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Abstract

Gaussian noise injections (GNIs) are a family of
simple and widely-used regularisation methods
for training neural networks where one injects
additive or multiplicative Gaussian noise to the
network activations at every iteration of the op-
timisation algorithm, which is typically chosen
as stochastic gradient descent (SGD). In this pa-
per we focus on the so-called ‘implicit effect’ of
GNIs, which is the effect of the injected noise on
the dynamics of SGD. We show that this effect in-
duces an asymmetric heavy-tailed noise on SGD
gradient updates. In order to model this modi-
fied dynamics, we first develop a Langevin-like
stochastic differential equation that is driven by a
general family of asymmetric heavy-tailed noise.
Using this model we then formally prove that
GNIs induce an ‘implicit bias’, which varies de-
pending on the heaviness of the tails and the level
of asymmetry. Our empirical results confirm that
different types of neural networks trained with
GNIs are well-modelled by the proposed dynam-
ics and that the implicit effect of these injections
induces a bias that degrades the performance of
networks.

1. Introduction

Noise injections are a family of methods that involve adding
or multiplying samples from a noise distribution to the
weights and activations of a neural network during train-
ing. The most commonly used distributions are Bernoulli
distributions and Gaussian distributions (Srivastava et al.,
2014; Poole et al., 2014) and the noise is most often inserted
at the level of network activations.

“Equal contribution !Alan Turing Institute, University of Ox-
ford, Oxford, UK 2Department of Mathematics, Florida State Uni-
versity, Tallahassee, USA *Department of Management Science
and Information Systems, Rutgers Business School, Piscataway,
USA * INRIA - Département d’Informatique de I’Ecole Normale
Supérieure - PSL Research University, Paris, France. Correspon-
dence to: Alexander Camuto <acamuto@turing.ac.uk>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

input neuron
hidden neuron

.
@ :

© output neuron
@ » — [0,05,02) O Gaussian noise
@ @ data

loss

Figure 1. Ilustration of the effect of GNIs added to a network’s
activations. Each colored dot represents a neuron’s activations. We
add GNIs, represented as circles, to each layer’s activations bar the
output layer. Perhaps counter-intuitively, though the forward pass
experiences Gaussian noise, gradient updates in the backward pass
experience heavy-tailed asymmetric noise.

Though the regularisation conferred by Gaussian noise in-
jections (GNIs) can be observed empirically, and there have
been many studies on the benefits of noising data (Bishop,
1995; Cohen et al., 2019; Webb, 1994), the mechanisms by
which these injections operate are not fully understood. Re-
cently, the explicit effect of GNIs, which is the added term
to the loss function obtained when marginalising out the
injected noise, has been characterised analytically (Camuto
et al., 2020): it corresponds to a penalisation in the Fourier
domain which improves model generalisation.

Here we extend this analysis and focus on the implicit effect
of GNIs. This is the effect of the remaining noise that has
been marginalised out when studying the explicit effect. In
particular we focus on the manner in which such noise alters
the dynamics of Stochastic Gradient Descent (SGD) (Wei
et al., 2020; Zhang et al., 2017). We show that the implicit
effect is driven by an asymmetric heavy-tailed noise on the
SGD gradient updates, as illustrated in Figure 1.

To study the effect of this gradient noise, we model the
dynamics of SGD for a network experiencing GNIs by a
stochastic differential equation (SDE) driven by an asym-
metric heavy-tailed a-stable noise. We demonstrate that
this model captures the dynamics of networks trained with
GNIs and we show that the stationary distribution of this
process becomes arbitrarily distant from the so-called Gibbs
measure, whose modes exactly match the local minima
of the loss function, as the gradient becomes increasingly
heavy-tailed and asymmetric. Heavy-tailed and asymmetric
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gradient noise thus degrades network performance and this
suggests that models trained with the full effect of GNIs
will underperform networks trained solely with the explicit
effect. We confirm this experimentally for a variety of dense
and convolutional networks.!

2. Background

Stable Distributions. The Generalised Central Limit Theo-
rem (GCLT) (Gnedenko & Kolmogorov, 1954) states that
for a sequence of independent and identically distributed
(i.i.d.) random variables whose distribution has a power-law
tail with index 0 < a < 2, the normalised sum converges to
a heavy-tailed distribution called the a-stable distribution
(S,) as the number of summands grows. An a-stable dis-
tributed random variable X is denoted by X ~ S, (0,6, 1),
where a € (0, 2] is the tail-index, 6 € [ — 1, 1] is the skew-
ness parameter, o > 0 is the scale parameter, and u € R
is called the location parameter. The mean of X coincides
with 4 if o > 1, and otherwise the mean of X is undefined.
In this work, we always assume y = 0. The parameter 6 is a
measure of asymmetry. We say that X follows a symmetric
a-stable distribution denoted as SaS(0) = S,(0,0,0) if
6 = 0 (and p = 0). The parameter o € (0, 2] determines
the tail thickness of the distribution, and o > 0 measures
the spread of X around its mode. Note that when o < 2, a-
stable distributions have heavy tails such that their moments
are finite only up to the order a.

