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ABSTRACT1
CAV platooning technology has received considerable attention in the past few years, driven by2
the next generation smart transportation systems. Unlike most of the existing platooning methods3
that focus on linear vehicle dynamics of CAVs, this paper considers nonlinear vehicle dynamics4
and develops fully distributed optimization based CAV platooning control schemes via the platoon5
centered model predictive control (MPC) approach for a possibly heterogeneous CAV platoon.6
One of the major difficulties in distributed algorithm development for the nonlinear dynamics case7
is that the underlying MPC optimization problem is nonconvex and densely coupled. To overcome8
this, we formulate the underlying MPC optimization problem as a locally coupled, albeit noncon-9
vex, optimization problem and develop a sequential convex programming based fully distributed10
scheme for a general MPC horizon. Such a scheme can be effectively implemented for real-time11
computing using operator splitting methods. Numerical tests demonstrate the effectiveness of the12
proposed fully distributed schemes and CAV platooning control.13

14
Keywords: Connected and autonomous vehicle, car following control, distributed algorithm, non-15
convex optimization, sequential convex programming16
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INTRODUCTION1
Inspired by the next generation smart transportation systems, connected and autonomous vehicle2
(CAV) technologies emerge and offer tremendous opportunities to reduce traffic congestion and3
improve road safety and traffic efficiency in all aspects, through innovative traffic flow control4
and operations. Among a variety of CAV technologies, vehicle platooning technology links a5
group of CAVs through cooperative acceleration or speed control. Different from many other CAV6
technologies that mainly focus on neighborhood traffic efficiency and individual vehicle’s safety,7
the vehicle platooning technology focuses on system efficiency and safety. Specifically, by using8
the vehicle platooning technology, adjacent group members of a CAV platoon can travel safely at a9
higher speed with smaller spacing. This will increase lane capacity, improve traffic flow efficiency,10
and reduce congestion, emission, and fuel consumption (1).11

Extensive research on CAV platooning control has been conducted, and many approaches12
have been proposed, e.g., adaptive cruise control (ACC) (2, 3), cooperative adaptive cruise con-13
trol (CACC) (4), and platoon centered vehicle platooning control (5, 6). The ACC and CACC14
approaches aim to improve an individual vehicle’s safety and mobility as well as string stability15
instead of system performance of the entire platoon, although simulations and field experiments16
demonstrate that they do enhance system performance to some extent. On the other hand, the17
recently developed platoon centered approach seeks to optimize the platoon’s transient traffic dy-18
namics for a smooth traffic flow and to achieve stability and other desired long-time dynamical be-19
haviors. This approach can significantly improve system performance and efficiency of the entire20
platoon (6). Despite this advantage, the platoon centered CAV platooning approach often encoun-21
ters large-scale optimization or optimal control problems that require efficient numerical solvers22
for real-time computation. Distributed optimization techniques provide a favorable solution for23
the platoon centered approach. Supported by portable computing capability of each vehicle and24
vehicle-to-vehicle (V2V) communication (7), distributed computation can handle high computa-25
tion load efficiently, is more flexible to communication network topologies, and is more robust to26
communication delays or network malfunctions (7, 8). In this paper, we focus on the platoon cen-27
tered CAV platooning via distributed optimization. It is worth mentioning that a platoon centered28
car following control is a centralized control approach although its computation is distributed, i.e.,29
each vehicle computes its own control input in a distributed manner (9). Hence, this approach30
is different from decentralized control widely studied in control engineering (10, 11). In particu-31
lar, the platoon centered approach focuses on closed loop stability of the entire platoon instead of32
stability of individual vehicles and their interactions, e.g., string stability (11).33

Various distributed control or optimization schemes have been proposed for CAV platoon-34
ing (7, 11). These schemes can be classified into two types: partially distributed schemes, and35
fully distributed schemes. Partially distributed schemes are referred to as those schemes that either36
require all vehicles to exchange information with a central component for centralized data process-37
ing or perform centralized computation in at least one step (12), whereas fully distributed schemes38
do not require centralized data processing or carry out centralized computation through the en-39
tire schemes (9). The former type includes (5, 6). In particular, model predictive control (MPC)40
based CAV platooning is developed in (6) and implemented by partially distributed schemes. The41
paper (5) extends these distributed schemes to a mixed traffic flow consisting of both CAVs and42
human-driven vehicles. The second type includes the recent paper (9), which develops fully dis-43
tributed schemes for CAV platooning under the linear vehicle dynamics. Compared with partially44
distributed schemes, fully distributed schemes do not need data synchronization or a central com-45
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puting equipment, and they impose less restriction on vehicle communication networks and can be1
easily implemented on a wide range of vehicle networks; see (9) for more details.2

In spite of the abovementioned progress, most of the existing research considers the linear3
vehicle dynamics (5, 6, 9). Although the linear vehicle dynamics is suitable for smaller passenger4
vehicles, nonlinear dynamic effects, e.g, aerodynamic drag, friction, and rolling resistance, play5
a non-negligible role in trucks, heavy duty vehicles, and other types of CAVs. Motivated by the6
lack of research for nonlinear vehicle dynamics, this paper aims to develop fully distributed op-7
timization based and platoon centered CAV platooning under nonlinear vehicle dynamics over a8
general vehicle communication network. To achieve this goal, we propose a general p-horizon9
MPC model subject to the nonlinear vehicle dynamics of the CAVs and various physical or safety10
constraints. New challenges arise for the MPC horizon p ≥ 2 when the nonlinear vehicle dynam-11
ics is considered. Precisely, the underlying MPC optimization problem gives rise to a densely12
coupled, nonconvex optimization problem, where both the objective function and constraints are13
nonconvex. This is very different from the linear vehicle dynamics treated in (9), for which a14
convex MPC model is obtained so that various convex distributed optimization schemes can be15
used.16

The major contributions of this paper are summarized as follows:17
(1) To develop fully distributed schemes for the nonconvex MPC optimization problem when18

p≥ 2, we first formulate the underlying densely coupled MPC optimization problem as a19
locally coupled, albeit nonconvex, optimization problem using a decomposition method20
recently developed for the linear CAV dynamics (9). Furthermore, we propose a se-21
quential convex programming (SCP) (13) based distributed scheme to solve the locally22
coupled optimization problem. This SCP based scheme solves a sequence of convex,23
quadratically constrained quadratic programs (QCQPs) that approximate the original24
nonconvex program at each iteration; such a convex QCQP can be efficiently solved25
using (generalized) Douglas-Rachford method or other operator splitting methods (14)26
in the fully distributed manner.27

(2) For real-time implementation of the proposed fully distributed schemes, initial guess28
warm-up techniques are developed. Extensive numerical tests have been carried out for29
three types of CAV platoons in different scenarios for a heterogeneous CAV platoon. The30
numerical results illustrate the effectiveness of the proposed distributed scheme and CAV31
platooning control under the nonlinear vehicle dynamics.32

The paper is organized as follows. Section 3 introduces the nonlinear vehicle dynamics,33
state and control constraints, and vehicle communication networks. Sequential feasibility and34
properties of the constraint sets are established in Section 4; these properties lay a ground for dis-35
tributed optimization. A MPC model with a general prediction horizon p is proposed in Section 536
and is formulated as a nonconvex constrained optimization problem. Section 6 develops sequen-37
tially convex programming based fully distributed schemes for the densely coupled nonconvex38
MPC optimization problem. Numerical tests and their results are presented in Section 7. Finally,39
conclusions are made in Section 8.40

