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In this article, we present a low-energy inference method for convolutional neural networks in image classifi-
cation applications. The lower energy consumption is achieved by using a highly pruned (lower-energy) net-
work if the resulting network can provide a correct output. More specifically, the proposed inference method
makes use of two pruned neural networks (NNs), namely mildly and aggressively pruned networks, which
are both designed offline. In the system, a third NN makes use of the input data for the online selection of the
appropriate pruned network. The third network, for its feature extraction, employs the same convolutional
layers as those of the aggressively pruned NN, thereby reducing the overhead of the online management.
There is some accuracy loss induced by the proposed method where, for a given level of accuracy, the energy
gain of the proposed method is considerably larger than the case of employing any one pruning level. The
proposed method is independent of both the pruning method and the network architecture. The efficacy of
the proposed inference method is assessed on Eyeriss hardware accelerator platform for some of the state-of-
the-art NN architectures. Our studies show that this method may provide, on average, 70% energy reduction
compared to the original NN at the cost of about 3% accuracy loss on the CIFAR-10 dataset.
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1 INTRODUCTION

Deep neural networks (DNNs) are currently used in many applications that are using artificial
intelligence. Self-driving cars [1], cancer detection from medical images [2], speech recognition
[3], and automatic machine translation [4] are a few examples that heavily rely on DNNs. In re-
cent years, an ever-increasing demand for higher accuracy in artificial intelligence and naturally
in DNN has been observed mainly for two reasons. First, increasing the applicability of DNNs to a
broad range of real-life applications and our frequent use of these applications requires accuracy
levels that meet or exceed human expectations. Second, the availability of more powerful compu-
tational platforms has made the implementation of deeper and more complex networks practical,
enabling us to obtain higher accuracy. Nevertheless, deeper networks need more computations
and memory accesses in general [5, 6], which in turn leads to higher energy consumption. How-
ever, the limited power budget of embedded systems prohibits the deployment of such networks
on these systems. In addition, the energy consumption of large and deep neural network (NN)
models in enterprise settings (e.g., data centers and GPU clusters) has a direct impact on the oper-
ating cost of such enterprises mainly due to the dollar cost of electrical energy consumption [7].
This high cost has forced technology firms to move toward domain-specific hardware solutions to
accelerate their NN computations while simultaneously improving their energy efficiency [6, 7].

The solutions to lower the energy consumption in NNs range from system-level algorithm op-
timization and compilation down to circuit- and device-level optimizations. Because typically the
energy consumption of the memory accesses is the dominant part of the total energy consump-
tion of the hardware implementation of the DNNs, encoding and compressing weights of filters
(set of weights placed in a 2D structure) and input feature maps are the techniques that have re-
ceived much attention from researchers (e.g., see [8-10]). Changing the dataflow and reordering
the computations are also techniques that have been also proposed to reduce the memory accesses
and thereby increase energy efficiency [5, 6]. In addition, reducing the bitwidth for the weights
and/or activations is another method resulting in energy reduction for both memory accesses and
computations [11-14]. The latter method can be applied to a vast range of platforms on which
DNNs run. Truncation and quantization are two effective ways of bitwidth reduction. However,
the intrinsic error-tolerance characteristic of NNs allows hardware designers to use approximate
computing methods to achieve higher performance and lower energy consumption compared to
the exact computing methods [15, 16].

Although larger and more structured networks have been utilized for complex applications, be-
cause such networks generally tend to achieve higher-quality results, not all parameters (weights)
are intrinsically important for reaching a target accuracy figure. In other words, it is possible to
remove some weights without any accuracy loss [6]. Removing weights leads to higher perfor-
mance and lower energy consumption, and can be helpful in avoiding overfitting to the training
data. Indeed, it has been shown that increasing the number of parameters may result in an over-
fitting problem and that pruning some of the weights can mitigate this problem [17]. Pruning is
also has been observed in the mammalian brain where highly connected synapses in an infant’s
brain are gradually pruned during human growth, leading to a more efficient and capable adult
brain [18, 19].

The pruning approach is accompanied by some amount of accuracy loss, limiting its utility in
some applications. The loss depends strongly on the features of the input data. To maintain a target
accuracy level, hence the number of pruned weights should be determined by the worst-case input
data, which tends to limit the energy efficiency that is achievable through pruning. To enhance
the energy savings through pruning, we propose an inference method, for image classification
applications, where the pruning is performed based on the input data. In this method, a properly
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pruned network, for performing the inference phase, is dynamically chosen during the runtime of
the system. More specifically, two levels of pruning—mild pruning (with no or negligible accuracy
loss but small energy reduction) and aggressive pruning (with large accuracy loss but high energy
reduction)—are considered. By extracting features of the input data, a proper pruning level is cho-
sen. To reduce performance and energy overheads of the dynamic selection approach, the feature
selection for dynamic adjustment of the pruning level is shared by the feature selection (convolu-
tional layers) of an aggressively pruned NN. This method, which results in a considerable energy
reduction compared to the worst-case design, is independent of the employed pruning technique
and may be utilized in any DNN hardware accelerator.

The rest of the article is organized as follows. In Section 2, some state-of-the-art methods for
increasing the energy efficiency and performance of NNs are reviewed. Section 3 describes the
motivation behind the proposed method, whereas in Section 4 the structure of the method is elab-
orated. The efficacy of the proposed method is evaluated in Section 5, and, finally, the article is
concluded in Section 6.

2 RELATED WORKS

In this section, some approaches for improving the speed and reducing the energy consumption
of the DNN inference phase are reviewed. Using image encoding algorithms, such as JPEG, on
weights/filters have been suggested in the work of Ko et al. [8]. In the work of Guan et al. [9], all
parameters (using the encoding algorithms like LZ77 and Huffman) have been compressed offline
to reduce the required bandwidth for loading the weights from off-chip DRAM during the inference
phase.

