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Abstract

Attention-based neural networks have achieved
state-of-the-art results on a wide range of tasks.
Most such models use deterministic attention
while stochastic attention is less explored due to
the optimization difficulties or complicated model
design. This paper introduces Bayesian attention
belief networks, which construct a decoder net-
work by modeling unnormalized attention weights
with a hierarchy of gamma distributions, and
an encoder network by stacking Weibull distri-
butions with a deterministic-upward-stochastic-
downward structure to approximate the posterior.
The resulting auto-encoding networks can be op-
timized in a differentiable way with a variational
lower bound. It is simple to convert any models
with deterministic attention, including pretrained
ones, to the proposed Bayesian attention belief
networks. On a variety of language understanding
tasks, we show that our method outperforms de-
terministic attention and state-of-the-art stochas-
tic attention in accuracy, uncertainty estimation,
generalization across domains, and robustness
to adversarial attacks. We further demonstrate
the general applicability of our method on neural
machine translation and visual question answer-
ing, showing great potential of incorporating our
method into various attention-related tasks.

1. Introduction
Attention-based architectures were originally proposed to
induce useful inductive biases by aggregating features with
learnable weights for sequence models (Sutskever et al.,
2014; Bahdanau et al., 2015). Since the introduction of the
attention-based Transformer (Vaswani et al., 2017), atten-
tion has become the foundation for many state-of-the-art
models. Due to the computational efficiency and scalability
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of the Transformer structure, it becomes possible to train
unprecedented large models on big datasets (Devlin et al.,
2018), which stimulates a great amount of research to pre-
train models on large unlabeled datasets. In an unsupervised
manner, this approach learns useful representations that
benefit downstream tasks, achieving tremendous success in
natural language processing (Devlin et al., 2018; Lan et al.,
2019; Liu et al., 2019; Joshi et al., 2020; Radford et al.,
2018; Yang et al., 2019), compute vision (Dosovitskiy et al.,
2020; Chen et al., 2020), and multi-modal tasks (Chen et al.,
2019; Lu et al., 2019).

Most of the attention networks treat attention weights as
deterministic rather than random variables, leading to the
whole networks mostly composed of deterministic map-
pings. Such networks, although simple to optimize, are
often incapable of modeling complex dependencies in data
(Chung et al., 2015). By contrast, stochastic belief networks
(Neal, 1992; Hinton et al., 2006; Gan et al., 2015; Zhou et al.,
2016; Zhang et al., 2018; Fraccaro et al., 2016; Fan et al.,
2021; Bayer & Osendorfer, 2014; Bowman et al., 2016),
stacking stochastic neural network layers, have shown great
advantages over deterministic networks in not only mod-
eling highly structured data but also providing uncertainty
estimation.

This paper proposes Bayesian attention belief networks
(BABN), where we build deep stochastic networks by mod-
eling unnormalized attention weights as random variables.
First, we construct the generative (decoder) network with
a hierarchy of gamma distributions. Second, the inference
(encoder) network is a stack of Weibull distributions with
a deterministic-upward and a stochastic-downward path.
Third, we leverage the efficient structure of existing deter-
ministic attention networks and use the keys and queries
of current attention networks to parameterize the distribu-
tions of BABN. This efficient architecture design enables
us to easily convert any existing deterministic attention net-
works, including pretrained ones, to BABN. Meanwhile, it
imposes natural parameter and computational sharing within
the networks, maintaining computation efficiency and pre-
venting overfitting. Finally, we optimize both the decoder
and encoder networks with an evidence lower bound. As
the encoder network is composed of a reparameterizable dis-
tribution, i.e., Weibull distribution, the training objective is
differentiable. Further, leveraging the fact that the Kullback–
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Leibler (KL) divergence from the gamma to Weibull dis-
tribution is analytic, we can efficiently reduce the gradient
estimation variance.

The proposed BABN has a generic architecture so that any
existing deterministic attention models, including pretrained
ones, can be converted to BABN while maintaining the in-
herent advantages of conventional attention, such as effi-
ciency and being simple to optimize. Our proposed method
is generally simple to implement and boosts the perfor-
mance while only slightly increasing the memory and com-
putational cost. On various natural language understand-
ing tasks, neural machine translation, and visual question
answering, our method outperforms vanilla deterministic
attention and state-of-the-art stochastic attentions, in terms
of accuracy and uncertainty estimation. We further demon-
strate that BABN achieves strong performance in domain
generalization and adversarial robustness.

2. Background on Attention Networks
Most attention structures can be unified with the key, query
and value framework, where keys and queries are used to
calculate attention weights and values are aggregated by
the weights to obtain the final output. Formally, given n
key-value pairs and m queries, we denote keys, values, and
queries by K ∈ Rn×dk , V ∈ Rn×dv , and Q ∈ Rm×dk .
Note that the second dimension of K and Q are often equal
because we usually need to compute scaled dot-product
between key and query (Vaswani et al., 2017) as

Φ = fdot(Q,K) = QKT /
√
dk ∈ Rm×n.

To ensure that the attention weights are positive and sum
up to one across keys, fdot is often followed by a soft-
max function to obtain the final attention weights W =
softmax(fdot(Q,K)). In detail, first we obtain positive
unnormalized weights S with the exponential function:
S = exp(Φ), then we normalize S across the key dimension
with fnorm as

Wi,j = fnorm(S)i,j :=
Si,j∑n

j′=1 Si,j′
,

for i = 1, ...,m, j = 1, ..., n. Finally, the output of attention
is O = WV ∈ Rm×dv , aggregating the values according to
the attention weights.

This generic architecture can be used in many different mod-
els and applications. More interestingly, attention layers
can be stacked on top of each other to build a deep neural
network that is capable of modeling complicated determin-
istic functions. For example, in self-attention, denote the
input of the lth attention layer by I l, then we can obtain the
key Kl, query Ql, and value V l by linearly projecting I l to
different spaces: Kl = I lM l

K , Q
l = I lM l

Q, V
l = I lM l

V ,

where M ’s are parametric matrices to learn. The output
of this attention layer, Ol, can be fed as next layer’s input
I l+1 = Ol, and we can iterate the above process to obtain
a deep self-attention-based neural network. Note that other
structure details (Vaswani et al., 2017), such as residual
structure (He et al., 2016), feed forward networks, and layer
normalization (Ba et al., 2016), are also indispensable for
the network but it would not affect the general framework
we describe here.