VEHICLE DYNAMICS, CONSTRAINTS, AND COMMUNICATION TOPOLOGY41
We consider a platoon consisting of heterogeneous vehicles (e.g., cars and trucks) on a roadway,42
where the (uncontrolled) leading vehicle is labeled by the index 0 and its n following CAVs are43
labeled by the indices i= 1, . . . ,n, respectively. Let xi,vi denote the longitudinal position and speed44
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of the ith vehicle, respectively. Let τ > 0 be the sampling time, and each time interval is given by1
[kτ,(k+1)τ) for k ∈ Z+ := {0,1,2, . . .}. We introduce vehicle dynamical models as follows. We2
first introduce the following nonlinear vehicle dynamical model which captures aerodynamic drag,3
friction, and rolling resistance (10):4

xi(k+1) = xi(k)+ τvi(k)+
τ2

2
(
ui(k)− c2,i · v2

i (k)− c3,i ·g
)
, (1a)5

vi(k+1) = vi(k)+ τ
(
ui(k)− c2,i · v2

i (k)− c3,i ·g
)
, (1b)6

where ui(k) denotes the desired driving/braking acceleration treated as the control input. c2,i ·v2
i (k)7

characterizes the deceleration due to aerodynamic drag with the coefficient c2,i > 0, and c3,i · g8
characterizes friction and rolling resistance with g= 9.8m/s2 being the gravity constant and c3,i > 09
being the rolling friction coefficient. For different vehicles, the coefficients c2,i,c3,i can be different.10

The coefficients c2,i and c3,i in model (1) are usually small for many different types of cars11
or road conditions. Since these coefficients are small, the nonlinear terms in (1) are often neglected12
in system-level studies. This yields the following widely adopted double-integrator linear model:13

xi(k+1) = xi(k)+ τvi(k)+
τ2

2
ui(k), vi(k+1) = vi(k)+ τui(k). (2)14

The model (2) is suitable for small-size passenger cars, while model (1) can be used for medium-15
size or large-size vehicles, e.g., trucks and heavy-duty vehicles. These models are all well studied16
and widely accepted in the literature.17

State and control constraints. Each vehicle in a platoon is subject to several important state and18
control constraints. For each i = 1, . . . ,n,19

(i) Control constraint: ai,min ≤ ui ≤ ai,max, where ai,min < 0 and ai,max > 0 are pre-specified20
acceleration or deceleration bounds for the ith vehicle;21

(ii) Speed constraint: vmin ≤ vi ≤ vmax, where 0 ≤ vmin < vmax are pre-specified bounds on22
longitudinal speed for the ith vehicle;23

(iii) Safety distance constraint: this constraint guarantees sufficient spacing between neigh-
boring vehicles to avoid collision even if the leading vehicle comes to a sudden stop.
This gives rise to the safety distance constraint of the following form:

xi−1− xi ≥ Li + ri · vi−
(vi− vmin)

2

2ai,min
, (3)

where Li > 0 is a constant depending on vehicle length, and ri > 0 is the reaction time of24
vehicle i.25

In the above constraints, the acceleration/decelerations bounds as well as the vehicle length Li and26
the reaction time ri can be different for different types of vehicles. Further, constraints (i) and (ii)27
are decoupled across vehicles, whereas the safety distance constraint (iii) is state-control coupled28
since such a constraint involves control inputs of two vehicles. This yields challenges to distributed29
computation.30

Communication network topology. In this paper, we consider a general communication network31
whose topology is modeled by a graph G (V ,E ), where V = {1,2, . . . ,n} is the set of nodes where32
the ith node corresponds to the ith CAV, and E is the set of edges connecting two nodes in V . Let33
Ni denote the set of neighbors of node i, i.e., Ni = { j |(i, j) ∈ E }. The following assumption on34
the communication network topology is made throughout the paper:35

A.1 The graph G (V ,E ) is undirected and connected. Further, two neighboring vehicles form36
a bidirectional edge of the graph, i.e., (1,2),(2,3), . . . ,(n−1,n) ∈ E .37
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Since the graph is undirected, for any i, j ∈ V with i 6= j, (i, j) ∈ E means that there exists an1
edge between node i and node j. In other words, vehicle i can receive information from vehicle j2
and send information to vehicle j, and so does vehicle j. The above setting given by A.1 includes3
many widely used communication networks of CAV platoons, e.g., immediate-preceding. We also4
assume that the first vehicle can receive x0, v0 and u0 from the leading vehicle.5

SEQUENTIAL FEASIBILITY AND PROPERTIES OF CONSTRAINT SETS6
As indicated in (6), the constraint set of the underlying MPC optimization problem at time k (cf.7
Section 5) depends on the position and speed of the vehicles at times 0,1, . . . ,k−1. A fundamental8
question is whether the constraint set is nonempty at each time along a system trajectory for an9
arbitrary feasible initial condition at k = 0, provided that (u0(k),v0(k)) of the leading vehicle10
satisfies the acceleration and speed constraints for all k ∈ Z+. If the answer is affirmative, the11
system is sequentially feasible (6). The sequential feasibility has been shown for a CAV platoon12
under the linear vehicle dynamics (6). The following proposition guarantees sequential feasibility13
under non linear vehicle dynamics (1).14

Proposition 4.1. ((15),Proposition 3.1) Consider the nonlinear vehicle dynamics given by (1).15
Suppose the nonnegative constants c2,i,c3,i are such that c2,iv2

max + c3,ig ≤ ai,max and ri ≥ τ for16
each i= 1, . . . ,n. Then the system is sequentially feasible for an arbitrary feasible initial condition.17

We show below that under mild assumptions, the constraint set has nonempty interior. This18
property is critical for the Slater’s constraint qualification in optimization.19

Proposition 4.2. ((15),Proposition 3.2) Consider the nonlinear vehicle dynamics (1). Suppose the20
nonnegative constants c2,i,c3,i are such that c2,iv2

max+c3,ig< ai,max and ri≥ τ for each i= 1, . . . ,n.21
For any feasible (xi,vi)

n
i=0 and u0, if v0 > vmin and v0 + τu0 > vmin, then the constraint set has22

nonempty interior.23

In light of the above result, we make the following assumptions throughout the rest of the24
paper unless otherwise stated:25

A.2 For each i = 1, . . . ,n, the nonnegative constants c2,i,c3,i satisfy c2,iv2
max + c3,ig < ai,max26

and the reaction time ri satisfies ri ≥ τ . Further, (v0(k),u0(k)) is feasible with v0(k) >27
vmin for all k ∈ Z+.28

It will be shown in Corollary 5.1 that under this assumption, the constraint set of a general p-29
horizon model predictive control model has nonempty interior.30

FORMULATION OF MODEL PREDICTIVE CONTROL FOR CAV PLATOONING31
We consider the model predictive control (MPC) approach for CAV platooning similar to that32
given in (9). Let ∆ be the desired constant spacing between two adjacent vehicles, and (x0,v0,u0)33
be the position, speed, and control input of the leading vehicle, respectively. Define the following34
vectors: (i) the relative spacing error z(k) :=