To reduce the size of storage needed for weights, a technique based on the combination of prun-
ing, quantization, and encoding was suggested by Han et al. [10]. In the pruning phase, small value
weights below a threshold were eliminated while the remaining weights were quantized. After ap-
plying each of these two steps, retraining was conducted to compensate for the accuracy loss. In
the end, Huffman encoding was applied to all remaining weights. The use of approximate comput-
ing for large-scale NNs has been discussed in the work of Venkataramani et al. [20]. In this work,
the neurons were divided into sensitive and resilient groups where the approximate computing
technique was applied to the resilient ones. In the work of Venkataramani et al. [20] and Wang
et al. [21], a reconfigurable neural architecture based on utilizing approximate computing was
proposed. The technique made use of both software-level and hardware-level knobs to construct
a balance between the quality of service and the quality of result defined by the user.

Caching the intermediate data for reducing the need for intermediate data storage has been pro-
posed by Alwani et al. [22]. By merging the processing of multiple convolutional neural net-
work (CNN) layers as well as modifying the input data fetch order, it has become possible to cache
the intermediate data between the computations of adjacent CNN layers. The Eyeriss accelerator
minimized data movement between off-chip and on-chip memory by proposing row-stationary
dataflow [23]. The proposed dataflow approach optimized the energy efficiency by reducing ex-
pensive data movement, such as DRAM accesses, as well as maximizing data reuse in local memory
near the processing elements.

The binary-weight network was introduced by Rastegari et al. [11]. In this network, by approx-
imating the filters with binary values, a memory savings of 32X was achieved. This network is
energy efficient; however, it suffers from low accuracy in large NNs. In the work of Rastegari et al.
[11] and Zhou et al. [212], in addition to lowering the required bitwidth for the weights and activa-
tions in the inference phase, to accelerate the training of the NN, the quantization of the gradients
of the parameters in the backward phase was suggested. A method to train quantized NNs with
extremely low precision weights and activation was introduced by Hubara et al. [13]. In the work
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of Zhou et al. [14], the incremental network quantization method to convert any pretrained full-
precision CNN into a low-precision one whose weights were constrained to a power of 2 or 0 was
proposed.

To fit large networks to embedded systems, a three-step method for pruning the weights was
suggested by Han et al. [24]. The method began by determining the important weights followed
by pruning the unimportant ones. In the last step, the network was retrained to compensate for
the accuracy loss resulting from removing the weights. In the work of Yang et al. [25], first, the
network layers were prioritized based on their energy consumptions. Then, to reduce the probable
accuracy loss, the weight pruning was started from the layer with the highest energy consumption
while the remaining weights were locally fine-tuned by the least-square optimization on each filter.
This process was continued until no layer was left unpruned. At this point, a global fine-tuning
was conducted on all weights to further recover the loss in accuracy.

In the work of Molchanov et al. [26], a weight pruning approach in transfer learning was sug-
gested. To estimate the effect of each weight omitting in the loss function, the method exploited
a first-order approximation of the network loss function using Taylor expansion. Employing this
ranking method and pruning the least important neurons followed by a fine-tuning of the re-
maining weights, the pruned network was obtained. A structured sparsity learning, in which the
topology of the network was optimized, was suggested by Wen et al. [27]. Starting from a large-
enough network size, the proposed network removed the unnecessary layers with respect to the
{y-norm. After this step, each layer was explored for more possible filter pruning followed by chan-
nel pruning and filter shape learning of remaining filters. These steps also used ¢;-norm as their
pruning criterion.

The pruning approach suggested by Ding et al. [28] pruned the convolutional features of a pre-
trained network with respect to the £;-norm ranking. The pruning rate was determined based on a
suggested algorithm in a way that the accuracy did not violate the predefined accuracy constraint.
In the work of Ding et al. [28] and Li et al. [29], different criteria for layer-by-layer pruning of the
filters including ¢;-norm, {,-norm, mean, and mean of standard deviations of filters were explored.
Based on this exploration, it was shown that £;-norm was a plausible choice due to its data inde-
pendency. Moreover, different pruning rates, which were considered for different NN layers, were
determined and applied offline. An NN framework that consists of a large (with a high number of
layers) and a small (with a few layers) NNs was suggested by Park et al. [30]. In this framework,
first, the input data was fed to the small network, where, based on the output of its softmax layer,
the need for using the large network for guaranteeing the higher accuracy was determined. Ob-
taining the small network architecture was not systematic where the designer had to select it from
a set of small NNs (provided by the designer), making this approach impractical for DNNs.

By defining a confidence value after each convolutional layer in a network, the proposed method
of Panda et al. [31] decided whether the passed convolutional layer was enough for deciding on
the input class or if it should be passed to the successor layers. In this method, there were inputs
that could be classified correctly at the early stages of the convolutional network leading to lower
latency and energy consumption for the classification process. A novel network architecture was
proposed by Panda et al. [31] and Huang et al. [32] that targets resource-efficient image classifica-
tion applications. The proposed network uses a cascade of intermediate classifiers throughout the
network and utilizes a feature representation at multiple scales along with dense connectivity to
solve the lack of coarse-level features and interference of early classifiers with later ones, respec-
tively. The main focus of Yu et al. [33] is on the training of a single network capable of adjusting
the width of its layers online. In this manner, a proper network size (named switches) can adap-
tively be adopted on the fly in the runtime considering the response time or resource constraints.
Although the proposed trained model is able to change its needed computations for classifying,
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Fig. 1. The accuracy loss and energy reduction trend of VGG16 (on CIFAR-10) vs. percentage of the filters
pruned away. The pruned network has undergone a retraining process for 10 epochs.

no solution for automatic selection of a proper network size during the runtime was suggested. A
runtime pruning framework in which a recurrent NN (acts as a decision-maker) decides the level of
pruning for each layer based on the input image was proposed by Lin et al. [34]. The training of the
decision network consists of manual adjustment of some hyperparameters and deciding on some
other parameters. The parameters include the number of the convolutional group that directly
influences the possible pruning combinations and the difficulty level of reinforcement learning
(used for the training of the decision-maker) by resizing the action space. A big/little DNN was
proposed by Park et al. [35]. In this approach, first the little DNN is executed on all considered
inputs. Then, the score margin metric of the output classification of the little DNN is extracted
and compared with a threshold. This comparison is done by employing a binary classifier. The
output of the classifier determines whether the execution of the big DNN is required or not to
reach higher accuracy.

