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ABSTRACT
Data management systems are hungry for main memory, and cloud
data centers are awash in it. But that memory is not always easily
accessible and often too expensive. To bridge this gap, we propose a
new cloud service, CompuCache, that allows data-intensive systems
to opportunistically o�oad their in-memory data, and computation
over that data, to inexpensive cloud resources. For reduced cost,
each cache is hosted by spot virtual machine (VM) instances when
possible or provisioned VMs when not. CompuCache provides a
byte-array abstraction and stored procedures so users can easily
allocate inexpensive caches and specify their behavior. It distributes
each stored procedure execution across the instances. In this paper,
we discuss challenges in designing the interface, execution strat-
egy, and fault tolerance mechanisms for CompuCache. We propose
initial solutions for them, describe types of applications that can
bene�t from CompuCache, and report on the performance of an ini-
tial prototype. It executes 126 million stored procedure invocations
per second on one VM with 16 threads.

1 INTRODUCTION
Stateful on-line applications require large amounts of data and
low-latency compute capacity over that data. Examples are interac-
tive games, fraud detection, stock trading, social networking, and
knowledge bases. To meet their latency requirements, these appli-
cations are hungry for main memory—if main memory were free,
they would use it to cache all their data. Regrettably, memory is not
free. Further, even if the application is willing to pay for it, each
server has a limited supply.

Ironically, data centers are awash in unused main memory. We
estimate that 60% of data center memory is unallocated or un-
used at any given time (Section 2). One reason is that some of it
sits on lightly loaded servers—a natural result of the substantial
cluster-level headroom requirements of modern virtual machine
(VM) allocators, which need to simplify placement of di�erent-sized
VMs and handle periods of peak workload [14]. Machine-level al-
location often also requires a degree of headroom to handle the
occasional VM resize operation without requiring a VM migration.

To attract users to make productive use of unallocated resources,
cloud vendors o�er inexpensive but ephemeral VMs, called spot
instances. Spot instances can contain both compute and memory
resources that applications can access like a normal VM. Further, the
high-speed networks in modern data centers make these instances
accessible with 100Gb/s bandwidth and sub-10 �s message latency,
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Figure 1: A query that chases pointers between two cache
servers, where f is an o�loaded function.
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Figure 2: Resource underutilization in Azure clusters. When
combining memory not allocated to VMs and allocated-but-
unused memory, at least 60% of memory could be used.

assuming the use of kernel-bypass (e.g., DPDK) and CPU-bypass
(e.g., RDMA). In exchange for the low price, an application must
accept the possibility of losing its spot instance on short notice
as soon as the cloud vendor can sell the instance’s resources at a
higher price.

Leveraging these unallocated resources is, unfortunately, di�cult
for today’s applications. Due to the inherent churn of spot instances,
applications may lose work or be unable to satisfy response-time
objectives. Further, although a 10 �s network delay approaches
that of an I/O bus, it is still 50–100⇥ longer than a local memory
access. This may be acceptable for some applications, especially
if the accessed data is cached by the caller so that subsequent
accesses are local. However, if the application needs to access a
large number of records on a spot instance, the number of round
trips and resulting latency can quickly add up. For example, if an
application wishes to use a spot instance to access a record with
pointers to = other records, it costs = + 1 round trips to retrieve
them all, independent of where the records are located (e.g., see
Figure 1a). For these reasons, despite the attraction of spot pricing,
many cloud resources sit idle for long periods.

We propose to bridge the gap between applications and the data
center’s resources by o�ering a new kind of cache service designed
especially for spot instances. The system we propose, CompuCache,
is a distributed, remote cache that provides byte addressability and
�exible compute pushdown.

We argue that CompuCache must be distributed because, to min-
imize cost, it has to make do with whatever sized spot instances
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are available. Thus, we expect many, if not most deployments of
CompuCache to be composed of multiple VMs. If spot instance
capacity is insu�cient for the application’s request, then Compu-
Cache should also use statically provisioned VMs, if they �t within
the user’s budget. But CompuCache should replace those static
VMs with spot VMs as soon as it is cost-e�ective to do so, taking
into account the cost savings of the spot VM, the likely lifetime of
the spot VM, the loss of availability while migrating back to a spot
VM, the likelihood of getting another provisioned VM when it is
needed, etc.

