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Abstract

We study algorithms for approximating pairwise similarity
matrices that arise in natural language processing. Generally,
computing a similarity matrix for n data points requires⌦(n2)
similarity computations. This quadratic scaling is a signifi-
cant bottleneck, especially when similarities are computed via
expensive functions, e.g., via transformer models. Approxima-
tion methods reduce this quadratic complexity, often by using
a small subset of exactly computed similarities to approximate
the remainder of the complete pairwise similarity matrix.
Significant work focuses on the efficient approximation of pos-
itive semidefinite (PSD) similarity matrices, which arise e.g.,
in kernel methods. However, much less is understood about
indefinite (non-PSD) similarity matrices, which often arise in
NLP. Motivated by the observation that many of these matrices
are still somewhat close to PSD, we introduce a generalization
of the popular Nyström method to the indefinite setting. Our
algorithm can be applied to any similarity matrix and runs in
sublinear time in the size of the matrix, producing a rank-s
approximation with just O(ns) similarity computations.
We show that our method, along with a simple variant of CUR
decomposition, performs very well in approximating a variety
of similarity matrices arising in NLP tasks. We demonstrate
high accuracy of the approximated similarity matrices in the
downstream tasks of document classification, sentence simi-
larity, and cross-document coreference.

1 Introduction
Many machine learning tasks center around the computation
of pairwise similarities between data points using an appro-
priately chosen similarity function. E.g., in kernel methods, a
non-linear kernel inner product is used to measure similarity,
and often to construct a pairwise kernel similarity matrix. In
natural language processing, document or sentence similarity
functions (e.g., cross-encoder transformer models (Devlin
et al. 2018) or word mover’s distance (Piccoli and Rossi 2014;
Kusner et al. 2015))) are key components of cross-document
coreference (Cattan et al. 2020) and passage retrieval for
question answering (Karpukhin et al. 2020). String-similarity
functions are used to model name aliases (Tam et al. 2019)
and for morphology (Rastogi, Cotterell, and Eisner 2016).
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Computing all pairwise similarities for a data set with n

points requires ⌦(n2) similarity computations. This can be
a major runtime bottleneck, especially when each compu-
tation requires the evaluation of a neural network or other
expensive operation. One approach to avoid this bottleneck
is to produce a compressed approximation to the n⇥ n pair-
wise similarity matrix K for the data set, but avoid ever fully
forming this matrix and run in sub-quadratic time (i.e., with
running time less than O(n2), or sublinear in the size ofK).
The compressed approximation, K̃, can be used in place of
K to quickly access approximate pairwise similarities, and in
methods for near neighbor search, clustering, and regression,
which would typically involve K.

1.1 Existing Methods
Similarity matrix approximation is very well-studied, espe-
cially in the context of accelerating kernel methods and Gaus-
sian process regression. Here,K is typically positive semidef-
inite (PSD). This structure is leveraged by techniques like
the random Fourier features and Nyström methods (Rahimi
and Recht 2007; Le, Sarlós, and Smola 2013; Williams and
Seeger 2001; Yang et al. 2012), which approximateK via a
rank-s approximation K̃ = ZZT , for s ⌧ n and Z 2 Rn⇥s.
These methods have runtimes scaling linearly in n and sub-
linear in the matrix size. They have been very successful in
practice (Huang et al. 2014; Meanti et al. 2020), and often
come with strong theoretical bounds (Gittens and Mahoney
2016; Musco and Musco 2017; Musco and Woodruff 2017).
Unfortunately, most similarity matrices arising in natural

language processing, such as those based on cross-encoder
transformers (Devlin et al. 2018) or word mover’s distance
(Piccoli and Rossi 2014), are indefinite (i.e., non-PSD). For
such matrices, much less is known. Sublinear time methods
have been studied for certain classes of similarities (Bakshi
and Woodruff 2018; Oglic and Gärtner 2019; Indyk et al.
2019), but do not apply more generally. Classic techniques
like low-rank approximation via the SVD or fast low-rank
approximation via random sketching (Frieze, Kannan, and
Vempala 2004; Sarlos 2006; Drineas, Mahoney, and Muthukr-
ishnan 2008) generally must form all of K to approximate it,
and so run in ⌦(n2) time. There are generic sublinear time
sampling methods, like CUR decomposition (Drineas, Kan-
nan, and Mahoney 2006; Wang, Zhang, and Zhang 2016),
which are closely related to Nyström approximation. How-
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ever, as we will see, the performance of these methods varies
greatly depending on the application.

