Adapt2Learn: A Toolkit for Configuring the Learning Algorithm

for Adaptive Physical Tools

for Motor-Skill Learning

Dishita Turakhia Andrew Wong Yini Qi
MIT CSAIL MIT CSAIL MIT CSAIL
USA USA USA
dishita@mit.edu andrewwo@mit.edu qyn@mit.edu
Lotta-Gili Blumberg Yoonji Kim Stefanie Mueller
MIT CSAIL MIT CSAIL MIT CSAIL
USA USA USA
blumberg@mit.edu yoonji@mit.edu stefanie.mueller@mit.edu

5 e

SENSING

adaptation

~_1 to harder setting i
by raising stand
and

s 3 configuring evalution units {Alea of
and running average period optimal

|setting

Cc

configuring actuator states
configuring sensor states

challenge

Po inisl Visualization tool showing score, running average and adaptatio
4 [A :

LA Fu. &

Figure 1: (a) Designers use Adapt2Learn’s user interface to configure the adaptation of their adaptive training tools, such as
(b) an adaptive basketball stand that adapts its hoop height and width. Adapt2Learn auto-generates the learning algorithm
as a micro-controller script that can be deployed to the tool. The algorithm uses sensor values to assess a learner’s perfor-
mance, computes the optimal training difficulty, and then varies the training difficulty by adapting the hoop height and width.
(c) Adapt2Learn’s built-in visualization tool lets designers visualize the tool’s adaptation and evaluate the learning algorithm.

ABSTRACT

A recent study on motor-skill training showed that adaptive train-
ing tools that use shape-change to adapt the training difficulty
based on learners’ performance can lead to higher learning gains.
However, to date, no support tools exist to help designers create
adaptive learning tools. Our formative study shows that developing
the adaptive learning algorithm poses a particular challenge. To
address this, we built Adapt2Learn, a toolkit that auto-generates the
learning algorithm for adaptive tools. Designers choose their tool’s
sensors and actuators, Adapt2Learn then configures the learning
algorithm and generates a microcontroller script that designers can
deploy on the tool. Once uploaded, the script assesses the learner’s
performance via the sensors, computes the training difficulty, and

This work is licensed under a Creative Commons Attribution International
4.0 License.

DIS 21, June 28-July 2, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8476-6/21/06.
https://doi.org/10.1145/3461778.3462128

1301

actuates the tool to adapt the difficulty. Adapt2Learn’s visualiza-
tion tool then lets designers visualize their tool’s adaptation and
evaluate the learning algorithm. To validate that Adapt2Learn can
generate adaptation algorithms for different tools, we built several
application examples that demonstrate successful deployment.

CCS CONCEPTS

« Human-centered computing — User interface toolkits.

KEYWORDS

adaptive learning, physical interfaces, motor-skill learning, toolkit
design

ACM Reference Format:

Dishita Turakhia, Andrew Wong, Yini Qi, Lotta-Gili Blumberg, Yoonji Kim,
and Stefanie Mueller. 2021. Adapt2Learn: A Toolkit for Configuring the
Learning Algorithm for Adaptive Physical Tools for Motor-Skill Learning.
In Designing Interactive Systems Conference 2021 (DIS 21), June 28-Fuly
2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3461778.3462128

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3461778.3462128
https://doi.org/10.1145/3461778.3462128
https://doi.org/10.1145/3461778.3462128

DIS °21, June 28-July 2, 2021, Virtual Event, USA

1 INTRODUCTION

A recent study on motor skill training showed that training with
physical tools that adapt their shape based on a learner’s perfor-
mance to maintain optimal task difficulty can lead to higher learning
gains [21]. For example, training with an adaptive basketball hoop
that automatically adjusts the hoop size and height based on a
learner’s score leads to higher learning gains than training with
a conventional static basketball hoop [21]. Such adaptive training
tools make personalized training accessible to a broader audience
and expand the design space of training tools for motor skills. How-
ever, research on supporting designers in creating such adaptive
training tools that adjust training difficulty is limited.

To study the challenges in creating adaptive training tools, we
conducted an 8-week formative study with 32 participants (16 teams)
in a bi-weekly studio format. The participants built adaptive train-
ing tools for various motor skills, such as skating and swimming,
in teams of two. Each tool used actuation to vary the training dif-
ficulty to support learners’ progress from a beginner level to an
expert level. For example, to aid beginner skaters, one team built an
adaptive skateboard that automatically decreases its length as the
learner’s balancing skill improves. Another team built an adaptive
floaty that automatically deflates as the learner’s swimming ability
increases.

We observed the participants’ design and prototyping process
during this formative study and identified the challenges they faced.
Our observations and participants’ feedback indicated that they
struggled the most with developing a learning algorithm for their
adaptive training tools. In particular, the development of an algo-
rithm that varies task difficulty through actuation to ensure training
at the optimal difficulty level was challenging.

According to the literature in motor skill learning, an effective
learning algorithm maintains the learner’s training difficulty level
at the optimal challenge point [10]. Optimal challenge point in
training is when the difficulty level is neither too difficult nor too
easy for the learner’s skill levels. A recent study demonstrates
how to develop such an algorithm for adaptive training tools [21].
However, no system exists to support designers in configuring it
for their specific adaptive training tools.

To address this challenge, we built Adapt2Learn, a toolkit that
auto-generates the adaptive learning algorithm for designers’ adap-
tive training tools for motor skill learning. Adapt2Learn has a user
interface that allows designers to configure their tool’s adapta-
tion by setting the sensors’ and actuators’ values. Adapt2Learn
then auto-generates the adaptive learning algorithm and exports
it as a microcontroller script that designers can deploy onto their
tools. The script actuates the tool’s shape to maintain optimal task
difficulty based on the performance of the learner sensed during
training.

Additionally, Adapt2Learn has a built-in visualization tool that
helps designers evaluate if their training tool is adapting appro-
priately to maintain the learners’ training difficulty level at the
optimal challenge point. The visualization displays a learner’s per-
formance and shows when the tool adapts to an easier or a more
difficult setting. The designers can then use the insights from this
visualization to further fine-tune the algorithm.

1302

Turakhia et al.

In summary, we contribute the following:

e A formative study that highlights the need to support design-
ers in configuring a learning algorithm for their adaptive
training tools for motor skills.

e A toolkit that supports designers in configuring a learning
algorithm for their adaptive training tools. The toolkit has
two parts - (1) a user interface to configure sensor and actu-
ator values and to export a microcontroller script, and (2) a
visualization tool to evaluate the adaptation during training
to fine-tune the algorithm.

e Applications to demonstrate that Adapt2Learn can create
learning algorithms for a range of adaptive training tools,
such as an adaptive arm-band for golf, an adaptive wobble-
board, an adaptive bike, and adaptive heels.

2 RELATED WORK

Our work is related to HCI research on physical tools for motor skill
learning and toolkits that support designers in building adaptive
physical tools.

2.1 Physical Tools for Motor Skill Learning

In HCI, there are three approaches for designing physical tools that
support motor skill learning: (1) multimodal feedback (audio, visual,
tactile), (2) actuation for motor task correction, and (3) actuation
for varying motor task difficulty.

Multimodal feedback systems support learners by giving them
audio, visual, or vibrotactile feedback on their performance. For
example, a multimodal feedback system to learn ballroom dancing
measures the learner’s step patterns using force sensors and pro-
vides them with audio feedback if they miss the beats (Saltate! [8]).
Another example is a system to learn swimming that measures
the learner’s arm-strokes and generates a visualization of their
temporal movement patterns, thereby highlighting mistakes in
task execution [11]. Similar systems for learning karate [4], tai-
chi [19], running [14] and ergonomic sitting [15] track learner’s
body gestures and provide vibrotactile, visual or audio feedback
on faulty task executions. Multimodal systems can also support
learning of motor skills involving the use of physical tools, such
as skateboarding [17, 18], snowboarding [16], archery [9], golf [8]
and tennis [2, 3].