CompuCache must include stored procedures for compute of-
�oading, such as returning all records referenced by a list of record
IDs, all graph nodes reachable from a given node in n hops, or the
result of a select-project-aggregate query over a table.When a cache
spans multiple VMs it is challenging to e�ciently support stored
procedures, for two reasons. First, an application should be able
to control data placement and perform server-side dereferencing.
This is di�cult for a traditional, sharded key-value API (which is
what today’s popular caching systems provide) because it requires
all accessed keys to be speci�ed when invoking a stored procedure.
Chasing = pointers in a record requires at least two round trips:
one to read the = pointers in the record on the server and return
them to the client, and one to use those pointers to access other
records on the server (as in Figure 1b).

Second, having multiple VMs per cache implies that a stored
procedure over a cache may require a distributed execution across
VMs. The ideal execution strategy may require a stored procedure
to chase pointers from one VM to another, as in Figure 1c. The
cache API should enable e�cient execution strategies like this,
while minimizing the complexity of application programming.

A spot instance can be reclaimed at any time, giving its owner
only a short time to prepare, typically 30-120 seconds on today’s
cloud systems. This leads to several challenges: how to migrate the
content of a cache that is about to be reclaimed, how to migrate
the execution of stored procedures, and how to synchronize the
mapping of the logical-to-physical address spaces before and after
the migration. It is important to provide precise semantics that
makes it easy for applications to cope with these situations. These
recovery actions should avoid data loss and minimize any reduction
in availability.

A related challenge is how to recover a cache after its VM fails.
Some caches are read-only and can be recovered from persistent
storage. An updatable cache may need to be replicated and/or have
a checkpointing mechanism.

Our main contribution is to propose and explore the design and
implementation of this new type of cloud service: a computable
cache over spot instances. We discuss challenges in designing its
interface, execution strategy, and fault tolerance mechanisms. We
propose solutions for those challenges, which we implement in a
prototype called CompuCache, and we report on its performance.
CompuCache achieves 160 million I/O operations per second using
one server VM and 126 million stored procedure invocations per
second for o�oading a computation that performs aggregation.

The paper is organized as follows. Section 2 presents measure-
ments of the amount of unallocated memory in cloud data centers.
Section 3 describes the technical challenges in building Compu-
Cache and how we are solving them. Section 4 presents preliminary

measurements of our prototype implementation. Section 5 discusses
applications, and Section 6 summarizes related work. Section 7 con-
cludes with open design problems.

2 UNDERUTILIZED CLOUD RESOURCES
Major data center operators report that memory is highly under-
utilized. Studies of traces from Google [12], Alibaba [4], and Face-
book [13] show memory utilization below 50%.

We con�rm these results for Azure’s large public cloud by char-
acterizing memory usage in 100 compute clusters over a 100-day
period. The clusters represent the majority of the �eet and host
mainstream internal and external VM workloads. We selected clus-
ters deployed for more than one year and with an average CPU
utilization of at least 70%.

We de�ne unallocated memory as the fraction of DRAM that
the scheduler has not assigned to any VM. Figure 2a shows a CDF
of hourly snapshots from the 100 clusters. The median snapshot
shows that more than 42% of memory is unallocated, and almost
all snapshots have at least 23% of unallocated memory.

We de�ne unused memory as the fraction of DRAM that was not
touched while it was assigned to a VM. These memory pages can
be detected and harvested for CompuCache [17]. Figure 2a shows
a CDF of hourly snapshots of the cumulative free memory when
considering both unallocated and unused memory. The median
snapshot shows that almost 70% of DRAM is available, and almost
all snapshots show that more than 60% of DRAM is available.

Finally, CPU cores are also underutilized. Figure 2b shows a CDF
of the percentage of cores not assigned to VMs or containers. At
the median, more than 18% of CPU cores are available even in our
compute-intensive trace.

Previous measurement studies that report results on underuti-
lized CPU and memory are consistent with our �ndings [5, 10, 11].

3 OVERVIEW AND DESIGN CHALLENGES
Figure 3 shows the components of CompuCache. Applications of
CompuCache run in regular VMs. Examples include database sys-
tems, key-value stores, graph databases, and custom data-intensive
applications. An application creates and manages caches using a
CompuCache client, which o�ers �ne-grained control over mem-
ory allocation and placement. It uses theAllocate function to create
a cache with a given capacity ⇠ and then uses Read and Write
functions to access any bytes between 0 and ⇠ � 1.

