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ABSTRACT

CAV platooning technology has received considerable attention in the past few years, driven by
the next generation smart transportation systems. Unlike most of the existing platooning methods
that focus on linear vehicle dynamics of CAVs, this paper considers nonlinear vehicle dynamics
and develops fully distributed optimization based CAV platooning control schemes via the platoon
centered model predictive control (MPC) approach for a possibly heterogeneous CAV platoon.
One of the major difficulties in distributed algorithm development for the nonlinear dynamics case
is that the underlying MPC optimization problem is nonconvex and densely coupled. To overcome
this, we formulate the underlying MPC optimization problem as a locally coupled, albeit noncon-
vex, optimization problem and develop a sequential convex programming based fully distributed
scheme for a general MPC horizon. Such a scheme can be effectively implemented for real-time
computing using operator splitting methods. Numerical tests demonstrate the effectiveness of the
proposed fully distributed schemes and CAV platooning control.

Keywords: Connected and autonomous vehicle, car following control, distributed algorithm, non-
convex optimization, sequential convex programming
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INTRODUCTION

Inspired by the next generation smart transportation systems, connected and autonomous vehicle
(CAV) technologies emerge and offer tremendous opportunities to reduce traffic congestion and
improve road safety and traffic efficiency in all aspects, through innovative traffic flow control
and operations. Among a variety of CAV technologies, vehicle platooning technology links a
group of CAVs through cooperative acceleration or speed control. Different from many other CAV
technologies that mainly focus on neighborhood traffic efficiency and individual vehicle’s safety,
the vehicle platooning technology focuses on system efficiency and safety. Specifically, by using
the vehicle platooning technology, adjacent group members of a CAV platoon can travel safely at a
higher speed with smaller spacing. This will increase lane capacity, improve traffic flow efficiency,
and reduce congestion, emission, and fuel consumption (7).

Extensive research on CAV platooning control has been conducted, and many approaches
have been proposed, e.g., adaptive cruise control (ACC) (2, 3), cooperative adaptive cruise con-
trol (CACC) (4), and platoon centered vehicle platooning control (5, 6). The ACC and CACC
approaches aim to improve an individual vehicle’s safety and mobility as well as string stability
instead of system performance of the entire platoon, although simulations and field experiments
demonstrate that they do enhance system performance to some extent. On the other hand, the
recently developed platoon centered approach seeks to optimize the platoon’s transient traffic dy-
namics for a smooth traffic flow and to achieve stability and other desired long-time dynamical be-
haviors. This approach can significantly improve system performance and efficiency of the entire
platoon (6). Despite this advantage, the platoon centered CAV platooning approach often encoun-
ters large-scale optimization or optimal control problems that require efficient numerical solvers
for real-time computation. Distributed optimization techniques provide a favorable solution for
the platoon centered approach. Supported by portable computing capability of each vehicle and
vehicle-to-vehicle (V2V) communication (7), distributed computation can handle high computa-
tion load efficiently, is more flexible to communication network topologies, and is more robust to
communication delays or network malfunctions (7, 8). In this paper, we focus on the platoon cen-
tered CAV platooning via distributed optimization. It is worth mentioning that a platoon centered
car following control is a centralized control approach although its computation is distributed, i.e.,
each vehicle computes its own control input in a distributed manner (9). Hence, this approach
is different from decentralized control widely studied in control engineering (10, /1). In particu-
lar, the platoon centered approach focuses on closed loop stability of the entire platoon instead of
stability of individual vehicles and their interactions, e.g., string stability (/7).

Various distributed control or optimization schemes have been proposed for CAV platoon-
ing (7, 11). These schemes can be classified into two types: partially distributed schemes, and
fully distributed schemes. Partially distributed schemes are referred to as those schemes that either
require all vehicles to exchange information with a central component for centralized data process-
ing or perform centralized computation in at least one step (/2), whereas fully distributed schemes
do not require centralized data processing or carry out centralized computation through the en-
tire schemes (9). The former type includes (5, 6). In particular, model predictive control (MPC)
based CAV platooning is developed in (6) and implemented by partially distributed schemes. The
paper (5) extends these distributed schemes to a mixed traffic flow consisting of both CAVs and
human-driven vehicles. The second type includes the recent paper (9), which develops fully dis-
tributed schemes for CAV platooning under the linear vehicle dynamics. Compared with partially
distributed schemes, fully distributed schemes do not need data synchronization or a central com-
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puting equipment, and they impose less restriction on vehicle communication networks and can be
easily implemented on a wide range of vehicle networks; see (9) for more details.

In spite of the abovementioned progress, most of the existing research considers the linear
vehicle dynamics (5, 6, 9). Although the linear vehicle dynamics is suitable for smaller passenger
vehicles, nonlinear dynamic effects, e.g, aerodynamic drag, friction, and rolling resistance, play
a non-negligible role in trucks, heavy duty vehicles, and other types of CAVs. Motivated by the
lack of research for nonlinear vehicle dynamics, this paper aims to develop fully distributed op-
timization based and platoon centered CAV platooning under nonlinear vehicle dynamics over a
general vehicle communication network. To achieve this goal, we propose a general p-horizon
MPC model subject to the nonlinear vehicle dynamics of the CAVs and various physical or safety
constraints. New challenges arise for the MPC horizon p > 2 when the nonlinear vehicle dynam-
ics 1s considered. Precisely, the underlying MPC optimization problem gives rise to a densely
coupled, nonconvex optimization problem, where both the objective function and constraints are
nonconvex. This is very different from the linear vehicle dynamics treated in (9), for which a
convex MPC model is obtained so that various convex distributed optimization schemes can be
used.

The major contributions of this paper are summarized as follows:

(1) To develop fully distributed schemes for the nonconvex MPC optimization problem when
p > 2, we first formulate the underlying densely coupled MPC optimization problem as a
locally coupled, albeit nonconvex, optimization problem using a decomposition method
recently developed for the linear CAV dynamics (9). Furthermore, we propose a se-
quential convex programming (SCP) (/3) based distributed scheme to solve the locally
coupled optimization problem. This SCP based scheme solves a sequence of convex,
quadratically constrained quadratic programs (QCQPs) that approximate the original
nonconvex program at each iteration; such a convex QCQP can be efficiently solved
using (generalized) Douglas-Rachford method or other operator splitting methods (/4)
in the fully distributed manner.

(2) For real-time implementation of the proposed fully distributed schemes, initial guess
warm-up techniques are developed. Extensive numerical tests have been carried out for
three types of CAV platoons in different scenarios for a heterogeneous CAV platoon. The
numerical results illustrate the effectiveness of the proposed distributed scheme and CAV
platooning control under the nonlinear vehicle dynamics.