Actuated tools for motor task correction help users by prevent-
ing mistakes and supporting correct execution. For instance, an
actuated knife [23] can lock the blade if the knife gets too close to
the user’s finger while cutting. Similarly, an actuated office desk
setup can actuate the desk, chair, and the monitor height to correct
the sitting posture of the user (ActiveErgo [22]).

In contrast to these tools for motor task correction, actuated
tools can also be used to vary the motor task difficulty during
training. Turakhia et al. showed that actuation can be used to vary
task difficulty to maintain learner’s at the optimal challenge point
where the potential learning benefit is the largest [21]. For example,
an adaptive basketball that adapts the hoop height and width can
keep the training task of shooting hoops at the optimal challenge
point (i.e. neither too easy nor too difficult) during training.

To design the above training tools, designers require expertise in
multiple different areas, i.e. they have to not only build the hardware

Adapt2Learn

but also configure their tools to respond to the learner to facilitate
learning. However, to date, only few support tools for designing
physical training tools for motor skill learning exist.

2.2 Toolkits to Build Physical Adaptive Tools

Several researchers have developed tools to convert existing passive
objects into objects with integrated sensing and actuation. For exam-
ple, Robiot [13] is a design tool that converts everyday objects into
actuated objects that can perform motor tasks like opening trash-
cans and drawers. Similarly, Reprise [6] and Encore [5] are design
tools for generating customized 3D printed actuators, such as levers,
to simplify motor tasks including opening bottles or turning faucets.
Desai et al. [7] developed a design toolkit that auto-generates the
assembly of the sensor and microcontroller components for custom
designed devices, such as for a bottle crusher. Retrofab [20] is a
toolkit that allows non-experts to design and fabricate retrofitted
physical interfaces on top of existing objects by auto-generating
enclosures for sensors and actuators.

Similarly, several toolkits have been developed that support de-
signers in generating the electronic circuits for their actuated tools.
Trigger-action-circuits [1] autogenerates the circuitry and firmware
and assembly instructions for designers to build interactive devices.
Similarly, HeyTeddy [12] guides users with hardware assembly by
interactively providing the assembly steps to build a circuit.

While these toolkits focus on generating the electronics enclo-
sure, circuitry and assembly instructions, we focus on supporting
designers with the configuration of the adaptation algorithm to
support learning at the optimal challenge point and the subsequent
generation of the microcontroller script that designers can deploy
onto their tools.

3 FORMATIVE STUDY

To study the challenges that designers face in building adaptive
training tools that train learners at the optimal challenge point, we
conducted a formative study.

3.1 Study Design

Our formative study was an 8-weeks long bi-weekly design studio
as part of an undergraduate course at our institution. We had 32
participants who were in their junior or senior year at the univer-
sity, and all had prior knowledge of electronics, prototyping, and
programming (at least 2 years). The participants were teamed up
in groups of two.

We asked the teams to design, prototype, and build an adaptive
training tool for a motor skill of their choice. In the first week,
the participants brainstormed 10 ideas each and then selected one
idea per team to work on for the rest of the studio. Letting the
teams choose the motor skill themselves allowed us to examine the
design space of adaptive training tools for various motor skills and
understand the most common challenges in building them.

During the 8-weeks study period, we informally interacted with
the teams to discuss their design concepts, prototype implementa-
tion, and the algorithm development for their adaptive tools. The
teams presented their progress and discussed the challenges with
us during the studio. At the end of the 8-week design studio, we
conducted semi-structured interviews to gain further insights by

1303

DIS °21, June 28-July 2, 2021, Virtual Event, USA

surveying 8 volunteering participants representing 7 teams, with
two participants from the same team.

3.2 Challenges Identified

Our observations and participants’ interview responses showed
that they faced challenges in the following steps of developing
adaptive training tools for motor skills:

Design Concepts: Choosing Sensors and Actuators: After se-
lecting the idea for their adaptive training tool, the participant
teams had to make design decisions, such as choosing sensors to
sense learner’s performance and actuators to vary the task difficulty
through actuation.

They addressed this challenge of making design decisions by
answering high-level questions, such as (1) what aspect of the motor
skill is being learned? (2) which sensors are useful to monitor the
performance of that aspect of the motor skill? (3) what kind of
actuation varies the difficulty level of the learning tasks? (4) which
actuators support that actuation?

Figure 2 shows how all the teams chose the sensors and actuators
for their respective adaptive training tools by addressing the above
questions. For example, to support learners with walking in high
heels, a team designed adaptive heels (Figure 2-(6)). To monitor
the stability during balancing in high heels, the team mounted two
ultrasonic sensors, one on each side of the heels. By measuring
the deviation between the two sensors’ readings, they sensed the
learner’s balancing skills. If the deviation between the two sensors’
readings was zero, the learner was stable, otherwise, the learner
was out of balance. To vary the training task difficulty, the adaptive
heels increased or decreased the height of the heels. To achieve this
actuation, the team used servo motors.

Implementation: Prototyping the Hardware: After choosing
the sensors and actuators for their adaptive training tools, the teams
spent the next several weeks prototyping. During this prototyping
phase, the teams encountered difficulties integrating the mecha-
nisms and electronic components with their physical tools. For
example, the team building an adaptive floaty found it challenging
to integrate the pneumatic pump within their inflatable prototype
(Figure 2-(1)). Because several toolkits exist to support designers
with integrating electro-mechanical components with their proto-
types (as described in Section 2.2), we did not focus on addressing
these challenges.

Creating the Learning Algorithm: After building the hard-
ware prototype of their adaptive training tool, the teams developed
the learning algorithm for their respective motor skill learning.
While developing the algorithm, the goal of the participants was to
adapt the tool according to the learner’s performance so that the
training difficulty is at the optimal challenge point, i.e., neither too
easy nor too difficult. To achieve this, the algorithm needs to use
the sensor values to assess the learner’s performance, compute the
appropriate training task difficulty level for that learner, and adapt
the tool using the respective actuators.

DIS ’21, June 28-July 2, 2021, Virtual Event, USA

water pressure sensors detect
depth in pool

conductive pressure sensors
detect keys pressed

camera, breakbeam sensors detect
successful throws,

accelerometers detect
the balancing skills

s =

‘/

!‘ : ‘ - "%
N 0

pneumatic pump servo motors raise/lower otors decreasefincrease motlors dﬁcrfete:]seﬁﬂctresse i
inflates/deflates the floaty the right keys of the notes distance from the leamer & length of the skateboar
Adaptive Floaty Adaptive Piano -1 Adaptive Cornhole Adaptive Skateboard
switch sensors detect ultrasonic distance sensors detect flex sensors detect accelerometer
successful jump;/ - balancing while walking finger bending detects the pi

stepper motor decreases/
increases the rope speed

Adaptive Jumprope

* servo motor decreases/
increases heel height

Adaptive Heels

DC motor increase:
decreases flex support

Adaptive Gloves

motors change
the pitch aim

Adaptive Pitching

camera detects,

straight |ine‘

<
-

DC motor decreases/

switches detect

keys pressed -‘ Al

servo motors raise/lower

motion sensor detects
ball hit

servo motors move the

Machine

BCl detects
brainwaves

stepper motors decrease/

increases drwng support the right keys of the notes walldoserirines lnceaseieldisacioniied

eAdaptlve Drawing @ AdaptivegPiano .2 mAdaptlve Pinpong Adaptive Meditation

piezo detects piezos detect dart camera detects) flex sensors detect

hitting accuracy hitting accuracy. successful attempts arm bending

servo motors

increase/decrease ERM increases DC motor increases/j

target size decreaselincrease decreases vibration decreases support

distance from the leamer]