CompuCache distinguishes itself from existing remote caching
systems with two key innovations: It hosts the cache in spot VMs
to minimize cost, and it supports e�cient compute o�oading to
speed up application performance.

For the �rst innovation, CompuCache calls the cloud VM al-
locator to reserve spot VMs to run CompuCache servers that
in aggregate satisfy the capacity of the cache. As spot VMs are op-
portunistic resources, they may have di�erent memory capacities
and can be reclaimed by the cloud VM allocator at any time. The
CompuCache client divides the cache space into �xed-length virtual
cache regions (e.g., 1 GB) and assigns the appropriate number of
virtual regions to each allocated VM. CompuCache handles spot
VM reclamations transparently; when the cloud VM allocator asks
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Figure 3: The components in CompuCache (CC) and their interactions.
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Figure 4: The impact of core count on the executing a sproc
that adds the sum of two locations

to reclaim a VM, CompuCache allocates new VMs and migrates the
reclaimed VM’s data and execution states to the new VMs.

For the second innovation, CompuCache provides APIs that ad-
dress the limitations of existing remote caching systems, such as the
inability of an o�oaded function to span VMs or to do server-side
pointer chasing (see also Section 5). CompuCache allows its users
to implement stored procedures (abbr. sprocs) for overall applica-
tion performance. An application speci�es a sproc by calling the
Register function and executes it by calling the Execute func-
tion. Sproc code is a parameter to Register and is broadcast to all
CompuCache servers. On each server, the code is compiled locally
as a dynamic library and loaded into the runtime of the server. A
CompuCache server might not have all the data needed to exe-
cute a sproc, which requires coordination with other CompuCache
servers.

We next detail the challenges in the design of the CompuCache
interface (3.1), request execution (3.2), and fault tolerance (3.3).

3.1 Interface Challenges

There are several challenges in the interface design to support
sprocs with spot VMs as remote cache servers. First, to allocate VMs
for hosting a cache, the core count must be speci�ed in addition
to memory size. The required number of cores depends on the
computational load of each sproc, the mix of di�erent sproc types,
the peak throughput, and potential contention between cores. In
many cases, the workload varies over time, which implies the core
count should too. Another source of complexity is that VMs come
in di�erent sizes with di�erent processor generations. It is therefore
a signi�cant challenge to choose an initial core count and decide
when it should change.

The second challenge is to e�ciently support server-side pointer
chasing in sprocs, which overcomes a limitation of existing remote
caching systems. An application of CompuCache accesses data by

its virtual address in the cache, while pointer chasing requires know-
ing the physical location that a pointer references. CompuCache
needs to bridge this gap between virtual and physical addresses
without putting much programming burden on users.

The third challenge is presented by the scale-out nature of Com-
puCache: the accessed data in a sproc can span multiple VMs. A
sproc that is executing in one VM may reference data in another
VM. This can occur during a sequential reference pattern or when
chasing pointers. How to handle such out-of-bounds exceptions and
determine the best strategy for continuing the sproc’s execution
with data on other VMs is challenging.
Sketch of solutions. For the �rst challenge, the allocation of com-
pute resources, the required initial core count can be chosen by
benchmarking the workload mix on one core and assuming it will
scale linearly to the peak throughput required. The predicted core
count can then be scaled for di�erent VM types based on VM bench-
mark comparisons. For a read-only cache and a stable workload, we
speculate that this will work well enough. Figure 4 shows that the
throughput of a CompuCache server running a simple sproc scales
up linearly with the number CPU cores, thereby demonstrating
there is negligible communication contention between cores. More
sophisticated performance modeling will be needed when updates
are present to cause contention. If there is signi�cant workload
variation over time, then dynamic optimization will be needed.

For the second challenge, server-side pointer chasing, we propose
a new data structure, LocalTranslator, that provides a Translate
function:

l_addr, l_size Translate(c_addr, c_size)
where c_addr and c_size are the cache address and size of a record,
and l_addr and l_size are the server-local (i.e., VM-local) address
and size of the record. A sproc invokes this function to map virtual
cache addresses into physical server locations. LocalTranslator
is described in Section 3.2.