The paper is organized as follows. Section 3 introduces the nonlinear vehicle dynamics,
state and control constraints, and vehicle communication networks. Sequential feasibility and
properties of the constraint sets are established in Section 4; these properties lay a ground for dis-
tributed optimization. A MPC model with a general prediction horizon p is proposed in Section 5
and is formulated as a nonconvex constrained optimization problem. Section 6 develops sequen-
tially convex programming based fully distributed schemes for the densely coupled nonconvex
MPC optimization problem. Numerical tests and their results are presented in Section 7. Finally,
conclusions are made in Section 8.

VEHICLE DYNAMICS, CONSTRAINTS, AND COMMUNICATION TOPOLOGY

We consider a platoon consisting of heterogeneous vehicles (e.g., cars and trucks) on a roadway,
where the (uncontrolled) leading vehicle is labeled by the index O and its n following CAVs are
labeled by the indices i = 1,. .., n, respectively. Let x;,v; denote the longitudinal position and speed
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of the ith vehicle, respectively. Let T > 0 be the sampling time, and each time interval is given by
kT, (k+1)7) for k € Z :={0,1,2,...}. We introduce vehicle dynamical models as follows. We
first introduce the following nonlinear vehicle dynamical model which captures aerodynamic drag,
friction, and rolling resistance (/0):

2
xi(k+1) = xi(k)—l—’Cvi(k)—F%(ui(k) —c2ivi(k) —c3i-8), (la)
vilk+1) = vi(k)+ T(u,-(k) —co; vl-z(k) —C3 ~g), (1b)

where u;(k) denotes the desired driving/braking acceleration treated as the control input. ¢3 ;- v? (k)
characterizes the deceleration due to aerodynamic drag with the coefficient ¢;; > 0, and ¢3;- g
characterizes friction and rolling resistance with g =9.8m/ s? being the gravity constant and c3;>0
being the rolling friction coefficient. For different vehicles, the coefficients c; ;, c3 ; can be different.
The coefficients ¢, ; and c3 ; in model (1) are usually small for many different types of cars
or road conditions. Since these coefficients are small, the nonlinear terms in (1) are often neglected
in system-level studies. This yields the following widely adopted double-integrator linear model:

xi(k-i-l) = xi(k)—l-fv,-(k)-i-%ui(k), V,'(k-i-l) = v,-(k)-l—fui(k). 2)
The model (2) is suitable for small-size passenger cars, while model (1) can be used for medium-
size or large-size vehicles, e.g., trucks and heavy-duty vehicles. These models are all well studied
and widely accepted in the literature.

State and control constraints. Each vehicle in a platoon is subject to several important state and
control constraints. Foreachi=1,...,n,
(1) Control constraint: @; min < #; < @; max, Where a; min < 0 and a; max > 0 are pre-specified
acceleration or deceleration bounds for the ith vehicle;
(i1) Speed constraint: vyin < vi < vmax, Where 0 < vinin < vmax are pre-specified bounds on
longitudinal speed for the ith vehicle;
(111) Safety distance constraint: this constraint guarantees sufficient spacing between neigh-
boring vehicles to avoid collision even if the leading vehicle comes to a sudden stop.
This gives rise to the safety distance constraint of the following form:

2
Vi P
Xi—] — X ZLi‘f"”i‘Vi_ma 3)
2ai,min
where L; > 0 is a constant depending on vehicle length, and r; > 0 is the reaction time of

vehicle i.
In the above constraints, the acceleration/decelerations bounds as well as the vehicle length L; and
the reaction time r; can be different for different types of vehicles. Further, constraints (i) and (ii)
are decoupled across vehicles, whereas the safety distance constraint (iii) is state-control coupled
since such a constraint involves control inputs of two vehicles. This yields challenges to distributed
computation.

Communication network topology. In this paper, we consider a general communication network
whose topology is modeled by a graph ¢ (7', &), where ¥ = {1,2,...,n} is the set of nodes where
the ith node corresponds to the ith CAV, and & is the set of edges connecting two nodes in 7. Let
; denote the set of neighbors of node i, i.e., A = {j| (i, j) € &}. The following assumption on
the communication network topology is made throughout the paper:
A.1 The graph ¢ (7, &) is undirected and connected. Further, two neighboring vehicles form
a bidirectional edge of the graph, i.e., (1,2),(2,3),...,(n—1,n) € &.
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Since the graph is undirected, for any i, j € ¥ with i # j, (i,j) € & means that there exists an
edge between node i and node j. In other words, vehicle i can receive information from vehicle j
and send information to vehicle j, and so does vehicle j. The above setting given by A.1 includes
many widely used communication networks of CAV platoons, e.g., immediate-preceding. We also
assume that the first vehicle can receive xo, vo and ug from the leading vehicle.

SEQUENTIAL FEASIBILITY AND PROPERTIES OF CONSTRAINT SETS

As indicated in (6), the constraint set of the underlying MPC optimization problem at time k (cf.
Section 5) depends on the position and speed of the vehicles at times 0, 1,...,k— 1. A fundamental
question is whether the constraint set is nonempty at each time along a system trajectory for an
arbitrary feasible initial condition at k = 0, provided that (uo(k),vo(k)) of the leading vehicle
satisfies the acceleration and speed constraints for all k € Z. If the answer is affirmative, the
system is sequentially feasible (6). The sequential feasibility has been shown for a CAV platoon
under the linear vehicle dynamics (6). The following proposition guarantees sequential feasibility
under non linear vehicle dynamics (1).

Proposition 4.1. ((15),Proposition 3.1) Consider the nonlinear vehicle dynamics given by (1).
Suppose the nonnegative constants c¢; ;,c3; are such that Cz,inznax +¢3,8 < Qjmax and r; > T for
eachi=1,...,n. Then the system is sequentially feasible for an arbitrary feasible initial condition.

We show below that under mild assumptions, the constraint set has nonempty interior. This
property is critical for the Slater’s constraint qualification in optimization.

Proposition 4.2. ((15),Proposition 3.2) Consider the nonlinear vehicle dynamics (1). Suppose the
nonnegative constants cs j, c3 ; are such that C2,in2nax +¢3,i8 <@imax and r; > T foreachi=1,...,n.
For any feasible (x;,v;)!_, and uo, if vo > Vmin and vo + Tug > Viin, then the constraint set has
nonempty interior.

In light of the above result, we make the following assumptions throughout the rest of the
paper unless otherwise stated:
A.2 For each i = 1,...,n, the nonnegative constants c ;,c3; satisfy c;;v%nax +¢3,i8 < Qi max
and the reaction time r; satisfies r; > 7. Further, (vo(k),uo(k)) is feasible with vy(k) >
Vmin forall k € Z .
It will be shown in Corollary 5.1 that under this assumption, the constraint set of a general p-
horizon model predictive control model has nonempty interior.