(
x0− x1− ∆, . . . ,xn−1− xn− ∆

)
(k) ∈ Rn; (ii) the35

relative speed between adjacent vehicles z′(k) :=
(
v0− v1, . . . ,vn−1− vn

)
(k) ∈ Rn; and (iii) the36

control input u(k) :=
(
u1, . . . ,un

)
(k)∈Rn. Further, let wi(k) := ui−1(k)−ui(k) for each i= 1, . . . ,n,37

and w(k) :=
(
w1, . . . ,wn

)
(k) ∈ Rn, representing the difference of control input between adjacent38

vehicles. Hence, for any k ∈ Z+, u(k) = −Snw(k)+u0(k) ·1, where 1 := (1, . . . ,1)T is the vector39
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of ones, and Sn ∈ Rn×n is a lower triangular matrix with (Sn)i, j = 1 for all i ≤ j, and S−1
n is its1

inverse given by2

S−1
n =


1
−1 1

. . . . . .
−1 1

−1 1

 ∈ Rn×n. (4)

Given a prediction horizon p ∈N, the p-horizon MPC control is determined by solving the3
following constrained optimization problem at each k ∈ Z+, involving all vehicles’ control inputs4
for given feasible (xi(k),vi(k))n

i=1 and (v0(k),u0(k)) at k subject to the nonlinear vehicle dynamics5
(1):6

minimize J(u(k), . . . ,u(k+ p−1)) := (5)

1
2

p

∑
s=1

(
τ

2uT (k+ s−1)S−T
n Qw,sS−1

n u(k+ s−1)︸ ︷︷ ︸
ride comfort

+zT (k+ s)Qz,sz(k+ s)+(z′(k+ s))T Qz′,sz
′(k+ s)︸ ︷︷ ︸

traffic stability and smoothness

)
subject to: for each i = 1, . . . ,n and each s = 1, . . . , p,7

ai,min ≤ ui(k+ s−1) ≤ ai,max, vmin ≤ vi(k+ s) ≤ vmax, (6)8

xi−1(k+ s)− xi(k+ s) ≥ Li + ri · vi(k+ s)− (vi(k+ s)− vmin)
2

2ai,min
, (7)9

where Qz,s, Qz′,s and Qw,s are n×n symmetric positive semidefinite weight matrices to be discussed10
soon. When p> 1, we assume that u0(k+s)= u0(k) for all s= 1, . . . , p−1 and use these u0(k+s)’s11
and the vehicle dynamics model (1) to predict (x0(k+ s+1),v0(k+ s+1)) for s = 1, . . . , p−1.12

The physical interpretation of the three terms of the objective function J can be found in13
(9). Further, The presence of the matrix S−1

n in the first term is due to the coupled vehicle dynamics14
through the CAV platoon; see (9). To develop fully distributed schemes, we make the following15
assumption on the weight matrices Qz,s, Qz′,s, and Qw,s through the rest of the paper:16

A.3 For each s = 1, . . . , p, Qz,s and Qz′,s are diagonal and positive semidefinite (PSD), and17
Qw,s is diagonal and positive definite (PD).18

More discussions on this class of weight matrices can be found in (9).19

Corollary 5.1. Suppose the assumption A.2 holds. Then for any p ∈ N, the constraint set of the20
p-horizon MPC optimization problem (5) has nonempty interior at each k.21

Constrained Optimization Model under the Nonlinear Vehicle Dynamics22
In this subsection, we discuss the constrained optimization model (5) arising from the MPC at each23
time k under the nonlinear vehicle dynamics (1) with the positive parameters c2,i and c3,i. More pre-24
cisely, we write (5) in a more compact format as a function of the decision variable. For notational25
simplicity, define the parameter vectors ϕd := (c2,1, . . . ,c2,n)∈Rn

+ and ϕ f := (c3,1, . . . ,c3,n)∈Rn
+,26

where the subscripts d and f denote the drag and friction respectively. Further, ϕ := (ϕd,ϕ f ) ∈27
R2n
+ . Consider the constrained MPC optimization model (5) at a fixed time k ∈ Z+. Let u(k) :=28

(u1(k), . . . ,un(k)) ∈ Rnp with ui(k) := (ui(k), . . . ,ui(k + p− 1)) ∈ Rp. Recall that for each i =29
1, . . . ,n and j = 0, . . . , p−1, ai

(
k+ j,ui(k), . . . ,ui(k+ j)

)
= ui(k+ j)−c2,iv2

i (k+ j)−c3,ig, where30
we note that vi(k+ j) depends on ui(k), . . . ,ui(k+ j−1) for j ≥ 1. Specifically, for p > 1,31
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ai(k,ui(k)) = ui(k)− c2,iv2
i (k)− c3,ig,

ai(k+1,ui(k),ui(k+1)) = ui(k+1)− c2,i
[
vi(k)+ τai(k,ui(k))

]2− c3,ig,
...

...
...

ai
(
k+ p−1,ui(k), . . . ,ui(k+ p−1)

)
= ui(k+ p−1)− c2,i

[
vi(k)+ τ

p−2

∑
s=0

ai(k+ s,ui(k), . . . ,ui(k+ s))
]2

− c3,ig
By slightly abusing the notation, we may denote each ai

(
k + j,ui(k), . . . ,ui(k + j)

)
by1

ai(k + j,ui(k)). Define for each i = 1, . . . ,n and j = 0,1, . . . , p− 1, bi(k + j,ui−1(k),ui(k)) :=2
ai−1(k+ j,ui−1(k))−ai(k+ j,ui(k)), where a0(k+ j,u0(k)) := u0(k) for all j = 0,1, . . . , p−1. It3
follows from the nonlinear vehicle dynamics (1) that for each i = 1, . . . ,n and j = 1, . . . , p,4

zi(k+ j) = zi(k)+ jτz′i(k)+ τ
2

j−1

∑
s=0

2( j− s)−1
2

bi(k+ s,ui−1(k),ui(k)), (8)5

z′i(k+ j) = z′i(k)+ τ

j−1

∑
s=0

bi(k+ s,ui−1(k),ui(k)). (9)6

For a fixed k ∈ Z+, define for each i = 1, . . . ,n,7

ai(ui(k)) :=
(

ai
(
k,ui(k)

)
, ai
(
k+1,ui(k),ui(k+1)

)
, . . . , ai

(
k+ p−1,ui(k), . . . ,ui(k+ p−1)

))
.

In what follow, we often omit k in ui(k) when k is fixed. Further, define the function a : Rnp→Rnp8
as a(u) :=

(
a1(u1), . . . ,an(un)

)
. Note that if ϕ = (ϕd,ϕ f ) = (c2,i,c3,i)

n
i=1 = 0, then a(u) = u for9

all u ∈ Rnp. We introduce more notation. Define the following matrices:10

Qw := diag
(

Qw,1, . . . Qw,p

)
∈ Rnp×np, S−1 := diag

(
S−1

n , . . . , S−1
n︸ ︷︷ ︸

p−copies

)
∈ Rnp×np.

Furthermore, let E ∈ Rnp×np be the permutation matrix whose (i, j)-entry is given by11

Ei, j =

{
1 if i = n · k+ s, j = p · (s−1)+ k+1, for k = 0, . . . , p−1, s = 1, . . . ,n;
0, otherwise. (10)

Clearly, E = In when p = 1, and12 
u(k)

u(k+1)
...

u(k+ p−1)

 = E


u1
u2
...

un

 = Eu.