For the third challenge, out-of-bounds exceptions are raised by
the Translate function: if l_size equals c_size, then the record
is fully local; otherwise Translate raises an exception. The appli-
cation has three ways to handle the exception in a sproc. The �rst
is to temporarily bring the data to the current server by calling
DFlow as follows.

l_addr DFlow(c_addr, c_size)
The second option is to move the sproc execution from the current
server to the one with the remaining data using FFlow as follows.

FFlow(c_addr, c_size)
3
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The execution of DFlow or FFlow incurs data movement between
servers, i.e., spot VMs. The di�erence between them is that DFlow
moves the input data while FFlow moves the current state of the
sproc execution. The �nal option is to stop the execution and im-
mediately return back to the client. Since the best option depends
on the nature of the sproc’s computation, CompuCache delegates
the decision to the developer of the sproc.

3.2 Execution Challenges

To achieve millions of operations per second, CompuCache must
exploit the characteristics of high-speed data center networks and
provide e�cient support for CompuCache sproc executions.

A critical challenge is a communication transport to make trans-
ferring cache I/O and sproc execution requests/responses fast. Sproc
execution requests are �xed-size and always small, containing the
sproc ID to execute and a few parameters specifying the starting
address, response size, and context. In contrast, execution responses
vary in size; responses to aggregation requests are small but re-
sponses to scan sprocs may be large. Traditional network stacks
su�er from overheads that limit both, e.g., with caching issues and
repeated context switching.

Another challenge is how CompuCache schedules sprocs to
execute on servers. Many sproc execution requests may arrive on
a server at the same time. Execution time will vary for the same
sproc with di�erent parameters and for di�erent sprocs. Some
will complete while others raise out-of-bounds exceptions. Due to
this diversity, deciding which sprocs to schedule on which cores
is important for optimizing the utilization of each core and load
balancing between cores.

The remaining challenges are in how best to support cross-server
sproc executions with DFlow and FFlow. A CompuCache server
should construct a LocalTranslator for sprocs to chase pointers.
When a sproc invokes DFlow, CompuCache must know where to
�nd the data and how to bring it to the caller. Similarly, when a
sproc invokes FFlow, CompuCache must decide where and how to
ship the sproc execution.
Sketch of solutions. For the �rst challenge, CompuCache uses
eRPC [15], a user-space RPC library that runs on DPDK [2] or
RDMA. DPDK avoids OS kernel overhead by executing the net-
working in user space. RDMA o�ers the further bene�t of o�oad-
ing the CPU by running most of the networking protocol on the
network interface card (NIC). To leverage the full bandwidth of
high-speed networks, CompuCache batches small operations in a
single network transfer. This includes batching small I/O requests
and responses and all sproc execution requests. As response sizes
vary, it dynamically decides whether to batch them and what batch
size to use.

For the second challenge, scheduling, CompuCache servers spawn
one thread per CPU core. A CompuCache client builds a session
to connect with a server thread. All threads on a server poll I/O
and sproc execution requests and process them in place by default,
i.e., there is no dispatching between server threads. This design
avoids inter-thread communication overhead, so CPU cycles are
fully utilized for processing requests.

To deal with out-of-bounds exceptions and load imbalance, we
introduce a workqueue for each server thread. A server thread polls

its workqueue for sproc execution requests. It schedules them in
the batched order, unless DFlow or FFlow is called. When DFlow is
called, the current sproc is scheduled to be inactive and its next
request is scheduled to be executed. Inactive requests are executed
again when their requested data is fetched. When FFlow is called,
the current execution immediately terminates.

We propose using a server-wide scheduler. It monitors the utiliza-
tion of all server threads and canmove requests from theworkqueues
of highly utilized threads to those of less utilized threads.

For the third challenge, CompuCache supports server-side pointer
chasing and scale-out execution as follows. When a cache is allo-
cated, the CompuCache client builds a mapping from virtual cache
regions to servers based on the list of VMs it receives from the cloud
VM allocator. When it connects to a server, it sends the mapping.
The server uses the mapping to construct the LocalTranslator
and to route DFlow and FFlow requests.