FORMULATION OF MODEL PREDICTIVE CONTROL FOR CAV PLATOONING

We consider the model predictive control (MPC) approach for CAV platooning similar to that
given in (9). Let A be the desired constant spacing between two adjacent vehicles, and (xo, vo, o)
be the position, speed, and control input of the leading vehicle, respectively. Define the following
vectors: (i) the relative spacing error z(k) := (xo — X1 — A, Xy — Xy — A) (k) € R™; (ii) the
relative speed between adjacent vehicles Z/(k) := (vo — vi,...,va—1 — v,) (k) € R"; and (iii) the
control input u(k) := (u1,...,u,) (k) € R". Further, let w;(k) := u;_ (k) —u;(k) foreachi=1,...,n,
and w(k) := (wl b 7wn) (k) € R", representing the difference of control input between adjacent
vehicles. Hence, for any k € Z, u(k) = —S,w(k) +uo(k) - 1, where 1 := (1,...,1)T is the vector
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of ones, and S, € R"™" is a lower triangular matrix with (S,);; =1 for all i < j, and S, ! is its
inverse given by

1
-1 1
S—l — ERan (4)

-1 1
-1 1
Given a prediction horizon p € N, the p-horizon MPC control is determined by solving the
following constrained optimization problem at each k € Z.., involving all vehicles’ control inputs
for given feasible (x;(k),v;(k))?_, and (vo(k),uo(k)) at k subject to the nonlinear vehicle dynamics

(D):

minimize J(u(k),...,u(lk+p—1)):= 3)
%Zl (S ot s = 1)8,7 QusS, Nkt s — 1) 4 2 (k4 9)0selh +9) + (2 (k4 9))7 Q0 (k+5) )
ride comfort traffic stability and smoothness
subject to: foreachi=1,...,nandeachs=1,...,p,
Aj min < ui(k+s - l) < aj max, Vmin < V,‘(k-FS) < Vmax, (6)
(Vi(k + S) - Vrnin)z

xXi—1(k+s)—xi(k+s) >Li+ri-vilk+s)— S , (7
i,min

where Q; 5, Q- s and O, s are n X n symmetric positive semidefinite weight matrices to be discussed
soon. When p > 1, we assume that ug(k+s) = ug(k) foralls=1,..., p— 1 and use these ug(k+s)’s
and the vehicle dynamics model (1) to predict (xo(k+s+1),vo(k+s+1)) fors=1,....,p—1.
The physical interpretation of the three terms of the objective function J can be found in

(9). Further, The presence of the matrix S, ! in the first term is due to the coupled vehicle dynamics
through the CAV platoon; see (9). To develop fully distributed schemes, we make the following
assumption on the weight matrices Q. s, O 5, and Q,, s through the rest of the paper:

A3 Foreach s=1,...,p, Q,s and Oy  are diagonal and positive semidefinite (PSD), and

Ous 1s diagonal and positive definite (PD).

More discussions on this class of weight matrices can be found in (9).

Corollary 5.1. Suppose the assumption A.2 holds. Then for any p € N, the constraint set of the
p-horizon MPC optimization problem (5) has nonempty interior at each k.

Constrained Optimization Model under the Nonlinear Vehicle Dynamics

In this subsection, we discuss the constrained optimization model (5) arising from the MPC at each
time k under the nonlinear vehicle dynamics (1) with the positive parameters c¢; ; and c3 ;. More pre-
cisely, we write (5) in a more compact format as a function of the decision variable. For notational
simplicity, define the parameter vectors @, := (c2,1,...,¢2,) € R and @ :=(c31,...,¢3,) ERY,
where the subscripts d and f denote the drag and friction respectively. Further, ¢ := (¢, ¢ f) S
R?". Consider the constrained MPC optimization model (5) at a fixed time k € Z,. Let u(k) :=
(uy(k),...,u,(k)) € R" with w;(k) := (u;j(k),...,ui(k+p—1)) € RP. Recall that for each i =
l,...,nand j=0,...,p—1,a;(k+ j,ui(k),...,ui(k+j)) = wi(k+ j) — c2,vi(k+ j) — 3,8, where
we note that v;(k+ j) depends on u;(k),...,u;(k+ j— 1) for j > 1. Specifically, for p > 1,
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ai(k,ui(k)) = u;(k) — c2,v7 (k) — 3,8,
ailk4 1w (k)i (k+ 1)) = w(k+ 1) — e, [vi(k) + tai(k, ui (k)] — e3.,

p—2 2
ai(k+p—1ui(k),...,ui(k+p—1)) = ui(k+p—1)—ca; [Vi(k) +7 ) ailk+s,ui(k),.. -,Mi(k+s))}
s=0
—C3,i8
By slightly abusing the notation, we may denote each a;(k + j,ui(k),...,ui(k+ j)) by
ai(k+ j,u;(k)). Define for each i =1,...,nand j=0,1,...,p—1, bi(k+ j,u,_1(k),u;(k)) :=
aji—1(k+ j,wi_1(k)) —ai(k+ j,u;(k)), where ap(k+ j,up(k)) := uo(k) forall j=0,1,...,p—1. 1t

follows from the nonlinear vehicle dynamics (1) that for each i=1,...,nand j=1,...,p,
slk+j) = zk)+ jTk +r2): bi(k+s,u;—1(k),u;(k)), (8)
i1
Zk+j) = +‘ch k4 s,u;_1(k),u;(k)). ©)

For a fixed k € Z_., define for each i=1,.

a;(u;(k)) == <ai(k,u,-(k)), ai(k+ LK), ui(k+ 1)), ..., ai(k+p— Lug(k), ..., ui(k+p— 1))).
In what follow, we often omit k in u;(k) when & is fixed. Further, define the function a : R"? — R"?
as a(u) := (a(u;),...,a,(u,)). Note that if ¢ = (904,97) = (c2,¢34)f-; =0, then a(u) = u for
all u € R""”. We introduce more notation. Define the following matrices:

0, = diag(QWJ, ijp> € R, Sl .= diag(Sn_l, ...,Sn_l> e R"P*"P,
—_——

p—copies
Furthermore, let E € R"7*"P be the permutation matrix whose (i, j)-entry is given by

1 ifi=nk+s, j=p-(s—1)+k+1, for k=0,....p—1,s=1,...,n;
0, otherwise.
Clearly, E =1, when p =1, and

E; ;= (10)

u(k) u
u(k + 1) up
. =FE| .| =FEu
ulk+p—1) u,
Using these matrices, the following term in the objective function J in (5) satisfies
uk) T\ u(k)
s : 0, |s : —u"E’S70,S'Eu.
u(k+p—1) ulk+p—1) g

where ¥ € R"7*"P is symmetric PD when A.3 holds. Therefore, the objective function J in the
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MPC model (5) becomes
J(w) = J(u(k),...,u(k+p—1))
2
= E[ZZ k+S)QzyZ(k—l—S)+(Z’(k+s))TQZ,7szl(k+s)}+%uT\Pu
Iy 1 / T / 72 T
= Q[Z (k+5)Q:s2(k+5)+ (2 (k+5))" Qy sz (k-l-S)}-i-?a (u)Pa(u)

2
—1—% (uT‘Pu - aT(u)‘Pa(u)> .