1.2 Our Contributions
Algorithmic. Our first contribution is a simple variant of
the Nyström method that applies to symmetric indefinite
similarity matrices1. The Nyström method (Williams and
Seeger 2001) approximates a PSD similarity matrix K by
sampling a set of s ⌧ n landmark points from the dataset,
computing their similarities with all other points (requiring
O(ns) similarity computations), and then using this sampled
set of similarities to reconstruct all of K. See Sec. 2.
Our algorithm is motivated by the observation that many

indefinite similarity matrices arising in NLP are somewhat
close to PSD – they have relatively few negative eigenvalues.
Thus, a natural approach would be simply to apply Nyström
to them. However, even for matrices with just a few small neg-
ative eigenvalues, this fails completely. We instead show how
to ‘minimally correct’ our matrix to be closer to PSD, before
applying Nyström. Specifically, we apply an eigenvalue shift
based on the minimum eigenvalue of a small random princi-
pal submatrix ofK. We call our method Submatrix-Shifted
Nyström, or SMS-Nyström. SMS-Nyström is extremely ef-
ficient, and, while we do not give rigorous approximation
bounds, it recovers the strong performance of the Nyström
method on many near PSD-matrices.
Empirical. Our second contribution is a systematic evalu-
ation of a number of sublinear time matrix approximation
methods in NLP applications. We consider three applications
involving indefinite similarity matrices: 1) computing docu-
ment embeddings using word mover’s distance (Kusner et al.
2015), for four different text classification tasks; 2) approx-
imating similarity matrices generated using cross-encoder
BERT (Devlin et al. 2018) and then comparing performance
in three GLUE tasks: STS-B (Cer et al. 2017), MRPC (Dolan
and Brockett 2005) and RTE (Bentivogli et al. 2009), which
require predicting similarity, semantic equivalence, and en-
tailment between sentences; 3) approximating the similarity
function used to determine coreference relationships across
documents in a corpus of news articles mentioning entities
and events (Cybulska and Vossen 2014; Cattan et al. 2020).

We show that both SMS-Nyström, and a simple variant of
CUR decomposition yield accurate approximations that main-
tain downstream task performance in all these tasks while
greatly reducing the time and space required as compared to
the exact similarity matrix. They typically significantly out-
perform the classic Nyström method and other CUR variants.

1.3 Other Related Work
Our work fits into a vast literature on randomized methods
for matrix approximation (Mahoney 2011; Woodruff et al.
2014). There is significant work on different sampling dis-
tributions and theoretical bounds for both the Nyström and
CUR methods (Goreinov, Tyrtyshnikov, and Zamarashkin

1While asymmetric similarity matrices do arise, we focus on the
symmetric case. In our experiments, simply symmetrizing and then
approximating these matrices yields good performance.

1997; Drineas, Mahoney, and Cristianini 2005; Drineas, Ma-
honey, and Muthukrishnan 2008; Zhang, Tsang, and Kwok
2008; Kumar, Mohri, and Talwalkar 2012; Wang and Zhang
2013; Talwalkar and Rostamizadeh 2014). However, more
advanced methods generally require reading all ofK and so
do not avoid ⌦(n2) time. In fact, any method with non-trivial
worst-case guarantees on general matrices cannot run less
than O(n2) time. If the entire mass of the matrix is placed on
a single entry, all entries must be accessed to find it.

A number of works apply Nyström variants to indefi-
nite matrices. Belongie et al. (2002) show that the Nyström
method can be effectively applied to eigenvector approx-
imation for indefinite matrices, specifically in application
to spectral partitioning. However, they do not investigate
the behavior of the method in approximating the similarity
matrix itself. Gisbrecht and Schleif (2015) shows that, in
principal, the classic Nyström approximation converges to
the true matrix when the similarity function is continuous
over R. However, we observe poor finite sample performance
of this method on text similarity matrices. Other work ex-
ploits assumptions on the input points – e.g. that they lie in
a small number of labeled classes, or in a low-dimensional
space where distances correlate with the similarity (Schleif,
Gisbrecht, and Tino 2018). This later assumption is made
implictly in recent work on anchor-net based Nyström (Cai,
Nagy, and Xi 2021), and while it may hold in many settings,
in NLP applications, it is often not clear how to find such
a low-dimensional representation. By removing the above
assumptions, our work is well suited for applications in NLP,
which often feed two inputs (e.g., sentences) into a neural
network (e.g., transformer or MLP) to compute similarities.