On a server, CompuCache processes DFlow and FFlow requests
by translating them into I/O requests and sproc execution requests.
It treats a DFlow request as a single read request, which it routes to
the right server based on the mapping received from the client. The
callback function for this asynchronous read activates the caller
sproc. For FFlow, after the server terminates the sproc execution,
it saves the sproc’s current execution context and sends a sproc
execution request to the server that hosts the remaining data with
the saved context as a parameter.

In the setup of servers, each server builds a single session to
every other server. It uses a single server thread to process the
requests from all other servers. This design decision is made based
on the expectation that most requests come from the client, rather
than other servers.

3.3 Fault Tolerance Challenges

Faults are of particular concern in CompuCache—speci�cally, fail-
ures of the CompuCache servers. In addition to traditional types of
failures that can a�ect VMs in a cloud data center, CompuCache
servers also need to deal with the eventual reclamation of spot VM
instances. The latter is often accompanied by a short grace period.

In contrast to most existing cache solutions, these reclamations
introduce a high degree of churn into the membership of VMs
comprising the cache. Despite that churn, a sproc execution that
accesses data spanning multiple VMs has a need for robust dis-
tributed consistency. For example, consider a query over a social
graph for the friends-of-friends of a particular user. Assume that
execution begins at the server responsible for user �, but � de-
cides to call DFlow to access another server ⌫ that holds a friend’s
information. If VM churn leads to the loss of server ⌫ before the
request is sent out, server � has to be informed of the new server
that has the requested data. Similarly, if server� is lost while server
⌫ is processing the DFlow request, server ⌫ needs to know the new
destination where it should send the response or whether it should
just stop the processing and discard the response.

Complicating the issue of churn is that spot instance sizes are
heterogeneous and dependent on the available memory of each
server. Thus, when a spot instance is reclaimed, its range can be
assigned to multiple replacement instances, which may not adhere
to the original computation’s view of what is local and what is not.
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Sketch of solutions. We consider the fault tolerance for spot VM
reclamations and server failures separately, and expect that the
former happens more frequently in a deployment of CompuCache.

The CompuCache client maintains an up-to-date mapping of
all cache regions to CompuCache servers. Recall that the mapping
is used to route every CompuCache request to the correct server,
to construct LocalTranslator, and to process DFlow and FFlow
requests. The client sends the initial mapping to each server during
connection setup. On a server reclamation, the client allocates
new spot VMs to host the reclaimed cache regions, updates the
mapping to re�ect the new membership of servers, and broadcasts
the membership updates to all servers.

We propose a multi-step data migration protocol for spot VM
reclamations that ensures each request to CompuCache always
goes to the correct server. First, the client assigns the cache regions
on the old server to new servers, but does not immediately update
the region mapping. It signals each new server to connect to the
appropriate old servers to fetch the data in its assigned regions.
To minimize the disruption of normal request processing, Compu-
Cache performs migration one region at a time. While it migrates a
region, new writes and dependent reads (including sproc execution
requests) for that region are paused until the migration is �nished.
After a region has been migrated, the client updates the region
mapping, immediately routes all requests for that region to the
new server, and synchronizes the mapping update to all servers. It
processes requests to regions that are not currently being migrated
without interruption, even if they are on the same server as a region
being migrated.

When all regions are migrated, the old server may still be serving
read requests and sproc execution requests. In this case, the server
quickly drains all read requests. For sproc execution requests, it
waits for each thread to �nish executing its in-�ight sproc request
(if any). It then partitions the thread’s workqueue into batches, one
per server, based on which new server should process each request.
It sends each batch to the proper server, if possible combining it
with batches from other threads destined for the same server.

During themembership transition, there is a periodwhen servers’
views may be stale. This requires special handling of cross-server
sproc execution. CompuCache addresses this with tombstones and
forwarding addresses. For example, suppose a region A has been
migrated from server � to server ⌫, but the client has not yet prop-
agated the mapping change to every server. If server ⇠ still has the
old mapping, it will send DFlow or FFlow operations on A to �. To
address this issue, � atomically places a tombstone and forwarding
address in its local mapping of A , and forwards future DFlow and
FFlow operations on A to ⌫. As an optimization, the DFlow and
FFlow responses can include the forwarding address, which ⇠ uses
to update its local mapping.