Using these matrices, the following term in the objective function J in (5) satisfies13 S−1

 u(k)
...

u(k+ p−1)




T

Qw

S−1

 u(k)
...

u(k+ p−1)


 = uT ET S−T QwS−1E︸ ︷︷ ︸

:=Ψ

u.

where Ψ ∈ Rnp×np is symmetric PD when A.3 holds. Therefore, the objective function J in the14
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MPC model (5) becomes1
J(u) = J(u(k), . . . ,u(k+ p−1))2

=
1
2

[ p

∑
s=1

zT (k+ s)Qz,sz(k+ s)+(z′(k+ s))T Qz′,sz
′(k+ s)

]
+

τ2

2
uT

Ψu3

=
1
2

[ p

∑
s=1

zT (k+ s)Qz,sz(k+ s)+(z′(k+ s))T Qz′,sz
′(k+ s)

]
+

τ2

2
aT (u)Ψa(u)4

+
τ2

2

(
uT

Ψu−aT (u)Ψa(u)
)
.5

In light of the expressions for z(k+ j) and z′(k+ j) given by (8)-(9), it follows from the6
similar argument in (9) that the objective function7

J(u) =
1
2

aT (u)Wa(u)+ cT a(u)+ γ +
τ2

2

(
uT

Ψu−aT (u)Ψa(u)
)
,

where W ∈ Rnp×np, c ∈ Rnp, and γ ∈ R. In fact, W = ET S−T ΘS−1E for a symmetric PSD matrix8
Θ whose blocks are diagonal; see (9) for the closed-form expression of W . In particular, under9
the assumption A.3, W is PD and only depends on Qz,s,Qz′,s and Qw,s, s = 1, . . . , p. In addition,10
the linear term in J(u) can be written as cT a(u) = ∑

n
i=1 cT

Ii
ai(ui), where cIi is the subvector11

of c corresponding to ai(ui). Hence, cIi depends only on zi(k),z′i(k),zi+1(k),z′i+1(k)’s for i =12
1, . . . ,n− 1, cIn depends only on zn(k),z′n(k), and only cI1 depends on u0(k). These properties13
are important for developing fully distributed schemes later on. To characterize the constraints, let14
the matrix Sp ∈ Rp×p be defined in the same way as in (4) with n replaced by p, and (Spui)0 := 0.15
Recall that for each i = 1, . . . ,n and j = 1, . . . , p,16

vi(k+ j) = vi(k)+ τ

j−1

∑
s=0

ai(k+ s,ui(k)) = vi(k)+ τ
(
Sp ai(ui)

)
j.

Further, xi−1(k+ j)− xi(k+ j) = zi(k+ j)+∆ depends only on ui(k) and ui−1(k) as shown in (8).17
Hence, for each i = 1, . . . ,n and each j = 1, . . . , p, the safety distance constraint is given by:18

(
Hi(ui−1(k),ui(k))

)
j := Li + ri · vi(k+ j)− (vi(k+ j)− vmin)

2

2ai,min
− [xi−1(k+ j)− xi(k+ j)] ≤ 0.

Note that H1(·) depends only on u1(k) although it is written in the above form for notational19
convenience. Combining the above results, the MPC model (5) is formulated as the following20
optimization problem:21

minimize J(u) := 1
2aT (u)

(
W − τ2Ψ

)
a(u)+ cT a(u)+ γ + τ2

2 uT Ψu,
subject to ui ∈Xi, vmin ≤ vi(k)+ τ

(
Sp ai(ui)

)
s ≤ vmax,

(Hi(ui−1,ui))s ≤ 0, ∀ i = 1, . . . ,n, ∀s = 1, . . . , p,

(11)

where Xi := {ui ∈Rp |ai,min1≤ ui ≤ ai,max1} for each i = 1, . . . ,n. It can be shown that W −τ2Ψ22
is PSD. Clearly, the optimization problem in (11) has a (possibly non-unique) solution. While (11)23
is a convex optimization problem when p = 1, it is easy to verify that (11) yields a nonconvex24
optimization problem when p > 1. Moreover, the objective function J is densely coupled, and the25
safety distance constraint function

(
Hi(ui−1,ui)

)
j not only depends on ui but also on ui−1 of the26

(i−1)-th vehicle, and thus is locally coupled with its neighboring vehicles. This coupling structure,27
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together with the nonconvexity of the optimization problem (11), leads to many challenges in1
developing fully distributed schemes.2

FULLY DISTRIBUTED ALGORITHMS FOR COUPLED NONCONVEX MPC OPTIMIZA-3
TION PROBLEM4
In this section, we develop fully distributed algorithms for solving the underlying coupled, noncon-5
vex optimization problem (11) at each time k ∈ Z+. To achieve this goal, several new techniques6
are exploited: the formulation of locally coupled (albeit nonconvex) optimization, sequential con-7
vex programming, and operator splitting methods.8

Formulation of MPC Optimization Problem as Locally Coupled Optimization9
Recall that the constraints of the MPC optimization problem (11) are locally coupled (16). Moti-10
vated by distributed computation for locally coupled convex optimization (9, 16), we show below11
that (11) can be formulated as a locally coupled nonconvex optimization problem. See (16) for the12
framework of locally coupled convex optimization and (9) for its application to CAV platooning13
under linear vehicle dynamics.14

The framework of a locally coupled optimization problem requires that both its objective15
function and constraints are expressed in a locally coupled manner satisfying the communication16
network topology constraint. However, the objective function in the underlying MPC optimization17
problem (11) is densely coupled. As indicated in [Section 4, (9)] (for convex case), this difficulty18
can be overcome by using certain matrix decomposition techniques. Specifically, under the as-19
sumption A.3, the PSD or PD matrix W ∈ Rnp×np in (11) can be decomposed as W = ∑

n
s=1W̃ s,20

where all W̃ s ∈ Rnp×np are PSD and satisfy the following conditions:21

W̃ 1 =

[
Ŵ 1

0(n−2)p

]
,W̃ n =

[
0(n−2)p

Ŵ n

]
, for s = 2, . . . , n-1, W̃ s =

0(s−2)p

Ŵ s

0(n−s−1)p


where 0k ∈ Rk×k denotes a zero matrix and22

Ŵ 1 :=
[
(W̃ 1)1,1 (W̃ 1)1,2

(W̃ 1)2,1 (W̃ 1)2,2

]
∈ R2p×2p, Ŵ n :=

[
(W̃ n)n−1,n−1 (W̃ n)n−1,n

(W̃ n)n,n−1 (W̃ n)n,n

]
∈ R2p×2p,

and for each s = 2, . . . ,n−1,23

Ŵ s :=

(W̃ s)s−1,s−1 (W̃ s)s−1,s 0
(W̃ s)s,s−1 (W̃ s)s,s (W̃ s)s,s+1

0 (W̃ s)s+1,s (W̃ s)s+1,s+1

 ∈ R3p×3p.

When W is PD, it is shown in (9) that there exist W̃ s’s such that each Ŵ s in the above decomposition24
is PD.25

Since Qw is diagonal and PD, it follows from the similar argument in that the PD matrix26
Ψ ∈ Rnp×np can be decomposed in the similarly way. Specifically, there exist matrices Ψ̃s such27
that Ψ = ∑

n
s=1 Ψ̃s, where Ψ̃s’s satisfy the abovementioned conditions with W̃ s (resp. Ŵ s) replaced28

by Ψ̃s (resp. Ψ̂s). By setting γ ≡ 0 in (11) without losing generality, the objective function J(u) in29
(11) can be decomposed as30
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J(u) = J1(u1,u2)+
n−1

∑
i=2

Ji(ui−1,ui,ui+1)+ Jn(un−1,un),

where the functions Ji’s on the right hand side are given by1

J1(u1,u2) :=
1
2
[
aT

1 (u1) aT
2 (u2)

](
Ŵ 1− τ

2
Ψ̂

1
)[a1(u1)

a2(u2)

]
+ cT

I1
a1(u1)2

+
τ2

2
[
uT

1 uT
2
]