Contrary to the prior works, in which the inference phase is performed based on a predeter-
mined level (amount) of pruning, we propose the idea of automatically choosing between two
pruning levels, which leads to lower energy consumption. The selection, which is independent of
the pruning method (as well as the NN architecture), is performed using the input data during
the runtime. The proposed technique is a pruning-level classifier that determines the proper prun-
ing level online based on the available pruned networks that can be obtained from any pruning
method.

3 MOTIVATION

By increasing the amount of pruning, the accuracy of DNN is reduced where retraining the pruned
network usually helps a partial accuracy recovery. As an example, Figure 1 shows the accuracy and
normalized energy consumption (with respect to the unpruned network) of the VGG16 network
trained on CIFAR-10 for different percentages of pruned filters (a.k.a. pruning points) for each layer.
In this example, layer-by-layer pruning with respect to {1-norm criteria was used. After pruning
each layer, the network was retrained for 10 epochs. In this example, the accuracy drops after
pruning 30% (30% as the pruning point) of the filters in each layer. In the filter pruning approach,
all weights of the chosen filter are omitted.

Although by increasing the number of pruned filters the accuracy is reduced, there are still
some inputs that the pruned network can correctly classify. For instance, in this study, with a filter
pruning of 85%, 61% of the inputs still can be classified correctly by the pruned network. This means
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Fig. 2. The difference between the original, mildly, and aggressively pruned NNs.

that classification for these inputs can be faster and done with much lower energy consumption
(about 75% lower energy compared to that of the original unpruned network). To take advantage
of this point, the inputs should be classified into two distinct classes: inputs with the potential
of being classified by the pruned network correctly (60% of the inputs in this example) and those
that need an unpruned network for the correct classification (30% of the inputs). This has been the
motivation for us to propose a method based on the input images that makes an online decision
between using an aggressively pruned and a lightly pruned (or even unpruned) network to reduce
the overall energy consumption of the inference phase. It should be mentioned that the remaining
10% (=100% — 60% — 30%) of the inputs cannot be classified by either the pruned or the unpruned
networks.

4 PROPOSED INFERENCE METHOD

As discussed in the previous section, the accuracy of the pruned NN is data dependent, meaning it
can respond correctly to a class of inputs. By separating and identifying these input types, it is pos-
sible to utilize the pruned network whenever this class of inputs is presented for the classification.
Assuming that most of the inputs can be classified correctly with a (much smaller) pruned net-
work, considerable energy savings may be achieved. For the rest of the article, for distinguishing
different networks, the following terminology is used. The mildly pruned NN is the network that
has been pruned to the point that there is no considerable accuracy loss (~1% in this work). In the
provided example in Figure 1, this point is around 20%. The aggressively pruned NN is the network
that has many more pruned filters compared to the mildly pruned NN. In the provided motivational
example, this network is a network with more than 20% pruned filters. In addition, the untouched
unpruned network is called the original NN. For our given example, Figure 2 demonstrates the
differences between these networks.

The high-level structure of the proposed inference method is shown in Figure 3. Each input
data is streamed to an input classifier that chooses the proper NN, either mildly or aggressively
pruned NNs. The input classifier can be designed based on a range of possible solutions in statistics
and machine learning algorithms. Because the target application is the image classification with
CNNs, an NN-based classifier is a good choice. This network, which we call the input classifier
neural network (ICNN), should have two main characteristics. First, since the final accuracy of
the proposed inference system depends strongly on ICNN accuracy, it should have a high accuracy
in determining the appropriate pruned network for a given input. Second, its energy consumption
should be considerably smaller than that of the mildly pruned NN. Therefore, the accuracy of the
ICNN, as well as the energy consumptions of the ICNN, aggressively pruned and mildly pruned
NN, are the key factors determining the efficacy of the proposed inference method.

To extract the proper pruning level for the aggressively pruned NN, an effective pruning algo-
rithm should be selected. The input dataset also must be prepared (labeled) for the training and
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Fig. 4. The flow of pruning the filters in a sample two-layer convolutional network with two fully connected
layers at the end as a classifier.

testing phases of the proposed system. In addition, the architecture of the ICNN should be deter-
mined. These issues are discussed in the following sections.

4.1 The Pruning Method

We choose the £1-norm criterion for ranking the filters and pruning them accordingly [29]. Pruning
the filters rather than weights results in a larger reduction in the number of parameters (network
size), leading to lower energy consumption and higher performance due to lower memory accesses
and computations. In addition, pruning a filter results in the removal of its corresponding output
feature map in the next layer. The effect of filter pruning in two consecutive convolutional layers
followed by two fully connected layers is depicted in Figure 4. The pruning is performed layer by
layer (from the first to the last layer) followed by retraining with 10 epochs for recovering some
of the accuracy loss. In the retraining process, parameters of the pruned layer and all of its pre-
decessor layers become frozen, whereas other parameters will be fine-tuned freely. If there exists
any feature in the inputs that possibly differentiate between members of the two input classes (i.e.,
low complexity and high complexity), the mentioned freezing in the retraining process will pre-
vent excessive repeated changes to the filters that can detect these features in the inputs. Unlike
the previous works on pruning (e.g., see [25-29]), to squeeze the network as much as possible, we
continue the pruning to the fully connected layers. It should be emphasized that for the generation
of the mildly and aggressively pruned networks, one may use any other pruning techniques.