In light of the expressions for z(k+ j) and Z'(k+ j) given by (8)-(9), it follows from the
similar argument in (9) that the objective function

2
J(u) = %aT (wWa(u) +c’a(u) +y+ % (uT‘Pu —a’ (u)‘Pa(u)> )

where W € R"7*" ¢ € R" and y € R. In fact, W = E I'S-TES'E fora symmetric PSD matrix
® whose blocks are diagonal; see (9) for the closed-form expression of W. In particular, under
the assumption A.3, W is PD and only depends on Q,,Q ; and Q,,, s = 1,..., p. In addition,
the linear term in J(u) can be written as ¢’ a(u) = ?:chTﬂia,'(u,-), where ¢4 is the subvector
of ¢ corresponding to a;(w;). Hence, c 4 depends only on z;(k),z;(k),ziy1(k), 2}, (k)’s for i =
l,...,n—1, ¢y depends only on z,(k),z,(k), and only c 4, depends on ug(k). These properties
are important for developing fully distributed schemes later on. To characterize the constraints, let
the matrix S, € RP*? be defined in the same way as in (4) with n replaced by p, and (S,u;)o := 0.
Recall that foreachi=1,...,nand j=1,...,p,

i1
Vi(k—l—j) = Vi(k) +7 Z a,-(k+s,u,-(k)) = v,-(k) + ‘L'(Spai(u,-))j.

s=0
Further, x;_; (k+ j) —xi(k+ j) = zi(k+ j) + A depends only on u;(k) and u,;_; (k) as shown in (8).
Hence, foreachi=1,...,nand each j = 1,..., p, the safety distance constraint is given by:

~ (ilk+ j) = vinin)? : :

(Hi(lli—l(k>,ui(k)))j =Li+ri-vi(k+j)— (il 2;.) : min)” _ [xi—1(k+j) —xi(k+ j)] <0.
i,min

Note that H;(-) depends only on uj(k) although it is written in the above form for notational

convenience. Combining the above results, the MPC model (5) is formulated as the following

optimization problem:

minimize J(u) := Ja’ (u)(W — 72¥)a(u) +cTa(u) + y+ %2uT‘Pu,
subjectto w; € 27,  Vmin < vi(k) +7(Spai(w)), < vinax, (11)
(H,-(ui_l,ui))sgo, Vi:1,...,l’l, VSZl,...,p

where Z; := {u; € R”|a; minl <w; < ajmax1} foreachi=1,...,n. It can be shown that W — 72y
is PSD. Clearly, the optimization problem in (11) has a (possibly non-unique) solution. While (11)
is a convex optimization problem when p = 1, it is easy to verify that (11) yields a nonconvex
optimization problem when p > 1. Moreover, the objective function J is densely coupled, and the
safety distance constraint function (H,- (w1 ,u,-))j not only depends on u; but also on u;_; of the

(i— 1)-th vehicle, and thus is locally coupled with its neighboring vehicles. This coupling structure,
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together with the nonconvexity of the optimization problem (11), leads to many challenges in
developing fully distributed schemes.

FULLY DISTRIBUTED ALGORITHMS FOR COUPLED NONCONVEX MPC OPTIMIZA -
TION PROBLEM

In this section, we develop fully distributed algorithms for solving the underlying coupled, noncon-
vex optimization problem (11) at each time k € Z_. To achieve this goal, several new techniques
are exploited: the formulation of locally coupled (albeit nonconvex) optimization, sequential con-
vex programming, and operator splitting methods.

Formulation of MPC Optimization Problem as Locally Coupled Optimization

Recall that the constraints of the MPC optimization problem (11) are locally coupled (/6). Moti-
vated by distributed computation for locally coupled convex optimization (9, 16), we show below
that (11) can be formulated as a locally coupled nonconvex optimization problem. See (/6) for the
framework of locally coupled convex optimization and (9) for its application to CAV platooning
under linear vehicle dynamics.

The framework of a locally coupled optimization problem requires that both its objective
function and constraints are expressed in a locally coupled manner satisfying the communication
network topology constraint. However, the objective function in the underlying MPC optimization
problem (11) is densely coupled. As indicated in [Section 4, (9)] (for convex case), this difficulty
can be overcome by using certain matrix decomposition techniques. Specifically, under the as-
sumption A.3, the PSD or PD matrix W € R"”*"? in (11) can be decomposed as W =Y"_, WS
where all W* € R"?*" are PSD and satisfy the following conditions:

~ 0
! = 1 W = ~ (s=2)p  _
‘/V1 |: :| : n |:0(n—2)[7 An:| , fOfS:z,...,n-l,Ws_ W
0(” 2)p w

where 0, € R¥* denotes a zero matrix and

Wl — -(‘?1)1,1 (‘?1)1,2 ERprZp Wn,: (Wj)n—l,n—l (Wj)n—l,n E]R2p><2p
LW (Whp ’ ' W1 WM ’
and foreachs=2,...,n—1,
. _(Wj)stsfl (Wj%fl,s . 0
W= (W)sr W)y (W)ggpr | ERPEP,
L 0 (Ws)s-i-l,s (Ws)s—i-l,s—H

When W is PD, it is shown in (9) that there exist W*’s such that each W* in the above decomposition
is PD.

Since Q,, is diagonal and PD, it follows from the similar argument in that the PD matrix
W € R"*"P can be decomposed in the similarly way. Specifically, there exist matrices WS such
that W =Y ‘Ps where W*’s satisfy the abovementioned conditions with ws (resp. W) replaced
by s (resp. ‘Ps ). By setting ¥ = 0 in (11) without losing generality, the objective function J(u) in
(11) can be decomposed as
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n—1
J(u) = Ji(u,m) 4+ Y Ji(wio g, w, i) +Ju (w1, 0y),
i=2
where the functions J;’s on the right hand side are given by
1 ~ 1) [ai(ar)
J 7 = T T (WI_TZ\P1> T
1(ug,up) > [al () a3 (w)] a () +cpan(u)
2
Tl 1@l (W
T3 [uf ul]¥ [u2]7
Lrr T T i oGy 31 (i) T
Ji(wim,wwg) = E[ai_l(ui—l) a/ (w;) al, (ui1)] <W—T ‘P> a;(w;) | +cgai(w)
a1 (Wiy1)
2 Wit
+= [l ul Wl ¥ |, Vi=2,...,n—1, (12)
Uit]
1 ~ =\ |a,—1(a,_
I(wngu) = [l () af ()] (W7 200 (MWD )
2 an(up) "
2
T ~ (W1
T e

In view of the assumption A.1, the above decomposition of J satisfies the communication network
topology constraint.