Ψ̂
1
[

u1
u2

]
,3

Ji(ui−1,ui,ui+1) :=
1
2
[
aT

i−1(ui−1) aT
i (ui) aT

i+1(ui+1)
](

Ŵ i− τ
2
Ψ̂

i
)ai−1(ui−1)

ai(ui)
ai+1(ui+1)

+ cT
Ii

ai(ui)4

+
τ2

2
[
uT

i−1 uT
i uT

i+1
]

Ψ̂
i

ui−1
ui

ui+1

 , ∀ i = 2, . . . ,n−1, (12)5

Jn(un−1,un) :=
1
2
[
aT

n−1(un−1) aT
n (un)

](
Ŵ n− τ

2
Ψ̂

n
)[an−1(un−1)

an(un)

]
+ cT

In
an(un)6

+
τ2

2
[
uT

n−1 uT
n
]

Ψ̂
n
[

un−1
un

]
.7

In view of the assumption A.1, the above decomposition of J satisfies the communication network8
topology constraint.9

In what follows, we use the above decomposition to formulate a locally coupled optimiza-10
tion problem by introducing copies of local variables. We consider the cyclic like network topology11
through this subsection, although the proposed formulation and schemes can be easily extended to12
other network topologies satisfying the assumption A.1. In this case, N1 = {2}, Nn = {n− 1},13
and Ni = {i−1, i+1} for i = 2, . . . ,n−1. Hence, each Ji in the decomposition of J can be written14
as Ji(ui,(u j) j∈Ni).15

Recall that for each i = 1, . . . ,n, Xi := {ui ∈ Rp |ai,min1≤ ui ≤ ai,max1}. Further, define16
Yi :=

{
ui ∈ Rp ∣∣vmin ≤ vi(k)+ τ

(
Sp ai(ui)

)
s ≤ vmax, ∀s = 1, . . . , p

}
, (13)17

Zi :=
{
(ui−1,ui) ∈ Rp×Rp ∣∣(Hi(ui−1,ui))s ≤ 0, ∀s = 1, . . . , p

}
. (14)18

Here Z1 depends only on u1 although it is written in the above form for notational convenience.19
Let δ S denote the indicator function of a closed set S. Define, for each i = 1, . . . ,n,20

Ĵi(ui,(u j) j∈Ni) := Ji(ui,(u j) j∈Ni)+δXi(ui)+δYi(ui)+δZi(ui−1,ui).

For each i = 1, . . . ,n, define ûi :=
(
ui,(ui, j) j∈Ni

)
, where the new variables ui, j represent the pre-21

dicted values of u j of vehicle j in the neighbor Ni of vehicle i, and let û := (û1, . . . , ûn) ∈ RN .22

Define the consensus subspace A :=
{

û ∈ RN
∣∣ui, j = u j, ∀(i, j) ∈ E

}
. Then the underlying op-23

timization problem (11) can be equivalently written as the following locally coupled optimization24
problem:25

min
û

n

∑
i=1

Ĵi(ûi), subject to û ∈A . (15)

Here the functions Ĵi’s are decoupled, and the consensus constraint A gives rise to the only cou-26
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pling in this formulation.1

Sequential Convex Programming and Operator Splitting Method based Fully Distributed2
Algorithms for the MPC Optimization Problem3
When p = 1, the underlying MPC optimization problem (11) or (15) is a convex quadratically4
constrained quadratic program (QCQP), for which the fully distributed schemes developed in (9)5
can be applied. We consider p > 1 from now on. In this case, the underlying optimization problem6
(11) or (15) yields a non-convex minimization problem whose objective function and constraints7
are non-convex, whereas the coefficients c2,i > 0 and c3,i > 0 defining the nonlinearities are small.8
Therefore, it is expected that an optimal solution under the nonlinear vehicle dynamics is “close”9
to that under the linear vehicle dynamics. We discuss this observation as follows; see [section 5.2,10
(15)] for details.11

Recall that the parameter vector ϕ = (ϕd,ϕ f ) = (c2,i,c3,i)
n
i=1 ∈ R2n

+ . To emphasize the12
dependence of the objective function J on ϕ , we write it as J(u,ϕ) by abusing the notation. Further,13
the constraints in (11) can be written as X ∩Y ∩Z , where X = X1×·· ·×Xn is a convex and14
compact set, and Y ∩Z = {u |gi(u,ϕ)≤ 0, i = 1, . . . ,m} for some real-valued functions gi, which15
also depend on ϕ . When ϕ = 0, J(u,0) is a strongly convex quadratic function, and each gi(u,0) is16
an affine or a convex quadratic function. Hence, when ϕ = 0, (11) attains a unique optimal solution17
u∗,0. Therefore, letting Sϕ denote the solution set of (11) corresponding to the parameter vector18
ϕ , we obtain the following corollary from [Proposition 5.1, (15)].19

Corollary 6.1. Consider the optimization problem (11) with the parameter vector ϕ ∈R2n
+ at time20

k. Suppose ri ≥ τ for all i and v0(k) > vmin. Then for any ε > 0, there exists η > 0 such that for21
all ϕ ∈ R2n

+ with ‖ϕ‖ ≤ η , supu∈Sϕ
‖u−u∗,0‖< ε .22

To solve the coupled non-convex optimization problem (11) with ϕ 6= 0, we exploit the23
sequential convex programming (SCP) method (13). To be self-contained, we provide a brief24
description of the SCP method for an important special case as follows. Consider the nonlinear25
program26

(P′) : min
x∈Rn

f (x) subject to x ∈P, gi(x)− ri(x)≤ 0, ∀ i = 1, . . . , `, (16)

where P ⊆Rn is a closed convex set, f and each gi are C1 (but not necessarily convex) functions,27
and each ri is a convex C1-function. We assume that ∇ f and ∇gi are Lipschitz on P , i.e. there exist28
constants L f > 0 and Lgi > 0 such that ‖∇ f (x)−∇ f (x′)‖2≤ L f ‖x−x′‖2 and ‖∇gi(x)−∇gi(x′)‖2≤29
Lgi‖x− x′‖2 for all x,x′ ∈P and i = 1, . . . , `. Let x̂ be a feasible point of (P′), i.e., x̂ ∈P ′ and30
gi(x̂)− ri(x̂)≤ 0, i = 1, . . . , `. Consider an approximation of the constraint set of (P′) at x̂:31
C (x̂,{∇gi(x̂)}`i=1,{∇ri(x̂)}`i=1)32

:=
{

z ∈P |gi(x̂)+∇gi(x̂)T (z− x̂)+
Lgi

2
‖z− x̂‖2

2− [ri(x̂)+∇ri(x̂)T (z− x̂)]≤ 0, i = 1, . . . , `
}
.33

It is shown in [Lemma 3.1, (13)] that C (x̂,{∇gi(x̂)}`i=1,{∇ri(x̂)}`i=1) is a nonempty closed convex34
set. The following lemma provides a simple sufficient condition for the Slater’s condition to hold35
for the approximated constraint set; this condition is useful for convergence analysis of the SCP36
scheme.37

Lemma 6.1. Given a feasible point x̂ of (P′), suppose C (x̂,{∇gi(x̂)}`i=1,{∇ri(x̂)}`i=1) is not single-38
ton. Then the Slater’s condition holds for C (x̂,{∇gi(x̂)}`i=1,{∇ri(x̂)}`i=1), i.e., there exists ẑ ∈P39
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such that gi(x̂)+∇gi(x̂)T (ẑ− x̂)+
Lgi
2 ‖ẑ− x̂‖2