There is also significant related work on modifying indefi-
nite similarity matrices to be PSD, including via eigenvalue
transformations and shifts (Chen, Gupta, and Recht 2009;
Gisbrecht and Schleif 2015). These modifications would al-
low the matrix to be approximated with the classic Nyström
method. However, this work does not focus on sublinear run-
time, typically using modifications that require ⌦(n2) time.

Finally, outside of similarity matrix approximation, there
are many methods that seek to reduce the cost of similar-
ity computation. One approach is to reduce the number of
similarity computations. Examples include locality sensitive
hashing (Gionis et al. 1999; Lv et al. 2007), distance preserv-
ing embeddings (Hwang, Han, and Ahn 2012), and graph
based algorithms (Orchard 1991; Dong, Moses, and Li 2011)
for near-neighbor search. Another approach is to reduce the
cost of each similarity computation, e.g., via model distilla-
tion for cross-encoder-based similarity (Sanh et al. 2019; Jiao
et al. 2019; Michel, Levy, and Neubig 2019; Lan et al. 2019;
Zafrir et al. 2019; Humeau et al. 2019). However, model dis-
tillation requires significant additional training time to fit the
reduced model, unlike our proposed approach which requires
only O(ns) similarity computations. There is also work on
random features methods and other alternatives to expensive
similarity functions, such as those based on the word-movers
distance (Cuturi 2013; Wu et al. 2018, 2019).



2 Submatrix-Shifted Nyström
In this section, we introduce the Nyström method for PSD
matrix approximation, and describe our modification of this
method for application to indefinite similarity matrices.

2.1 The Nyström Method
Let X = {xi}ni=1 be a dataset with n datapoints, � : X ⇥
X ! R be a similarity function, and K 2 Rn⇥n be the
corresponding similarity matrix withKij = �(xi, xj).

The Nyström method samples s landmark points – let S 2
Rn⇥s be the matrix performing this sampling. S has a single
randomly positioned 1 in each column. Thus KS is an Rn⇥s

submatrix of K consisting of randomly sampled columns
corresponding to the similarities between all n datapoints
and the s landmark points. The key idea is to approximate all
pairwise similarities using just this sampled set. In particular,
the Nyström approximation of K is given as:

K̃ = KS(STKS)�1STK. (1)

Running Time. Observe that the Nyström approximation of
(1) requires just O(ns) evaluations of the similarity function
to compute KS 2 Rn⇥s. We typically do not form K̃ di-
rectly, as it would take at least n2 time to even write down.
Instead, we store this matrix in ‘factored form’, computing
Z = KS(STKS)�1/2

. In this way, we have ZZT = K̃.
I.e., the approximate similarity between points xi and xj is
simply the inner product between the ith and j

th rows of Z,
which can be thought of as embeddings of the points into Rs.
Computing Z requires computing (STKS)�1/2 – the matrix
squareroot of (STKS)�1 which takes O(s3) time using e.g.,
Cholesky decomposition2. Multiplying by KS then takes
O(ns2) time, which is the dominant cost since n > s.
Intuition. In (1), STKS 2 Rs⇥s is the principal submatrix
ofK containing the similarities between the landmark points
themselves. To gain some intuition behind the approximation,
consider removing the (STKS)�1 term and approximating
K with KSSTK. That is, we approximate the similarity be-
tween any two points xi and xj by the inner product between
their corresponding rows in KS – i.e. the vector in Rs con-
taining their similarities with the landmarks. This would be a
reasonable approach – when xi and xj are more similar, we
expect these rows to have higher dot products.

The (STKS)�1 term intuitively ‘corrects for’ similarities
between the landmark points. Formally, when K is PSD, it
can be written as K = BBT for some matrix B 2 Rn⇥n.
Thus Kij = hbi,bji. Equation (1) is equivalent to pro-
jecting all rows of B onto the subspace spanned by the
rows corresponding to the landmark points to produce B̃,
and then letting K̃ = B̃B̃T

. If e.g., rank(K)  s, then
rank(B) = rank(K)  s and so as long as the rows of
B corresponding to the landmark points are linearly inde-
pendent, we will have B̃ = B and thus K̃ = K. If K is
close to low-rank, as is often the case in practice, K̃ will still
generally yield a very good approximation.

2If STKS is singular, the pseudoinverse (STKS)+ can be used.