@ Adaptive Fencing Adaptive Dartboard @ Adaptive Juggling Adaptive Pullups

No. |Adaptive Training Tool| Motor Skill Sensor Actuator Adaptation
01 | Adaptive Floaty floating at different cepths water pressurs servo, pneumatic pump| inflate/defiate the floaty
02 | Adaptive Piano -1 playing correct octave scales | conductive pressure | senvo motor raiseflower the right keys
03 | Adaptive Comhole aiming atthe cornhale camera, break beam| DC motor, servo maoves cornhole closerfurther
04 | Adaptve Skateboard balancing the skateboard accelerometer stepper motor decreasesfincraases board length)|
05 | Adaptive Jumprope jumping high switch stepper motor decreasesfincraases rope speed
06 | Adaptive Heels walking in high heels ultrasonic distance servo motor decreasesfincreases heel height
07 | Adaptive Gloves sign language gestures flex DG motor increases/decreases flex support
08 | Adaptive Pitching Mach} pitching ball acecelerometer DC maotor changes aim of the pitch
08 | Adaptve Drawing drawing straight lines camera DC motor increases/decreases sdwg upport
10 | Adaptive Piano -2 playing right keys on tima SWitch senvo motar raises/lowers the nght keys
iR Adupten 7indpong SRTINIChghe gbeng el IR menlohis I ssee Mokl 1| Ercissthsbatirel Coaetline)
12 | Adaptive Meditation sitting still duning distractions | BCI stepper motor decreasesfincreases distraction
13 | Adaptive Fencing fancing at the right target piezo &lectric servo motor Inereases/decrasses target area
14 | Adaptive Dartboard aiming darts piezo stepper motor decreasesiincreases the distance
16 | Adaptive Juggling Juggling balis camera ERM vibration motor increasesfdecreases vibration
16 | Adaptive Pullups completing pull ups flex DC mator Increases/decreases support

Turakhia et al.

Figure 2: Formative study: (top) The 32 participant (16 teams) built adaptive training tools for various motor skills of their
choice. While the teams successfully prototyped the adaptive training tools, we observed that the participants struggled with
developing a learning algorithm for their adaptive training tools. (bottom) List of the sensors, actuators, and their correspond-
ing adaptation used in the adaptive training tools.

However, we observed that several teams found this step most
challenging, and only 5 out of 16 teams deployed a learning algo-
rithm of some form, while the other 11 teams demonstrated the
adaptation by hard-coding it.

Of the 5 teams that implemented the algorithm, we observed
that each team had their own method of developing the learning
algorithm. There was no standard way of developing the learning
algorithm across adaptive tools of different motor skills or even

1304

Adapt2Learn

adaptive tools for the same motor skills. For example, two teams
developed adaptive pianos with actuated keys for learning to play
the piano. However, one team used a brute force method for adap-
tation, while the other team used an algorithm that optimized the
adaptation by sensing performance over time. Furthermore, the
teams also struggled to select the right threshold values and where
unsure how to evaluate if their chosen threshold enabled learning
as desired. For example, one adaptive piano team member said,
_..[the biggest challenge was] optimizing [the learning algorithm]. It’s
quite brute force at the moment...’, while the other adaptive piano
team’s member said, °..the biggest problem was not knowing what
was right, so we didn’t come up with [an] optimal solution...".

In summary, we found that the designers faced challenges in
three areas - choosing the sensors and actuators, prototyping the
hardware, and configuring the learning algorithm for their adaptive
training tools. The first challenge can be addressed by using the
four guiding questions outlined in the design concept section. For
the second challenge, several support tools already exist that help
designers integrate their mechanisms into their tools, as listed
in the related work. However, there is no support for designers
to configure the learning algorithm that maintains the optimal
challenge point during training. In particular, the designers faced
two challenges concerning the learning algorithm:

(1) configuring the learning algorithm for their respective adap-
tive training tool that varies the task difficulty and maintains
it at the optimal challenge point

(2) evaluating the learning algorithm and the tool’s adaptation

To address these challenges, we built Adapt2Learn, a toolkit
that auto-generates the adaptive learning algorithm for designers’
actuated tools for motor skill learning. To evaluate the algorithm,
Adapt2Learn has a visualization tool that lets designers visualize
the learner’s performance and the tool’s respective adaptation.

In the next section, we first briefly describe the learning algo-
rithm from prior work that researchers developed to create adaptive
training tools that maintain the training difficulty at the optimal
challenge point. We then demonstrate how we can configure this
learning algorithm with the Adapt2Learn toolkit with the example
of an adaptive basketball stand.

4 BACKGROUND - LEARNING ALGORITHM

Turakhia et al. have recently proposed a learning algorithm for
effective motor skill learning with adaptive training tools [21]. This
learning algorithm maintains the learner’s training difficulty at the
optimal challenge point during the training. To achieve this, the
algorithm uses the tool’s sensor values to assess the learner’s per-
formance, computes the optimal training difficulty, and then varies
the training difficulty by adapting the tool’s shape. The following
pseudocode 1 based on Turakhia et al’s learning algorithm explains
how the learning algorithm allows a learner to progress from be-
ginner level to expert level while training at the optimal challenge
point, i.e., when the task is neither too easy nor too difficult.
Turakhia et al. showed in two user studies that the adaptive
training tools with the above-mentioned learning algorithm lead
to higher learning gains compared to training with non-adaptive
and manually adaptive training tools [21]. This shows the potential
of the learning algorithm to benefit the learning of a range of

1305

DIS °21, June 28-July 2, 2021, Virtual Event, USA

Algorithm 1 Pseudocode of the Learning Algorithm

Initialize at the lowest task difficulty
while task difficulty # highest do
(1) Assess Learner’s Performance
sensor_value
if sensor_value > threshold value then
attempt score = 1 > i.e. attempt = successful
else
attempt score = 0

> By measuring

> ie. attempt = failed

(2) Compute if Training is at the Optimal Challenge Point
Calculate the running average of the score over x at-
tempts/time period
Calculate the current derivative of the running average
(3) Update task difficulty > By adapting the tool
if derivative = 0 then > i.e. running average plateaued at a
value
if running_average = 0.75 then
increase task difficulty — by adapting harder
else if running_average < 0.25 then
decrease task difficulty — by adapting easier
else

maintain task difficulty — no adaptation
Repeat steps (1) (2) and (3) until task difficulty = highest

motor skills. However, there are no tools to support designers in
configuring such a learning algorithm for their specific adaptive
training tools. As seen in our formative study, every designer has
to configure the learning algorithm according to the sensors and
actuators of their respective adaptive training tools. To resolve this,
we built the Adapt2Learn toolkit.

5 ADAPT2LEARN TOOLKIT -
WALKTHROUGH

The Adapt2Learn toolkit consists of two parts: (1) the Adapt2Learn
user interface for configuring the learning algorithm for adap-
tive training tools, and (2) the Adapt2Learn visualization tool that
helps designers assess when the tool adapts and how it affects the
learner’s performance. We explain both components in the next
section at the example of an adaptive basketball stand that we
replicated from Turakhia et al.