In what follows, we use the above decomposition to formulate a locally coupled optimiza-
tion problem by introducing copies of local variables. We consider the cyclic like network topology
through this subsection, although the proposed formulation and schemes can be easily extended to
other network topologies satisfying the assumption A.1. In this case, 4] = {2}, A, = {n— 1},
and A ={i—1,i+ 1} fori=2,...,n— 1. Hence, each J; in the decomposition of J can be written
as Ji(u;, (u;) jex)-

Recall that for each i = 1,...,n, Z; := {u; € R?|a; minl <u; < a; max1}. Further, define

g/i = {ul‘GRP|VminSVi(k)+T(Spai(ui))sSvma)h vs:l?"'7p}7 (13)

% o= {(wi,w) eRP X R |(H;(wi1,0))s <0,  Vs=1,...,p}. (14)
Here 2] depends only on u; although it is written in the above form for notational convenience.
Let O denote the indicator function of a closed set S. Define, foreachi=1,...,n,

T, (w)) jexy) o= Ji(wi, (0)) jexg) + 8 2, (W) + S5 (w) + 8 (w1, W)

Foreachi=1,...,n, define U; := (u;, (u; ;) jcs;), where the new variables u; ; represent the pre-
dicted values of u; of vehicle j in the neighbor .4; of vehicle i, and let u := (uy,...,u,) € RV,
Define the consensus subspace &7 := {ﬁ eRVN | uj=u;,v(i,jeé } Then the underlying op-

timization problem (11) can be equivalently written as the following locally coupled optimization
problem:

n
min Y Ji(W;), subjectto W€ .. (15)
=1

Here the functions J;’s are decoupled, and the consensus constraint .o/ gives rise to the only cou-



27
28
29
30
31
32

33

34
35
36
37

38
39

Shen, Hathibelagal Kammara, and Du 12
pling in this formulation.

Sequential Convex Programming and Operator Splitting Method based Fully Distributed
Algorithms for the MPC Optimization Problem

When p = 1, the underlying MPC optimization problem (11) or (15) is a convex quadratically
constrained quadratic program (QCQP), for which the fully distributed schemes developed in (9)
can be applied. We consider p > 1 from now on. In this case, the underlying optimization problem
(11) or (15) yields a non-convex minimization problem whose objective function and constraints
are non-convex, whereas the coefficients ¢, ; > 0 and c3; > 0 defining the nonlinearities are small.
Therefore, it is expected that an optimal solution under the nonlinear vehicle dynamics is “close”
to that under the linear vehicle dynamics. We discuss this observation as follows; see [section 5.2,
(15)] for details.

Recall that the parameter vector @ = (@4, Q) = (c2,i,¢3,4)1; € R2". To emphasize the
dependence of the objective function J on ¢, we write it as J(u, ¢) by abusing the notation. Further,
the constraints in (11) can be written as 2 N% N %, where 2" = 27 x --- x %, is a convex and
compact set, and # N2 = {u|g;(u,9) <0,i=1,...,m} for some real-valued functions g;, which
also depend on ¢. When ¢ =0, J(u,0) is a strongly convex quadratic function, and each g;(u,0) is
an affine or a convex quadratic function. Hence, when ¢ =0, (11) attains a unique optimal solution
u, o. Therefore, letting .}, denote the solution set of (11) corresponding to the parameter vector
¢, we obtain the following corollary from [Proposition 5.1, (15)].

Corollary 6.1. Consider the optimization problem (11) with the parameter vector ¢ € ]R%r" at time
k. Suppose r;i > 7 for all i and vo(k) > viin. Then for any € > 0, there exists 1 > 0 such that for
all ¢ € B2 with [ ] < 1, supyc., [u— .| < &.

To solve the coupled non-convex optimization problem (11) with ¢ # 0, we exploit the
sequential convex programming (SCP) method (/3). To be self-contained, we provide a brief
description of the SCP method for an important special case as follows. Consider the nonlinear
program

(P): mIiRnf(x) subjectto x€ &, gi(x)—ri(x) <0, Vi=1,...,¢, (16)
x€R?

where & C R" is a closed convex set, f and each g; are C! (but not necessarily convex) functions,
and each r; is a convex C'-function. We assume that V f and Vg; are Lipschitz on 2, i.e. there exist
constants Ly > 0 and Ly, > O such that ||V f(x) =V f(x')||2 < L¢|lx—x'||2 and || Vgi(x) = Vg;(x')||2 <
Lg|lx—x'||2 for all x,x’ € & and i =1,...,{. Let X be a feasible point of (P'), i.e., x € &' and
gi(xX) —ri(x) <0, i=1,...,£. Consider an approximation of the constraint set of (P’) at x:

< Y 1/
CxAVei() izt {Vri(X) 1izr)

~ ~ ~ . Lg ~ ~ ~ .

— {2 P10 +VE ) + e 7 ) + V@ ) 0, 1= 1....,8).
It is shown in [Lemma 3.1, (13)] that € (%, {Vg;(X) }_;, {Vri(¥)}'_,) is a nonempty closed convex
set. The following lemma provides a simple sufficient condition for the Slater’s condition to hold

for the approximated constraint set; this condition is useful for convergence analysis of the SCP
scheme.

Lemma 6.1. Given a feasible point X of (P'), suppose € (X, {Vgi(x)}._,, {Vri(x)}_,) is not single-
ton. Then the Slater’s condition holds for € (x,{Vgi(%)}'_,{Vri(X)}/_,), i.e., there exists 7 € P
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such that gi(%) + Vgi(®) (£ %) + FE-F3 - [1(®) + V@ E-D] <0,Vi=1,....L

The SCP scheme solves (P’) in (16) as follows (/3): consider an approximation of the
objective function £ for a given feasible point & f(z;%) := f(%) + [Vf®)]T (z— %) + £ L1z —x]3.

Clearly, f is a strongly convex function in z. At each step, the SCP scheme solves the convex
optimization problem at x* usmg the convex approximation f ( ) over the approximating convex
constraint set €' (x*, {Vg;(x*) }¢_,, {Vri(x*) }2_,) to generate a unique optimal solution x** 1. Tt then
updates the gradients Vf, Vg;, and Vr; using x*1 and formulates another convex optimization
problem and solves it again. It is shown in that any accumulation point of the sequence (x*)
generated by the SCP scheme is a KKT point of (P’ ) provided that the accumulation point x*
satisfies the Slater’s condition for ' (x*, {Vg;(x*) }_,, {Vri(x") }_)).

We now apply the SCP scheme to develop a fully distributed scheme for the non-convex
MPC optimization problem (11). Consider the locally coupled formulation (15) of the MPC
optimization problem (11). Recall that U; := (u;, (u; ) e s), and U := (Uy,...,U,). For each
i=1,...,n, it follows from the velocity constraint %; in (13) and the safety distance constraint
Z; in (14) that there are real-vauled smooth functions g;; and convex quadratic functions r;
for s = 1,...,3p such that u; € %, N % if and only if g (u;) —ris(w;) <0 for s =1,...,3p;
specific choices of g; s and r;; are given in 7.2. In view of the real-valued objective function

A~

J(u) =Y" , Ji(u;), the problem (15) becomes

mmZJ u;), subjecttouc ./, ;€ 2, gis(W)—ris(W) <0, Vi=1,...,n, s=1,...,3p.