The probability density function (p.d.f.) of an a-stable
random variable, « € (0, 2], does not have a closed-form
expression except for a few special cases. When o = 1 and
a = 2, the symmetric a-stable distribution reduces to the
Cauchy and the Gaussian distributions, respectively, (cf. Sec-
tion 1.1. in (Samorodnitsky & Taqqu, 1994)). By their flexi-
bility, such distributions can model many complex stochastic
phenomena for which exact analytic forms are intractable
(Sarafrazi & Yazdi, 2019; Fiche et al., 2013).

Lévy Processes. A Lévy process (motion) is a stochastic
process with independent, stationary increments. Formally,
L; is Lévy process if

(1) Ly = 0 almost surely;

(i) Forany ty < t; < --- < ty, the increments L;, —
L,, , areindependent,n =1,2,...,N;

@iii) The difference L; — L, and L;_; have the same dis-
tribution;

(iv) L is continuous in probability, i.e. for any § > 0 and
s>0,P(|Ly — Lg| > ) - 0ast — s.

The a-stable Lévy process is an important class of Lévy
processes. In particular, for a € (0, 2], let L? % denote
the d-dimensional «a-stable Lévy process with independent

'See https://github.com/alexander-camuto/
asym-heavy-tails-bias—GNI for all code.

components, i.e. each component is an independent scalar
a-stable Levy motion (Duan, 2015) such that L?_’GS has the
distribution S, ((t — s)*/®,6,0) for any s < t.

Stochastic Gradient Descent and Differential Equations.
Let D be a training dataset composed of data-label pairs
of the form (x,y), and let w = {W1,..., W} € R? be
the d parameters of an L layer neural network in vector
form. When a neural network operates on input data x, we
obtain the activations h = {hy,...,hy_1}, where hy = x
and h € R™**7L where n; is the number of neurons
in the 7'M layer: we consider a non-linearity x : R — R,
h;(x) = k(W;h;_1(x)), where & is applied element-wise
to each coordinate of its argument. In supervised settings,
our objective is to find the optimal parameters w, that min-
imise the negative log-likelihood — log pw (y|x) of the la-
bels y, given the parameters w and data x:

w,. = argmin L(D; w),

L(D;w) := —Ex y~p [log pw(y]x)] . 2.1

SGD and its variants are the most prevalent optimisation
routines that underpin the training of very large neural net-
works. Under SGD, we estimate equation (2.1) by sampling
a random mini-batch of data-label pairs B C D,

‘C(Ba W) = _Ex,yNB [logpw (Y|X)] ~ ‘C(Da W) (22)

SGD optimises this equation and approximates w, using
iterative parameter updates. At training step k

Wit1 = Wi — NVL(Bry1; W), (2.3)

where 7) is the step-size for updates (the network’s learning
rate) (Robbins & Monro, 1951; Ruder, 2016).

Studying the dynamics of SGD allows us to understand
the subtle effects that batching may have on neural net-
work training. The similarities between the SGD algorithm
and Langevin diffusions (Roberts & Stramer, 2002) have
inspired many studies modelling the dynamics of SGD us-
ing stochastic differential equations (SDEs) under different
noise conditions (Agapiou et al., 2014; Simsekli et al., 2019;
Raginsky et al., 2017; Gao et al., 2018; 2020; Jastrzebski
et al., 2017; Li et al., 2017). In this approach, one models
the discrete SGD updates (2.3), as the discretisation of a
continuous-time stochastic process, making assumptions
about the properties of the ‘noise’ that drives this process
(Mandt et al., 2016; Jastrzgbski et al., 2017). This noise
stems from the stochasticity in approximating the ‘true’ gra-
dient over the dataset VL(D; wy,) with that of a mini-batch

B, VL(B;w}). We denote this noise as,
Uk+1(W) = Vﬁ(D,Wk) — Vwkﬁ(BkH;wk). (24)

The most prevalent assumption is that the gradient noise ad-
mits a multi-variate Gaussian noise: U (w) ~ N(0, o2T).
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This is rationalised by the central limit theorem, as the sum
of estimation errors in equation (2.4) is approximately Gaus-
sian for sufficiently large batches. Under this assumption,
we can rewrite the SGD parameter update as:

W1 = wg — nVL(D;wyg) + nUgs1(W). (2.5)

Then, one obtains the following continuous-time SDE to
approximate the gradient updates (Welling & Teh, 2011;
Mandt et al., 2016; Jastrzgbski et al., 2017):

dw, = —VL(D;wy)dt + \/no2dBy,  (2.6)

where B; is the Brownian motion in R? and ¢ is the as-
sumed noise variance for U. However, recent work suggests
that the Gaussian assumption might not be always appropri-
ate (Giirbiizbalaban et al., 2021; Hodgkinson & Mahoney,
2020), and connectedly, the gradient noise is observed to
be heavy-tailed in different settings (Simgekli et al., 2019;
Zhou et al., 2020). Under this noise assumption, the corre-
sponding SDE is such that B, in (2.6) is replaced with the
symmetric stable process Ly ¥ where 6 = 0:

dw; = —VL(D;w,)dt +n @ V/edLd?.  (2.7)