4.2 Dataset Preparation

For training the side NN, in the training phase, the input dataset should be labeled as low com-
plexity input (LCI) and high complexity input (HCI) based on the two available pruned net-
works for the inference. The label LCI (or HCI) determines that the input data should be injected
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Fig. 5. Re-labeling the dataset for training the ICNN.

into the aggressively (or mildly) pruned NN. The preparation process of the ICNN training set
is shown in Figure 5. After selecting the level of pruning for generating the aggressively pruned
NN, the training dataset that is a part of the input dataset (e.g., ImageNet, CIFAR) is fed to the
aggressively pruned and mildly pruned NN. If both networks recognize the input correctly, this
input data is labeled as LCL If only the mildly pruned NN classifies the input correctly, the input
is labeled as HCI. When neither of the networks can classify the input, we use the label LCI to re-
duce the energy consumption in the inference phase, although the classification would be wrong
anyway. Finally, if an input data is correctly categorized by only the aggressively pruned NN, it
is labeled as LCI. After preparing the dataset, we should decide on the architecture of the ICNN
(a.k.a. topology of the input classifier network). Finally, to prevent training from overfitting, in
the training process, we considered balancing the dataset, adding drop-out layers, and tuning the
hyperparameter, such as optimizer type, regularization parameters, learning rate, weight decay,
and loss function.

4.3 The Architecture of the ICNN

It should be stressed that a low accuracy of the input classifier may result in lower accuracy for the
whole system or an unnecessary increase in the energy consumption of the system. In the former
case, the ICNN wrongly selects the aggressively pruned NN instead of the mildly pruned NN,
whereas in the latter case, the mildly pruned NN is chosen in place of the aggressively pruned NN.
However, using a larger ICNN for a higher accuracy that consumes more energy might eliminate
the energy savings obtained through the proposed approach. This gives rise to a trade-off between
the accuracy and energy consumption of the ICNN for an efficient design of the proposed inference
method. As an example, Table 1 shows the accuracy of different network architectures considered
as the ICNN for the CIFAR-10 dataset. As is observed from the figures, high accuracy is achieved
at the cost of more convolutional layers and consequently higher energy consumption.

The convolutional layers of the aggressively pruned NN can extract the necessary features of
the input dataset for differentiating between the two considered classes. This motivates us to em-
ploy these convolutional layers as the convolutional layers of the ICNN as well. More specifically,
inputs go through these convolutional layers in the ICNN. If the ICNN points us to use aggres-
sively pruned NN; the outputs of these layers will be used in the aggressively pruned network
again without any need to perform the recomputation. Combining convolutional layers of the
ICNN with those of the aggressively pruned NN leads to a considerable reduction in the energy
overhead of the ICNN. In addition, to reduce the complexity of designing the ICNN, we use the
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Table 1. Accuracy of the Input Classifier for Different Sample Architectures by the Modified Dataset

Model Name Architecture” Accuracy
LeNet C518/ M?/ C343/ M?/ Fs60/ Fapo6/ F2 65%
Residual LeNet C°45/ M?/ [Cl4g/ C345/ Clag] / M2/ F60/ Fagos/ F2 70%
ResNet10 C548/ M3/ [C143/ C343/ C14g]/ [C143/ C343/ C148]/[C14g/ C34g/ C148]/ M?/ F, 71%

C364/C3 64/ M2/C3 155/C 128 /M2/C3 556/ C3 256/ C2 556/ M?/C 512/ C 515/ C? 512/ M2/ CP515/

VGG16
C?s12/ C?s12/ M /Fao06/ Faoos/ Fa

82%

" CY refers to the convolutional layer with x filters with the size of y X y. MX is a max-pooling layer with the size of
k X k. Fy, points to a fully connected layer with h neurons. [C/C/C] defines an identity block.

N Dog

Mildly pruned|
Aggressively
pruned FC

|Call,
|

—_————

—— — —
Aggressively pruned F{
L Conv. layers )

Fig. 6. The structure of the proposed inference method, composed of the input classifier and aggressively
pruned networks merged together. FC refers to fully connected layers.

same number of fully connected layers and neurons in each layer, except for the last layer, as those
of the aggressively pruned NN. For the last layer of the ICNN, we utilize two neurons for separat-
ing the two defined classes (HCI and LCI). Whenever this ICNN architecture classifies the input
as LCI, the processing of the convolutional layers of the aggressively pruned NN has been com-
pleted by the ICNN while only the processing of its fully connected layers remains to be executed.
Thus, the output of the last convolutional layer of the ICNN should be stored for being used for
completing the processing of the aggressively pruned NN. The overall structure of our proposed
inference method, in which most of the layers of the input classifier and aggressively pruned NNs
are unified, is depicted in Figure 6. In the next section, an algorithm for designing the inference
system is proposed.