A server failure will cause all requests to regions that the server
hosts to eventually time out. CompuCache can create VMs to re-
place the address space lost by the failed VM. However, it is up to
the application to replace its content. For a read-only cache, Com-
puCache provides a parameter to Allocate that maps the cache
to a persistent �le. For an updatable cache, CompuCache can use
traditional methods to ensure durability, such as write-through
caching like memcached and Redis, or physical logging and fuzzy
checkpointing. During the recovery, the CompuCache client reads
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Figure 5: I/O performance of CompuCache vs. Redis.

the backup data and populates the lost regions. It pauses all other
requests to the failed server until recovery �nishes, including reads,
writes, sproc execution requests, and DFlow and FFlow operations.
Alternatively, CompuCache can avoid data loss due to VM failure
by replicating its cache regions [1, 25].

4 PRELIMINARY RESULTS
We now present a preliminary evaluation that demonstrates the
performance advantages of CompuCache. We compare Compu-
Cache with Redis [3], a popular in-memory caching system that
supports sprocs through the Eval function. Eval takes as input a
Lua script [21] and the keys that are accessed by the script.

Our testbed consists of three Standard_HB60rs VMs in a Mi-
crosoft Azure High Performance Computing (HPC) cluster [23]
using Mellanox ConnectX-5 NICs and EDR switches running In-
�niBand for fast network communications. As Redis requires a
traditional TCP/IP network, we con�gure IP-over-IB for Redis to
use the same In�niBand network as CompuCache.
Cache I/O performance.We �rst compare the I/O performance
of these two caching systems. We measure their throughput to read
and write 8-byte records with an equal number of client and server
threads. Figure 5a shows the results for reads and 5b for writes.
Redis’s throughput is 0.2million operations per second (MOPS)
with one thread and peaks at 0.8MOPS with 8 threads. Thus, Redis
does utilize the underlying fast network. In contrast, CompuCache
has 200⇥ higher throughput and scales linearly with the number of
threads.With 16 threads, its throughput is 160MOPS for both reads
and writes.
Sproc execution performance.Wenext evaluate the performance
of executing sproc requests—a key feature of CompuCache. Our �rst
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Figure 6: The performance of executing simple sprocs.
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Figure 7: The performance of aggregating two records.
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Figure 8: The performance of aggregating three records.

test uses a sproc that simply reads a record and veri�es whether its
data is correct. Figure 6 shows the throughput of Execute in Com-
puCache and Eval in Redis. Here, the performance gap between
CompuCache and Redis is even wider. The lower performance of
Redis is due to two sources of overhead in executing Eval requests:
(1) the Lua script is interpreted on the server and (2) a Redis server
does not parallelize the Lua runtime. In contrast, CompuCache
compiles stored procedures ahead of time and parallelizes sprocs.
With one thread, CompuCache can process 12 million Execute re-
quests per second, while Redis can only handle 103 thousand Eval
requests per second. With 16 threads, CompuCache scales by 10⇥
(to 126MOPS) whereas Redis only scales by 2.3⇥ (to 0.24MOPS).

As a second scenario, we evaluate an aggregation sproc and
control the number of records aggregated per sproc invocation.
Aggregating more records means more data movement is saved
by executing sprocs, thus demonstrating the advantage of Com-
puCache over a cache that only supports reads and writes. We
compare three cases: (i) CompuCache using sprocs (CC Execute);
(ii) CompuCache shipping all data and performing the aggregation

0.09
0.004

0.17

0.66

0.09
0.004 0

0.35

0.00

0.20

0.40

0.60

0.80

1.00

Client to server
connection

Server to server
connection

Buffer
allocation

Region
migration

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)
 Baseline w/ copies

Zero-copy

Fixed overhead

Cache-dependent overhead

Figure 9: The performance of the components in cache mi-
gration and the advantages of zero-copy.

locally (CC Read); and (iii) Redis using Eval to push down the same
aggregation. Figures 7 and 8 show the results for 2-record and 3-
record aggregation sprocs respectively. We �nd that CC Execute
e�ectively reduces data movement. It outperforms CC Read by 2⇥
and 3⇥ for 2-record and 3-record aggregation, respectively. Redis
has orders of magnitude lower throughput than either CC variant
due to additional computation and despite reduced data movement.
Cache migration. We now investigate the performance of mi-
grating a cache in CompuCache to handle a spot VM reclamation.
Recall from Section 3.3 that it takes several steps to replace a cache
server in CompuCache with new spot VMs: the client connects to
the new servers, the new servers connect to the old server, and
then the regions on the old server are migrated to the new servers.
The last step performs the actual data transfers and can be costly.
A baseline design is to create eRPC message bu�ers on both the
old and new servers. The old server sends each of its regions to the
new server that hosts that region by copying that region’s data to
its bu�er. After eRPC delivers the message to the destination bu�er,
the new server copies the data to its local region.