The adaptive basketball stand supports learners in learning to
score baskets. To monitor a learner’s successful and missed baskets,
the stand has two sensors - a piezo sensor and a switch sensor. The
piezo sensor that is mounted on the board detects when the ball
hits the board (Figure 3a). The switch sensor that is mounted on the
basket detects when a ball goes inside the basket (Figure 3b). If both
sensors do not record a reading, the stand counts the attempt as a
complete miss. To vary the task difficulty of scoring the baskets, the
stand adapts the hoop height and width. To increase or decrease the
hoop height, the stand uses a stepper motor (Figure 3c). To widen
or tighten the hoop width, the stand uses a servo motor (Figure 3d).
For beginners, the stand is set at its lowest height and widest hoop.
As the learners improve in their performance of scoring baskets,
the hoop height is increased, and the hoop width is decreased.

DIS ’21, June 28-July 2, 2021, Virtual Event, USA

{2y smusoA1 () seusoeL
e Sefect the sensr | [GEUEESY

fWITEH
1 TOAERSIE frm oo

WA SFMErR

LADEL basrd_ e,

SENSING

ACTUATION

Turakhia et al.

i8

STATER o wifi]

Figure 3: Configuring the learning algorithm using Adapt2Learn’s user interface by: (a,b) registering sensors and mapping
sensor values onto success/failure states and corresponding scores, and (c,d) registering actuators and mapping actuator values

onto success/failure states.

5.1 Configuring the Learning Algorithm using
Adapt2Learn’s User Interface

To configure the learning algorithm, designers first register the sen-
sors and then map the sensor values to success/failure states. They
then repeat the process for actuators by registering the actuators
and mapping the actuator values to success/failure states. Finally,
they define how the performance should be evaluated by defining
the evaluation unit and running average period. We next detail
these steps for the example of the adaptive basketball stand:

Step 1: Register Sensors: We start by clicking the ‘create new
adaptive tool’ button and proceed to register the sensors. In the
user interface, we can select among a range of different sensors,
such as piezo, switch, ultrasonic, flex, accelerometer, force resis-
tive, PIR motion, and hall sensors. For our purposes, we select the
‘piezo’ sensor, label it ‘board_sensor’, and assign it pin 13 on our
microcontroller (Figure 3a). We use the ‘add another sensor’ button
and repeat the procedure. We select the ‘switch’ from the available
sensors and label it as ‘basket_sensor’ and assign it pin 10 on our
microcontroller (Figure 3b).

Step 2: Map Sensor Values onto Success/Failure States: Next,
we configure the sensor states and the respective threshold values
that define successful and unsuccessful performance. Depending
on the sensors chosen, the user interface provides the respective
range of sensor values. For example, for the piezo sensor, the user
interface provides a range of values (0-255) whereas for the switch
sensor, it provides only boolean values (true/false).

We define states for the ‘board_sensor’ (piezo sensor): ‘board_hit’
with sensor values of 100 or more units, and ‘board_miss’ with sensor
values of 0-99 units (Figure 3a). We mark ‘board_hit’ as a ‘success’
state and ‘board_miss’ as a failure’ state using the checkboxes. By

1306

default, the algorithm scores every successful attempt as ‘1” and
every failed attempt as ‘0”. However, because we want to count a
board hit as a partially successful attempt, we manually assign it a
score of 0.5” by updating the ‘weight’ slider.

We then define the sensor states for the ‘basket_sensor’ (switch):
‘basket_hit’ as ‘success’ whenever the sensor reads ‘true’, and ‘bas-
ket_miss’ checked as ‘failure’ whenever the sensor reads false’
(Figure 3b). We keep the default success and failure score weights
of ‘1’ and ‘0’, respectively.

Step 3: Register Actuators: Next, we register the actuators. In
the user interface, we can select among a range of different ac-
tuators, such as a servo motor, stepper motor, pneumatic pump,
and relay. Depending on the actuators chosen, the user interface
provides the respective range of actuator values.

For our purposes of raising and lowering the hoop height, we se-
lect ‘stepper motor’ from the list of actuators and label it ‘stand_motor’.
We assign it pin 1 on our microcontroller, and the user interface
automatically assigns the remaining pins 2, 3, and 4 required for
the stepper motor (Figure 3c).

We then add the motor that widens and tightens the hoop by
clicking ‘add another actuator’ button. We then select ‘servo motor’
and label it ‘hoop_motor’, and then assign it pin 9 on the microcon-
troller (Figure 3d).

Step 4: Map Actuation Values onto Success/Failure States:
Next, we map the motors’ actuation values onto adaptation states.
We define states for the ‘stand_motor’ (stepper motor): ‘stand_raise’
as ‘success’ and with the motor turning 16 revolutions to increase
the hoop height, and ‘stand_lower’ as failure’ and with the motor
turning -16 revolutions to decrease the hoop height (Figure 3c). We
repeat the process for the hoop motor by defining ‘hoop_motor’

Adapt2Learn DIS °21, June 28-July 2, 2021, Virtual Event, USA

board_sensor

(piezo)
basket_sensor
(switch)

its of

er:}uyn’

BN hoop. oopﬁ:\ghtenfhoopﬁwxden
motor (hoop diameter adaptation)
re= Adjust the range (servo)
- wuee Tor -umx:rq average
stand
Runming Swerags Ferind - N
motor stand_raise/ stand_lower

(stand height adaptation)

mezl,:_;: 10| seconds WAl 10 e (s er)

Erportthe ——

kienerated code @ l
BT

/ Import Libraries -~/ \\ (Define Variables for Adaptation States - \ ru(nnmg_avelage_penud,ﬂ - 1 because array is zero-indexed \
#include <Stepper h=> const int steps_per_direction = 80: /f steps per direction while attempt_count is not
#include <Servo.h> const int stand_motor_raise_success= 16, : :
const int stand_motor _lower failed = -16; if - update scores, calculate running averages if possible — #f
1 Header 1 const int hocp_—motor__nghlerr_success =g+ if(altem‘pt_coun(= punning_average_peried){ // al least 2
{ - Register Sensors and Sensc i steps_per_direction; average windows