4.4 Generating the Aggressively Pruned NN

As mentioned before, the pruning of the network provides some energy efficiency at the cost
of some accuracy loss. Normally, the accuracy level should not go below a certain threshold
determined by the application. This sets an optimization problem for the aggressively pruned
NN with the objective of minimizing the energy consumption subject to a minimum expected
accuracy. Alternatively, the problem may be formulated in a way that we do not consider any
minimum accuracy limitation (maximum pruning level) and obtain the characteristic of the
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Fig. 7. The variations of the normalized energy as well as the accuracy of the proposed inference method
under the pruning point sweeping.

energy consumption versus the pruning level. Since the characteristic has a convex behavior,
there exists a minimum energy point that can be considered as the optimum pruning point from
an energy consumption point of view (Figure 7). Therefore, as we will discuss in Section 5, we
consider two scenarios to cover the aforementioned cases. It should be mentioned that the mildly
pruned NN is devised before the aggressively pruned NN and independent from it. The accuracy
of the mildly pruned network should be very close to that of the original NN. Next, we discuss
the procedure for conceiving a proper aggressively pruned NN. In the first step, we should model
the energy consumption of the proposed method for the inference phase. In this phase, the
ICNN is called for each input data, whereas the mildly pruned NN (fully connected layers of the
aggressively pruned NN) is (are) called when the ICNN classifies the input data as HCI (LCI).
Thus, the overall energy consumption of our proposed system (E) is modeled as

E= ECOHUIC’AP + EFC[C + (1 - ﬂ) EFCAP + /3 X EA’IP$ (1)

where Econo,e 4p is the energy consumption of the set of the convolutional layers shared between
the input classifier and the aggressively pruned NN, Erc,. (Efc,,) is the energy consumption
of the fully connected layers of the input classifier (aggressively pruned) NN, Ep is the energy
consumption of the mildly pruned NN, and, f is the probability that the ICNN classifies the
input as HCL. Now, denoting the energy consumption of the aggressively pruned NN as Esp
(Eap = Econvie ap + EFc,ap), the energy of ICNN as (Erc = Econoye + Ercye), and defining aap

Erpc E
7ok and
AP

, respectively, (1) can be rewritten as

C,
and ajc as I’C

F
Erc
E= (1+a1c—ﬂ0(Ap)EAp+ﬁXE1\4p. (2)
Since the energy consumption of the fully connected layers are considerably smaller than those
of the convolutional layers in DNNs [5, 6], in (2), one can replace ajc by aap. In addition, the

amount of the energy consumption reduction of the aggressively and mildly pruned NNs with
respect to the energy consumption of the original network (Ep) is a function (f()) of the chosen

pruning point (¢).
Eap,mp = f (¢) XEo ®3)
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By considering ¢ap (@arp) as the amount of pruning for generating the aggressively (mildly)
pruned NN and based on the preceding explanation, (2) can be rewritten as

E=[(1+(1-p)aap) X f (par) + B X f (¢mr)] Eo. 4)

In (4), for Ep, we used the energy consumption of the Eyeriss given in the work of Alwani et al.
[22] and Chen et al. [23]. It should be reminded that in this work, we used Eyeriss as the platform
for evaluating the energy consumption of the proposed inference technique. The parameter ¢p
is specified one time at the beginning of designing the proposed inference system. The parameter
aap is determined after constructing the aggressively pruned NN. In addition, the parameter f
is specified after training the ICNN when the network is being evaluated by the test portion of
the input dataset in the testing phase. Since the ICNN utilizes the convolutional layers of the
aggressively pruned NN, indeed f is determined after generating the aggressively pruned NN. To
reach a higher energy efficiency without violating the target accuracy level, a proper value for
@ap also should be selected. As an example, Figure 7 shows the normalized energy consumption
(normalized to that of the original NN) and the accuracy of the proposed inference method versus
@ap for the VGG16 network on the CIFAR-10 dataset. As expected, the accuracy of the inference
system is reduced with increasing ¢4p. The accuracy degradation slope is lower for smaller ¢ 4p
values. This is due to the fact that for large ¢p values, the accuracy of the aggressively pruned
NN degrades considerably.

In this work, to determine the proper (near-optimal) value for p4p, we suggest an exhaustive
algorithm provided as Algorithm 1. The inputs of this algorithm are the original NN (denoted
as O_NN), the mildly pruned NN (denoted as MP_NN), and the predefined minimum expected
inference output

ALGORITHM 1: THE PROCEDURE OF PRUNING POINT SELECTION

1: function PRUNING_POINT_SELECTION (O_NN, omMmp, gEXP):

2: MP_NN « pruning (O_NN, @ap)
i=0
3: for (pap=0.1;0.1;1):
4: AP_NN; < pruning (O_NN, ¢4p)
5: Labeling the input images based on MP_NN and AP_NN;
Generating IC_NN;
6: Training the last FC layer of IC_NN;
7: Estimating the accuracy (Acc;) and energy (E;) of the system
i++
8: END
9: If (gEXP < ACC,')
10: return (AP_NN; and IC_NN; with lowest E;)
11: Else
return (AP_NN; and IC_NN; with lowest E; while Acc; > {gxp)
END

12: end function

accuracy (denoted as {gxp). The outputs of this algorithm are the ICNN (denoted as IC_NN) and
the aggressively pruned NN (denoted as AP_NN). As mentioned before, the aggressively pruned
network is designed for a given minimum expected inference output accuracy (when {gxp > 0).
Thus, the accuracy of the proposed inference method should be estimated based on the accuracies

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 49. Pub. date: July 2021.



49:12 M.-A. Maleki et al.

Accuracy (%)

u
(=]
T

i AlexNet

—e—\VGG16
X~ ResNet18

—#— ResNet50

w
o
T

—o— GoogleNet

20 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Filters Pruned Away (%)

Fig. 8. The accuracy loss trends for different networks (on CIFAR-10) vs. different pruning percentages. The
pruned network has undergone a retraining process for 10 epochs.

of the mildly and aggressively pruned NN as well as the probabilities of correct labeling of the
input data by the ICNN. Therefore, we estimate the accuracy of the proposed system (Acc) as

Acc = EgpAccyp + ErpAccap + EpAccarp, (5)

where Accyp (Accap) is the accuracy of the mildly (aggressively) pruned NN. égpy and & are
the probabilities that the label of the input data is HCI or LCI (the labels are extracted during the
dataset preparation) and the ICNN labels it correctly, and & p is the probability that the label of
the input data is LCIL, whereas the ICNN labels it incorrectly. The probabilities are estimated after
applying the test part of the input dataset to the trained ICNN.