3. BABN: Bayesian Attention Belief Networks
We introduce an efficient solution for deep attention belief
networks: (a) build a hierarchical distribution to model
unnormalized attention weights as the generative model, (b)
develop an inference network with a deterministic-upward-
stochastic-downward structure, and (c) leverage existing
attention architectures and a few light-weight linear layers
to parameterize the distributions. The resulting architecture
can be efficiently learned with variational inference.

3.1. Deep Gamma Decoder Attention Networks

Denoting a supervised learning problem with training data
D := {xi,yi}Ni=1, the conditional probability for con-
ventional attention-based model is pθ(yi |xi,Wi), where
Wi := fθ(xi), fθ(·) is a deterministic transformation, and
θ is the neural network parameter that includes the atten-
tion projections M ’s. For notational convenience, below
we drop the data index i. Even though the deterministic
attention mechanism is easy to implement and optimize,
it often fails to capture complex dependencies or provide
uncertainty estimation (Fan et al., 2020).

To remedy such issues, we construct deep stochastic atten-
tion networks by treating attention weights as latent vari-
ables. Instead of directly modeling the normalized attention
weights W = {W l}Ll=1 on the simplex, we find it easier
to model the unnormalized weights S = {Sl}Ll=1 on the
positive real line. We model the distribution of S with a
product of gamma distributions:

pη(S |x) =
∏L
l=1 Gamma(Sl |αl = f lη(S1:l−1,x),β),

where the shape parameterαl at the lth layer is the output of
a neural network f lη parameterized by η, and the rate param-
eter is a positive constant β. The gamma distribution has
been widely used for modeling positive real variables and is
known to be capable of capturing sparsity and skewness. It
is particularly attractive for modeling unnormalized atten-
tion weights because normalizing the gamma distributions
with the same rate parameter leads to a Dirichlet distribu-
tion, which is commonly used for modeling variables on the
simplex (Blei et al., 2003; Zhou et al., 2016; Deng et al.,
2018; Fan et al., 2020). In this way, the whole generative
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process can be expressed as:

S ∼ pη(· |x), y ∼ pθ(· |x, fnorm(S)).

Remark 1. Bayesian inference via Gibbs sampling is avail-
able when {f lη}Ll=1 are simple linear projections and pθ is
the Poison distribution (Zhou et al., 2016):

f lη(S1:l−1,x) = W lSl−1, for l = 1, ..., L,

y ∼ Poisson(WL+1SL).
(1)

We sketch the Gibbs sampler (see Zhou et al. (2016) for
details) in Fig. 1, whose upward and downward structure
motivates the design of our encoder (inference) network
architecture which we will discuss in detail in Section 3.2.

Efficient and Expressive Structures for αl. To be able to
model complicated dependencies, we use neural networks to
model the mapping {f lη}Ll=1 from S1:l−1 and x to Sl. How-
ever, having separate neural networks for each f lη would
lead to memory and computation redundancy as it does
not exploit the hierarchical relationships among {f lη}Ll=1.
Therefore, we leverage the current attention’s efficient struc-
ture, and note that the key Kl at layer l is a function output
of previous attention weights S1:l−1 and input x. This mo-
tivates us to make use of the key Kl at layer l to construct
f lη. In particular, we apply a two-layer MLP to transform
key Kl to obtain αl:

αl = softmax(f lη,2(ReLU(f lη,1(Kl)))),

where f lη,1, f
l
η,2 are two linear layers connected by the non-

linear activation function, ReLU (Nair & Hinton, 2010).
This architecture imposes natural parameter and computa-
tion sharing in a hierarchical way, which could not only
improve efficiency but also prevent overfitting.

3.2. Deep Weibull Encoder Attention Networks

Due to the nonlinear structure of the decoder attention net-
work, deriving the Gibbs sampler is not feasible and its
scalability is also a concern. In this regard, we propose
an encoder network to learn a variational distribution qφ
to approximate the posterior distribution of unnormalized
attention weights S.

We model the variational distribution qφ with a product of
Weibull distributions:

qφ(S |x,y) =
∏L
l=1 Weibull(Sl |kl,λl),

where kl,λl are the Weibull shape and scale parameters,
respectively. The reason for choosing the Weibull distribu-
tion is threefold (Zhang et al., 2018): First, the Weibull is
similar to gamma distribution, capable of modeling sparse,
skewed, and positive distributions. Second, unlike the

Figure 1. (a) The structure of the generative model that models
unnormalized attention weights with a hierarchy of gamma dis-
tributions. (b) A sketch of an upward-downward Gibbs sampler
mimicking that of the gamma belief network (Zhou et al., 2016),
whose generative model is similarly structured as in (a). Z are
augmented latent counts that facilitate the derivation of close-form
Gibbs sampling update equations. (c) Motivated by the Gibbs
sampler’s structure, we design the inference network in a similar
upward-downward way, whereh represents a deterministic upward
path and S represents a stochastic downward path. Note that our
inference network is not conditioned on y as we are dealing with
a supervised problem. Conditioned on y would prevent directly
using the inference network for new data points.

gamma distribution, the Weibull distribution has a simple
reparameterization so that it is easier to optimize. That
is, to sample s ∼ Weibull(k, λ) with probability density
function (PDF) p(s | k, λ) = k

λk s
k−1e−(s/λ)k , it is equiv-

alent to letting S = g(ε) := λ(− log(1 − ε))1/k, ε ∼
Unif(0, 1). Third, there exists an analytic KL divergence as
KL(Weibull(k, λ)||Gamma(α, β)) = γα

k −α log λ+ log k+
βλΓ(1 + 1

k )−γ−1−α log β+ log Γ(α), where γ denotes
the Euler–Mascheroni constant and Γ is the gamma func-
tion. This provides an efficient way to estimate the training
objective which we will discuss in detail in Section 3.3.