float last_attempt_score = attempt_history[current_index]; //

const int board_sensor_pin
last_attempt_score is the one about to be ovenwritten

const int hcop_motor_widen_failed = -& +

const int basket_sensor_pin = 10 steps_per_direction
cumrent_total_score = last_fotal_score - last_attempt_score +
1 - Define Variables for Performance States it - Setup -/t current_attempt_score;
and Weights:—// void setup() { . -
const flcat board_miss_failed_low = 0.00; Serial begin(9500) current_mnnlng_avefage = current_total_score/
const flaat board_miss_failed_high = 89 funhing_average_period; i .
const float board_hit_success_low = 100; pinMode{board_sensor_pin, INPUT); last_running_average = fast_total_score / running_aver-
const float board_hit_success_high = 255 pinMode{basket_sensor_pin, INPUT), age_period;
const int basket_miss_failed = 0. ")
const int basket_hit_success = 1: pintode(stand_motor_pin, QUTPUT); derivative = current_running_average - last_running_average;
hoop_moter attach(hoop_motor_pin); ., . . '
const float board_miss_failed_weight = 1 i - derivative checking, adaptation and actuator writing - #
const float board_hit_success_wsighl If (dedvative == 0) {
const float basket_miss_failed_weight = 0, i - Loop —#f if (current_running_average > 0.75) {
const float basket_hit_success_weight = 1; #eheck if last attempt completed stand_motorstep(stand_motor_raise_success):
void loop() { hoop_motor writethoop_motor_tighten_success);
1/ Define Evaluation Window and Running if{last_time == NULL) { resetRunningAverage():
Average Variables: -/ last_time = millis(); return;
{iEvaluation Window } } else if (current_running_average < 0.25) {
const int running_average_period = 4 stand_motor.step(stand_motor_lower_failed);
unsigned long attempt_time_limit = 10000 /f — sensor reading - // heop_motor.wite(heop_motor_widen_failed);
int board_reading = analogRead(board_sensor_pin); resetRunningAveragey)
/= Starting values for Running Average—// int basket_reading = digital Read(basket_sensor_pin) retum;
bool attempted = false; } else if (current_running_average > 0.25 &&
bool board_miss_timeout = false: /f — perfarmance state mapping - #/ current_running_average > 0.75) {
bool basket_miss_timeout = false; If (board_hit_success_low <= board_reading && Hrglum‘m‘
unsigned long last_time = NULL; board_reading <= board_hit_success_high) { LA Nk
unsigned long current_time = NULL,; board_score = board_hit_success_weight }
unsigned long attempt_delay = 1000; attempted = true;
} else if (lboard_miss_timecut && board_miss_failed_low /f update |ast_total_score basad on whether or not there wers
int attempt_count = 0; fitotal number of <= board_reading && board_reading <= board_miss_- enurgh attempts
attempts made before next adaptation failed_high) { Z'S‘—‘O}Iﬂ'-fmfe = ﬁ"ffe"l-'f'ﬂ'-m‘;er
float attempt_histarylrunning_average_pericd| board_score = beard_miss_falled_weight; } eise { I/ nol iy attempts, just add
= {}, index history of attempts within running board_miss_timeout = true; last_total_score = last_total_score + current_attempt_score;
average window 1
attempt_history[current_index) = current_attempt_score;
float board_score = ; if (basket_hit_success == basket_reading) { (ucae e atast nilampt
float basket_score = 0 basket_score = basket_hit_success_weight }
float current_attempt_score = 0. attempted = true; b
float current_total_score = 0; } else if (Ibasket_miss_timecut && basket_reading ==
float last_attempt_ssers = 0 basket_miss_failed) { M select only the max score between sensor scores
float last_total_score =0 basket_score = basket_miss_failed_weight: float computeAttemptScore() {
basket_miss_timeout = true; return max(board_score, basket_score)
float current_running_average = 0; 1 t
float last_running_average = 0; -
float derivative = O: 1 — evaluation — /f Hreset values after adaptation
i check if attempt made wvoid resetRunningAverage() {
11— Register Actuators and Actuater Pins: -/ current_time = millis() last_tot ?Scorf: 0
const int steps_per_revalution = 200 # steps if (attempted || current_time - last_fime > attempt_count = 0 .
per revolution attempt_time_limit) { memsei(attempt_history, O, sizeofiattempt_history)). //setall
const int stand_metor_pin = 1; attempt_count += 1; history values to 0
Stepper stand_motor{steps_per_revolution, attempted = false; i
stand_mator_pin. 2, 3. 4); resetTimecut();
last_time = current time .’/rgsel hmegut after every attempt
const int hoop_moater_pin = 9; = i void resetTimeout() {
heop_moter, current_attempl_score = computeAttemptScore(); board_miss_timeout = false

basket_miss_timeoul = false

/ Ql current_index = (attempt_count - 1) % _/ K /

Figure 4: (a) Setting the evaluation units and the running average period, then exporting the microcontroller code and (b) de-
ploying the microcontroller code onto the adaptive tool, i.e. the basketball stand. (c) The generated microcontroller code from
the UI that automatically maps the readings from the sensor to actuator settings for adaptation of the physical tool.

(servo motor): ‘hoop_tighten’ as ‘success’ with the motor turning 8 ‘time’. For our adaptive basketball prototype, we select ‘attempts’
revolutions, and ‘hoop_widen’ as failure’ with the motor turning representing attempted throws at the basket. Next, we define the
-8 revolutions (Figure 3d). ‘running average period’, i.e. the period over which the algorithm
will evaluate the learner’s performance. Depending on which eval-

Step 5: Define Performance Evaluation Unit and Running uation unit was selected, the running average period is either a
Average Period: Finally, we set up the performance evaluation number of attempts (after 4 throws in our basketball example) or
unit (Figure 4a). The ‘evaluation unit’ can be either ‘attempts’ or a time period (after 10 minutes when balancing a bike). We also

1307

DIS °21, June 28-July 2, 2021, Virtual Event, USA

set the time limit after which, if no sensor value is detected, the
attempt is considered as a failure, for example as 10 seconds.

5.2 Generating the Microcontroller Script
According to the Configuration

After configuring the learning algorithm using the steps described
above, designers can hit the ‘export’ button (Figure 4a), which
automatically generates the microcontroller code (Arduino script
in .ino file format). After exporting, designers can then deploy
the script onto the microcontroller integrated with their adaptive
training tools.

In our example, the exported microcontroller script can be seen
in the Figure 4c. We then uploaded the script to the basketball stand
to make it adaptive (Figure4b).

5.3 Visualization Tool: Displaying
Performance and Adaptation

To provide tool designers with a way to assess the learner’s per-
formance and when the tool adapts, we developed a visualization
tool. The visualization tool plots the learner’s attempt scores, the
corresponding running average, and the computed derivative of the
running average at that attempt. This performance data is plotted
in real-time along with when the tool adapts to an easier or more
difficult setting.

Figure 5 shows the visualization of plotting all performance
scores of a learner for the adaptive basketball. The attempt scores
are plotted between 0 to 1, as configured by us in the algorithm
with a basket scored as 1pt, a board hit as 0.5pt, and a miss as Opt.
Figure 5 also plots the corresponding running average, derivative,
and tool adaptation.

Because we configured the running average period to be 4 at-
tempts and the first four throws were baskets scored, the running
average equaled 1.0. In the 5th attempt, the learner scored the bas-
ket again, and the running average for attempt 2-5 also equaled
1.0. Thus, the derivative over the two running averages was com-
puted as zero, which indicates a potential tool adaptation (as per
the Algorithm 1). At this attempt, because the running average was
above 0.75pts, the tool adapted to the next harder difficulty setting
by executing the configured adaptation states - ‘hoop_tighten’ and
‘stand_raised’. The tool adapted again to a more difficult setting in
the same way at attempts 10 and 14.

From the 15th attempt, the learner started getting more chal-
lenged with the higher task difficulty, and the running average
dropped between 0.25pts to 0.75pts. However, by the 29th attempt,
the participant improved and their score increased. At this point,
the derivative became zero and the moving average was at 0.75pts.
Thus, the tool adapted again to the next difficulty setting. Similarly,
the tool adapted at attempts 37, 42, and 47.

At attempts 55, 56, and 57, the performance plateaued again, but
the running average was not high enough (0.62pts) to initiate an
adaptation. Thus, the difficulty level was maintained at the same
level to allow for more training. Finally, after a few additional
attempts at attempt 65 and 75, the derivative became zero again,
and performance now had increased to above 0.75pts, thus the tool
adapted to the next difficulty level.

1308

Turakhia et al.

Visualization tool showing score, running average and adaptation

A N AVE.ARRAVEY W .=V,

AWTAT- 4 AVA IR I B'A\a—

Attempts

Y adapt-make harder
® adapt-make easier

Figure 5: Visualization of the scoring of a learner and the
adaptation frequency over a number of attempts. The visu-
alization thus helps monitor how the configured learning
algorithm takes a learner from a low difficulty setting to a
high difficulty setting while maintaining their performance
score at the optimal challenge point.

The visualization helps monitor how the configured learning
algorithm takes a learner from a low difficulty setting to a high
difficulty setting while maintaining their performance score at the
optimal challenge point.

6 APPLICATIONS OF ADAPTIVE TRAINING
TOOLS USING ADAPT2LEARN

In order to demonstrate that our toolkit can be used to configure the
learning algorithm for a variety of adaptive training tools, we first
built and then configured the learning algorithm for an adaptive
armband for golf, a wobble-board, a bike with adaptive training
wheels, and a pair of adaptive heels. These examples demonstrate
different sensor-actuator combinations and different ways of con-
figuring them.

