(β − s̄)
since we have from (15) that:

c̄sh = η + λ − s, 1 ≤ h ≤ B − 1, and c̄s−1 = ∞.

The final expression in (16) can be obtained by defining∑
q∈r1/{1} π̄q = θπ̄1 and substituting π̄2 from Proposition 1

as β
ρ π̄1.

Corollary 2. The average AoI of source 1 under the LCFS-SA

queueing discipline is given by:
SA

∆1,1 =

1 + ρ

µρ1 (1 + ρ1)
+

(1 + ρ)
∑
q∈Q/r2 π̄q

µ (1 + ρ1)
+

∑
q∈Q/r1 π̄q

µ
+ v̄10,

(18)

where v̄10 is given by

v̄10 =
π̄1

c̄−1µρ−1
+

B∑
j=1

π̄2+(j−1)(N+1) (µρ−1)
j−1∏j

h=0 c̄h−1

+

B−1∑
j=0

π̄3+j(N+1)

1+ρ1
+
∑1+(j+1)(N+1)
m=4+j(N+1) π̄m∏j

h=0 c̄h−1

(µρ−1)
j−1

,

(19)

where the set {c̄−1, c̄0, · · · , c̄B−1} is defined as

c̄h =


λ, h = B − 1,

η

(
1− λ−1

c̄h+1

)
+ λ, 0 ≤ h ≤ B − 2,

η

(
1

λ−1
− 1

c̄0

)
, h = −1.

(20)

Proof: The result can be obtained from either the first
derivative of the MGF of AoI in Theorem 1 or the solution of
the set equations in (3) as in (8).

Corollary 3. For the single source case where ρ−1 = 0 (i.e.,

ρ = ρ1),
SA

∆1,1 in (18) reduces to:
SA

∆1,1 =
Bρ3 + (3B + 1) ρ2 + (3B + 4) ρ+B + 2

µρ (1 + ρ) (ρB +B + 1)
, if ρ = β,

βB+2 (1 + ρ)
3 − ρB+2

[ (
β2 + β

)
(ρ+ 2) + 1 + ρ

]
µ (1 + ρ)

[
βB+2 (ρ2 + ρ)− ρB+2 (β2 + β)

] ,

(21)

where the second case in (21) holds when ρ 6= β. Note that

the expression of
SA

∆1,1 in (21) is identical to the average
AoI expression derived in [16, Corollary 3] for EH-powered
single-source systems under the LCFS-PS queueing discipline.

Proof: We note from (20) that when ρ−1 = 0, we have
c̄h = η + λ, 0 ≤ h ≤ B − 2, and c−1 = ∞. Thus, v̄10

in (19) reduces to: v̄10 =
π̄1 + π̄3

1+ρ1
+
∑N+2
m=4 π̄m

η
. The final

expression in (21) can be obtained by substituting {π̄q} from
Proposition 1, followed by some algebraic simplifications.

Let
D

∆i,j denote the j-th moment of source i’s AoI under
D, where D = PS and D = WP refer to the source-agnostic
preemptive in service LCFS and the non-preemptive LCFS
queueing disciplines (studied in [17]), respectively.

Corollary 4. When β →∞,
SA

∆1,1 in (18) reduces to

lim
β→∞

SA

∆1,1 =
1 + ρ

µρ1
+

ρ−1

µ (1 + ρ) (1 + ρ1)
, (22)

which indicates that lim
β→∞

PS

∆1,1 ≤ lim
β→∞

SA

∆1,1 ≤ lim
β→∞

WP

∆ 1,1.



Proof: The result follows from noting that:

lim
β→∞

v̄10 = 0 and
(1 + ρ)

∑
q∈Q/r2 π̄q

µ (1 + ρ1)
+

∑
q∈Q/r1 π̄q

µ
=

(1 + ρ)
2

+ ρ−1

µ (1 + ρ) (1 + ρ1)
.

Remark 1. Note that from Corollary 2, [17, Theorem 1] and
[17, Theorem 2], we have

WP

∆ 1,1 −
SA

∆1,1 =
ρ1 (1 + ρ)

∑B
k=1 (βρ )k

µ (1 + ρ1)

[
1 + (1 + ρ)

∑B
k=1

(
β
ρ

)k]

+
π̄1ρ

2
1

1 + ρ1

B−1∑
j=0

(
β
ρ

)j+1

(µρ−1)
j−1∏j

h=0 c̄h−1

, (23)

SA

∆1,1 −
PS

∆1,1 =
ρ−1

∑B
k=1 (βρ )k

µ (1 + ρ1)

[
1 + (1 + ρ)

∑B
k=1

(
β
ρ

)k]

+
π̄1ρ1ρ−1

(1 + ρ1) (1 + ρ)

B−1∑
j=0

(
β
ρ

)j+1

(µρ−1)
j−1∏j

h=0 c̄h−1

.