Recall that 2" = 21 x --- x A, is a convex compact set. Since 2 is compact and .o is the
consensus subspace, it is easy to show that there are positive Lipschitz constants Ly, and Ly, = for
the gradients of J; and g; ; on &/ N2, i.e., for all o e N,
IVIi() = VI@) ]2 < Ly [Bi—wla,  Vi=1...n,
||Vgl~7s(ﬁ,-)—Vg,~s( )||2 < L ||ll, i||27 Vi=1,...,l’l, S=1,...,3p.

To develop a SCP based fully dlstrlbuted scheme, we introduce more notation. Given any
u= ()", €2 and any vectors dj;, d, , and d;,, fori=1,...,n and s = 1,...,3p, consider
the following function as a convex approximation of the original nonconvex objective function J,
where y = (y1,...,y,) € RV with each y; being a suitable subvector of y:

n

~ Ly, ~
FOBAdy ) = Y (a8 +df (8) 0 —8) 4+ =l — i3 )
i=1
and the following sets as convex approximations of the original nonconvex constraint sets % N 2"

¢ (0, {dg,,dy,, i=1,...,n,s=1,...,3p})
. t/gt;//' L dT L, Lglv -~ 2
= qyE | gis(wi) + gi_s<yl u;) + lyi —uil|2

—[ri,s(ﬁi)+d£5(yi—ui)] <0, i=1,....n, s=1,...,3p }
Clearly, f is a strongly convex quadratic function in y and decoupled in y;’s, and the convex set
Cﬁ(ﬁ, {dgvdryi=1,...,n,5=1,... ,p}) is the Cartesian product of 4;’s for i = 1,...,n, where
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each L
~ 3 3 ~ i,s -~
%(uiv {dgi,s}sil7{dri,s}s£l) = {yl < % ‘ gi./s(“i) +d5]':s(yl B ul) g Hyl uiH%

[rzs(ul)—i_dr,s(yl )] <0, SZ])'~'73P}~
Using the above notation, the iterative scheme of the SCP method is: for a feasible initial
guess a,
@ — argmin { FO (VLU |y € o7, and
y
ye e (u {Vg,s( Y Vi@, i=1,...,n, 5= l,...,3p})}. (17)

By virtue of Corollary 6.1, the initial u 1 can be chosen as a solution to the problem (11) or (15)
with ¢ =0, where the (approximate) constraints are polyhedral or quadratically constrained convex
sets. An efficient fully distributed scheme has been developed in (9) to compute such u’. Further,
if 0" is feasible, then U" is feasible for all k and the constraint set in each step k is a nonempty
closed convex set.

The convex minimization problem (17) at each step k can be solved via operator split-
ting method based fully distributed schemes. Fix o = (ﬁf)l’.’zl and the related gradients eval-

uated at u*. We write the objective function f (v;u,{d;,}_,) as f(y) and the constraint sets

%(ﬁf AVgis(u ., Vr; S@),s=1,...,3 p}) as €;’s for notational simplicity. Clearly, it € € for
each i. If €; is singleton for some i, i.e., 6; = {u }, then we have ukH = ﬁf such that the op-
timization problem can be reduced to a simpler problem. When %; is non- smgleton it follows
from Lemma 6.1 that the Slater’s condition holds for that €. Let F(y) := f(y; 0", { V(W)Y ) +
06 (y)+ 06 (y). By dF (y) ={Vf(y)} + A% (y) + A (y). As a result, several operator splitting
method based fully distributed algorithms (/4, 16) can be applied to solve the convex optimization
problem (17).

We consider the (generalized) Douglas-Rachford splitting method based distributed scheme.
Specifically, define for each i = 1,...,n, fi(y;) := J;(@)) +d};(ﬁ;{)(yi —u;) + %H)’i —u}|%, and
f,(y) = fi(yi) + 8%;(yi). Hence, the objective function f(y) = Y, fi(yi). For any constant
0 <o < 1andp > 0, the Douglas-Rachford splitting method based scheme is

_ t 1t t+1_ ¢ t+1

=My), 77 =7 +2a- [Proxpf+ +pfn(Zw —Z)—w ], VtE€Zy,
where Prox;, denotes the proximal operator of a proper lower semicontinuous convex function 4,
and IT,, denotes the Euclidean projection onto 7. Since <7 is the consensus subspace, it is shown
that for any o := (Uy,...,u,) where 0; := (u;, (;;) je s), U := I (W) is given by:
—_— —_— 1 ) ~~ . .
uj:uij:—(uj+ Z ukj>, V(i,j)€&. (18)

1+ |¢/16| keA;

Furthermore, since f,-’s are decoupled, a distributed version of the above algorithm is given by:

1 = . .
wt.+ = Zi’, 1= 1,...,1’1, (19&)
2 =724 2a- [Prox (2wt —2) —Wﬁl], i=1,....n (19b)

fi 1
Note that the proximal operator in the second equation of (19) is given by Prox_~(2w/ 1 —z) =

pfi
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argming, . fi(vi) + i|| yi — (2wt —21)||3, where %; is the intersection of the polyhedral set 2;

and a quadratically constrained convex set. Since f; is a convex quadratic function, Prox o7 A(2w’+1 —

zt) can be formulated as a second-order cone program or QCQP and solved by SeDuMi (7). See
Algorithm 1 for its pseudo-code.

Algorithm 1 Sequential Convex Programming and Douglas-Rachford Splitting Method based
Fully Distributed Algorithm for p > 2
1: Choose constants 0 < ¢ < 1 and p >0

lin

2: Solve the problem (15) with ¢ = 0 via a fully distributed scheme and obtain a solution u
3: Initialize k = 0, and set an initial point a’ =a"
4: while the stopping criteria is not met do
5. Compute VJ;(u ) Vgis(u ) Vris(u ) and set 22 =0 and 1 = 0.
6: repeat
7: fori=1,...,ndo
8: Compute 7 using equation (18), and let w/ e z
9: end for
10: fori=1,...,ndo
11: 2 7 +20¢ [Proxpﬁ(Zwﬁﬂ—zﬁ)—wﬁl}
12: end for
13: t+—t+1
14:  until an accumulation point is achieved
150 Setu* ™ =w and k k41

16: end while
17: return 0 = 0"

Since 2" is a compact set, the numerlcal sequence (U ) generated by Algorithm 1 always
has an accumulation point denoted by u*. Under very mild conditions, u” is feasible and is a KKT
point of the nonconvex program (11). Our numerical experiences show that (ﬁk ) converges to a
(local) minimizer u*. This coincides with the observation in Corollary 6.1 when c2,; and c3; are
small.