2.2 Nyström for Indefinite Matrices
Our extension of the Nyström method to indefinite matrices
is motivated by two observations.
Obs. 1: Text Similarity Matrices are Often Close to PSD.
Without some form of structure, we cannot approximate a
general n ⇥ n matrix in less than O(n2) time. Fortunately,
while many similarity functions used in natural language
processing do not lead to matrices with PSD structure, they
do lead to matrices that are close to PSD, in that they have
relatively few negative eigenvalues, and very few negative
eigenvalues of large magnitude. See Figure 1.
Obs. 2: Classic Nyström Fails on Near-PSD Matrices.
Given Observation 1, it is natural to hope that perhaps the
Nyström method is directly useful in approximating many
indefinite similarity matrices arising in NLP applications. Un-
fortunately, this is not the case – the classic Nyström method
becomes very unstable and leads to large approximation er-
rors when applied to indefinite matrices, unless they are very
close to PSD. See Figure 3.

A major reason for this instability seems to be that STKS
tends to be ill-conditioned, with several very small eigenval-
ues that are ‘blown up’ in (STKS)�1 and lead to significant
approximation error. See Figure 2. Several error bounds for
the classic Nyström method and the related pseudo-skeleton
approximation method (where the sampled sets of rows and
columns may be different) applied to indefinite matrices de-
pend on �min(STKS)�1, and thus grow large when STKS
has eigenvalues near zero (Cai, Nagy, and Xi 2021; Goreinov,
Tyrtyshnikov, and Zamarashkin 1997; Kishore Kumar and
Schneider 2017). WhenK is PSD, by the Cauchy interlacing
theorem, STKS is at least as well conditioned as K. How-
ever, this is not the case when K is indefinite. When K is
indefinite, there may exist well-conditioned principal subma-
trices. Indeed, a number of methods attempt to select S such
that STKS is well conditioned (Cai, Nagy, and Xi 2021).
However, it is not clear how this can be done in sublinear
time in general, without further assumptions.

2.3 Submatrix-Shifted Nyström
Given the above observations, our goal is to give an extension
of the Nyström method that can be applied to near-PSD
matrices. Our approach is based on a simple idea: if we let
�min(K) denote the minimum eigenvalue of K, then K̄ =
K � �min(K) · In⇥n is PSD. K̄ can thus be approximated
with classic Nyström, and if |�min(K)| is not too large, this
should yield a good approximation to K itself.

There are two issues with the above approach however: (1)
�min(K) cannot be computed without fully formingK and
(2) when �min(K) is relatively large in magnitude, the shift
can have a significant negative impact on the approximation
quality – this often occurs in practice – see Figure 1.
We resolve these issues by instead sampling a small prin-

cipal submatrix of K, computing its minimum eigenvalue,
and using this value to shift K. Specifically, consider the
Nyström approximationKS1(ST

1 KS1)�1KS1 generated by
sampling a set of s1 indices S1 ✓ [n]. We let S2 be a superset
of S1, with size s2. We typically simply set s2 = 2 · s1. We



Figure 1: Eigenspectrums of language similarity matrices. The eigenspectrums of many text similarity matrices have relatively
few negative eigenvalues – i.e., they are relatively close to PSD. Left: similarity matrix arising from the exponentiation of
Word Mover’s Distance (Kusner et al. 2015) – see Sec. 4.1. Middle and Right: symmetrized cross-encoder BERT sentence and
document similarity matrices (Devlin et al. 2018). Eigenvalues are plotted in decreasing order of magnitude from rank 2 to 201.
The magnitude of the top eigenvalue is typically very large, and so excluded for better visualization.

Figure 2: Eigenvalue histogram plots. To understand why Nyström fails in indefinite matrices, even when they are relatively
near-PSD, we independently sample STKS with sample size of 200, 50 times. For each sample we compute all eigenvalues,
combine, and plot them in a histogram. As we can see, for the STS-B and MRPC matrices, STKS often has eigenvalues very
close to zero. For Twitter, which is very near-PSD, there are many fewer eigenvalues very close to zero. As we can see in Figure
3, classic Nyström performs well on Twitter, but fails on the other two matrices.

then compute e = �min(ST
2 KS2) and apply the Nyström

method to K̄ = K� e · In⇥n.
Since ST

2 KS2 is a principal submatrix of K, e =
�min(ST

2 KS2) � �min(K) and thus K̄ will generally not

be PSD. However, we do have e  �min(ST
1 KS1), since

ST
1 KS1 is a submatrix of ST

2 KS2. Thus, ST
1 KS1� e · In⇥n

will always be PSD. We also do not expect this matrix to have
any very small eigenvalues, since we expect a fairly large
gap between �min(ST

2 KS2) and �min(ST
1 KS1) when s2 is

significantly larger than s1 – e.g. s2 = 2·s1. To further insure
this, we can multiply e by a small constant factor ↵ > 1 (we
typically use ↵ = 1.5) before applying the shift.