In the proposed algorithm, ¢ 4p is swept from 0 to 1 using steps of 0.1 where for each ¢ 4p value,
the corresponding aggressively pruned and ICNNs are designed. Then, the ICNN is trained where,
based on which, the accuracy and energy of the proposed inference method are estimated. After
determining a set of aggressively pruned NNs and corresponding ICNNS, the best aggressively
pruned NN and its corresponding ICNN meeting the accuracy constraint are returned. Finally,
since almost all of the layers of the ICNN are the same as those in the aggressively pruned NN, only
its fully connected layers should be trained. In addition, the retraining process of the aggressively
pruned NN for increasing the accuracy as much as possible is set to 10 epochs, limiting the required
processing time. The maximum runtime of this algorithm for the considered networks in this work
was about 4 days on a system with Core i7 4790 as the CPU and a GeForce1080Ti GPU. Although the
proposed method may be mapped on CPUs, GPUs, and hardware accelerators, the improvement
level highly depends on how efficiently the networks are implemented and how effectively the
platform can switch dynamically between the pruned networks. Compared to GPUs and CPUs,
hardware accelerators are more appropriate from this aspect, and, hence, we chose Eyeriss as our
DNN platform.

5 RESULTS AND DISCUSSION
5.1 Experimental Setup

To assess the effectiveness of the proposed inference method, seven well-known networks in-
cluding AlexNet, VGG16, ResNet50, ResNet18, GoogLeNet, MobileNetV2, and EfficientNetB0 were
employed on three different datasets of CIFAR-10, CIFAR-100, and Tiny ImageNet. The accuracies
of these networks for different pruning percentages, when the images from the CIFAR-10 dataset
were considered as the input, are shown in Figure 8. The networks were retrained after pruning.
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Table 2. Accuracy, Energy Savings, and Pruning Points of the Networks in the Proposed Inference Method
for the Considered Benchmarks Under the First Scenario for the CIFAR-10 Dataset

Reduction in # Energy Savings (%)
Model Acco (B emp (9| Acemp ()| 24P (D | o6 ap macs (| A°cap B ae) Comp. to Original| Comp. to MP
AlexNet 81 30 80 85 97.7 53 79 73 46
VGG16 90 20 90 80 96.0 71 85 71 54
ResNet18 78 20 77 90 99.0 44 76 64 49
ResNet50 80 20 80 85 97.7 54 76 69 52
GooglLeNet 81 20 80 85 97.7 64 78 71 55

The results in this figure reveal that even for aggressive pruning of the filters, there are still some
inputs that can be classified correctly (about 40% to 60% correct classification even when 90% of
filters are pruned away in each layer). The amount of accuracy recovery by retraining depends on
the network, pruning method, and the hyperparameters in the retraining procedure like the opti-
mizer type, regularization parameters, learning rate, weight decay, loss function, and number of
epochs. It also should be mentioned that in this work, all training and retraining procedures were
performed from scratch where all considered hyperparameter values were derived from hyperpa-
rameter optimization techniques. As mentioned before, we have used Eyeriss as the platform for
realizing the network where its chip energy model was employed for the estimation of the network
energy consumption.

In this model, the energy was calculated as the sum of the energy consumed in each memory el-
ement in the memory hierarchy and the processing array. More specifically, based on the dataflow
employed in Eyeriss (row stationary dataflow), the number of accesses to the memories in the
memory hierarchy of the accelerator has been extracted; the energy of each access was reported
in the work of Alwani et al. [22] and Chen et al. [23].

In addition, by counting the MAC operations, the energy consumption of the processing array
has been determined. This requires modeling of the row stationary dataflow for which we have
used an in-house-developed tool. The tool has been validated by the online tool presented by the
Eyeriss team [36]. All training and testing was performed using Keras API on a machine with a
Core 17 4790 CPU and a GeForce1080Ti GPU.

The output of the model provides energy/throughput/latency/performance of the input NN,
whereas architectural components such as buffer sizes and processing array sizes, the configu-
ration, and connection between processing elements are provided as inputs. These architectural
inputs were kept unchanged during all simulations performed in this work (the exact values used
in the work of Alwani et al. [22] are utilized). It also should be stressed that we used the same
model for estimating the energy consumption of all networks including the original unpruned
one and then normalized the energies to that of the original network.

5.2 Results

In this study, for determining the pruning point of the aggressively pruned NN (¢4p) in the pro-
posed inference method, two different scenarios were considered. In the first (second) scenario, the
point with the lowest energy consumption without (with) considering any restriction on the ac-
curacy loss (i.e., without (with) a predefined minimum expected inference output accuracy ({gxp)
was considered. In the case of the first scenario, Table 2 shows the accuracies and energy savings
as well as the pruning points in the considered networks for the CIFAR-10 dataset.
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Fig. 9. The energy of mildly pruned and proposed system normalized to the energy of the original network
for five different benchmarks on the CIFAR-10 dataset.

Table 3. Accuracy, Energy Savings, and Pruning Points of the Networks in the Proposed Inference
Method for the Considered Benchmarks Under the Second Scenario for the CIFAR-10 Dataset

Reduction in # Energy Savings (%)
Model ar (%) of AP MACs (%) Accap ()| Zexp (%) Comp. to Original | Comp. to MP
AlexNet 85 97.7 53 79 73 46
VGG16 40 64 86 88 46 15
ResNet18 90 99 44 76 64 49
ResNet50 70 91 66 78 65 45
GoogLeNet 70 91 71 79 64 48

As the results show, for the best case, which belonged to AlexNet, the proposed method led
to just 2% accuracy loss compared to the original network (Acc — Acc,) while achieving 73% en-
ergy savings. On average, the proposed inference method resulted in 70% energy savings at the
cost of up to 3% accuracy loss compared to those of the original networks. In addition, utilizing
the proposed method resulted, on average, in a 51% reduction in energy consumption in the in-
ference phase compared to the mildly pruned NN. The normalized energy consumption of the
proposed system and mildly pruned NN for the proposed inference method is plotted in Figure 9.
On average, the energy consumption of the original NN was 3.3X and 2x larger than those of the
aggressively and mildly pruned NN, respectively.