6.1 Adaptive Armband for Golf: Single
Sensor-Actuator Combination

We built and configured an adaptive armband that supports learners
in keeping their elbow straight during a golf-swing. The armband
has a flex sensor to detect if the learner’s elbow is straight or bent,
and a pneumatic pump to deflate and inflate the arm band to restrict
bending of the elbow (Figure 6).

The adaptive armband has a single sensor-actuator combina-
tion, i.e., one flex sensor and one pneumatic pump. For the flex
sensor values, we configured (Figure 6) the success state as as 0-5°
(‘arm_straight’) and the failure state as 6-180° (‘arm_bent’). For
the pneumatic pump, we configured the success state as -100 units
(‘band_deflate’) and the failure state as +100 units (‘band_inflate’).
We set the evaluation unit as ‘attempts’ and set the time for each
attempt as 4 seconds. In this way, we can convert a continuous
sensor value reading over a period of time into several discrete
readings.

Adapt2Learn

 am_band_pump
{pneumatic pump)

arm_band
(flex sensor)

\ band_inflate/
) " band_deflate
| tinflates or deflates
| . the arm-band)

PUMP ACILIRTON
for inflation &

flex sensors embedded
to measure bending

ACTUATION

SENSING

Figure 6: An adaptive armband that supports learners in
keeping their elbow straight during a golf-swing, consist-
ing of one flex sensor and one pneumatic pump. Con-
figuring the learning algorithm for the armband using
Adapt2Learn’s user interface

The configured algorithm then senses the bending and inflates or
deflates the armband to provide more or less support to the learner
and thus varies the task difficulty. For example, if the learner bends
the elbow too often during training, the algorithm makes the task
difficulty easier by inflating the armband thereby restricting the
bending, and thus providing more support to the learner by keeping
the elbow straight.

6.2 Adaptive Wobbleboard: Synchronizing
Sensors

We built and configured an adaptive wobbleboard with inflatable
cushion that supports learners in learning to balance the board. The
wobbleboard has two ultrasonic sensors mounted on diametrically
opposite sides of the board to detect if it is stable or wobbling, and
a pneumatic pump to deflate and inflate the support cushion that
restricts wobbling (Figure 7).

The adaptive wobbleboard consists of a combination of two syn-
chronized sensors and one actuator, i.e., two ultrasonic sensors
and one pneumatic pump. The sensors are mounted on the wob-
bleboard such that they detect the distance from the ground. To
set the ultrasonic sensor values (Figure 7), we configured the two
sensors’ success states as 5-7 cm (‘board_stable’), which is the wob-
bleboard’s height when balanced, and the failure states as 7-400
cm (‘board_wobble’). For the pneumatic pump, we configured the
success state as -100 units (‘cushion_deflate’) and the failure state
as +100 units (‘cushion_inflate’). For the evaluation unit, we set the

1309

DIS °21, June 28-July 2, 2021, Virtual Event, USA

board_sensor_1

beard_sensor_2
| (ultrasonic sensor)

inflatable_base
(pneumatic pump

ACTUATION
@) At

EVALUATION

Figure 7: An adaptive wobbleboard with inflatable cushion
that supports learners in learning to balance the board. Con-
figuring the learning algorithm for the wobbleboard using
Adapt2Learn’s user interface to set synchronized two ultra-

sonic sensors and one pneumatic pump.

‘time period’ to 1 minute, thus measuring a continuous performance
instead of discrete attempts.

If the configured algorithm detects a failure state for either of the
sensors, it implies that the corresponding edge of the wobbleboard
is too high, and the other edge is too low (<5cm), meaning that
the wobble board is imbalanced. Thus, two sensors can be used
in tandem to detect balancing. To support the learner in keeping
the wobbleboard balanced, the pneumatic pump can then inflate
the cushion. Alternatively, if the learner balances the wobbleboard
well, the pump deflates the cushion, thereby reducing the support
and making the task of balancing harder.

6.3 Adaptive Bike: Synchronizing Actuators

We built and configured a bike with adaptive training wheels that
supports learners in learning to balance the bike. The bike has one
hall-effect sensor mounted on each of the training wheels to detect
if the training wheel is being used, and one stepper motor on each
of the training wheels to lower or raise them to provide more or
less support in balancing the bike (Figure 8).

The adaptive bike, therefore, consists of a combination of two
synchronized sensors and two synchronized actuators, i.e., two
hall-effect sensors and two stepper motors. The hall-effect sensors
are mounted on the axles of the training wheels and one magnet
is mounted on the corresponding rim of each training wheel. If
the hall-effect sensor detects the magnet, it implies the wheel is
rotating and thus the training wheel is being used for riding. To

DIS ’21, June 28-July 2, 2021, Virtual Event, USA

right_wheel|_motor
(stepper motor)

night_wheel_raisa/
right_wheel_lower

right_wheel_sensor
(hall sensor)

SENSING ACTUATION
i

1) 2 e et

ni
nr R

raa T

Figure 8: A bike with adaptive training wheels that sup-
ports learners in learning to balance the bike. Configur-
ing the learning algorithm for the adaptive bike using
Adapt2Learn’s user interface to set two synchronized hall-
effect sensors and two synchronized stepper motors.

set the hall effect sensor values, we configured (Figure 8) the two
sensors’ success states as ‘true’ (‘wheel_idle’) and failure states as
‘false’ (‘wheel_used’). Unlike the sensors used in the prior examples
that detect a continuous value range, the hall-effect sensor detects
boolean values. For the stepper motor, we configured the success
state as -5 units (‘wheel_raise’) and the failure state as +5 units
(‘wheel_lower’). For the evaluation unit, we set the ‘time period’
to 5 seconds and the running average period to 600 seconds, thus
measuring a longer performance window, i.e., performance over
120 data points.

If the configured algorithm detects a failure state too often for
either of the sensors, it implies that the learner is unable to balance
without the use of the training wheels. The stepper motors then
lower the wheels further to provide more support to the learner.
Since both the actuators are mapped to the same failure state, they
both turn at the same time and by the same amount. In this way two
sensor values can be mapped to two actuator values in combination.

6.4 Adaptive Heels: Synchronized Sensors and
Actuators

In addition to the above examples, we also configured the learning
algorithm for the studio-built adaptive heels that support learners
in training to walk in high heels (Figure 9). The participant team
mounted two ultrasonic distance sensors per shoe, one on each side
of the heel to measure the balance of the learner while walking in
the heels. One servo motor was mounted on each of the shoe to raise
and lower the heel height while walking. Thus, the adaptive heels

1310

Turakhia et al.

Sensors measuce “wabbliness”

Sliders hold Servo and gears
front of shoe in place raiseflower the heel

] -
ureTwekbiinass’ Sandoand 0sE rarseloveartts hesl

[RosPTzLEARN
ACTUATIORN EVALUATION
(i] EEs

i ez

Figure 9: Adaptive heels that support learners in training
to walk in high heels. Configuring the learning algorithm
for the adaptive heels using Adapt2Learn’s user interface to
set four synchronized ultrasonic distance sensors (two per
shoe), and two synchronized servo motors.

had a combination of 4 synchronized sensors and 2 synchronized
actuators. This ensures that both the heels were synchronized in
their adaptation. Thus only when all the four sensor values detected
success states, the servo motors actuated to raise the heels and
increased the difficulty of walking. Note that the 3D printed spindle
that increased and decreased its height by the servo motor at the
base of the heel supported the weight of the learner while walking.

In the same way that we used our user interface to configure
the examples above, the user interface can be used to configure
other examples from the studio, such as the adaptive skateboard,
dartboard, fencing, jumprope, and cornhole prototypes (Figure 2)
that use similar sensor-actuator combinations.