Since (ST
1 KS1 � e · In⇥n)�1 is exactly the joining matrix

in the Nyström approximation of K̄, our method resolves
the issue of small eigenvalues discussed in Sec. 2.2. As we
observe in Sec. 3, it is enough to recover the strong perfor-
mance of Nyström on many near-PSD matrices. Since the
minimum eigenvalue of ST

2 KS2 is typically much smaller in
magnitude than �min(K), we often see improved accuracy
over the exact correction baseline as well.
We call our method Submatrix-shifted Nyström (SMS-

Nyström) and give full pseudocode in Algorithm 1. SMS-
Nyström requires roughly the same number of similarity
computations and running time as classsic Nyström. We need
to perform (s2 � s1)2 additional similarity computations to
form ST

2 KS2 and must also compute �min(ST
2 KS2), which

takes O(s32) using a full eigendecomposition. However, this
value can also be very efficiently approximated using iter-
ative methods, and typically this additional computation is

negligible compared to the full Nyström running time.

Algorithm 1: Submatrix-Shifted Nyström (SMS-Nyström)

1: Input: Data {xi}ni=1 2 X , sample sizes s1, s2, with
s2 � s1 scaling parameter ↵, similarity function � :
X ⇥ X ! R.

2: Draw at set of s2 indices S2 uniformly at random without
replacement from 1, . . . , n.

3: Draw at set of s1 indices S1 uniformly at random without
replacement from S2.

4: KS1 = �(X ,XS1), ST
1 KS1 = �(XS1 ,XS1).

5: ST
2 KS2 = �(XS2 ,XS2).

6: e = �↵ · �min(ST
2 KS2).

7: KS1 = KS1 + e ⇤ In,s1 , where In⇥s1 2 Rn⇥s1 has
Iij = 1 if i = j, Iij = 0 otherwise.

8: ST
1 KS1 = ST

1 KS1 + e ⇤ ·Is1⇥s1 .
9: Return Z = KS1(ST

1 KS1)�1/2 with ZZT ⇡ K.

3 Matrix Approximation Results
We now evaluate SMS-Nyström and several baselines in
approximating a representative subset of matrices.
CUR Decomposition. In addition to the classic Nyström
method, we consider a closely related family of CUR decom-

position methods (Mahoney and Drineas 2009; Wang, Zhang,
and Zhang 2016; Pan et al. 2019). In CUR decomposition, the
matrix K 2 Rn⇥n is approximated as the product of a small



subset of columns KS1 2 Rn⇥s1 , a small subset of rows
ST
2 K 2 Rs2⇥n, and a joining matrix U 2 Rs1⇥s2 . KS1 and

ST
2 K are generally sampled randomly – the strongest the-

oretical bounds require sampling according to row/column
norms or matrix leverage scores (Drineas, Kannan, and Ma-
honey 2006; Drineas, Mahoney, and Muthukrishnan 2008).
However, these sampling probabilities require ⌦(n2) time to
compute and thus we focus on the setting where the subsets
of columns and rows are selected uniformly at random.
There are multiple possible options for the joining matrix

U. Most simply and analogously to the Nyström method,
we can set U = (ST

2 KS1)+ – this is also called skeleton

approximation (Goreinov, Tyrtyshnikov, and Zamarashkin
1997). In fact, if S1 = S2, andK is symmetric this method
is identical to Nyström. Alternatively, as suggested e.g., in
(Drineas, Kannan, and Mahoney 2006), we can set s1 =
s2 = s and U = n

s · (KS1ST
1 K)�1ST

1 KS2. As we will see,
these different choices yield very different performance.
Results. We report matrix approximation error vs. sample
size for several CUR variants, along with Nyström and SMS-
Nyström on the text similarity matrices from Fig. 1, along
with a random PSD matrix. Our results are shown in Fig. 3.
• Nyström. As discussed in Sec. 2, while Nyström performs
well on the PSD matrix and the Twitter matrix, which is
very near PSD, it completely fails on the other matrices.

• SMS-Nyström. Our simple Nyström variant with s2 =
2 ·s1 and ↵ = 1.5 performs well on all test cases, matching
the strong performance of Nyström on the PSD and very
near-PSD Twitter matrix, but still performing well on the
less-near PSD cases of STS-B and MRPC.