Deterministic-upward and Stochastic-downward Struc-
ture. Inspired by the upward-downward Gibbs sampler
sketched in Fig. 1, we mimic the structure to construct an
inference network as:

kl = f lk,h(hl) + f lk,S(S1:l−1,x),

λl = f lλ,h(hl) + f lλ,S(S1:l−1,x),

hl = f lh(hl+1),

where {hl}L+1
l=1 serve as the augmented latent variables pass-

ing the information from data upwards and complement the
downward information from attention variables S. A simi-
lar bottom-up and top-down structure was proposed in the
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Figure 2. Illustration of the difference and similarity between the vanilla deterministic attention and one layer of our Bayesian attention
belief networks. Bayesian attention belief networks (BABN) share the same architecture as the deterministic attention before obtaining key,
query, and value. Then BABN adds light-weight linear layers to construct the gamma and Weibull distributions to model unnormalized
attention weights, which are used after normalization to obtain the layer output as in the vanilla deterministic attention.

ladder VAE (Sønderby et al., 2016) and was found to help
the optimization. In our experiments (section 5.3), we also
found that the upward and downward structure plays an im-
portant role as the downward path delivers the prior informa-
tion and the upward path delivers the likelihood information.
Without the upward path of h, the model often has unstable
performances. We note that although qφ is independent of
y during testing, it is possible for qφ to depend on part of y
that has already been observed by the model during training
in sequence generation tasks, such as neural machine trans-
lation, where the queries come from y. Further, we think
it is possible for qφ to approximate p(S|x,y) even without
conditioning on y as x conveys information of y. Formally,
we define f lk,h, f

l
k,S , f

l
λ,h, f

l
λ,S , f

l
h as follows:

kl = ρ ∗ ln
[
1 + exp

(
f lφ,1(hl)

)]
+ exp(Φl),

λl = σ ∗ ln
[
1 + exp

(
f lφ,2(hl)

)]
+ exp(Φl)

Γ(1+1/kl)
,

hl = ln
[
1 + exp

(
f lφ,3(hl+1)

)]
,

where f lφ,1, f
l
φ,2, and f lφ,3 are linear layers that preserve the

dimension of hl, and hL+1 is initialized as a function of
x: hL+1 = fφ,0(x). The structure involves the following
parts. 1) For kl,λl, we introduce weights ρ, σ to balance
the importance of the two parts in kl,λl. 2) We leverage
the efficient deterministic attention architecture to construct
the functions f lk,S and f lλ,S , where Φl = f(Ql,Kl) is the
function of S1:l−1 and x. Using Φl to construct the infer-
ence network is an efficient way to introduce parameter and
computation sharing between the layers of the encoder and
decoder. 3) For λl, we rescale exp(Φl) with Γ(1+1/kl) so
that the expectation of the Weibull distribution is exp(Φl)
when σ = 0, which corresponds to the deterministic at-
tention before normalization. 4) In addition, we model

the functions f lk,h, f
l
λ,h, f

l
h with linear layers coupled with

ln[1 + exp(·)] to obtain positive outputs. We need to point
out that both Φl and hl are functions of only x but not y,
which enables us to directly use the variational distribution
qφ during testing for new data points (Wang & Zhou, 2020;
Fan et al., 2021). 5) We leverage the key and query of
the first attention layer to initialize hidden states hL+1. In
particular, we let hL+1 = softmax(Φ1). As there is yet
no randomness introduced to Φ1, this mapping from x to
hL+1 is still deterministic. By sharing the parameter and
computation with the main network, fφ,0 does not add any
memory or computation cost.

Remark 2. As our model leverages the efficient structure
of the existing deterministic attention module and uses keys
and queries to construct the prior and variational distri-
bution for unnormalized attention weights, it is simple to
convert existing deterministic attention networks to BABN.
Fig. 2 shows that BABN shares parts of architecture with
the deterministic attention. BABN adds a few light-weight
linear layers to construct the gamma prior and Weibull vari-
ational distribution with the upward-downward structure.
More importantly, we note that we can use pretrained de-
terministic attention model checkpoints to initialize BABN,
and then finetune the stochastic neural network.

Remark 3. BABN can be easily extended to multi-head
attention, where queries, keys, and values are projected
H times linearly with H different learned projections, and
the outputs of H heads are concatenated as the final out-
put. Since the unnormalized multi-head attention weights
are conditionally independent, we can still model the un-
normalized attention weights with the same hierarchical
formulation. Specifically, for each layer, conditioned on pre-
vious layers, we obtain the queries, keys for multiple heads
to construct the distributions for unnormalized attention
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weights of each head separately. Then, we normalize the
attention weights for each head so that within each head,
the attention weights sum to one across keys, which is the
same as the vanilla multi-head attention model.

3.3. Learning Bayesian Attention Belief Networks

Now, we have defined the gamma decoder network and
Weibull encoder network. We learn the encoder network qφ
to approximate the posterior distribution p(S |x,y) by min-
imizing the KL divergence, LKL = KL(qφ(S)||p(S |x,y)),
which is equivalent to maximizing,

L(x,y) := Eqφ(S) [log pθ(y |x, S)]− KL(qφ(S)||pη(S)),

an evidence lower bound (ELBO) (Hoffman et al.,
2013; Blei et al., 2017; Kingma & Welling, 2013) of
the intractable log marginal likelihood log p(y |x) =
log
∫
pθ(y |x, S)pη(S)dS. The objectiveL consists of two

parts: the likelihood part, which maximizes the data like-
lihood under the encoder network; the regularization part,
which enforces the variational distribution to be close to the
prior distribution. We also use the same objective L to learn
the decoder networks pη and pθ , as the exact marginal like-
lihood is intractable, and the ELBO is a good approximation
when the variational distribution well approximates the true
posterior (Kingma & Welling, 2013).

Note that as qφ is a product of Weibull distributions, it is
reparameterizable. In particular, to sample S from qφ, we
sequentially sample Sl conditional on previous samples
S1:l−1, as Sl ∼ Weibull(Sl |kl,λl). This can be realized
by letting Sl = glφ(εl) := λl(− log(1 − εl))1/kl

, where
εl is a tensor with the same shape as Sl and its elements
are i.i.d samples from the uniform distribution. In prac-
tice, we found that drawing εl from Uniform (0, 1) leads
to numerical issues. Therefore, to prevent numeral insta-
bility, we choose to draw εl from Uniform (0.1, 0.9) as an
approximation. Further, we note that at each layer l, the KL
between the conditional distribution of encoder and decoder,
KL(qφ(Sl |S1:l−1)||pη(Sl |S1:l−1)), is analytical. There-
fore, we follow the same way in Fan et al. (2020) to effi-
ciently compute KL(qφ(S)||pη(S) by decomposing it as∑L
l=1 Eqφ(S1:l−1) KL(qφ(Sl|S1:l−1)||pη(Sl|S1:l−1))︸ ︷︷ ︸

analytic

, where

the integrand is analytic. Putting it all together, we can
rewrite the ELBO objective as L(x,y) = Eε[Lε(x,y, ε)],
where

Lε(x,y, ε) = log pθ(y |x, gφ(ε))

−
∑L

l=1
KL(qφ(Sl | gφ(ε1:l−1))||pη(Sl | gφ(ε1:l−1)))︸ ︷︷ ︸

analytic

.