Gaussian Noise Injections. GNIs are regularisation meth-
ods that consist of injecting Gaussian noise to the network
activations. More precisely, let € be a collection of ‘noise
vectors’ injected to the network activations at each layer ex-
cept the final layer: € = {eq,...,€r_1}, where €; € R™,
€ € R®ot+nr—1 and n, is the number of neurons in the **
layer. We have two values for an activation: the soon-to-be
noised value }Alz and the subsequently noised value fll For
a multi-layer perceptron (MLP),

hi(x) =k (Wifli—l(x)) )

where o is some element-wise operation (e.g., addition
or multiplication). For additive GNIs typically, €; ~
N (0,021), and for multiplicative GNIs we often use
€; ~ N (1,07I), where N is the Gaussian distribution.
The ‘accumulated’ noise at each layer, induced by the noise
injected to the layer and in previous layers is

Ei(x;w,€) = fll(X) —h;(x).

Hi = FIZ o€, (28)

(2.9)

Given that GNIs are commonly used as regularisation meth-
ods (Camuto et al., 2020; Dieng et al., 2018; Srivastava
et al., 2014; Poole et al., 2014; Kingma et al., 2015; Bishop,
1995), our goal is to understand better the mechanisms by
which they affect neural networks.

3. The Implicit Effect of GNIs

Recently, Camuto et al. (2020) showed that the effect of
GNIs on the cost function can be expressed as a term
AL(B;w, €) that is added to the loss, i.e.,

L(B;w,€):=L(B;w)+ AL(B;w,e€), 3.1)

where L is the modified loss that SGD ultimately aims to
minimise. The term AL can be further broken down into ex-
plicit and implicit effects, as described in Section 1.

We build on the approach of Camuto et al. (2020) and define
the explicit effect as the additional term obtained on the
loss when we marginalise out the noise we have injected. It
offers a consistently positive objective for gradient descent
to optimise and we denote it as Ec(AL(B; w, €)). The im-
plicit effect is then the remainder of the terms marginalised
out in the explicit effect:

Er(B;w,€) := ALB;w,e) — E(AL(B;w,€)). (3.2)

While the explicit effect focuses on the consistent and non-
stochastic regularisation induced by GNIs, the implicit ef-
fect instead studies the effect of the inherent stochasticity
of GNIs. This term does not offer a consistent objective
for SGD to minimise. Rather we show that it affects neural
network training by way of the heavy-tailed and skewed
noise it induces on gradient updates.

Subsequently, we first characterise the tail properties of
the noise accumulated during the forward pass. As this
accumulated noise defines the implicit effect we can then
use this result to show that gradients induced by the implicit
effect are heavy-tailed and skewed and apt to be modelled
by heavy-tailed and asymmetric a-stable noise.

The Properties of the Accumulated Noise. Before consid-
ering the properties of the implicit effect gradients, we first
need to study the noise that is accumulated during the for-
ward pass of a neural network experiencing GNIs. Here we
use asymptotic analysis to bound the moments of this noise,
allowing us to characterise the tail properties of gradients us-
ing the broad class of sub-Weibull distributions that include
a range of heavy-tailed distributions (Vladimirova et al.,
2019; 2020; Kuchibhotla & Chakrabortty, 2018).

Definition 3.1. (Asymptotic order) A positive sequence
Q. is of the same order as another positive sequence by,
(am < b)) if AC > 0 such that Z—: <CVmeN ay,isof
the same order of magnitude as by, (G, < by, i.e. ‘asymp-
totically equivalent’) if there exist some c¢,C' > 0 such that:
c< ‘Z—:’: < C foranym € N,

Definition 3.2. (Sub-Weibull distributions), : We say that a
random variable X is sub-Weibull (Vladimirova et al., 2020;
Kuchibhotla & Chakrabortty, 2018) with tail parameter r if
[ X Nl < 7,7 > 0, where || X ||y := E[|X|™]5. In this
case, we write X ~ subW(r). Such distributions satisfy
the tail bound P(|X| > z) < 2e~(&)", where C > 0 is
some constant. Note that for r = % and r = 1 we recover

the sub-Gaussian and sub-exponential families and that if
X ~ subW(r’), then X ~ subW(r) forr > r'.

As r increases the tail distribution becomes heavier-tailed.
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To simplify our analysis we consider activation functions ¢
that obey the extended envelope property.

Definition 3.3 (Extended Envelope Property (Vladimirova
et al., 2019):). A non-linear function k : R — R is
said to obey the extended envelope property if 3 ¢1,co >
0, di,ds > 0 such that:

o |5(z)| > c1 +di|z|, foranyx € RY orz € R™;

o k()| < cg+do|x

, for any © € R.

Activation functions that obey this property, such as ReLU,
are broadly moment preserving (Vladimirova et al., 2020).
Using this property, we can characterise the moments for
the I*"" noised activation in a layer i, El 1(x).