However, we also encountered two challenges for which we
could not yet configure the learning algorithm using our user inter-
face. The first challenge occurs when the success state is coupled
with a specific timing, such as when hitting a note on time for play-
ing piano. For instance, the adaptive piano used a switch sensor to
sense if a key was pressed at the right time and then actuated the
servo motor under the key to provide feedback to the learner on
which key to press next. Since our user interface does not support
time-based sensing, we were not able to configure the learning
algorithm for this adaptation. The second challenge occurs when
additional processing on the sensor data is needed. For example,
both the adaptive pitching machine and the adaptive juggling used
a camera to detect the learner’s position, which requires computer
vision techniques that go beyond the sensor value thresholding
that our user interface currently supports.

Adapt2Learn

In summary, we demonstrated the use of Adapt2Learn for con-
figuring the learning algorithm for a variety of applications that
ranged from single sensor-actuator combinations (adaptive golf-
arm band), multiple synchronized sensors (adaptive wobbleboard),
multiple synchronized actuators (adaptive bike), to multiple syn-
chronized sensor-actuator combinations (adaptive heels).

7 IMPLEMENTATION

The Adapt2Learn user interface is a web application (HTML, CSS,
and JavaScript) packaged as a stand-alone application. The visu-
alization tool is implemented in Python and uses the Matplotlib
library. The visualization tool communicates with an adaptive tool
in real-time by reading from the tool’s microcontroller (Arduino)
serial port via Bluetooth.

Currently, Adapt2Learn supports 8 different sensors (piezo, switch,
ultrasonic, flex, accelerometer, force resistive, PIR motion, and hall-
effect sensors) and 4 different actuators (servo motor, stepper motor,
pneumatic pump, and relay). These components were also most
frequently used in the adaptive training tool prototypes (10 out
of 16 teams) in our formative study. Sensors and actuators that
follow common pin and code conventions (e.g., a switch) work with
our user interface regardless of the specific manufacturer model.
Components that read/write analog values, such as ultrasonic sen-
sors and motors may require adjusting the mapping values with
different models based on their specifications. Components that
require special libraries or setup code, such as non-generic motor
controllers, are currently not supported but can be added to the
user interface in the future by providing separate code for them.

8 DISCUSSION

We illustrated how Adapt2Learn supports designers in configuring
the learning algorithm for their custom adaptive training tools.
Adapt2Learn’s built-in visualization tool then supports designers in
assessing the learner’s performance and the tool’s adaptation. The
interface also allows designers to update the learning algorithm
without re-programming the microcontroller code. We next discuss
the limitations of our toolkit and provide directions for future work:

Extending the Range of Supported Components: Adapt2Learn
currently supports 8 sensors and 4 actuators, which can be used
in multiple sensor-actuator combinations, as seen in our examples.
However, as discussed earlier, providing more components would
further extend the range of adaptive tools for configuring the learn-
ing algorithm. For the future, we plan to integrate components
that require more processing, such as depth sensors and cameras.
Additionally, adding time-based sensing and custom components
to the user interface is an important direction for future work.

Configuring the Algorithm in Real-time: While currently,
our system provides real-time visualization of the learner’s per-
formance and tool’s adaptation, it does not allow for real-time
reconfiguration of the learning algorithm. The designers currently
have to reconfigure the values, re-export the microcontroller script,
and then deploy it again onto the adaptive tool. In future work, we

1311

DIS °21, June 28-July 2, 2021, Virtual Event, USA

plan to support designers to update the configuration of the learn-
ing algorithm in real-time in the context of the learning situation.

Evaluating the toolkit through user studies: While we demon-
strated that Adapt2Learn can be used for configuring various adap-
tive training prototypes, evaluating the use of toolkit through user
studies with designers and testing it in different phases of the de-
sign process is a part of our future work.

Visualizing the Learning Trajectory: While not the focus of
our work, the visualization tool may also help assess how long the
learner takes to transition from a low difficulty level to a high diffi-
culty level, and predict the time needed to reach the highest skill
level. Additionally, the visualization tool may also allow comparing
the learning trajectory of multiple learners and gain more insights
into that motor skill’s learning.

Comparing Different Tool Designs: When building an adap-
tive training tool, designers have different options for sensing the
learner’s performance and adapting the task difficulty. For instance,
when designing the adaptive basketball, instead of only detecting
board and basket hits with a piezo sensor and switch, a camera can
be used to sense the ball’s trajectory, which provides more informa-
tion. However, it is unclear which sensing-adaptation method leads
to the best results. Providing a way to compare the adaptation of
different designs for the same training tool could allow designers
to choose their designs appropriately.

Supporting Multiple Learners: Many skills involve learning as
a group where individuals may have varying skill levels. While cur-
rently the exported microcontroller script from our user interface
and our visualization tool monitor a single learner’s performance,
a future direction for research could be to extend both the user
interface and the visualization tool to support multiple learners.

9 CONCLUSION

In this paper, we presented Adapt2Learn, a toolkit that supports de-
signers in creating adaptive training tools that maintain the task dif-
ficulty at the optimal challenge point. Our formative study showed
that designers needed support, particularly in configuring the learn-
ing algorithm and assessing the tool’s adaptation. We demonstrated
that Adapt2Learn addressed these two challenges through its user
interface and its visualization tool. We showed that Adapt2Learn’s
user interface supports configuring the learning algorithm by first
registering the sensors and actuators of the adaptive tools, then
mapping their values to success/failure states, and finally exporting
the auto-generated micro-controller script, which can be deployed
onto the micro-controller integrated with the tools. Furthermore,
we showed how Adapt2Learn’s built-in visualization tool supports
designers in assessing if the learning algorithm maintains the task
difficulty at the optimal challenge point during training by visu-
alizing the learner’s performance and the tool’s adaptation. We
demonstrated Adapt2Learn’s use to configure the learning algo-
rithm for five different adaptive tools with various sensor/actuator
combinations, such as an adaptive basketball, armband for golf,
wobbleboard, bike, and adaptive heels.

DIS °21, June 28-July 2, 2021, Virtual Event, USA

ACKNOWLEDGMENTS

We thank the 32 students at MIT, who took the 6.810 course and
participated in the study. We thank Junyi Zhu for his help with the
viztool. We also thank Or Oppenheimer and Christian De Weck
for their contribution in building the prototypes. This work is sup-
ported by MIT Learning Initiative and the National Science Foun-
dation under Grant No. 1844406.