With the reparameterization, now we can efficiently estimate
the gradient of L with respect to θ,φ,η by computing the

gradient of Lε with one sample of ε. Both reparameteriza-
tion and semi-analytic KL (Owen, 2013) reduce the Monte
Carlo estimation variance and still keep the estimation un-
biased. Finally, following previous work (Bowman et al.,
2016), we add a weight λ to the KL term and anneal it from
a small value to one.

4. Related Work
Stochastic attentions: Xu et al. (2015), along with several
following work (Shankar & Sarawagi, 2018; Deng et al.,
2018), proposed hard attention to model attention weights
with categorical distributions, which only attends to one
subject at a time. The categorical distribution, however,
is not reparameterizable and therefore hinders the use of
standard backpropagation. REINFORCE gradient estima-
tor makes the optimization possible, but it has high vari-
ance and one often needs to carefully design baselines to
make the performance comparable to deterministic atten-
tion (Xu et al., 2015; Deng et al., 2018). Stochastic soft
attention, on the other hand, is less investigated. Deng et al.
(2018) proposed modeling attention weights with the Dirich-
let distribution, which is not reparameterizable and intro-
duces optimization difficulties. Fan et al. (2020) considered
using reparameterizable distributions, such as Lognormal
and Weibull distributions, to model unnormalized attention
weights, which alleviates the optimization issue of previous
stochastic attention. Compared to Fan et al. (2020) who try
to convert deterministic attention modules to stochastic ones,
our method is motivated from building a deep stochastic
network by modeling attention weights as random variables.
With a deterministic-upward and stochastic-downward struc-
ture, our inference network comprises Weibull distributions,
whose scale parameter λ and shape parameter k are both
sample-dependent. This makes it differ from Fan et al.
(2020), where the shape parameter k, controlling the uncer-
tainty of distribution, is a hyperparameter and the inference
network does not involve a deterministic upward path. The
proposed generalization gives us greater flexibility in mod-
eling attention weights. We also conduct more extensive
experiments to investigate the domain generalization ability
and adversarial robustness of stochastic attentions.

Deep stochastic networks: Augmenting deterministic neural
networks with random variables provides us a principled
way to capture the randomness in data and estimate un-
certainty (Gal & Ghahramani, 2016; Chung et al., 2015;
Bowman et al., 2016; Tran et al., 2018). More importantly,
stacking stochastic layers into a deep stochastic network
instead of a shallow probabilistic model is often preferable
due to its capability to model more complicated dependen-
cies (Zhang et al., 2018). For example, Zhang et al. (2018)
have applied a gamma belief network for topic modeling,
and a deep Weibull network is used to approximate the pos-
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terior for scalable inference. We apply a similar structure to
the widely used attention models and leverage the existing
efficient attention architecture to build scalable networks.

5. Experimental Results
Our method can be straightforwardly deployed wherever
the regular attention is utilized. To test its effectiveness and
general applicability, we apply our method to a diverse set
of tasks, including language understanding, neural machine
translation, and visual question answering. For language
understanding, we further study a model’s generalization
across domains and robustness towards adversarial attacks.
Meanwhile, we experiment with a diverse set of state-of-the-
art models, including, ALBERT (Lan et al., 2019), BERT
(Devlin et al., 2018), and RoBERTa (Liu et al., 2019). In
the following, we provide the main experimental settings
and results, with more details provided in Appendix A.

5.1. Attention in Natural Language Understanding

The self-attention-based Transformer models have become
the de-facto standard for NLP tasks. The dominant ap-
proach is to first pretrain models on big corpora to learn
generic features and then finetune the models on the cor-
responding datasets for downstream tasks. This approach
has constantly been refreshing the state-of-the-art results on
various tasks. However, the cost of training such models
from scratch is often prohibitive for researchers with lim-
ited resources and it also brings burdens to our environment
(Strubell et al., 2019). For example, it takes 79 hours to
train a BERT-base model on 64 V100 GPUs, which costs
about $3, 751-$12, 571 cloud computations and brings CO2

emissions of 1438 lbs (Strubell et al., 2019). Considering
this, we believe that starting from pretrained models is not
only efficient and environmental friendly, but also makes
it accessible for researchers with limited computations. As
discussed in Remark 2, we can convert a pretrained deter-
ministic attention model to BABN and then finetune it on
downstream tasks. Therefore, in this section, we investi-
gate the effectiveness of only applying BABN during the
finetuning stage.

5.1.1. IN-DOMAIN PERFORMANCE EVALUATION

First, we consider the standard setting, i.e., evaluating in-
domain accuracies, where both the training and testing data
are from the same domain.

Experimental Settings. We include 8 datasets from Gen-
eral Language Understanding Evaluation (GLUE) (Wang
et al., 2018) and two versions of Stanford Question Answer-
ing Datasets (SQuAD) (Rajpurkar et al., 2016; 2018) as
the benchmarks. We build our method on a state-of-the-art
model, ALBERT (Lan et al., 2019), which is a memory-

efficient version of BERT (Devlin et al., 2018) with parame-
ter sharing and embedding factorization. We leverage the
pretrained checkpoint as well as the codebase for finetuing
provided by Huggingface PyTorch Transformer (Wolf et al.,
2019). We use the base version of ALBERT (Lan et al.,
2019). During testing, we obtain point estimates by approx-
imating the posterior means of prediction probabilities by
substituting the latent unnormalized attention weights by
their posterior expectations (Srivastava et al., 2014).

Results. In Table 1, we compare BABN with the determin-
istic attention and BAM (Fan et al., 2020), which is the state-
of-the-art stochastic attention. BAM is also applied during
the finetuning stage, resuming from the same checkpoint.
We report the mean accuracies and standard deviations for
5 independent runs. Table 1 shows that BABN outperforms
both deterministic attention and BAM, which indicates that
stochastic belief networks give better performance than de-
terministic ones and the more flexible structure of BABN
is also preferable to the structure of BAM. We consistently
observe clear improvements even though we only apply
BABN at the finetuning stage.1 We leave as future work
using BABN at the pretrain stage.