• Skeleton Approximation. Similar results to Nyström are
observed for the closely related skeleton approximation
method when U = (ST

2 KS1)+, s1 = s2, and S1,S2 are
sampled independently. This is unsurprising – this method
is quite similar to Nyström.

• SiCUR. If we modify the skeleton approximation, using
s2 > s1, we also obtain strong results. Many theoretical
bounds for CUR with joining matrixU = (ST

2 KS1)+ re-
quire s2 > s1 (cf. (Drineas, Mahoney, and Muthukrishnan
2008)), and this choice has a significant effect. It is sim-
ilar to how SMS-Nyström regularizes the inner matrix –
ST
2 KS1 is a rectangular matrix whose minimum singu-

lar value is unlikely to be too small. We find that setting
s2 = 2 · s1 yields good performance in all cases. To mini-
mize similarity computations, we have S1 sample a random
subset of the indices in S2. There is very little performance
difference if S1 and S2 are chosen entirely independently.
We call this approach SiCUR for ‘Simple CUR’.

• StaCUR: Using the U = n
s · (KS1ST

1 K)�1ST
1 KS2 vari-

ant of CUR with s = s1 = s2 yields what we call
StaCUR for ‘Stable CUR’. StaCUR gives good results
on all datasets, however is outperformed by Nyström on
PSD matrices and by SMS-Nyström and SiCUR in most
other cases. Unlike SMS-Nyström and SiCUR however,
StaCUR has no parameters to tune. Unlike for skeleton
approximation, setting s2 > s1 for this method seems to
have little effect so we keep s1 = s2. In Figure 3 we report
results for two variants StaCUR(s) and StaCUR(d), where
S1,S2 are set equal or to independent samples respectively.

StaCUR(s) typically performs better and requires roughly
half as many similarity computations, so we use this variant
for the remainder of our evaluations.

4 Empirical Evaluation
We now evaluate SMS-Nyström, along with SiCUR and
StaCUR on approximating similarity matrices used in docu-
ment classification, sentence similarity, and cross document
coreference, focusing the downstream performance when
using the approximated similarity matrix. In each applica-
tion, we show that our approximation techniques can achieve
downstream task performance that matches or is competitive
with exact methods, using a fraction of the computation.

4.1 Document Classification with WMD
Our first application is approximating Word mover’s dis-
tance (WMD) (Kusner et al. 2015) in document classification.
WMD is a variant on the Earthmover’s distance, which mea-
sures how well words in two documents align, based on how
far apart they are in a word embedding space. Computing the
WMD between two documents with max length L requires
O(L3 log(L)) time (Kusner et al. 2015), and hence comput-
ing a full pairwise distance matrix can be very expensive.
WordMovers Embedding.Wu et al. (2018) suggests a PSD
similarity function derived from WMD, for which the sim-
ilarity matrix K can be approximated very efficiently as
K ⇡ ZZT using a random features approximation. The
resultant feature embeddings Z are called Word mover’s em-
beddings (WME). Experiments show that WME outperforms
true WMD in several classification tasks (Wu et al. 2018).
Our Approach. Following (Wu et al. 2018), we define a sim-
ilarity function between two documents x,! by�(x,!) =
exp(��WMD(x,!)) for a scalar parameter �. While this
function does not seem to be PSD, it tends to produce near-
PSD matrices – see. e.g. the Twitter matrix in Fig. 1. We then
approximate the similarity matrixK using our Nyström and
CUR variants. For Nyström, we write K̃ = ZZT and use Z
as document embeddings (see Alg. 1). For CUR, we factor
U using its SVDU = WSVT as (WS1/2)(S1/2VT ), and
use CWS1/2 as document embeddings.
Evaluation.We evaluate the performance of our embeddings
in multi-class classification for four different corpora drawn
from (Huang et al. 2016; Kusner et al. 2015) – Twitter (2176
train, 932 test), Recipe-L (27841 train, 11933 test), Ohsumed
(3999 train, 5153 test), and 20News (11293 train, 7528 test).
For dataset and hyperparameter details, see App A. We evalu-
ate performance over 20 runs of the respective approximation
algorithms for the test set, and for each run we compute the
average prediction accuracy and standard deviation.