2− [ri(x̂)+∇ri(x̂)T (ẑ− x̂)]< 0,∀ i = 1, . . . , `.1

The SCP scheme solves (P′) in (16) as follows (13): consider an approximation of the2

objective function f for a given feasible point x̂: f̃ (z; x̂) := f (x̂)+ [∇ f (x̂)]T (z− x̂)+ L f
2 ‖z− x̂‖2

2.3

Clearly, f̃ is a strongly convex function in z. At each step, the SCP scheme solves the convex4
optimization problem at xk using the convex approximation f̃ (·;xk) over the approximating convex5
constraint set C (xk,{∇gi(xk)}`i=1,{∇ri(xk)}`i=1) to generate a unique optimal solution xk+1. It then6
updates the gradients ∇ f , ∇gi, and ∇ri using xk+1, and formulates another convex optimization7
problem and solves it again. It is shown in that any accumulation point of the sequence (xk)8
generated by the SCP scheme is a KKT point of (P′), provided that the accumulation point x∗9
satisfies the Slater’s condition for C (x∗,{∇gi(x∗)}`i=1,{∇ri(x∗)}`i=1).10

We now apply the SCP scheme to develop a fully distributed scheme for the non-convex11
MPC optimization problem (11). Consider the locally coupled formulation (15) of the MPC12
optimization problem (11). Recall that ûi :=

(
ui,(ui, j) j∈Ni

)
, and û := (û1, . . . , ûn). For each13

i = 1, . . . ,n, it follows from the velocity constraint Yi in (13) and the safety distance constraint14
Zi in (14) that there are real-vauled smooth functions gi,s and convex quadratic functions ri,s15
for s = 1, . . . ,3p such that ûi ∈ Yi ∩Zi if and only if gi,s(ûi)− ri,s(ûi) ≤ 0 for s = 1, . . . ,3p;16
specific choices of gi,s and ri,s are given in 7.2. In view of the real-valued objective function17
J(û) = ∑

n
i=1 Ji(ûi), the problem (15) becomes18

min
n

∑
i=1

Ji(ûi), subject to û ∈A , ûi ∈Xi, gi,s(ûi)− ri,s(ûi)≤ 0, ∀ i = 1, . . . ,n, s = 1, . . . ,3p.

Recall that X = X1× ·· · ×Xn is a convex compact set. Since X is compact and A is the19
consensus subspace, it is easy to show that there are positive Lipschitz constants LJi and Lgi,s for20
the gradients of Ji and gi,s on A ∩X , i.e., for all û, û′ ∈A ∩X ,21

‖∇Ji(ûi)−∇Ji(û′i)‖2 ≤ LJi · ‖ûi− û′i‖2, ∀ i = 1, . . . ,n,22

‖∇gi,s(ûi)−∇gi,s(û′i)‖2 ≤ Lgi,s · ‖ûi− û′i‖2, ∀ i = 1, . . . ,n, s = 1, . . . ,3p.23
To develop a SCP based fully distributed scheme, we introduce more notation. Given any24

û = (ûi)
n
i=1 ∈X and any vectors dJi , dgi,s , and dri,s for i = 1, . . . ,n and s = 1, . . . ,3p, consider25

the following function as a convex approximation of the original nonconvex objective function J,26
where y = (y1, . . . ,yn) ∈ RN with each yi being a suitable subvector of y:27

f (y; û,{dJi}
n
i=1) :=

n

∑
i=1

(
Ji(ûi)+dT

Ji
(ûi)(yi− ûi)+

LJi

2
‖yi− ûi‖2

2

)
,

and the following sets as convex approximations of the original nonconvex constraint sets Y ∩Z :28
C
(
û,{dgi,s ,dri,s , i = 1, . . . ,n, s = 1, . . . ,3p}

)
29

:=
{

y ∈X | gi,s(ûi)+dT
gi,s

(yi− ûi)+
Lgi,s

2
‖yi− ûi‖2

230

−
[
ri,s(ûi)+dT

ri,s
(yi− ûi)

]
≤ 0, i = 1, . . . ,n, s = 1, . . . ,3p

}
,31

Clearly, f is a strongly convex quadratic function in y and decoupled in yi’s, and the convex set32
C
(
û,{dgi,s ,dri,s , i = 1, . . . ,n, s = 1, . . . , p}

)
is the Cartesian product of Ci’s for i = 1, . . . ,n, where33
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each1

Ci
(
ûi,{dgi,s}

3p
s=1,{dri,s}

3p
s=1
)

:=
{

yi ∈Xi | gi,s(ûi)+dT
gi,s

(yi− ûi)+
Lgi,s

2
‖yi− ûi‖2

22

−
[
ri,s(ûi)+dT

ri,s
(yi− ûi)

]
≤ 0, s = 1, . . . ,3p

}
.3

Using the above notation, the iterative scheme of the SCP method is: for a feasible initial4
guess û0,5

ûk+1 = argmin
y

{
f (y; ûk,{∇Ji(ûk

i )}n
i=1)

∣∣y ∈A , and6

y ∈ C
(
ûk,{∇gi,s(ûk

i ),∇ri,s(ûk
i ), i = 1, . . . ,n, s = 1, . . . ,3p}

)}
. (17)7

By virtue of Corollary 6.1, the initial û0 can be chosen as a solution to the problem (11) or (15)8
with ϕ = 0, where the (approximate) constraints are polyhedral or quadratically constrained convex9
sets. An efficient fully distributed scheme has been developed in (9) to compute such û0. Further,10
if û0 is feasible, then ûk is feasible for all k and the constraint set in each step k is a nonempty11
closed convex set.12

The convex minimization problem (17) at each step k can be solved via operator split-13
ting method based fully distributed schemes. Fix ûk = (ûk

i )
n
i=1 and the related gradients eval-14

uated at ûk. We write the objective function f (y; û,{dJi}n
i=1) as f (y) and the constraint sets15

Ci
(
ûk

i ,{∇gi,s(ûk
i ),∇ri,s(ûk

i ), s = 1, . . . ,3p}
)

as Ci’s for notational simplicity. Clearly, ûk
i ∈ Ci for16

each i. If Ci is singleton for some i, i.e., Ci = {ûk
i }, then we have ûk+1

i = ûk
i such that the op-17

timization problem can be reduced to a simpler problem. When Ci is non-singleton, it follows18
from Lemma 6.1 that the Slater’s condition holds for that Ci. Let F(y) := f (y; ûk,{∇Ji(ûk

i )}n
i=1)+19

δC (y)+δA (y). By ∂F(y) = {∇ f (y)}+NC (y)+NA (y). As a result, several operator splitting20
method based fully distributed algorithms (14, 16) can be applied to solve the convex optimization21
problem (17).22

We consider the (generalized) Douglas-Rachford splitting method based distributed scheme.23

Specifically, define for each i = 1, . . . ,n, fi(yi) := Ji(ûk
i ) + dT

Ji
(ûk

i )(yi− ûi) +
LJi
2 ‖yi− ûk

i ‖2
2, and24

f̂i(y) := fi(yi) + δCi(yi). Hence, the objective function f (y) = ∑
n
i=1 fi(yi). For any constant25

0 < α < 1 and ρ > 0, the Douglas-Rachford splitting method based scheme is26

wt+1 = ΠA (zt), zt+1 = zt +2α ·
[
Prox

ρ f̂1+···+ρ f̂n

(
2wt+1− zt)−wt+1

]
, ∀ t ∈ Z+,

where Proxh denotes the proximal operator of a proper lower semicontinuous convex function h,27
and ΠA denotes the Euclidean projection onto A . Since A is the consensus subspace, it is shown28
that for any û := (û1, . . . , ûn) where ûi :=