5.1.2. GENERALIZATION ACROSS DOMAINS

In real applications, it is very likely to apply a deep learning
model to the data from a new domain unseen in the training
dataset. Therefore, it is important to evaluate a model’s
generalization ability across domains. In NLP, significant
work has studied domain generalization on sentiment anal-
ysis (Chen et al., 2018; Peng et al., 2018; Miller, 2019).
Recently, Desai & Durrett (2020) studied the cross-domain
generalization of pretrained Transformer models on more
difficult tasks and found it still challenging for these pre-
trained models to generalize. In this section, we follow the
setting of Desai & Durrett (2020) to study the generalization
ability of our method.

Experimental Settings. Following Desai & Durrett (2020),
we test domain generalization on three challenging tasks, in-
cluding natural language inference (NLI), paraphrase detec-
tion (PD), and commonsense reasoning (CR). Each task in-
cludes both a source domain, used for finetuning the model,
and a target domain, used for evaluating the model. Specif-
ically, SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) are the source and target domains for NLI, re-
spectively; QQP and TwitterPPDB (Lan et al., 2017) are
the source and target domains for PD, respectively; SWAG
(Zellers et al., 2018) and HSWAG (Zellers et al., 2019) are
the source and target domains for CR, respectively. These

1We provide the parameter sizes and step time for different
attention types combined with ALBERT-base, a Transformer-based
model, where the attention module constructs the main model in
Table 7 in the Appendix.
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Table 1. Results of the in-domain accuracies for different models on GLUE and SQuAD benchmarks.
MODEL MRPC COLA RTE MNLI QNLI QQP SST-2 STS SQUAD 1.1 SQUAD 2.0

ALBERT-BASE 86.5 54.5 75.8 85.1 90.9 90.8 92.4 90.3 80.86/88.70 78.80/82.07
ALBERT-BASE+BAM 88.5 55.8 76.2 85.6 91.5 90.7 92.7 91.1 81.40/88.82 78.97/82.23
ALBERT-BASE+BABN 89.2±0.3 56.8±0.5 77.6±0.6 86.2±0.3 91.9±0.3 91.2 ±0.1 93.1±0.2 91.8±0.2 81.81±0.1/89.10±0.1 79.20±0.1 / 82.41±0.1

Table 2. Results of domain generalization. We report the accuracy
and ECE of various models on both in-domain data and out-of-
domain data for three tasks: natural language inference, paraphrase
detection, and commonsense reasoning.

ACCURACY ↑ ECE ↓

ID OD ID OD
NATURAL LANGUAGE INFERENCE SNLI MNLI SNLI MNLI

DA (PARIKH ET AL., 2016) 84.63 57.12 1.02 8.79
ESIM (CHEN ET AL., 2017) 88.32 60.91 1.33 12.78
BERT-BASE (DESAI & DURRETT, 2020) 90.04 73.52 2.54 7.03
BERT-BASE+BAM 90.25 73.81 2.37 6.40
BERT-BASE+BABN 90.63 74.32 1.98 5.09

ROBERTA-BASE 91.23 78.79 1.93 3.62
ROBERTA-BASE+BAM 91.29 79.11 2.85 2.94
ROBERTA-BASE+BABN 91.70 79.86 2.62 2.67
PARAPHRASE DETECTION QQP TWITTER QQP TWITTER

DA (PARIKH ET AL., 2016) 85.85 83.36 3.37 9.79
ESIM (CHEN ET AL., 2017) 87.75 84.00 3.65 8.38
BERT-BASE (DESAI & DURRETT, 2020) 90.27 87.63 2.71 8.51
BERT-BASE+BAM 90.77 87.14 2.91 9.21
BERT-BASE+BABN 90.84 88.32 1.42 7.43

ROBERTA-BASE (DESAI & DURRETT, 2020) 91.11 86.72 2.33 9.55
ROBERTA-BASE+BAM 91.24 86.87 2.01 9.50
ROBERTA-BASE+BABN 91.72 87.31 1.74 9.42
COMMONSENSE REASONING SWAG HSWAG SWAG HSWAG

DA (PARIKH ET AL., 2016) 46.80 32.48 5.98 40.37
ESIM (CHEN ET AL., 2017) 52.09 32.08 7.01 19.57
BERT-BASE (DESAI & DURRETT, 2020) 79.40 34.48 2.49 12.62
BERT-BASE+BAM 79.44 35.18 2.38 12.49
BERT-BASE+BABN 79.57 36.23 1.91 11.82

ROBERTA-BASE (DESAI & DURRETT, 2020) 82.45 41.68 1.76 11.93
ROBERTA-BASE+BAM 82.61 42.04 1.66 11.21
ROBERTA-BASE+BABN 83.12 43.11 1.32 9.72

benchmarks are known to exhibit challenging domain shifts
(Desai & Durrett, 2020). For each experiment, we report
both the in-domain (ID) accuracy on the source domain and
out-of-domain (OD) accuracy on the target domain. As in
Desai & Durrett (2020), we also report the expected calibra-
tion error (ECE) as a measure of model calibration. To com-
pute ECE, we need to divide the samples into groups with
their confidences, defined as the probability of the maximum
predicted class. Then, ECE:=

∑
i
Bi

N |acc(Bi)− conf(Bi)|,
where Bi, acc(Bi), and conf(Bi) are the count, accuracy,
and confidence of samples in the ith group, respectively. We
set the number of groups to 10 as in Desai & Durrett (2020).

Results. We summarize our results in Table 2. Our base-
lines include two small-scale and non-pretrained models:
Decomposable Attention (DA) (Parikh et al., 2016) and En-
hanced Sequential Inference Model (ESIM) (Chen et al.,
2017), and two state-of-the-art large-scale and pretrained
models with deterministic attention: BERT-base (Devlin
et al., 2018) and RoBERTa-base models (Liu et al., 2019).

We experiment with adding BABN to both BERT-base and
RoBERTa-base models. Table 2 shows that adding BABN
consistently improves upon the corresponding deterministic
models on not only in-domain, which confirms our results
in Section 5.1.1, but also out-of-domain. The performance
gains on out-of-domain are often greater than the gains on
in-domain, meaning that BABN can significantly help the
model to generalize across domains. This gets along with
our intuition that deep stochastic models should generalize
better than deterministic ones. Further, we note that BABN
also improves ECE, meaning that BABN helps to obtain
better-calibrated models for uncertainty estimation.