Figure 9 shows the performance of the above design when mi-
grating a 1GB cache to a new server. The �gure shows both �xed
and cache-dependent components. The time to build connections
and allocate bu�ers is constant regardless of how large the cache
is, while the time to transfer the data depends on the cache size.
The results show that CompuCache is fast at building connections
due to the bene�t of fast networks. The overall performance is
bottlenecked by bu�er allocation and region migration.

We sped up CompuCache cache migration by eliminating the
bu�er allocation and memory copies in the baseline design with a
zero-copy optimization. The core idea is to combine memory regions
and message bu�ers. When a cache server allocates a memory
region, it also registers the region as a message bu�er to eRPC.
This design removes the need to allocate message bu�ers on the
�y and to copy memory between CompuCache and its transport. It
reduces setup and transfer times for cache migration, which enables
a larger cache to be migrated within the time constraint of a spot
VM reclamation.

Figure 9 shows that the zero-copy optimization eliminates the
bu�er allocation overhead and migrates regions 1.9⇥ faster.
Di�erent networks. In addition to the VMs in an Azure HPC
cluster, we also evaluate CompuCache performance with general-
purpose Azure VMs [22]. We used Standard_D8s_v3 instances,
which are cheaper VMs with less network bandwidth (3⇠4Gbps
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Figure 11: Sproc performance in a di�erent network.

Ethernet vs. 100Gbps In�niBand in Azure HPC) and less compute
resources (8 vcores vs. 60 vcores in Azure HPC).

Figures 10 and 11 show the throughput of CompuCache exe-
cuting I/O and sproc requests respectively. Compared to Figure 5,
CompuCache can saturate this network with two threads for I/O,
achieving 13MOPS for reads and 12MOPS for writes.

With less powerful CPUs, the performance of executing sprocs
drops correspondingly. With three threads, the throughput is 8.6
MOPS, 6.2MOPS, and 5.8MOPS for running the simple read and
verify sproc, and 2-record and 3-record aggregations respectively.

This set of experiments shows that the performance of Compu-
Cache adapts to the underlying cloud resources. Even with lower-
end VMs, CompuCache still achieves millions of operations per
second. It is up to users to make the trade-o�s between performance
and expense.
Summary. The main takeaway of these experiments is that Com-
puCache outperforms existing remote caching systems for both
single-record I/O’s and compute pushdown and that o�oading data-
intensive operations to the server side allows more performance
optimizations. Our evaluation also shows that CompuCache reacts
quickly to spot VM reclamation by optimizing the performance
of region migration. The evaluation of more bene�ts from pointer
chasing and cross-server sproc execution remains to be done.

5 APPLICATIONS
We brie�y survey representative applications that can bene�t from
CompuCache. These applications have the following characteristics:
(1) complex data structures where dereferencing is common when
computing queries over data; (2) some churn due to updates to the
underlying base data over time; and (3) a need for elastic scaling
and use of spot instances to handle transient increase in load.

In-memory key-value store as distributed cache. CompuCache
enhances existing key-value stores along two dimensions: it can
support parallel compute o�oading and can recursively derefer-
ence pointers without incurring round trips. The absence of these
capabilities can lead to poor performance of some popular key-
value stores, such as Redis and Memcached. For example, in Redis,
all hash-based and set-based data structures are designed to run on
a single machine. By contrast, CompuCache can support a library
of parallel data structures backed by a distributed remote cache,
with the fringe bene�t that it is spot-instance friendly.
Graph databases and knowledge bases. Graphs present a chal-
lenging workload due to their scale and inherently stateful oper-
ations. When deployed in a parallel setting, sharding requires a
single query to span multiple servers. But sharding is rarely perfect,
so graph algorithms have to traverse edges across servers.