REFERENCES

[1] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-action-
circuits: Leveraging generative design to enable novices to design and build
circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. 331-342. https://doi.org/10.1145/3126594.3126637
Arnold Baca and Philipp Kornfeind. 2004. Real time detection of impact positions
in table tennis. Journal of The Engineering of Sport 5 (2004), 508-514. https:
//doi.org/10.1109/MPRV.2006.82
[3] Peter Blank, Thomas Kautz, and Bjoern M Eskofier. 2016. Ball impact localization
on table tennis rackets using piezo-electric sensors. In Proceedings of the 2016
ACM International Symposium on Wearable Computers. 72-79. https://doi.org/10.
1145/2971763.2971778
[4] Aaron Bloomfield and Norman I Badler. 2008. Virtual training via vibrotactile
arrays. journal of Presence: Teleoperators and Virtual Environments 17, 2 (2008),
103-120. https://doi.org/10.1162/pres.17.2.103
[5] Xiang’Anthony’ Chen, Stelian Coros, Jennifer Mankoff, and Scott E Hudson. 2015.
Encore: 3D printed augmentation of everyday objects with printed-over, affixed
and interlocked attachments. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. 73-82. https://doi.org/10.1145/2787626.
2787650
Xiang’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian
Coros, and Scott E Hudson. 2016. Reprise: A design tool for specifying, generating,
and customizing 3D printable adaptations on everyday objects. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology. 29-39.
https://doi.org/10.1145/2984511.2984512
Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware design
of printable electromechanical devices. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 457-472. https://doi.org/
10.1145/3242587.3242655
Hassan Ghasemzadeh, Vitali Loseu, Eric Guenterberg, and Roozbeh Jafari. 2009.
Sport training using body sensor networks: A statistical approach to measure
wrist rotation for golf swing. In Proceedings of the Fourth International Conference
on Body Area Networks. 1-8. https://doi.org/10.4108/ICSTBODYNETS2009.6035
Heng Gu, Kai Kunze, Masashi Takatani, and Kouta Minamizawa. 2015. Towards
performance feedback through tactile displays to improve learning archery. In Ad-
Junct Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium
on Wearable Computers. 141-144. https://doi.org/10.1145/2800835.2800893
Mark A Guadagnoli and Timothy D Lee. 2004. Challenge point: a framework
for conceptualizing the effects of various practice conditions in motor learning.
Journal of motor behavior 36, 2 (2004), 212-224. https://doi.org/10.3200/JMBR.36.
2.212-224

[2

—

=
&

[7

[

8

=

=

[10

1312

[11

[12

[13

[14

[15

(16]

(17]

(18

=
2

[20

[21

~
5,

[23

Turakhia et al.

Daniel James, David Rowlands, and James Lee. 2014. Visualization of wearable
sensor data during swimming for performance analysis. Sports Technology 6 (02
2014). https://doi.org/10.1080/19346182.2013.867965

Yoonji Kim, Youngkyung Choi, Daye Kang, Minkyeong Lee, Tek-Jin Nam, and
Andrea Bianchi. 2019. Heyteddy: Conversational test-driven development for
physical computing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 3, 4 (2019), 1-21. https://doi.org/10.1145/3369838
Jiahao Li, Jeeeun Kim, and Anthony Chen. 2019. Robiot: A Design Tool for Actu-
ating Everyday Objects with Automatically Generated 3D Printable Mechanisms.
673-685. https://doi.org/10.1145/3332165.3347894

Stina Nylander, Mattias Jacobsson, and Jakob Tholander. 2014. Runright: real-
time visual and audio feedback on running. In CHI'14 Extended Abstracts on
Human Factors in Computing Systems (CHI'14). 583-586. https://doi.org/10.1145/
2559206.2574806

Craig O’Neil, Mark D Dunlop, and Andrew Kerr. 2015. Supporting sit-to-stand
rehabilitation using smartphone sensors and arduino haptic feedback modules. In
Proceedings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct. 811-818. https://doi.org/10.1145/
2786567.2793705

Hyung Kun Park and Woohun Lee. 2016. Motion Echo Snowboard: Enhancing
Body Movement Perception in Sport via Visually Augmented Feedback. In Pro-
ceedings of the 2016 ACM Conference on Designing Interactive Systems (DIS’16).

192-203. https://doi.org/10.1145/2901790.2901797
Hyung Kun Park, HyeonBeom Yi, and Woohun Lee. 2017. Recording and sharing

non-visible information on body movement while skateboarding. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (CHI'17).
2488-2492. https://doi.org/10.1145/3025453.3025476

Sebastiaan Pijnappel and Florian 'Floyd” Mueller. 2014. Designing interactive
technology for skateboarding. In Proceedings of the 8th International Conference
on Tangible, Embedded and Embodied Interaction (TEI'14). 141-148. https://doi.
org/10.1145/2540930.2540950

Otniel Portillo-Rodriguez, Oscar O Sandoval-Gonzalez, Emanuele Ruffaldi,
Rosario Leonardi, Carlo Alberto Avizzano, and Massimo Bergamasco. 2008. Real-
time gesture recognition, evaluation and feed-forward correction of a multimodal
tai-chi platform. In International Workshop on Haptic and Audio Interaction Design.
Springer, 30-39. https://doi.org/10.1007/978-3-540-87883-4_4

Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016.
Retrofab: A design tool for retrofitting physical interfaces using actuators, sensors
and 3d printing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 409-419. https://doi.org/10.1145/2787626.2787650

Dishita Turakhia, Yini Qi, Lotta-Gili Blumberg, Andrew Wong, and Stefanie
Mueller. 2021. Can Physical Tools that Adapt their Shape based on a Learner’s
Performance Help in Motor Skill Training?. In Proceedings of the 15th International
Conference on Tangible, Embedded and Embodied Interaction (TE['21). https:
//doi.org/10.1145/3430524.3440636

Yu-Chian Wu, Te-Yen Wu, Paul Taele, Bryan Wang, Jun-You Liu, Pin-sung
Ku, Po-En Lai, and Mike Y Chen. 2018. Activeergo: Automatic and person-
alized ergonomics using self-actuating furniture. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI'18). 1-8. https:
//doi.org/10.1145/3173574.3174132

Amit Zoran, Nan-Wei Gong, Roy Shilkrot, Shuo Yan, and Pattie Maes. 2015.
Cutting Edge Vision: Metal Embedded Optics for Smart Knives. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems. 1223-1228. https://doi.org/10.1145/2702613.2732495

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1109/MPRV.2006.82
https://doi.org/10.1109/MPRV.2006.82
https://doi.org/10.1145/2971763.2971778
https://doi.org/10.1145/2971763.2971778
https://doi.org/10.1162/pres.17.2.103
https://doi.org/10.1145/2787626.2787650
https://doi.org/10.1145/2787626.2787650
https://doi.org/10.1145/2984511.2984512
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.4108/ICST.BODYNETS2009.6035
https://doi.org/10.1145/2800835.2800893
https://doi.org/10.3200/JMBR.36.2.212-224
https://doi.org/10.3200/JMBR.36.2.212-224
https://doi.org/10.1080/19346182.2013.867965
https://doi.org/10.1145/3369838
https://doi.org/10.1145/3332165.3347894
https://doi.org/10.1145/2559206.2574806
https://doi.org/10.1145/2559206.2574806
https://doi.org/10.1145/2786567.2793705
https://doi.org/10.1145/2786567.2793705
https://doi.org/10.1145/2901790.2901797
https://doi.org/10.1145/3025453.3025476
https://doi.org/10.1145/2540930.2540950
https://doi.org/10.1145/2540930.2540950
https://doi.org/10.1007/978-3-540-87883-4_4
https://doi.org/10.1145/2787626.2787650
https://doi.org/10.1145/3430524.3440636
https://doi.org/10.1145/3430524.3440636
https://doi.org/10.1145/3173574.3174132
https://doi.org/10.1145/3173574.3174132
https://doi.org/10.1145/2702613.2732495

	Abstract
	1 Introduction
	2 Related Work
	2.1 Physical Tools for Motor Skill Learning
	2.2 Toolkits to Build Physical Adaptive Tools

	3 Formative Study
	3.1 Study Design
	3.2 Challenges Identified

	4 Background - Learning algorithm
	5 Adapt2Learn toolkit - walkthrough
	5.1 Configuring the Learning Algorithm using Adapt2Learn's User Interface
	5.2 Generating the Microcontroller Script According to the Configuration
	5.3 Visualization Tool: Displaying Performance and Adaptation

	6 Applications of Adaptive Training Tools Using Adapt2Learn
	6.1 Adaptive Armband for Golf: Single Sensor-Actuator Combination
	6.2 Adaptive Wobbleboard: Synchronizing Sensors
	6.3 Adaptive Bike: Synchronizing Actuators
	6.4 Adaptive Heels: Synchronized Sensors and Actuators

	7 Implementation
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