NUMERICAL RESULTS

Numerical Experiment Setup and Weight Matrix Design

Numerical tests are carried out to evaluate the performance of the proposed fully distributed
schemes and the platooning control for a possibly heterogeneous CAV platoon. We consider a
platoon of an uncontrolled leading vehicle labeled by the index 0 and ten CAVs, i.e., n = 10. The
sample time 7 = 1s, and the speed limits vi,x = 27.78m/s and vy, = 10m/s. For the sake of length
limit, in this paper we consider only heterogeneous CAV platoon (refer to arxiv paper for more re-
sults). Let the variable vector var,,. := [1.1 1.05 0.9 095 1.1 1.05 0.9 095 1.05 0.95} €
R0 then the reaction time r = 1.1 X vary. secs i.e., r; = 1.1 x 1.1 = 1.21 secs, r» = 1.1 x 1.05 =
1.155 secs, and so on upto rjp = 1.1 X 0.95 = 1.045 secs. Similarly, the deceleration limits
ayip = —7.4 X vary,. m/ s2, and the nonlinear dynamics coefficients c¢; = 3.5 X vare, X 10~% and
c3 = 1.05 X vary,. x 1074, Other parameters are fixed across the platoon and are as follows: the
vehicle length L; = 7m, the desired spacing A = 60m, the acceleration limits amax = 1.4m /s>
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The initial state of each CAV platoon is z(0) = Z/(0) = 0 and v;(0) = 25m/s for all i =
0,1,...,n. The cyclic-like graph is considered for the vehicle communication network, i.e., the
bidirectional edges of the graph are (1,2),(2,3),...,(n— 1,n) € &. Following the discussions in
(9), we choose the MPC horizon pas 1 < p <5.

We present the choices of weight matrices used below. Define

o = (38.85,40.2,41.55,42.90,44.25,45.60,46.95,48.30,49.65,51.00) € R'?,
B = (130.61,136.21,141.82,147.42,153.03, 158.64,164.24,169.85,175.46,181.06) € R*,
¢ = (62,74,90,92,106,194,298,402,454,480) € R'.

a! =6a, p! BandC —OSCWhenp—l

AT R T R T
S=‘—><&, BS= ———xB, (= ¢, s=2,...,min(p,3)
i <s115>4 (s—1)* (s—1)*
Orp:7’
0.0228 0.044 ~ s 0.0026 ~

s _

(S_1)4><OC, ﬁ _( 1>4Xﬁ7 C :(S_1)4><€, S:4,...,p.

The above vectors o, 3°,{* define the weight matrices Q5,07 5,0ws for s =1,...,5,
which further yield the closed loop dynamics matrix Ac. It is shown that when these weights are
used, Ac is Schur stable for each p =1,...,5. To evaluate the proposed CAV platooning control
we consider the three scenarios used in (9).

Performance of the Proposed Fully Distributed Scheme

When p = 1, the underlying MPC optimization problem (15) is a convex QCQP, for which the
generalized Douglas-Rachford splitting method based fully distributed algorithm developed in (9)
is used. In what follows, we focus on p > 1.

When p > 1, the underlying MPC optimization problem (15) is nonconvex, and the sequen-
tial convex programming and Douglas-Rachford splitting method based fully distributed scheme
is applied (cf. Algorithm 1). To apply this algorithm, we discuss the choices of the smooth func-
tions g; s and the convex function r; for the (approximate) nonconvex constraint sets %; and
Zi, where i = 1,...,n. For j=1,...,p, define the function ¢;;(w;) := v;(k) + ‘L’((Spu,) — -

3,8 —C2 lZ [ ( )+ T(Spui)s}z). The approximate % is given by % = {u; | vipin — g; j(u;) <
0, qw(ul) Vmax <0, j=1,...,p}. Define g (0;) := vmin —g; j(w;), and r; 5(u;) := 0 for s =
1,...,p; gis(w;):=0,and ri s(w;) := —g; j(0;) +vmax fors=p—+1,...,2p. Then %; = {u; | g; s(0;) —
ris(w;)) <0, s=1,...,2p}. Similarly, foreachi=1,...,nand s=1,...,p. let

1
g?,s("li*l?ui) = (Hl'(ui*bui))s ~ Li+r;- qts(ui) - 2—[Qi,s(ul me {Zz +A+
i min
s—1 .
. 2(j—1)—1 2
]TZ;(k) + T2 % [u,'_l(k—f—l‘) — ui(k—i—t) — (6‘271'_1 [v,‘_l(k) + T(Splli_l)l]

=0

_C21[Vz(k)+f(spuz) }2) (C31 1 _631)8]}
and ; ((w;—1,u;) = 0. Then 27 = {u;|g; (0;) —r; ((w;) <0, s=1,..., p}. Further, the Lipschitz
constants L;’s and Lg, ’s are given by vp||HJ (u,)||2 and 0. 9||Hg,7s(ﬁl-)|]2, where v, = 0.8 for
p=23andv,=09 fOr p =4,5 respectively, and H f denotes the Hessian of a real-valued smooth
function f. The reasons for each Hessian scaled by these factors are twofold: (i) the 2-norm of
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Hessian is conservative; and (ii) the scaled Hessian leads to faster convergence.

Initial guess warm-up. To achieve real-time computation of the proposed distributed scheme (i.e.,
Algorithm 1), we exploit the initial guess warm-up technique for both the linear stage (cf. Line 2)
and the inner loop of the SCP-DR stage (cf. Lines 6-14). For the former stage, see for its warm-
up scheme. We discuss a warm-up scheme for the latter stage. Recall that the inner loop solves
the following convex optimization problem: miny_ e s Y.i fi(vi) + 6%i(yi), where for each i =

1,....n, fi(yi) == Ji(@) ~|—dJTi(ﬁf)(yz' —u;) + %H)’i —u;||3, and %; is the intersection of the box-
constraint set .Z; corresponding to the control constraint and a quadratically constrained convex
set corresponding to the (approximated) velocity and safety distance constraints; see Section 6.2
for details. Since the (approximated) velocity and safety distance constraints are often inactive,
we replace %; by Z; in a warm-up scheme. Further, the generalized Douglas-Rachford scheme
given by (19) is used to solve miny_ e ¥ fi(yi) + 6 Zi(y;) in a fully distributed manner by
replacing €; by Z;. Since f; and the box constraint set .Z; are fully decoupled, solving the proximal
operator based optimization problem in this scheme boils down to solving finitely many decoupled
univariate optimization problems of the form: min,e[qd} at®>+bt+e, wheret € R, and a,b,c,d,e €
R are given constants with @ > 0. Such a univariate optimization problem has a simple closed-
form solution, which considerably reduces computation load of the Douglas-Rachford scheme.
Numerical tests show that the proposed warm-up scheme significantly improves computation time
and solution quality.