Lemma 3.1. For feed-forward neural networks with an acti-
vation function ¢ that obeys the extended envelope property,
the noised activations at each layer i < L — 1, resulting
from additive-GNIs € obey

‘ Ei,l(x)

For multiplicative-GNIs we have,

where n; is the dimensionality of the i*" layer.

Svm, foranym>1;1=1,... n,.

m

hi,l (X)

i4+1
<m'F,

foranym >1;1=1,...,n;,

Hm

Lemma 3.1 shows that when the injected noise is additive,
the noised activations at each layer will have (sub)-Gaussian
tails. By equation (2.9), the accumulated noise &;(x; w, €)
will also have sub-Gaussian tails as the non-noised activa-
tions h(x) are deterministic and do not affect the asymptotic
relationships of moments. See Figure A.1 of the Appendix
for a demonstration that the activations experience Gaussian-
like noise for additive-GNIs. For multiplicative-GNIs the
noise at each layer, except the input layer which experiences
Gaussian noise, behaves with a sub-Weibull tail. We demon-
strate this behaviour in Figure A.2 of the Appendix.

We can now study the properties of the gradient noise in-
duced by the implicit effect by taking the gradients of this
forward pass noise.

Kaurtosis of The Gradient Noise. We characterise the gra-
dient noise corresponding to W ; ;, the weight that maps
from neuron [ in layer ¢ — 1 to neuron j in layer .

Theorem 3.1. Consider a feed-forward neural network with
an activation function ¢ that obeys the extended envelope
property and a cross-entropy or mean-squared-error cost
(see Appendix B). The gradient noise from additive-GNIs e,
has zero mean and has moments that obey for a pair (x,y):

8E,C((X7 y)7 w, 6)
oW1,

<m, foranym >1,

‘ m

where E¢((x,y); W, €) is defined in (3.2). For multiplica-
tive GNIs, we have

8E£,((Xa y)7 w, 6)
oW1

i=1,...,L;l=1,....n5_1; j=1,...,n.

L4i

~ )

foranym > 1,

For the additive noise, these bounds infer that the gradient
noise at each layer will have sub-exponential tails. For
the multiplicative case, gradient noise will be sub-Weibull,
with a tail parameter that increases with ¢ the layer index.
Unlike the forward pass, which experienced noise bounded
in its tails by a Gaussian, the backward pass experiences
noise that is bounded in its tails by heavy-tailed Weibull
distributions with tail parameter > 1.

Remark 3.1. The bounds defined by Lemma 3.1 and Theo-
rem 3.1 become an asymptotic equivalence (<) in the case
of 1-D data and 1-neuron-wide neural networks, i.e. the
bounds are maximally tight in this case.

Our result applies to the gradient for a single pair (x,y).
During SGD, we take the mean gradient across a batch
B of size B. To study the tail distribution of this mean
gradient, we restate in a simplified manner Kuchibhotla
& Chakrabortty (2018)’s generalisation of the Bernstein
inequality for zero-mean sub-Weibull random variables in
Theorem 3.2.

Theorem 3.2 (Theorem 3.1 in Kuchibhotla & Chakrabortty
(2018)). Let X1,...,Xp be independent mean-zero sub-
Weibull random variables with a shared tail parameter p >
1. Then, for every x > 0, we have

B
p{lamy) x>
. Bax? Bax®
— min , ,
O 112, Lmax [ Xl

where C, L > 0 are constants that depend on the tail pa-
rameter and where

1X]ly1 = int {y >0:E [(|X|/V)% < 1]}

is the ‘sub-Weibull norm’.

< 2exp

(3.3)

This theorem states that the the tails of the mean of zero-
mean i.i.d. sub-Weibull random variables are produced by a
single variable, say X, with the maximal sub-Weibull norm
I1Xill 2 = inf{v >0 E[(|X;]/v)7 < 11}, i.e., the one
with the heaviest tails. Assuming gradients are independent
across data points, we can use this inequality to bound the
tail probability for the sum of our zero-mean gradients. If
a single gradient is sufficiently heavy-tailed, then the mean
across the batch will also be heavy-tailed.
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In Figure 2 we show that the implicit effect gradient, av-
eraged over the entire dataset D (i.e., the largest batch-
size possible), is heavy-tailed, unlike the forward pass.
To calculate these gradients, we estimate the explicit reg-
ulariser in equation (3.2) using Monte Carlo sampling,
Ec(AL(D;w,€) ~ Z%:o AL(D;w, €,,), similarly
to (Wei et al., 2020; Camuto et al., 2020). We show these re-
sults for multiplicative-GNIs in Figure A.3 of the Appendix.
In this setting as well, the backward pass experiences heavy-
tailed noise from GNIs.