Using CompuCache, an application can follow edges directly
without returning to the client. Many recursive graph queries oper-
ate on complex data structures, requiring round trips back to clients.
For example, a query to count the number of vertices within k-hops
of a particular vertex may involve multiple servers. CompuCache
avoids unnecessary round-trips by enabling cross-server pointer
chasing. These bene�ts carry over to knowledge graphs as well,
which have a similar data model and topology.
Relational databases. An RDBMS can bene�t from using remote
memory as an extended bu�er pool, semantic cache, and temporary
data store. These scenarios are analyzed in detail in [18]. However,
they still require the query processor to move a signi�cant amount
of data from the remote machine to the one executing the query
processor, so it can process the data locally. To avoid this data
movement and thereby achieve better RDBMS performance, Com-
puCache allows data-intensive operations, such as index lookups
and predicates on materialized views, to be o�oaded to the server
that hosts the cache. Using CompuCache, the query processor can
easily parallelize the execution of these operations. CompuCache
further increases the bene�ts of o�oaded query processing by its
ability to use spot VMs for the remote memory servers, thereby
reducing cost.

There are still some open questions. For instance, properly siz-
ing VMs to host CompuCache caches requires expertise and ac-
curate predictions of the workload. Another challenge is in join
implementation. If a join requires tuples that span multiple VMs,
cross-server data shu�ing will be needed. This overhead can be
alleviated by careful tuning the placement of tuples in cache servers,
e.g., partitioning by join keys of frequent join queries. Again, this
optimization is workload-dependent.

6 RELATEDWORK
In Section 5, we discussed some key di�erences between Compu-
Cache and in-memory distributed caches such as Redis and Mem-
cached. We brie�y summarize other areas of related work.
Near-data processing. A line of work investigates pushing com-
putation closer to the data in distributed databases [6, 9] and disag-
gregated storage [24, 26, 28]. In all cases, specialized operations can
be executed remotely close to the data source to avoid transferring
data over the network. CompuCache di�ers in that it uses spot
instances, which have higher degrees of churn, and can support
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complex data types where recursive queries across multiple servers
are commonplace.
Operator pushdown techniques on smart NICs. There have
also been proposals to execute remote operations on programmable
smart NICs [16, 19, 20]. Unlike CompuCache, these proposals are
limited by the need for specialized hardware. They also focus pri-
marily on operations that are executable only on a single node.
Remote memory for databases. Previous work has proposed
novel memory management for DBMSs to utilize remote memo-
ries [7, 18]. The ideas di�er in that they assume that signi�cant
resources are used at dedicated servers, while CompuCache uses
opportunistic cloud resources for native compute o�oading.

Redy [29] is a new cloud service that we proposed to o�er re-
mote stranded memory in cloud data centers as high-performance
caches. Redy only allows applications to o�oad state, while with
CompuCache, applications can o�oad both state and operations
over that state.
Memory disaggregation for databases. Separating compute and
data with memory disaggregation has been gaining traction for
database workloads recently [8, 30, 31, 33]. This new cloud archi-
tecture allows DBMSs to scale compute and memory resources
independently, but this bene�t comes at the cost of data move-
ment between compute and memory. To reduce the cost, recent
work [16, 19, 32] proposes to use accelerators, e.g., FPGA and Smart-
NICs, to o�oad memory-intensive operators to remote memory
servers. Compared to these systems, CompuCache is unique in
its capabilities of using opportunistic data center resources and
executing distributed functions across multiple servers.
RPC with RDMA. CliqueMap [27] proposes network infrastruc-
ture support to make RPCs run e�ciently on remote cached data
using RDMA. CompuCache di�ers in its fault-tolerant and cross-
server sproc execution designed for spot VMs.

7 CONCLUSION AND NEXT STEPS
We presented CompuCache, a computable caching system designed
to maximize the use of unallocated resources in cloud data centers.
We described the interface, execution, and fault tolerance challenges
associated with its design and implementation.

Next steps are to �esh out our proposed solutions, evaluate the
performance of a complete implementation, and validate the im-
plementation’s utility for applications. Beyond that, other research
questions include integration with the cloud VM allocator, o�ering
user-control over the latency-throughput tradeo�, ensuring opti-
mal distribution of unallocated resources by the users requesting
it, and support for the execution and synchronization of updates.
There is much to be done.
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