(24)
Since the set {c̄−1, c̄0, · · · , c̄B−1} contains positive real

numbers, we observe from (23) and (24) that
PS

∆1,1 ≤
SA

∆1,1 ≤
WP

∆ 1,1 for any choice of values of the system parameters.

Remark 2. Note that one can deduce from Theorem 1, [17,

Theorem 4] and [17, Theorem 5] that
PS

∆1,2 ≤
SA

∆1,2 ≤
WP

∆ 1,2

for any choice of system parameter values. Further, when

ρ−1 = 0 (i.e., N = 1), we have
WP

∆ 1,2−
PS

∆1,2 =
WP

∆ 1,2−
SA

∆1,2.

V. NUMERICAL RESULTS AND CONCLUDING REMARKS

Impact of β and B on the achievable AoI performance. We
study the impact of B on the achievable pairs of average AoI
(∆1,1,∆2,1) in Fig. 3d when N = 2 and ρ is fixed. We observe
from Figs. 3a and 3d that the AoI performance improves with
increasing B or β until it converges to its counterpart with
a non-EH transmitter (as stated in Corollary 4 for the first
moment). This happens since increasing B or β decreases the
likelihood that the battery queue is empty upon the arrival of
a new status update at the transmitter when the server is idle,
and hence increases the likelihood of delivering new arriving
updates to the destination.

Minimum average sum-AoI vs. Fairness between the achiev-
able average AoI values by different sources. In Figs. 3b, 3c,
3e and 3f, we compare the LCFS-SA queueing discipline with
the LCFS-PS and LCFS-WP queueing disciplines in terms
of: i) the average sum-AoI ∆1,1 + ∆2,1, and ii) the Jain’s

fairness index, which is defined as JFI =
(
∑N

i=1 ∆i,1)
2

N
∑N

i=1 ∆2
i,1

[18].

Note that the JFI ∈
[
N−1, 1

]
is a measure of the fairness

between the achievable average AoI values by different sources
such that JFI = 1 when the average AoI values of different
sources are equal (the best case scenario with respect to
fairness). We observe that there is a fundamental trade-off
between obtaining a minimum average sum-AoI and having

fair achievable average AoI values among different sources.
Further, the LCFS-SA queueing discipline achieves a balance
between the two performance aspects compared to the two
other disciplines. In particular, it achieves a close average sum-
AoI to the achievable one by the LCFS-PS, and it is more
effective (especially as N becomes large) than the LCFS-PS
in terms of the achievable fairness performance.

Is it reasonable to solely rely on the average AoI in the im-
plementation/optimization of multi-source real-time updating
systems as has been mostly done in the existing literature? As
was the case in [16] for EH-powered single-source systems,
we observe from Figs. 3b and 3e that the standard deviation of
AoI σ associated with each queueing discipline in multi-source
systems is relatively large with respect to the average value.
This indicates that the implementation of multi-source status
update systems based on just the average value of AoI does
not ensure reliability, and it is crucial to incorporate the higher
moments of AoI in the design/optimization of such systems.
This insight demonstrates the significance of the analytical
distributional properties of AoI derived in this paper.

APPENDIX

Using Table I, the set of equations in (6) corresponding to
q ∈ r1 can be expressed as

q1 : (η − s) v̄s10 = µv̄s31 + µ

N+2∑
j=4

v̄sj0, (25)

q2 : (η + λ− s) v̄s20 = ηv̄s10 + µv̄sN+4,1 + µ

2N+3∑
j=N+5

v̄sj0,

(26)

q2+k(N+1), 1 ≤ k ≤ B − 2 : (η + λ− s) v̄s2+k(N+1),0 = η

v̄s2+(k−1)(N+1),0 + µv̄s3+(k+1)(N+1),1 + µ

N+2+(k+1)(N+1)∑
j=4+(k+1)(N+1)

v̄sj0,

(27)

q2+(B−1)(N+1) : v̄s2+(B−1)(N+1),0 =
η

λ− s
v̄s2+(B−2)(N+1),0.