Skewness of The Gradient Noise. In the proof of Theo-
rem 3.1 we decompose OE(-)/0W; ; ; as (8EL(-)/8711-7J-)-
(8%7 i/OW; 1), where E ; is the (noised) activation of the
4t neuron in the i*" layer. Both these derivatives are likely
to be skewed due to the asymmetry of the activation func-
tions and their gradients. Ignoring potential correlations
between variables, we observe that product of two zero-
mean skewed independent variables X and Y is also skewed
skew(XY)| = |E [X3] E [Y3]| > 0. The skewness of the
derivatives in the backward pass will induce skewed gradi-
ent noise, as seen in Figure 2. Though correlations between
gradients could also cause skewness, we show that this is
not the case in Appendix C.

4. An SDE Model for SGD with GNIs.

In this section, we will analyse the effects of the skewed and
heavy-tailed noise on the SGD dynamics. Recall that the
modified loss function by the GNIs is the sum of the explicit
regulariser and the original loss over the dataset D,

E. (/:'(D;W, e)) = L(D;w) + E. (AL(D;w,e€)),
and the SGD recursion takes the following form:
Wii1 = Wi — NV Ee (Z(D;Wk, 6)) +nUk(w), (4.1)
where Uy 11 (w) is given as follows:

v []EE (Z(D; Wi, e))} 42)

-V {Ee (E(Bk+1;wk,e)) + Er(Bikt1; Wi, €)

To ease the notation, let us denote the modified loss function
by f(w) :=E. (E(D; w, e))

Remark 4.1. Note that when the gradients are computed
over the whole dataset D, the gradient noise solely stems
from the implicit effect, Up(w) = =V [E¢(D; Wi, €)].

Recent studies have proven that heavy-tailed behaviour can
already emerge in stochastic optimisation (without GNIs)
(Hodgkinson & Mahoney, 2020; Giirbiizbalaban et al., 2021;
Giirbiizbalaban & Hu, 2021), which can further result in
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Figure 2. We measure the skewness and kurtosis at initialisation
of the gradients noise accrued on networks weights during the
backward pass for additive-GNIs. The model is a 4-layer-256-
unit-wide MLP trained to regress A(z) = >, sin(2mwq;x + ¢(i))
with ¢; € (5,10,...,45,50),z € R. We plot the probability
density function (p.d.f.) of positive samples, comparing against
half-normal and half-Cauchy distributions. Each blue point rep-
resents the mean gradient noise over the entire dataset D of an
individual weight in a layer ¢. This gradient noise is skewed and
heavy-tailed, with a p.d.f. that is more Cauchy-like than Gaussian.

an overall heavy-tailed behaviour in the gradient noise, as
empirically reported in (Simgekli et al., 2019; Zhang et al.,
2020; Zhou et al., 2020). Accordingly, (Simsekli et al., 2019;
Zhou et al., 2020) proposed modelling the gradient noise by
using a centred symmetric c-stable noise, which then paved
the way for modelling the SGD dynamics by using an SDE
driven by a symmetric a-stable process (see (2.7)).

We take a similar route for modelling the trajectories of
SGD with GNIs; however, due to the skewness arising from
the GNIs, the symmetric noise assumption is not appropriate
for our purposes. Hence, we propose modelling the skewed
gradient noise (4.2) by using an asymmetric a-stable noise,
which aims at modelling both the heavy-tailed behaviour
and the asymmetries at the same time. In particular, we
consider an SDE driven by an asymmetric stable process
and its Euler discretisation as follows:

dw; = =V f(w)dt + edL?, 4.3)

Wil = Wi — Nep1 V. (Wi) + ETI;Z:; ALﬁjfl, (4.4)

where § = (0;,1 < i < d) is the d-dimensional skewness
and each coordinate can have its idiosyncratic skewness 6;.
L& = (189 ... L%%) is a d-dimensional asymmetric
a-stable Lévy process with independent components, and
encapsulates all the scaling parameters. Furthermore, (1)
denotes the sequence of step-sizes, which can be taken as
constant or decreasing, and finally (ALZ’O) & 1S a sequence
of i.i.d. random vectors where each component of AL?"9
is i.i.d. with S,(1, 6;,0). We then propose the discretised
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process (4.4) as a proxy to the original recursion (4.1) and
we will directly analyse the theoretical properties of (4.4).
Note that our approach strictly extends (Simgekli et al.,
2019), which appears as a special case when 6 = 0.