As the reported figures in Table 2 show, the value of the parameter @p (pap) in the considered
benchmarks was around 20% (85%). The accuracy loss of the proposed method can be suppressed by
allowing lower energy savings. To elaborate on this further, we considered the maximum accuracy
loss of losspxp = 2% (compared to the accuracy of the original network) in the case of the second
scenario. The results of evaluating the proposed method in this scenario are reported in Table 3,
which indicates, on average, that 62% (40%) energy savings was achieved compared to that of the
original (mildly pruned) NN.

Due to the considered accuracy loss limitation, the ¢ 4p value was, on average, about 71%, which
was about 15% smaller than the value of ¢ 4p in the first scenario.

Figure 10 demonstrates the energy (normalized to the energy consumption of the original net-
work) and the accuracy of the proposed inference method along with the selected pruning points
in the considered first (@) and second (@) scenarios versus @ap (lossgxp = 2%). From these en-
ergy characteristics, one may observe that the energy consumption decreases continuously until a
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Fig. 10. The normalized energy and accuracy variation of the proposed inference method by sweeping ¢ ap
for AlexNet (a), VGG16 (b), ResNet18 (c), ResNet50 (d), and GooglLeNet (e) on the CIFAR-10 dataset.

minimum point reached where, after this point, the energy increases. This is attributed to the fact
that overpruning of the network leads to a significant accuracy loss resulting in a large number of
calling the mildly pruned NN.

The normalized latency of the proposed inference method (under the selected pruning points
demonstrated in Figure 10), as well as the mildly pruned network with respect to that of the original
network, is illustrated in Figure 11. As the results indicate, the proposed inference method leads to
68% (60%) and 51% (63%) latency reductions compared to the original unpruned and mildly pruned
networks when the pruning point in the proposed inference method has been selected under the
first (second) scenarios.
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Fig. 11. The normalized latency of the mildly pruned and the proposed inference method in considered
scenarios with respect to that of the original unpruned network for the CIFAR-10 dataset.

Table 4. Accuracy, Energy Savings, and Pruning Points of the Networks in the Proposed Inference Method
for the Considered Benchmarks Under the First Scenario

Model Dataset | Acco (%)| Parp () | Acerrp (9| @ 4p (%) fil:ft:; Accap | Acc Enerey Savings ()
MACs (%) (%) (%) Comp. to Original | Comp. to MP

VGG16 CIFAR-100 68.00 30 64 95 99.7 3 49.0 63 25
ResNet18 CIFAR-100 53.37 20 51 85 97.7 27 40.0 70 54
ResNet50 CIFAR-100 53.11 20 51 80 96.0 s33 42.0 69 52
GoogLeNet CIFAR-100 59.65 10 58 80 96.0 27 48.0 48 36
MobileNetV2 CIFAR-100 70.95 30 70 85 97.7 27 57 66 32
EfficientNetB0| CIFAR-100 76.02 30 76 85 97.7 29 61 66 32
ResNet50 TinyImageNet 56.04 10 53 85 97.7 18 38.0 57 47
InceptionV3 | TinyImageNet 58.00 10 57 90 99.0 5 4255 48 35

Table 5. Accuracy, Energy Savings, and Pruning Points of the Networks in the Proposed Inference Method
for the Considered Benchmarks Under the Second Scenario

Reduction in # Energy Savings (%)

Model Dataset) Par () of AP MAC:s (%) Accar (8 | Lxxp () Comp. to Original | Comp. to MP
VGG16 (CIFAR-100) 80 96 32 64 56 12
ResNet18 (CIFAR-100) 60 84 46 51 56 31
ResNet50 (CIFAR-100) 60 84 44 48 56 32
GoogLeNet (CIFAR-100) 60 84 46 54 43 30
MobileNetV2 70 91 47 62 64 28
EfficientNetB0O 80 96 32 63 64 27
ResNet50 (Tiny ImageNet) 60 64 36 45 51 40
InceptionV3 50 75 23 48 30 14
(TinyImageNet)

To show the effectiveness of the proposed approach on larger datasets, we employed the CIFAR-
100 and Tiny ImageNet datasets. Tables 4 and 5 show the accuracies and energy savings as well
as the pruning points in the considered networks for the first and second scenarios, respectively.
The results reveal that when compared to the energies of original and mildly pruned networks, on
average, the energy reductions of 63.6% (52.5%) and 38.5% (41%) are obtained, respectively, in the
first scenario on CIFAR-100 (Tiny ImageNet). These numbers are 56.5% (40.5%) and 26.6% (27%) in
the second scenario where a minimum expected accuracy was imposed to be met in our proposed
system for the CIFAR-100 (Tiny ImageNet) dataset.
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Fig. 12. The normalized (with respect to the unpruned original network) latency of our proposed system vs. a
different amount of pruning evaluated on CPU/Eyeriss platforms for VGG16 (a), ResNet18 (b), ResNet50 (c),
and GoogLeNet (d) on the CIFAR-100 dataset. The red lines show the latency time of the original unpruned
network.