5.1.3. ROBUSTNESS TOWARDS ADVERSARIAL ATTACKS

Neural networks are known to be vulnerable to adversarial
examples that have imperceptible perturbations from the
original counterparts (Goodfellow et al., 2014). It has been
found that even large language models pretrained on large
corpora still suffer from the same issue (Jin et al., 2020).
Therefore, it is important to evaluate and improve a model’s
robustness against adversarial attacks. We argue that as
our Bayesian attention belief networks are built by stacking
probabilistic layers, the stochastic connections would make
the model more robust so that it is more difficult to generate
perturbations that would fool our model.

Experimental Settings. To compare the adversarial ro-
bustness of BABN and the deterministic attention, we first
finetune the ALBERT-base models according to the same
settings as in Section 5.1.1, and then apply three state-of-the-
art untargeted black-box adversarial attacks, including (1)
Textfooler (Jin et al., 2020), generating natural looking at-
tacks with rule-based synonym replacement; (2) Textbugger
(Li et al., 2019), generating misspelled words by character-
and word-level perturbations; (3) BAE (Garg & Ramakrish-
nan, 2020), generating BERT-based adversarial examples.
We implement all the attacks using the NLP attack package,
TextAttack (Morris et al., 2020), with the default settings.
For each model, we conduct 1000 adversarial attacks and
Table 3 reports the percentages of failed adversarial attacks.
Higher percentages indicate more robust models.

Results. Table 3 shows that BABN outperforms the deter-
ministic attention baseline on most datasets, and achieves
a much better average accuracy. The improvement is con-
sistent across all three different adversarial attacks with
different levels of failure rates, with Textfooler being the
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Table 3. Results of pretrained large-scale models’ robustness
against adversarial attacks. For each model, we report the percent-
ages of failed attacks under three adversarial attacks respectively.

ATTACK ATTENTION MRPC COLA RTE QQP SST-2 AVG.

TEXTFOOLER
BASE 6.5 2.6 16.2 25.4 7.0 11.5
BAM 6.2 3.1 17.8 28.7 12.5 12.5
BABN 6.2 5.1 17.7 33.7 16.4 15.8

TEXTBUGGER
BASE 10.6 16.8 19.9 30.1 40.1 23.5
BAM 9.9 16.7 21.0 32.5 51.7 26.4
BABN 9.5 17.6 21.4 35.8 55.5 28.0

BAE
BASE 44.8 4.9 35.6 48.8 13.9 29.6
BAM 48.6 5.1 36.3 42.2 22.8 31.0
BABN 50.4 7.1 35.9 42.8 25.7 32.4

strongest attacker. These results verify our conjecture that
by stacking stochastic layers, our Bayesian attention belief
networks are more robust than deterministic models due to
the stochastic connections. To the best of our knowledge,
it is the first time to show that stochastic attention could
improve adversarial robustness on large language models.

5.2. Attention in Neural Machine Translation

To show that BABN is generally applicable, we conduct
experiments on the task of neural machine translation and
compare BABN with SOTA stochastic attentions, including
variational attention (VA) based methods (Deng et al., 2018)
and BAM (Fan et al., 2020).

Experimental Settings. For fair comparisons, we adapt the
deterministic attention model used by Deng et al. (2018)
to BABN. The model is very different from the previous
models, as it is LSTM-based, where attention is used to
connect the encoder and decoder of the translation system
(Deng et al., 2018). We follow the experimental settings of
Deng et al. (2018). Models are trained from scratch. IWSLT
(Cettolo et al., 2014) is used as benchmark. We adopt the
widely used BLEU score (Papineni et al., 2002) as the evalu-
ation metric for the translation results. Experimental details
are summarized in Appendix A.

Table 4. Results of BLEU scores, parameter size and step time for
different attentions on IWSLT.

ATTENTION BLEU ↑ PARAMS ↓ S/STEP ↓
BASE 32.77 42M 0.08
VA + ENUM (DENG ET AL., 2018) 33.68 64M 0.12
VA + SAMPLE (DENG ET AL., 2018) 33.30 64M 0.15
BAM (FAN ET AL., 2020) 33.81±0.02 42M 0.10
BABN 34.23±0.05 42M 0.11

Results. In Table 4, we report the BLEU scores, model pa-
rameter sizes, and step time (second/step) for each attention
type. It shows that BABN gives the best BLEU score outper-
forming deterministic attention (base), variational attention

Table 5. Accuracies and PAvPUs of different attentions on both the
original VQA-v2 dataset and the noise ones.

ACCURACY ↑ PAVPU ↑

ORIGINAL NOISY ORIGINAL NOISY

BASE 66.74 63.58 71.96 68.29
BAM 66.82 63.98 72.01 68.58
BABN 66.92±0.02 64.40±0.03 72.21±0.03 70.43±0.04

(VA), and BAM, while keeping the parameter size at the
same level as deterministic attention. The runtime of BABN
is on a par with BAM and slightly slower than deterministic
attention, but it outruns the variational attention methods.

5.3. Attention in Visual Question Answering

We also conduct experiments on a multi-modal learning
task, visual question answering (VQA) (Goyal et al., 2017),
where the model learns to predict the answer to a given
question on a given image. Transformer-like attention ar-
chitectures have been widely used to learn the multi-modal
reasoning between image and language (Yu et al., 2019).
We adapt the recently proposed MCAN model (Yu et al.,
2019) to BABN and compare with deterministic attention
and BAM (Fan et al., 2020).

Experimental Settings. We mainly follow the setting by
Yu et al. (2019), and experiment on the VQA-v2 dataset
(Goyal et al., 2017). As in Fan et al. (2020), we also include
a noisy dataset by perturbing the input with Gaussian noise
to the image features (Larochelle et al., 2007) to investigate
the model’s robustness. We use 4-layer encoder-decoder
based MCAN as the baseline model, where the determinis-
tic attention was originally used. We report accuracies as
well as uncertainty estimations, which are measured by a
hypothesis testing based Patch Accuracy vs Patch Uncer-
tainty (PAvPU) (Fan et al., 2020; Mukhoti & Gal, 2018),
reflecting whether the model is uncertain about its mistakes.
The higher the PAvPU is, the better the uncertainty estima-
tion is. We set the p-value threshold to be 0.05 (Fan et al.,
2020). For uncertainty estimation, we sample 20 unnormal-
ized attention weights from the variational distribution. We
provide more detailed experimental settings in Appendix A.