Before deriving our theoretical results, we first verify em-
pirically that the proxy dynamics (4.4) are indeed a good
model for representing (4.1). We ascertain that ALZ"9 is
sufficiently general in the sense that it can capture the gra-
dient noise induced by the implicit effect even when there
is no batching noise (when the batch size approaches the
size of the dataset for example, see Remark 4.1). As a
first line of evidence, in Figure A.4 of the Appendix we
model VE,(-) as being drawn from a univariate S,. The
equivalent S,, distributions are skewed (|f] > 0) and heavy-
tailed (o < 2), demonstrating that Lf”e captures the core
properties of the implicit effect gradients highlighted in Sec-
tion 3. To illustrate this more clearly, in Figure 3 we use
symmetric sub-Weibull distributions with » = 0.8, 1, 2, and
fit S,, and Gaussians (V) using maximum likelihood (MLE)
from 10* samples. We plot the MLE densities, and clearly
MLE S, (o < 2) better model the tails of the sub-Weibulls
than a Gaussian distribution, even for » = 0.8 which is
close to Gaussian tails (r = 0.5). The S, modelling of the
tails improves as r increases. This further illustrates the
appropriateness of our noise model.
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Figure 3. [left col.] sub-Weibull pdfs (r=0.8, 1.0, 2.0), and pdfs
of MLE fitted S,, and N [right col.] pdf in the tails (z > 4 and
x > 10, note log y-axis).
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Figure 4. We train the networks in Figure 2 on L M (4.5) for the
sinusoidal toy-data with additive GNIs [left] and multiplicative
GNIs [right]. We fit univariate S, and univariate A/ via maxi-
mum likelihood (Nolan, 2001) to VE,(+) for M = 1 models at
each training step. We add draws from these distributions to the
gradients of M = 16 models and plot the training 10ss (Ltrain)-
Shading is the standard deviation over 5 random seeds.

In Figure 4, we further show that the gradient noise of the
implicit effect and gradient noise drawn from an equivalent
S, distribution will have similar effects on gradient descent.
We sample M GNI samples and evaluate:

EuDiw,e) = (/MY EDiw,en).  @5)

The objective is over the entire dataset such that we elimi-
nate noise from the batching process. M allows us to control
the ‘degree’ to which the implicit effect is marginalised out.
M = 1 corresponds to the usual training with GNI and
larger values of M mimic the effects of marginalising out
the implicit effect. We model VE, for M = 1 as being
drawn from a univariate S,, or a univariate normal distribu-
tion and estimate distribution parameters using maximum
likelihood estimation, as in (Nolan, 2001), at each training
iteration. We add draws from the estimated distributions to
the gradients of M/ = 16 models to mimic the combined
implicit and explicit effects. M = 16 models with the added
S, noise have the same training path as M = 1 models,
whereas those with Gaussian gradient noise do not. Thus,
S, distributions are able to faithfully capture the dynamics
induced by the implicit effect on gradient descent.

In these same experiments M = 16 models outperform
M = 1 models on training data. We refine this study for
a greater range of M values in Figure 5. As M increases,
performance of models on training data improves gradually,
suggesting that the implicit effect degrades performance.
Further, in Figure 4, M = 16 models trained with Gaussian
noise added to gradients outperform M = 1 models, sug-
gesting that the heavy-tails and skew of the implicit effect
gradients are responsible for this performance degradation.
We now study this apparent bias.

Theoretical analysis of implicit bias. Due to their heavy-
tailed nature, stable processes have significantly different
statistical properties from those of their Brownian counter-
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Figure 5. We train the networks in Figure 2 on Z M (4.5) for the
sinusoidal toy-data with additive GNIs [left] and MNIST with
multiplicative GNIs [right]. We plot the training 10ss (Lrain)-
Shading is the standard deviation over 5 random seeds.

parts. Their trajectories have a countable number of discon-
tinuities, called jumps, whereas Brownian motion is contin-
uous almost everywhere. With these jumps the process can
escape from ‘narrow’ basins and spend more time in ‘wider’
basins (see Appendix F for the definition of width). The-
oretical results demonstrating this have been provided for
symmetric stable processes (0 = 0) (Simsekli et al., 2019).
By translating the related metastability results from statisti-
cal physics (Imkeller & Pavlyukevich, 2008) to our context,
in Appendix F we illustrate that this also holds for SDEs
driven by asymmetric stable processes (6 # 0). In this sense,
the SDE (4.3) is ‘biased’ towards wider basins.

While driving SGD iterates towards wider minima could be
beneficial, we now show that heavy tails can also introduce
an undesirable bias and that this bias is magnified by asym-
metries. To quantify this bias, we focus on the invariant
measure (i.e., the stationary distribution) of the Markov pro-
cess (4.4) and investigate its modes (i.e., its local maxima),
around where the process resides most of the time.

In a statistical physics context, Dybiec et al. (2007) empiri-
cally illustrated that the asymmetric stable noise can cause
‘shifts’, in the sense that the modes of the stationary distri-
bution of (4.4) can shift away from the true local minima
of f, which are of our interest as our aim is to minimise f.
They further illustrated that such shifts can be surprisingly
large when « gets smaller and || gets larger. We illus-
trate this outcome by reproducing one of the experiments
provided in (Dybiec et al., 2007) in Figure 6. Here, we con-
sider a one-dimensional problem with the quartic potential
f(w) = w*/4—w?/2, and simulate (4.4) for 10K iterations
with constant step-size 7, = 0.001 and € = 1. By using the
generated iterates, we estimate the density of the invariant
measure of (4.4) by using the kernel density estimator pro-
vided in scikit-learn (Pedregosa et al., 2011), for different
values of « and 6. When « is larger (left), the heavy-tails
cause a shift in the modes of the invariant measure, where
these shifts become slightly larger with increasing asym-
metries (|§| > 0). When the tails are heavier (right), we
observe a much stronger interaction between « and 6, and

Figure 6. The stationary distributions of (4.4) with o = 1.9 (left)
and o = 1.1 (right). The solid black line represents the density of
the Gibbs measure exp(— f(w)) with f(w) = w*/4 — w?/2.

observe drastic shifts as the asymmetry is increased.