(
ui,(ui j) j∈Ni

)
, u := ΠA (û) is given by:29

u j = ui j =
1

1+ |N j|

(
û j + ∑

k∈N j

ûk j

)
, ∀(i, j) ∈ E . (18)

Furthermore, since f̂i’s are decoupled, a distributed version of the above algorithm is given by:30

wt+1
i = zt

i, i = 1, . . . ,n; (19a)

zt+1
i = zt

i +2α ·
[
Prox

ρ f̂i

(
2wt+1

i − zt
i
)
−wt+1

i

]
, i = 1, . . . ,n. (19b)

Note that the proximal operator in the second equation of (19) is given by Prox
ρ f̂i

(2wt+1
i − zt

i) =31
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argminyi∈Ci
fi(yi)+

1
2ρ
‖yi− (2wt+1

i − zt
i)‖2

2, where Ci is the intersection of the polyhedral set Xi1

and a quadratically constrained convex set. Since fi is a convex quadratic function, Prox
ρ f̂i

(2wt+1
i −2

zt
i) can be formulated as a second-order cone program or QCQP and solved by SeDuMi (17). See3

Algorithm 1 for its pseudo-code.4

Algorithm 1 Sequential Convex Programming and Douglas-Rachford Splitting Method based
Fully Distributed Algorithm for p≥ 2

1: Choose constants 0 < α < 1 and ρ > 0
2: Solve the problem (15) with ϕ = 0 via a fully distributed scheme and obtain a solution ûlin

3: Initialize k = 0, and set an initial point û0 = ûlin

4: while the stopping criteria is not met do
5: Compute ∇Ji(ûk

i ), ∇gi,s(ûk
i ), ∇ri,s(ûk

i ), and set z0 = ûk and t = 0.
6: repeat
7: for i = 1, . . . ,n do
8: Compute zt

i using equation (18), and let wt+1
i ← zt

i
9: end for

10: for i = 1, . . . ,n do
11: zt+1

i ← zt
i +2α ·

[
Prox

ρ f̂i

(
2wt+1

i − zt
i
)
−wt+1

i

]
12: end for
13: t← t +1
14: until an accumulation point is achieved
15: Set ûk+1 = wt and k← k+1
16: end while
17: return û∗ = ûk

Since X is a compact set, the numerical sequence (ûk) generated by Algorithm 1 always5
has an accumulation point denoted by û∗. Under very mild conditions, û∗ is feasible and is a KKT6
point of the nonconvex program (11). Our numerical experiences show that (ûk) converges to a7
(local) minimizer û∗. This coincides with the observation in Corollary 6.1 when c2,i and c3,i are8
small.9

NUMERICAL RESULTS10
Numerical Experiment Setup and Weight Matrix Design11
Numerical tests are carried out to evaluate the performance of the proposed fully distributed12
schemes and the platooning control for a possibly heterogeneous CAV platoon. We consider a13
platoon of an uncontrolled leading vehicle labeled by the index 0 and ten CAVs, i.e., n = 10. The14
sample time τ = 1s, and the speed limits vmax = 27.78m/s and vmin = 10m/s. For the sake of length15
limit, in this paper we consider only heterogeneous CAV platoon (refer to arxiv paper for more re-16
sults). Let the variable vector varvec :=

[
1.1 1.05 0.9 0.95 1.1 1.05 0.9 0.95 1.05 0.95

]
∈17

R10, then the reaction time r = 1.1×varvec secs i.e., r1 = 1.1×1.1 = 1.21 secs, r2 = 1.1×1.05 =18
1.155 secs, and so on upto r10 = 1.1× 0.95 = 1.045 secs. Similarly, the deceleration limits19
amin = −7.4× varvec m/s2, and the nonlinear dynamics coefficients c2 = 3.5× varvec× 10−4 and20
c3 = 1.05× varvec× 10−4. Other parameters are fixed across the platoon and are as follows: the21
vehicle length Li = 7m, the desired spacing ∆ = 60m, the acceleration limits amax = 1.4m/s2.22
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The initial state of each CAV platoon is z(0) = z′(0) = 0 and vi(0) = 25m/s for all i =1
0,1, . . . ,n. The cyclic-like graph is considered for the vehicle communication network, i.e., the2
bidirectional edges of the graph are (1,2),(2,3), . . . ,(n− 1,n) ∈ E . Following the discussions in3
(9), we choose the MPC horizon p as 1≤ p≤ 5.4

We present the choices of weight matrices used below. Define5
α̃ :=

(
38.85,40.2,41.55,42.90,44.25,45.60,46.95,48.30,49.65,51.00

)
∈ R10,6

β̃ :=
(
130.61,136.21,141.82,147.42,153.03,158.64,164.24,169.85,175.46,181.06

)
∈ R10,7

ζ̃ :=
(
62,74,90,92,106,194,298,402,454,480

)
∈ R10.8

α1 = 6α̃ , β
1 = β̃ , and ζ

1 = 0.5ζ̃ when p = 1.9
For p≥ 2, α1 = 6̃(α−1), β

1 = β̃ −1, and ζ
1 = 0.5(ζ̃ −1)

α
s =

0.0684
(s−1)4 × α̃, β

s =
0.044
(s−1)4 × β̃ , ζ

s =
0.0013
(s−1)4 × ζ̃ , s = 2, . . . ,min(p,3).

For p = 4,5,

α
s =

0.0228
(s−1)4 × α̃, β

s =
0.044
(s−1)4 × β̃ , ζ

s =
0.0026
(s−1)4 × ζ̃ , s = 4, . . . , p.

The above vectors αs,β s,ζ s define the weight matrices Qz,s,Qz′,s,Qw,s for s = 1, . . . ,5,10
which further yield the closed loop dynamics matrix Ac. It is shown that when these weights are11
used, Ac is Schur stable for each p = 1, . . . ,5. To evaluate the proposed CAV platooning control12
we consider the three scenarios used in (9).13

Performance of the Proposed Fully Distributed Scheme14
When p = 1, the underlying MPC optimization problem (15) is a convex QCQP, for which the15
generalized Douglas-Rachford splitting method based fully distributed algorithm developed in (9)16
is used. In what follows, we focus on p > 1.17

When p> 1, the underlying MPC optimization problem (15) is nonconvex, and the sequen-18
tial convex programming and Douglas-Rachford splitting method based fully distributed scheme19
is applied (cf. Algorithm 1). To apply this algorithm, we discuss the choices of the smooth func-20
tions gi,s and the convex function ri,s for the (approximate) nonconvex constraint sets Yi and21
Zi, where i = 1, . . . ,n. For j = 1, . . . , p, define the function qi j(ui) := vi(k) + τ

((
Spui

)
j − j ·22

c3,ig− c2,i ∑
j−1
s=0
[
vi(k)+ τ(Spui)s

]2). The approximate Yi is given by Yi = {ui |vmin− qi, j(ui) ≤23
0, qi, j(ui)− vmax ≤ 0, j = 1, . . . , p}. Define gi,s(ui) := vmin− qi, j(ui), and ri,s(ui) :≡ 0 for s =24
1, . . . , p; gi,s(ui) :≡ 0, and ri,s(ui) :=−qi, j(ui)+vmax for s= p+1, . . . ,2p. Then Yi = {ui |gi,s(ui)−25
ri,s(ui)≤ 0, s = 1, . . . ,2p}. Similarly, for each i = 1, . . . ,n and s = 1, . . . , p. let26

g′i,s(ui−1,ui) := (Hi(ui−1,ui))s ≈ Li + ri ·qi,s(ui)−
1

2ai,min
[qi,s(ui)− vmin]