Results. In Table 5, we report the accuracy and PAvPU of
different attentions on both original and noisy data. It shows
that BABN consistently improve upon the deterministic
attention and BAM in terms of both accuracy and PAvPU,
meaning that BABN in general is more uncertain on its
mistakes and more certain on its correct predictions. Further,
we note that the performance gain is more significant on the
noisy dataset, indicating that BABN helps to learn a more
robust model, which also agrees with our results on domain
generalization in Section 5.1.2.



Bayesian Attention Belief Networks

Figure 3. For two questions from VQA, we visualize the posterior
mean and std/mean for attention weights of BABN, where each row
corresponds to one question. Rows represent queries, and columns
represent keys. For example, considering the first question, on
the left plot, when the row is “Did” and the column is “hit”, the
color represents the average attention weight from the query “Did”
to the key “hit”. On the right plot, the color at the same location
represents the uncertainty from the query “Did” to the key “hit”.
We note that the model is mostly certain except for the query
“ball” from the right plot, which is assigning high average attention
weights for “Did” and “the” rather than other words as shown on
the left.

Results Analysis. Visualizations. In Fig. 3, we plot statis-
tics of the posterior distributions for the attention weights
of one question in VQA. We visualize the normalized pos-
terior mean (left) as a measure of the average importance
of each query-key pair, and posterior standard deviation
divided by posterior mean (std/mean on the right) as a mea-
sure of uncertainty. The plot shows that BABN is able
to learn different uncertainties (std/mean) for each query-
key pair in contrast to the fixed std/mean of BAM. This
sample-dependent uncertainty of BABN enables the strong
capability in modeling attention weights and therefore gives
good uncertainty estimation.

Ablation Study. We also conduct ablation study to exam
the role of the upward-downward structure by turning the
weight parameters ρ and σ to zeros. We found that tuning
either parameter to zero would lead to performance drop,
especially the parameter ρ, which demonstrates the necessity
and effectiveness of the upward-downward structure. Please
see detailed results in Table 8 in Appendix.

6. Conclusion
We propose Bayesian attention belief network (BABN),
a deep stochastic network by modeling attention weights
as hierarchically dependent random variables. A multi-
stochastic-layer generative model and a deterministic-
upward-stochastic-downward inference network are con-
structed by leveraging the existing attention architecture.
This generic and efficient architecture design enables us
to easily convert existing deterministic attention models,
including pretrained ones, to BABN, while only slightly
increasing memory and computational cost. On various
language understanding tasks, BABN exhibits strong per-
formance in accuracy, uncertainty estimation, domain gen-
eralization, and adversarial robustness. Interestingly, clear
improvement in performance has already been achieved by
adding BABN only during the finetuning stage. We further
demonstrate the general applicability of BABN on addi-
tional tasks, including neural machine translation and visual
question answering, where BABN consistently outperforms
corresponding baselines and shows great potential to be an
efficient alternative to many existing attention models.
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A. Experimental details
A.1. Natural Language Understanding

A.1.1. MODEL SPECIFICATIONS FOR IN-DOMAIN
EVALUATION

ALBERT (Lan et al., 2019) is used as the pretrained model
on large corpora to extract the context embeddings. AL-
BERT is a memory-efficient version of BERT with parame-
ter sharing and embedding factorization. In our experiments,
we use the ALBERT-base model with 12 attention layers
and hidden dimension 768. The embedding dimension for
factorized embedding is 128.

A.1.2. EXPERIMENTAL SETTINGS FOR IN-DOMAIN
EVALUATION

Our experiments are conducted on both the General Lan-
guage Understanding Evaluation (GLUE) and Stanford
Question Answering (SQuAD) Datasets. There are 8 tasks
in GLUE, including Microsoft Research Paraphrase Corpus
(MRPC; (Dolan & Brockett, 2005)), Corpus of Linguistic
Acceptability (CoLA; (Warstadt et al., 2019)), Recognizing
Textual Entailment (RTE; (Dagan et al., 2005)), Multi-Genre
NLI (MNLI; (Williams et al., 2017)), Question NLI (QNLI;
(Rajpurkar et al., 2016)), Quora Question Pairs (QQP; (Iyer
et al., 2017)), Stanford Sentiment Treebank (SST; (Socher
et al., 2013)), and Semantic Textual Similarity Benchmark
(STS;(Cer et al., 2017)). For SQuAD, we include both
SQuAD v1.1 and SQuAD v2.0. We use the codebase2 from
Huggingface Transformers (Wolf et al., 2019). For the de-
tailed experimental settings, we summarize in Table 6.

Table 6. Experimental settings of each task for in-domain pre-
trained language model (LR: learning rate, BSZ: batch size, DR:
dropout rate, TS: training steps, WS: warmping steps, MSL: maxi-
mum sentence length).

LR BSZ ALBERT DR CLASSIFIER DR TS WS MSL

COLA 1.00e−5 16 0 0.1 5336 320 512
STS 2.00e−5 16 0 0.1 3598 214 512

SST2 1.00 e−5 32 0 0.1 20935 1256 512
MNLI 3.00 e−5 128 0 0.1 10000 1000 512
QNLI 1.00 e−5 32 0 0.1 33112 1986 512
QQP 5.00 e−5 128 0.1 0.1 14000 1000 512
RTE 3.00 e−5 32 0.1 0.1 800 200 512

MRPC 2.00 e−5 32 0 0.1 800 200 512
SQUAD V1.1 5.00 e−5 48 0 0.1 3649 365 384
SQUAD V2.0 3.00 e−5 48 0 0.1 8144 814 512

Table 7. Efficiency on ALBERT-base models.
ATTENTION PARAMS ↓ S/STEP ↓
BASE 11.7M 0.26
BAM 11.7M 0.35
BABN 12.4M 0.41

2https://github.com/huggingface/
transformers

A.1.3. MODEL SPECIFICATIONS FOR DOMAIN
GENERALIZATIONS

We follow Desai & Durrett (2020) to use bert-base-uncased
(Devlin et al., 2018) and roberta-base (Liu et al., 2019) as
the baseline models. We also include the results of two
non-pretrained models DA (Parikh et al., 2016) and ESIM
(Chen et al., 2017) from Desai & Durrett (2020), which are
obtained with the open-source implementation in AllenNLP
(Gardner et al., 2017). The pretrained models are provided
by HuggingFace Transformers (Wolf et al., 2019). Largely
following the settings from Desai & Durrett (2020). we
finetune BERT with a maximum of 3 epochs, batch size of
16, learning rate of 2e−5, gradient clip of 1.0, and no weight
decay. For RoBERTa, we finetune with a maximum of 3
epochs, batch size of 32, learning rate of 1e−5, gradient clip
of 1.0, and weight decay of 0.1. AdamW (Loshchilov &
Hutter, 2018) is used as the optimizer in experiments.