From an optimisation perspective, these results are rather un-
settling as they imply that SGD might spend most of its time
in regions that are arbitrarily far from the local minima of
the objective function f, since the high probability regions
of its stationary distribution might be shifted away from the
local minima of interest. In the symmetric case (f = 0), this
observation has been formally proven in (Sliusarenko et al.,
2013) when f is chosen as the one dimensional quartic po-
tential of Figure 6 and when oo = 1. A direct quantification
of such shifts is non-trivial; and in the presence of asymme-
tries (0 # 0), even further difficulties emerge.

In a recent study Simsekli et al. (2020) focused on eliminat-
ing the undesired bias introduced by symmetric stable noise
in SGD with momentum (Qian, 1999), and proposed an indi-
rect way to ensure that modes of the stationary distribution
exactly match the objective function’s local minima. They
developed a ‘modified” SDE whose invariant distribution
can be proven to be the Gibbs measure, denoted by 7 (dw),
which is a probability measure that has a density propor-
tional to exp(—C f(w)) for some C > 0. Clearly, all the lo-
cal maxima of this density coincide with the local minima of
the function f’; hence, their approach eliminates the possibil-
ity of a shift in the modes by imposing a stronger condition
which controls the entire invariant distribution.

By following a similar approach, we will bound the gap
between the invariant measure of (4.4) and the Gibbs mea-
sure in terms of the tail index « and the skewness 6, using
it as a quantification of the bias induced by the asymmetric
heavy-tailed noise. In particular, for any sufficiently regular
test function g, we consider its expectation under the Gibbs
measure v(g) := [ g(w)m(dw), and its sample average
computed over (4.4), i.e., vn(9) == 7= SN kg(W),
where Hy = Ziv:l 7. We then bound the weak error:

|v(g) — limy o0 vn ()|, whose convergence to zero is suf-
ficient for ensuring the modes do not shift.

We derive this bound for our case in three steps: (i) We first
link the discrete-time process (4.4) to its continuous-time
limit (4.3) by directly using the results of (Panloup, 2008).
(i) We then design a modified SDE that has the unique
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invariant measure as the Gibbs measure, with all the modes
matching those of the loss function (Theorem 4.1). (iii)
Finally, we show that the SDE (4.3) is a poor numerical ap-
proximation to the modified SDE, and we develop an upper-
bound for the approximation error (Theorem 4.2).

To address (ii), we introduce a modification to (4.3), coined
asymmetric fractional Langevin dynamics:
dw, = b(wy_, v, 0)dt + edL&? (4.6)

where, the drift function b(w, «, 0) := ((b(w, ,8));, 1 <
1 < d) is defined as follows:

D223, (W),

b(w,a,0)); = o 4.7
(bl .0 = =D,
where 0; € (-1,1),1 < i < d,1 < a < 2, and
o(w) = e “fW)_ Here, the operator D2~ de-

notes a Riesz-Feller type fractional derivative (Gorenflo
& Mainardi, 1998; Mainardi et al., 2001) whose exact (and
rather complicated) definition is not essential in our problem-
atic, and is given in Appendix E in order to avoid obscuring
the main results. The next theorem states that the SDE (4.6)
targets the Gibbs measure.

Theorem 4.1. The Gibbs measure 7(dw) o<
exp(—e~*f(w))dw is an invariant distribution of
(4.6). If b(w,«,0) is Lipschitz continuous in w, then
w(dw) is the unique invariant distribution of (4.6).

This theorem states that the use of the modified drift b in
place of —V f, prevents any potential shifts in the modes of
the invariant measure.

The fractional derivative in (4.7) is a non-local operator
that requires the knowledge of the full function, and does
not admit a closed-form expression. In the next step, we
develop an approximation scheme for the drift b in (4.6),
and show that the gradient —V f in (4.4) appears as a special
case of this scheme. To simplify notation, we consider the
one-dimensional case (d = 1); however, our results can
be easily extended to multivariate settings by applying the
same approach to each coordinate. Hence, in the general
case the bounds will scale linearly with d. We define the
following approximation for b:

S AT Oupw),

where, for an arbitrary function 1, we have

bh,K(w,a,Q) = (48)

K
AL w(w) =71 7 (1+0sgn(k))g wb(w — kh).

k=—K

Here, sgn denotes the sign function, h > 0, K € NU
{0} ¢, = 1/(2cos(ym/2)). and g, = (~DFT(— +

k)/T(k + 1)I'(—~). This approximation is designed in the
way that we recover the original drift bas » — 0 and K —
oo for sufficiently regular . It is clear that when we set
K =0and h = hg := [2e7 cos((a — 2)7/2)]/2=)  we
have by, x (w, a, 8) = —9,, f(w). In the multidimensional
case, where we apply this approximation to each coordinate,
the same choice of K and h gives us the original gradient
—V f; hence, we fall back to the original recursion (4.4). By
considering the recursion with this approximate drift

~ ~ ~ 1
Wnp+1 = Wp + 77n+1bh,K(Wna «, 0) + Enn{i-alALgflv

and the corresponding sample averages Un(g) :=
HLN Zgzl Nkg(Wi)?, we are ready to state our error bound.
We believe this result is interesting on its own, and would
be of further interest in statistical physics and applied prob-
ability. To avoid obscuring the result, we state the required
assumptions in the Appendix, which mainly require decreas-
ing step-size and ergodicity.