In addition, we estimated the latency of the proposed approach for different percentages of the
filters pruned away (i.e., ¢ ap) on Eyeriss alongside a CPU platform (there were no tools available
for estimating the energy of running our proposed inference method on the GPU). The results of
this study, which are illustrated in Figure 12, show that under some ¢4p values, the latency of the
proposed approach becomes lower than the unpruned network (the red lines in the plots show the
latency of the unpruned network on the CPU/Eyeriss platform). As expected, when there is a small
number of situations where the aggressively pruned network is chosen, the total system mainly
has the latency of the mildly pruned network plus the latency of the classifier network (ICNN).

For these cases, the use of the proposed method would not be efficient in terms of the overall
latency. However, for cases in which the aggressively pruned network is selected more often, the
total latency of the system would be mainly the sum of the latencies of the classifier and the
aggressively pruned network, which is smaller than that of the original network without the input
classifier. In addition, please note that the convolutional layers of the aggressively pruned network
and the ICNN are the same, meaning that no recomputation is required for those layers in the
aggressively pruned network when realized using the Eyeriss platform. In the case of the CPU
implementation, however, the aggressively pruned network was implemented independent of the
ICNN depriving of the gain achievable through the shared computation.

In this work, the efficacy of the proposed method is compared with the techniques suggested in
other works [31, 34, 35]. In the work of Park et al. [30], the energy and latency efficiencies were
reported for networks of AlexNet, ResNet50, and LeNet using the CIFAR-10 and Tiny ImageNet
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Fig. 13. The energy and latency reductions of the proposed method and the one suggested by Panda et al.
[31] on different NN architectures with respect to that of the original unpruned network.

datasets. For the sake of comparison, we calculated the energy (latency) reduction of our approach
with respect to the energy (latency) of the original network in the pruning points that our proposed
system maintains the original accuracy (since Panda et al. [31] maintain the original accuracy).

In the work of Panda et al. [31], the energy improvements were extracted by synthesizing the
proposed NN architecture in a 45-nm technology where the authors used specific hardware de-
scription for each studied NN. For our approach, the improvements were evaluated based on the
Eyeriss platform. There are two common networks (with the same dataset) between Panda et al.
[31] and our work, which are AlexNet and ResNet50. The results show that the energy (latency) re-
duction for AlexNet under the CIFAR-10 dataset in the work of Panda et al. [31] was 2.83% (1.83X),
whereas our method led to 3.03% (2.27X) reduction in the case of this network. However, the pro-
posed approach in the work of Park et al. [30] and Panda et al [31] provided 4.96X (1.71X) energy
(latency) gain in the case of ResNet50 under the Tiny ImageNet dataset, whereas our approach led
to 1.1x (1.1x) energy (latency) improvement. The energy and latency reductions of our approach
and the one suggested by Panda et al. [31] with respect to the energy and latency of the original
network for the studied networks are provided in Figure 13.

In the work of Lin et al. [34], the results for the network VGG16 tested on CIFAR-100 are the
only common results that can be compared with those of our work. They achieved a speedup
of 2x at the cost of 2% accuracy drop. In our approach, by setting a maximum accuracy drop of
2% (considering the original network accuracy as the reference), our proposed method reaches
to 2.15% speedup. The same as our proposed method, the proposed method of Lin et al. [34] is
input dependent, and hence, to provide a better comparison, we reported the speedup by looking
at the average reduction in the number of MAC operations over the whole dataset (Lin et al. [34]
also followed the same approach). The proposed approach of Park et al. [35] was evaluated under
two configurations where the big DNNs were chosen to be LeNet (for the MNIST dataset), and
VGG19 (for the ImageNet dataset). The most efficient combination (in terms of energy reduction)
achieved 53.7% (47.5%) energy reduction with the accuracy loss of 0.9% (0.98%) when using the
static (dynamic) threshold. However, the energy reduction of our proposed system in VGG19 on
Tiny ImageNet was about 55% (compared to the energy of the original unpruned net) at the cost
of 1.33% accuracy reduction.

Finally, it should be stressed that the proposed approach targets reducing the energy consump-
tion of a given NN without inducing large/unacceptable accuracy loss when compared to that of
the baseline model. More specifically, starting from a baseline model with a baseline accuracy of
Accy and energy of E, the proposed approach by utilizing an ICNN along with an aggressively
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pruned NN reduces the energy to E; = Ey — AE Where E should be as large as possible and accu-

racy to Acc; = Accy — AAcc where iA“ should be as small as possible. In the proposed approach,

AAcc should be small, meaning that the higher Accy is, the higher Acc; will be. As a specific ex-
ample, our training of the ResNet-18 network from scratch provided the baseline accuracy of 78%
on the dataset CIFAR-10 (see Table 2). When our approach was applied to this network, an energy
decrease of 64% (compared to the baseline network) was achieved while the accuracy deteriorated
to 76% (see Table 2). Next, by fine-tuning the hyperparameters and using the transfer learning
approach, a baseline accuracy of 92.71% was obtained. Having applied our proposed approach, the
energy was lowered to about 65% of its baseline value while the accuracy became 87.12%. It should
be mentioned that the accuracies in both cases could be increased further by spending much more
time and using higher computation resources. Since the goal of our purposed approach was low-
ering the energy consumption without much degradation of the baseline accuracy, we sufficed to
the aforementioned accuracies (i.e., the accuracies reported in Tables 2 and 4).

6 CONCLUSION

In this work, we proposed an energy-efficient inference method that consisted of three networks:
an aggressively and a mildly pruned NN as well as an ICNN. Based on the input image, the input
classifier determined which of the aggressively or mildly pruned network was to be employed for
classifying the input image. To reduce the energy overhead of the ICNN, its convolutional layers
were those of the AP network. To assess the efficacy of the proposed NN framework, several bench-
marks under two optimization scenarios of considering and not observing a maximum accuracy
loss constraint were considered. The evaluation study showed that the proposed inference method
resulted in about 60% lower energy consumption compared to the original unpruned network at
the cost of an acceptable accuracy loss.
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