(28)
Further, the set of equations in (6) corresponding to q ∈

ri+1, 1 ≤ i ≤ N , can be expressed as
q2+i+k(N+1), 0 ≤ k ≤ B − 1 : (µ− s) v̄s2+i+k(N+1),0

= λiv̄
s
2+k(N+1),0. (29)

Summing the equations in (25)-(28) gives

(λ− s)
∑
q∈ r1

v̄sq0 = µ
∑
q∈ r2

v̄sq1 + µ
∑

q∈ Q/(r1∪ r2)

v̄sq0 + λv̄s10,

(30)

where
∑
q∈ r2

v̄sq1 =
λ1

∑
q∈ r1∪ r2/{1} π̄q

(µ+ λ1 − s)
. In addition, by

summing the equations in (29), we get

(µ− s)
∑

q∈ ri+1

v̄sq0 = λi
∑

q∈ r1/{1}

v̄sq0, (31)

where 1 ≤ i ≤ N . From (30) and (31),
∑
q∈ r1

v̄sq0 can be
obtained as[

(1− s̄) (ρ− s̄)− ρ−1

] ∑
q∈ r1

v̄sq0 = (ρ1 − ρs̄) v̄s10



(c)

(e)

(b)

(d)

(a)

(f)

Fig. 3. Verification of the analytical results and impact of the system design parameters on the achievable AoI performance. Unless otherwise specified, we
use the following values for different system parameters: µ = 1, β = 1.5, B = 2, N = 2, and ρ = 1 [ρ = 3] in Figs. (a)-(d) [(e) and (f)]. Note that N can
be chosen arbitrary in (a), and for N ∈ {4, 5} in (c) and (f), we set ρ2 = 0.1(ρ− ρ1) and ρi = 0.9

N−2
(ρ− ρ1), 3 ≤ i ≤ N .

+
ρ1 (1− s̄)

∑
q∈ r1∪ r2/{1} π̄q

1 + ρ1 − s̄
,

(32)
where s̄ = s

µ . Hence, the MGF of AoI of source 1 can be
evaluated as

SA

M1(s̄) =
∑
q∈ Q

v̄sq0
(a)
=

(λ+ µ− s)
∑
q∈ r1

v̄sq0 − λv̄s10

µ− s

(b)
=

ρ1

[
(1 + ρ− s̄)

∑
q∈r1∪ r2/{1} π̄q + (1 + ρ1 − s̄) v̄s10

]
(1 + ρ1 − s̄)

[
(1− s̄) (ρ− s̄)− ρ−1

] ,

(33)
where step (a) [step (b)] follows from substituting (31) [(32)]
into (33). Now, what only remains is to show how v̄s10 can be
expressed as in (14). From (28), v̄s2+(B−1)(N+1),0 is given by

v̄s2+(B−1)(N+1),0 =
η

c̄sB−1

v̄s2+(B−2)(N+1),0, (34)

where c̄sB−1 = λ − s. By noting that v̄s3+k(N+1),1 =

λ1

(
π̄2+k(N+1) + π̄3+k(N+1)

)
µ+ λ1 − s

, 0 ≤ k ≤ B − 1, (27) can be

rewritten as

v̄s2+k(N+1),0 =
ηv̄s2+(k−1)(N+1),0

(η + λ− s)
+
µλ−1v̄

s
2+(k+1)(N+1),0

(µ− s) (η + λ− s)

+
µλ1

(
π̄2+k(N+1) + π̄3+k(N+1)

)
(µ+ λ1 − s) (η + λ− s)

, (35)

where 1 ≤ k ≤ B−2, and
∑N+2+(k+1)(N+1)
j=4+(k+1)(N+1) v̄

s
j0 in (27) was

substituted from (29). Repeated application of (35) gives

v̄s2+k(N+1),0 =
ηv̄s2+(k−1)(N+1),0

c̄sk
+

µλ1

µ+ λ1 − s
B−k−1∑
j=1

π̄2+(k+j)(N+1) + π̄3+(k+j)(N+1)∏j
h=1 c̄

s
k+h−1

(
µρ−1

1− s̄

)j−1

, (36)

v̄s2,0 =
µλ1

µ+ λ1 − s

B−1∑
j=1

π̄2+j(N+1) + π̄3+j(N+1)∏j
h=1 c̄

s
h−1

(
µρ−1

1− s̄

)j−1

+
ηv̄s1,0
c̄s0

, (37)

where 1 ≤ k ≤ B−1 and {c̄sh} is defined in (15). Finally, v̄s10

in (14) can be obtained by solving (25) and (37) while noting
that v̄31 = λ1(π̄2+π̄3)

µ+λ1−s and
∑N+2
j=4 v̄sj0 =

λ−1v̄
s
20

µ−s .
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