Theorem 4.2. Let v := o — 2 € (—1,0). Suppose that
the assumptions stated in the Appendix hold. Then, the
following bound holds almost surely:

lv(g) — limn—00 N (9)| 4.9)

C
< g [0l + an (/2] )
F((1+0)Ch+ (1 - 0)C) =+ O(h?),

hK

where C, C}), C§/ > 0 are constants.

‘We note our result extends the case a = 2, @ = 0 in Durmus
& Moulines (2017) and the case « # 2, # = 0 in Simgekli
(2017); whereas we cover the case o # 2, 6 € (—1,1).
The right-hand-side of (4.9) contains two main terms. The
second term shows that the error increases linearly with
decreasing K, indicating that the error can be arbitrarily
large when K = 0, and the gap cannot be controlled without
imposing further assumptions on f.

More interestingly, even when K goes to infinity (i.e., the
second term vanishes), the first term stays unaffected. Note
that for large enough ¢, hg increases as o € (1, 2) decreases.
In this regime, the first term indicates that the error increases
with decreasing o, and an additional error term appears
whenever 6 # 0, which is further amplified with the heavi-
ness of the tails (measured by |y|). This outcome provides a
theoretical justification to the empirical observations stated
in Figures 6 and 8.

4.1. Further Experiments
We have already ascertained that the bias implied by The-
orem 4.2 has a visible impact on training performance in

2Note that, with the choice of K = 0 and h = ho, N (9)
reduces to the original sample average vn (g).
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Figure 7. We show the test-set loss for SVHN [bottom] and CI-
FAR10 [top], for 2-layer convolutional (CONV) and 4-layer MLPs
with 512 units per layer trained with the explicit regulariser ap-
proximation R(-) of Camuto et al. (2020) (Exp Reg), with additive-
GNIs (62 = 0.1) (Noise), and no regularisation (Baseline).

Figures 4 and 5. We have also already shown that the asym-
metry and heavy-tails of the implicit-effect gradient noise
are responsible for this performance degradation in Figure 4:
models trained with Gaussian noise on gradients outperform
models trained with S,, gradient noise, and those trained
with the implicit effect, on training data without batching.
We corroborate these findings with experiments with mini-
batching and results on test data. In Figure 7 we use the
approximation of the explicit regulariser R(B3; w) derived
by Camuto et al. (2020) for computational efficiency. Con-
volutional networks trained with R consistently outperform
those trained with GNIs and mini-batching on held-out data,
supporting that the implicit effect degrades performance. In
Figure 8, we sample M multiplicative-GNI samples and
marginalise out the implicit effect as before. We model the
gradients of the implicit effect, VE.(-), as an S, distribu-
tion. Empirically, we found that when increasing the vari-
ance (02) of the injected noise, the gradient noise VE, ()
becomes increasingly heavy-tailed and skewed, i.e. o de-
creases and || increases, and in tandem larger M models
begin to outperform smaller M models on held-out data,
when trained with mini-batches. These results support that
GNIs induce bias in SGD because of the asymmetric heavy-
tailed noise they induce on gradient updates.

5. Conclusion

Our work lays the foundations for the study of regulari-
sation methods from the perspective of SDEs. We have
shown that Gaussian Noise Injections (GNIs), though they
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Figure 8. [first row] We train 2-dense-layer-256-unit-per-layer
ELU networks on the objective ﬁ %:0 L(B;w,€n) with a
cross-entropy loss (see Appendix B) for SVHN. We use multi-
plicative noise of variance o and batch size of 512. We plot the
test-set 1oss (Liest). [second row] We fit univariate S, via maxi-
mum likelihood (Nolan, 2001) to VE (-) and show KDE plots of
parameters’ estimates.

inject Gaussian noise in the forward pass, induce asymmet-
ric heavy-tailed noise on gradient updates by way of the
implicit effect. By modelling the overall induced noise us-
ing an asymmetric a-stable noise, we demonstrate that the
stationary distribution of this process gets arbitrarily distant
from the so-called Gibbs measure, whose modes exactly
match the local minima of the loss function, shedding light
on why neural networks trained with GNIs underperform
networks trained solely with the explicit effect. Given the
deleterious effects of asymmetric gradient noise on gradient
descent, extensions of this work could focus on methods
that symmetrise gradient noise, stemming from batching or
noise injections, so as to limit these negative effects.
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