Following (Wu et al. 2018) we compare the performance of
the embeddings produced by WME, SMS-Nyström, SiCUR,
and StaCUR at several dimensions (sample sizes s). ‘Small
Rank’, is the dimension 550 for which the method achieves
highest performance. ‘Large Rank’ is the dimension  4096
(1500, and 2500 resp. for Twitter and Ohsumed) where the
method achieves highest performance. See Table 5 in App.
A for the exact values of these ranks. For all except WME,



Figure 3:Approximation error
plots. Evaluation of sublinear
time Nyström and CUR vari-
ants on the language similar-
ity matrices described in Fig. 1,
and a test PSD matrix, ZZT

with Z 2 R1000⇥1000 having
i.i.d.N (0, 1) entries. Error is re-
ported as kK�K̃kF /kKkF and
averaged over 10 trials. The x-
axis is s/n. For SiCUR, where
s2 > s1, it is s2/n. If a method
does not appear, it may be that
it had very large error, which is
out of range. The error might in-
crease with samples after a cer-
tain limit, we believe this is be-
cause the correction term over-
whelms the approximation er-
ror. Zoomed in plots are in Ap-
pendix E.

the optimal ranks are typically around the dimension limits.
This is expected since the methods achieve higher accuracy
in similarity approximation with higher samples.
As baselines, we also compare against (1) WMD-kernel,

which uses the true similarity matrix with entries given by
�(x,!) = exp(��WMD(x,!)) and (2) Optimal – which
uses the optimal rank-k approximation toK computed with
SVD. This method is inefficient, but can be thought of as giv-
ing a cap on the performance of our sublinear time methods.
Results. Our results are reported in Table 1. SMS-Nyström
consistently outperforms all other methods, and even at rela-
tively low-rank nears the ‘optimal’ accuracy. In general, the
similarity matrix approximation methods tend to outperform
the WME baseline. Interestingly, while StaCUR tends to
have lower approximation quality on these similarity matri-
ces (see Fig. 3), its performance in downstream classification
is comparable to SMS-Nyström and SiCUR.
Observe that the approximation methods achieve much

higher accuracy than previous work, WME, including an 8
point improvement on 20News. Our approximation methods
achieve results that are within 2-4 points of accuracy of the
expensive WMD-kernel true similarity matrix, while main-
taining sublinear time and massive space reduction, (espe-
cially on corpora like Recipe-L which has tens of thousands
of documents). We also observe that SMS-Nystrom and Si-
CUR can achieve high accuracy for small ranks, compared
to both WME and WMD-kernel. The amount of computa-
tion we save is considerable, e.g., we require just 14% of the
computation for Recipe-L as compared to WMD-kernel. For
detailed comparison of rank to performance see App. A.

4.2 Approximation of Cross-Encoder BERT
Similarity Matrices

Our second application is to approximate similarity given by
a cross-encoder BERT model (Devlin et al. 2018).
Evaluation.We consider three GLUE benchmark datasets –

Method Twitter RecipeL Ohsumed 20News

Sm
al
lR

an
k WME

SMS-N
StaCUR
SiCUR
Optimal

72.5± 0.5
75.3± 1.3
73.8± 1.5
74.9± 1.5

75.8

72.5± 0.4
77.7± 1.3
74.9± 1.0
75.9± 1.5

78.8

55.8± 0.3
59.4± 1.5
58.7± 2.6
59.3± 1.9

60.3

72.9
79.3± 1.3
76.8± 1.6
73.0± 0.6

82.2

La
rg
e
R
an
k WME

SMS-N
StaCUR
SiCUR
Optimal

74.5± 0.5
76.1± 1.2
71.9± 2.3
75.3± 2.1

76.9

79.2± 0.3
80.7± 1.1
77.1± 1.0
79.5± 1.7

81.3

64.5± 0.2
65.3± 1.1
55.7± 0.4
63.3± 2.9

68.2

78.3
86.6± 1.5
84.2± 2.1
85.8± 1.0

88.3

WMD-kernel 78.21 82.17 69.03 89.37

Table 1: Results on document classification task with WMD-
based similarity. SMS-Nyström is abbreviated as SMS-N.

STS-B, where the goal is to detect sentence similarity, MRPC,
where the goal is to detect semantic equivalence, and RTE,
where the goal is to detect entailment. See Table 6 in Ap-
pendix B for further details. For each task, we first train the
BERT model on the test set, using code from (Wolf et al.
2019). We then compute the full BERT similarity matrix for
all sentences in the validation set, which consists of a set of
sentence pairs, each with a ‘true’ score, derived from human
judgements. The similarity matrices for the datasets STS-B,
MRPC and RTE are 3000⇥ 3000, 816⇥ 816, and 554⇥ 554
respectively, and thus are very expensive to fully compute,
motivating the use of our fast approximation methods. We
compute approximations to this full similarity matrix using
SMS-Nyström, SiCUR, and StaCUR. In general, the BERT
similarity matrices are non-PSD (see Figure 1), and in fact
non-symmetric. So that SMS-Nyström can be applied, we
symmetrize them as �̄(x,!) = 1/2 · (�(x,!) +�(!, x)).
We use the approximate similarity matrix to make predic-

tions on a dataset of labeled sentences for evaluation. Per-
formance is measured via Pearson and Spearman correlation