A.1.4. EXPERIMENTAL SETTINGS FOR DOMAIN
GENERALIZATIONS

For all datasets, we follow the settings from Desai & Durrett
(2020) and split the development set in half to obtain a
held-out, non-blind test set.

We conduct experiments on three tasks: (1) Natural Lan-
guage Inference. The Stanford Natural Language Inference
(SNLI) corpus is a large-scale entailment dataset (Bowman
et al., 2015). The similar entailment data across domains is
also included in Multi-Genre Natural Language Inference
(MNLI) (Williams et al., 2018). Thus the MNLI can be used
as an unseen out-of-domain test dataset. (2) Paraphrase De-
tection. Quora Question Pairs (QQP) contains sentence
pairs from Quora that are semantically equivalent (Iyer
et al., 2017). TwitterPPDB (TPPDB), considered as out-
of-domain data, contains the sentence pairs from the para-
phrased tweets (Lan et al., 2017). (3) Commonsense Reason-
ing. Situations With Adversarial Generations (SWAG) is a
grounded commonsense reasoning task (Zellers et al., 2018).
The out-of-domain data is HellaSWAG (HSWAG), which is
a more challenging benchmark (Zellers et al., 2018).

A.1.5. ADVERSARIAL ROBUSTNESS

We utilized the same models and training procedures as the
in-domain evaluation. The settings for adversarial attack fol-
low those from Morris et al. (2020) with maximum sentence
length 512.

A.2. Neural Machine Translation

A.2.1. MODEL SPECIFICATIONS

Following the Neural Machine Translation (NMT) setting
from Deng et al. (2018), we utilize the bidirectional LSTM
to embed each source sentence to source representations.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Attention is utilized, during the decoding stage, to identify
which source positions should be used to predict the target
using a function of previous generated tokens as the query.
The aggregated features are passed to an MLP to produce
the distribution over the next target word (see details in
Deng et al. (2018)).

A.2.2. EXPERIMENTAL SETTINGS

For NMT we use the IWSLT dataset (Cettolo et al., 2014).
We follow the same preprocessing as in Edunov et al. (2017)
which uses Byte Pair Encoding vocabulary over the com-
bined source/target training set to obtain a vocabulary size of
14k tokens (Sennrich et al., 2015) with sequences of length
up to 125. A two-layer bi-directional LSTM with 512 units
is used as the encoder and another two-layer LSTM with
768 units is used as the decoder. Other training details in-
clude: the batch size 6, dropout rate 0.3, and learning rate
3e−4 with Adam optimizer (Kingma & Ba, 2014). During
testing, we use beam search with beam size 10 and length
penalty as 1 (Wu et al., 2016).

A.3. Visual Question Answering

A.3.1. MODEL SPECIFICATIONS

The state-of-the-art VQA model, MCAN (Yu et al., 2019),
is used in the experiments. The MCAN consists of MCA
layers. Each MCA layer consists of self-attention (SA) over
question and image features, and guided-attention (GA) be-
tween question and image features. Multi-head structure as
in Vaswani et al. (2017), including the residual and layer nor-
malization components, is incorporated in the MCA layer.
MCAN represents the deep co-attention model which con-
sists of multiple MCA layers cascaded in depth to gradually
refine the attended image and question features. We adopt
the encoder-decoder structure in MCAN (Yu et al., 2019)
with four co-attention layers.

A.3.2. EXPERIMENTAL SETTINGS

We conduct experiments on the commonly used benchmark,
VQA-v2 (Goyal et al., 2017), containing human-annotated
question-answer (QA) pairs. There are three types of ques-
tions: Yes/No, Number, and Other. The dataset is split into
the training (80k images and 444k QA pairs), validation
(40k images and 214k QA pairs), and testing (80k images
and 448k QA pairs) sets. We perform evaluation on the vali-
dation set as the true labels for the test set are not publicly
available (Deng et al., 2018). To construct the noisy dataset,
we incorporate the Gaussian noise (mean 0, variance 5) to
image features. We use the same model hyperparameters
and training settings in Yu et al. (2019) as follows: the
dimensionality of input image features, input question fea-
tures, and fused multi-modal features are set to be 2048,
512, and 1024, respectively. The latent dimensionality in

the multi-head attention is 512, the number of heads is set
to 8, and the latent dimensionality for each head is 64. The
size of the answer vocabulary is set to N = 3129 using
the strategy in Teney et al. (2018). To train the MCAN
model, we use the Adam optimizer (Kingma & Ba, 2014)
with β1 = 0.9 and β2 = 0.98. The base learning rate is set
to min(2.5te−5, 1e−4), where t is the current epoch num-
ber starting from 1. After 10 epochs, the learning rate is
decayed by 1/5 every 2 epochs. All the models are trained
up to 13 epochs with the same batch size of 64.

A.3.3. ABLATION STUDY

Table 8. Ablation study of the upward path in BABN on VQA.
ACCURACY ↑ PAVPU ↑

ORIGINAL NOISY ORIGINAL NOISY

ρ = 0, σ=1.00e−6 44.62 32.16 50.93 53.22

ρ = 1.5, σ=0 66.78 64.04 69.99 69.02

ρ = 1.5, σ=1.00e−6 66.92 64.40 72.21 70.43

We conduct ablation study to exam the role of the upward-
downward structure by turning the weight parameters ρ and
σ to zeros. Table 8 shows that tuning either parameter to
zero would lead to performance drop, especially the param-
eter ρ, which demonstrates the necessity and effectiveness
of the upward-downward structure. We also found that the
experimental results are not sensitive to the choice of the
value of the ρ. Any number from 1 to 4 would give similar
results. The other is the scaling factor σ that controls the
importance of the hl in λl. We found that the performance
is not that sensitive to its value and it is often beneficial to
make it smaller. In all experiments considered in the paper,
which cover various noise levels and model sizes, we have
simply fixed it at 1.00e−6.