Performance of distributed schemes. We implement the proposed fully distributed algorithms via
MATLAB on a computer with 4-cores processor: Intel(R) Core(TM) 17-8550U CPU @ 1.80GHz
and RAM: 16.0GB. These distributed algorithm are tested for a heterogeneous medium-size CAV
platoon, on Scenarios 1-3 for different MPC horizon p’s. The proposed initial guess warm-up
schemes are used with the error tolerance give by 10~ for all the cases. Moreover, we choose
a = 0.9 and p = 0.1 for the proximal operator based Douglas-Rachford scheme in all of these
algorithms. Further, the stopping criteria are characterized by the minimum of absolute and relative
errors of two neighboring iterates for p = 2, 3, whereas for p = 4,5, these criteria are characterized
by absolute errors of two neighboring iterate. The error tolerances for the outer loop (x1073)
is 2.5,6.5,7.5,10,12.5 for p = 1,...,5 respectively. Similarly for the inner loop (x1073) it is
4,5,7.5,10 for p = 2,3,4,5 respectively. Note that there is no inner loop when p = 1, since the
underlying MPC optimization problem is a convex QCQP and solved via the fully distributed
scheme given in (9).

A summary of mean and variance of computation time per CAV with different p’s on the
three scenarios is displayed in Tables 1. Moreover, to evaluate the numerical accuracy of the
proposed schemes for p = 1, we compute the relative error between the numerical solution from
the distributed schemes and that from a high precision centralized scheme when the latter solution,
treated as a true solution, is nonzero. The mean of the relative errors is 5.66 x 10~4, 1.11 x 1074,
and 6.85 x 10~* respectively for the three scenarios, whereas the variance is 1.24 x 107°, 7.54 x
107°, and 8.41 x 10~ respectively. Note that for p > 2, a true solution is hard to compute even in
a centralized manner.

The numerical results show that for each p, the mean computation time is less than 0.3165s
and thus less than the reaction time r; or sample time 7 with overall fairly small variances, for all
the three scenarios. Indeed, the computation time for p = 1 is the least and becomes larger for a
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TABLE 1 computation time per CAV (sec)

18

MPC horizon Scenario 1 Scenario 2 Scenario 3
Mean Variance Mean Variance Mean Variance
p=1 0.1333 | 1.44x107* | 0.1421 | 2.55x107* | 0.1408 | 4.09 x 10~*
p=2 02795 | 45x1073 | 0.2857 | 6.7x1073 | 0.2528 | 6.3x 103
p=3 0.2673 | 4.11x 107> | 0.2804 | 2.78 x 107> | 0.2398 | 4.91 x 1073
p=4 0.2535 | 2.02x 1073 [ 03165 | 5.93x 1077 | 0.2883 [ 9.73x 1073
p=>5 0.3056 0.4440 0.3051 0.0109 0.2882 0.0135

higher p for most cases. Hence, we conclude that the proposed distributed schemes are suitable
for real-time computation of a heterogenous CAV platoon with satisfactory numerical precision.

Performance of CAV Platooning Control

We evaluate the closed-loop performance of the proposed CAV platooning control with different
MPC horizon p’s on the three scenarios in (9). For each scenario, we consider the spacing between
two neighboring vehicles (i.e., S;—1 (k) := x;_1 (k) —xi(k) = zi(k) + A), the vehicle speed v;(k), and
the control input u;(k),i=1,...,nfor p=1,2,3,4,5.

We present the closed-loop performance only for p =1 and p = 5 for each type of CAV
platoons in each scenario because of the length limit; see Figure 1. The closed-loop performance
in each scenario is commented as follows:

(1)

(ii)

Scenario 1. Figurel shows the MPC control performance of the heterogeneous medium-
size CAV platoon in Scenario 1. It can be seen that the spacing between the leading
vehicle and the first CAV, i.e., So 1 has small deviations (less than 0.5m) from the desired
spacing A when the leading vehicle takes instantaneous acceleration or deceleration. Fur-
ther, when p = 1, and p =5 there are small deviations from the desired spacing A for the
other CAVs in the heterogeneous CAV platoon. The convergence to the steady states is
fast (within 15 secs) and the steady state errors in spacing are nonzero but are small. In
fact, the maximum steady state errors increase as p becomes larger; compared with the
desired spacing A = 60m, the largest relative error is less than 0.47%. Lastly, the time
history of speed and control input demonstrates satisfactory performance. In particular,
it is observed that all the CAVs show the same speed change and almost identical control,
implying that the CAV platoon performs a nearly coordinated motion under the proposed
platooning control.

Scenario 2. Figure 2 display the MPC control performance of the heterogeneous medium-
size platoon in Scenario 2, where the leading vehicle undertakes periodic acceleration /
deceleration. Sy ; demonstrates the largest fluctuations whose maximum magnitude of
deviations is 0.3m when A = 60m. Besides, the CAV platoon demonstrates nearly coor-
dinated motions. For example, when p = 1, p = 5 the spacings S;_1 ; fori=2,...,10 have
small deviations from the desired spacing for the heterogeneous CAV platoon. Moreover,
the fluctuations of Sp | and other §; ;;1’s quickly converge to their steady states within 15s
when the leading vehicle stops its periodical acceleration. The steady state errors in spac-
ing are as same as those in Scenario 1. The time history of speed and control input shows
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nearly identical behaviors for all the CAVs.

(iii) Scenario 3. Figure3 show the control performance of the heterogeneous medium-size
CAV platoons in Scenario 3, where the leading vehicle undergoes various traffic os-
cillations through the time window of 45s. It is observed that Sp; demonstrates the
largest spacing variations with the maximum magnitude less than or equal to 0.3m when
A = 60m; the other spacings S;_1 ;, i = 2,..., 10 either are the desired constant or demon-
strate nearly constant deviations with maximum magnitude less than 0.14m, in spite of
the oscillation of Sy 1. Further, the spacings §;_1 ;, i =2,...,10 almost reach steady states
between 5s and 25s and after kK = 35. It is seen that the maximum steady state error of-
ten appears at S1,. Compared with the desired spacing A = 60m, the largest relative
error is less than 0.37% for the CAV platoons in Scenario 3. Finally, the CAV platoons
demonstrates nearly coordinated motions.

Consequently, the proposed platooning control effectively mitigates traffic oscillations of
the spacing and vehicle speed of the CAV platoons of different types with small or almost negligible
steady state errors. In fact, it achieves nearly consensus motions of the entire CAV platoons even
under some perturbations.

CONCLUSION

This paper develops a nonconvex, fully distributed optimization based MPC scheme for CAV pla-
tooning control of a heterogeneous CAV platoon under the nonlinear vehicle dynamics. Various
new techniques are exploited to address challenges induced by the nonlinear vehicle dynamics, in-
cluding distributed algorithm development for the coupled nonconvex MPC optimization problem.
We apply locally coupled optimization and sequential convex programming for distributed algo-
rithm development. Extensive numerical tests are conducted to illustrate the effectiveness of the
proposed fully distributed schemes and CAV platooning control for heterogeneous CAV platoons
in different scenarios.
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FIGURE 1 Scenario 1 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).
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FIGURE 2 Scenario 2 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).
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