Method STS-B(P) STS-B(S) MRPC RTE

SM
S-
N
ys @Rank1

@Rank2
@Rank3

75.61± 1.3@250
77.32± 1.8@350
79.36± 1.5@700

75.27± 1.5@250
76.91± 1.8@350
78.56± 1.3@700

57.37± 2.2@100
63.93± 2.7@250
63.04± 1.1@500

60.01± 1.1@100
61.84± 2.1@250
60.23± 1.1@450

St
aC

U
R @Rank1

@Rank2
@Rank3

28.21± 2.3@250
34.18± 1.6@350
45.87± 1.1@700

46.77± 2.1@250
49.86± 3.2@350
51.73± 1.4@700

53.78± 4.2@100
64.41± 0.5@250
66.97± 1.1@500

58.23± 2.2@100
57.32± 1.2@250
61.37± 0.1@450

Si
C
U
R @Rank1

@Rank2
@Rank3

45.60± 3.1@250
57.65± 2.6@350
68.84± 0.2@700

44.91± 2.8@250
56.52± 2.4@350
68.97± 0.4@700

69.42± 3.7@100
72.38± 2.1@250
75.53± 0.9@500

61.11± 2.2@100
62.67± 1.5@250
63.28± 0.3@450

BERT
SYM-BERT

85.09
85.54

84.70
85.13

83.30
83.75

65.98
66.10

Table 2: Performance comparison of original BERT similarities and approximated similarities on GLUE benchmarks. Ranks (i.e.,
sample size) are recorded next to each result.

Figure 4: Cross-document Entity & Event Coreference
Performance. We report the downstream task F1 perfor-
mance and approximation error on EventCorefBank (ECB+).

with the human scores for STS-B, F1 score of predicted la-
bels for MRPC, and accuracy for RTE. We report the average
scores obtained with different sample sizes, over 50 runs.
Results. Table 2 reports results for the approximations, the
exact, and the symmetrized (SYM-BERT) approaches. SMS-
Nyström performs particularly well on STS-B, while SiCUR
performs best on MRPC. All methods are comparable on
RTE. This performance is inline with the accuracy in approx-
imating K, which is reported in Appendix B.

4.3 Approximate Similarity Matrices for Entity &
Event Coreference

Cross-document entity and event coreference is a clustering
problem. Ambiguous mentions of entities and events that
appear throughout a corpus of documents are to be clustered
into groups such that each group refers to the same real world
entity or event. Cattan et al. (2020) present an approach that
(1) learns a pairwise similarity function between ambiguous
mentions and (2) uses average-linkage agglomerative clus-
tering with a similarity threshold to produce the predicted
clustering. The pairwise similarity function is a MLP which
takes as input the concatenation of RoBERTa (Liu et al. 2019),
embeddings of two mentions and their elementwise product.
This induces a matrix that is asymmetric and not-PSD. We
symmetrize the matrix for the approximations.
Evaluation. We evaluate both the approximation error
as well as the downstream coreference task performance

(CoNLL F1 (Pradhan et al. 2014)) of approximating similar-
ity matrix of the model. We evaluate on the EventCorefBank+
Corpus (Cybulska and Vossen 2014) See App. C for details.
Results. Figure 4 shows the downstream task performance
measured in CoNLL F1 and the approximation error as a
function of the number of landmarks used. We find a sim-
ilar trend as the previous two tasks. SiCUR performs very
well in terms of both metrics, with performance improving
as more landmarks are added, achieving nearly the same F1
(within 1 point) performance when 90% of the data is used
for landmarks and very competitive performance (within 1.5
points) with just 50%, a drastic reduction in time/space com-
pared to the exact matrix. SMS-Nyström required additional
rescaling for this task likely due to sensitivity of threshold
of agglomerative clustering. We report the rescaled version,
which is quite competitive with StaCUR (see Appendix C
for more detail). The results indicate that the proposed ap-
proximation could help scale models for which the ⌦(n2)
similarity computations would be intractable.

5 Conclusion
We have shown that indefinite similarity matrices arising in
NLP applications can be effectively approximated in sublin-
ear time. A simple variant of the Nyström method, and several
simple CUR approximation methods, all display strong per-
formance in a variety of tasks. We hope that in future work,
these methods can be used to scale text classification and clus-
tering based on cross-encoder, word mover’s distance, and
other expensive similarity functions, to much larger corpora.
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