2−
{

zi(k)+∆+

jτz′i(k)+ τ
2

s−1

∑
t=0

2( j− t)−1
2

[
ui−1(k+ t)−ui(k+ t)−

(
c2,i−1

[
vi−1(k)+ τ(Spui−1)t

]2
− c2,i

[
vi(k)+ τ(Spui)t

]2)− (c3,i−1− c3,i
)
g
]}

and r′i,s(ui−1,ui) ≡ 0. Then Zi = {ûi |g′i,s(ûi)− r′i,s(ûi) ≤ 0, s = 1, . . . , p}. Further, the Lipschitz27
constants LJi’s and Lgi,s’s are given by νp‖HJi(ûi)‖2 and 0.9‖Hgi,s(ûi)‖2, where νp = 0.8 for28
p= 2,3 and νp = 0.9 for p= 4,5 respectively, and H f denotes the Hessian of a real-valued smooth29
function f . The reasons for each Hessian scaled by these factors are twofold: (i) the 2-norm of30
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Hessian is conservative; and (ii) the scaled Hessian leads to faster convergence.1

Initial guess warm-up. To achieve real-time computation of the proposed distributed scheme (i.e.,2
Algorithm 1), we exploit the initial guess warm-up technique for both the linear stage (cf. Line 2)3
and the inner loop of the SCP-DR stage (cf. Lines 6-14). For the former stage, see for its warm-4
up scheme. We discuss a warm-up scheme for the latter stage. Recall that the inner loop solves5
the following convex optimization problem: miny=(yi)∈A ∑

n
i=1 fi(yi)+δCi(yi), where for each i =6

1, . . . ,n, fi(yi) := Ji(ûk
i )+ dT

Ji
(ûk

i )(yi− ûi)+
LJi
2 ‖yi− ûk

i ‖2
2, and Ci is the intersection of the box-7

constraint set Xi corresponding to the control constraint and a quadratically constrained convex8
set corresponding to the (approximated) velocity and safety distance constraints; see Section 6.29
for details. Since the (approximated) velocity and safety distance constraints are often inactive,10
we replace Ci by Xi in a warm-up scheme. Further, the generalized Douglas-Rachford scheme11
given by (19) is used to solve miny=(yi)∈A ∑

n
i=1 fi(yi)+ δXi(yi) in a fully distributed manner by12

replacing Ci by Xi. Since fi and the box constraint set Xi are fully decoupled, solving the proximal13
operator based optimization problem in this scheme boils down to solving finitely many decoupled14
univariate optimization problems of the form: mint∈[c,d] at2+bt +e, where t ∈R, and a,b,c,d,e ∈15
R are given constants with a > 0. Such a univariate optimization problem has a simple closed-16
form solution, which considerably reduces computation load of the Douglas-Rachford scheme.17
Numerical tests show that the proposed warm-up scheme significantly improves computation time18
and solution quality.19

Performance of distributed schemes. We implement the proposed fully distributed algorithms via20
MATLAB on a computer with 4-cores processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz21
and RAM: 16.0GB. These distributed algorithm are tested for a heterogeneous medium-size CAV22
platoon, on Scenarios 1-3 for different MPC horizon p’s. The proposed initial guess warm-up23
schemes are used with the error tolerance give by 10−7 for all the cases. Moreover, we choose24
α = 0.9 and ρ = 0.1 for the proximal operator based Douglas-Rachford scheme in all of these25
algorithms. Further, the stopping criteria are characterized by the minimum of absolute and relative26
errors of two neighboring iterates for p = 2,3, whereas for p = 4,5, these criteria are characterized27
by absolute errors of two neighboring iterate. The error tolerances for the outer loop (×10−3)28
is 2.5,6.5,7.5,10,12.5 for p = 1, . . . ,5 respectively. Similarly for the inner loop (×10−3) it is29
4,5,7.5,10 for p = 2,3,4,5 respectively. Note that there is no inner loop when p = 1, since the30
underlying MPC optimization problem is a convex QCQP and solved via the fully distributed31
scheme given in (9).32

A summary of mean and variance of computation time per CAV with different p’s on the33
three scenarios is displayed in Tables 1. Moreover, to evaluate the numerical accuracy of the34
proposed schemes for p = 1, we compute the relative error between the numerical solution from35
the distributed schemes and that from a high precision centralized scheme when the latter solution,36
treated as a true solution, is nonzero. The mean of the relative errors is 5.66×10−4, 1.11×10−4,37
and 6.85×10−4 respectively for the three scenarios, whereas the variance is 1.24×10−6, 7.54×38
10−6, and 8.41×10−7 respectively. Note that for p≥ 2, a true solution is hard to compute even in39
a centralized manner.40

The numerical results show that for each p, the mean computation time is less than 0.3165s41
and thus less than the reaction time ri or sample time τ with overall fairly small variances, for all42
the three scenarios. Indeed, the computation time for p = 1 is the least and becomes larger for a43
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TABLE 1 computation time per CAV (sec)

MPC horizon
Scenario 1 Scenario 2 Scenario 3

Mean Variance Mean Variance Mean Variance
p = 1 0.1333 1.44×10−4 0.1421 2.55×10−4 0.1408 4.09×10−4

p = 2 0.2795 4.5×10−3 0.2857 6.7×10−3 0.2528 6.3×10−3

p = 3 0.2673 4.11×10−3 0.2804 2.78×10−3 0.2398 4.91×10−3

p = 4 0.2535 2.02×10−3 0.3165 5.93×10−3 0.2883 9.73×10−3

p = 5 0.3056 0.4440 0.3051 0.0109 0.2882 0.0135

higher p for most cases. Hence, we conclude that the proposed distributed schemes are suitable1
for real-time computation of a heterogenous CAV platoon with satisfactory numerical precision.2

Performance of CAV Platooning Control3
We evaluate the closed-loop performance of the proposed CAV platooning control with different4
MPC horizon p’s on the three scenarios in (9). For each scenario, we consider the spacing between5
two neighboring vehicles (i.e., Si−1,i(k) := xi−1(k)−xi(k) = zi(k)+∆), the vehicle speed vi(k), and6
the control input ui(k), i = 1, . . . ,n for p = 1,2,3,4,5.7

We present the closed-loop performance only for p = 1 and p = 5 for each type of CAV8
platoons in each scenario because of the length limit; see Figure 1. The closed-loop performance9
in each scenario is commented as follows:10

(i) Scenario 1. Figure1 shows the MPC control performance of the heterogeneous medium-11
size CAV platoon in Scenario 1. It can be seen that the spacing between the leading12
vehicle and the first CAV, i.e., S0,1 has small deviations (less than 0.5m) from the desired13
spacing ∆ when the leading vehicle takes instantaneous acceleration or deceleration. Fur-14
ther, when p = 1, and p = 5 there are small deviations from the desired spacing ∆ for the15
other CAVs in the heterogeneous CAV platoon. The convergence to the steady states is16
fast (within 15 secs) and the steady state errors in spacing are nonzero but are small. In17
fact, the maximum steady state errors increase as p becomes larger; compared with the18
desired spacing ∆ = 60m, the largest relative error is less than 0.47%. Lastly, the time19
history of speed and control input demonstrates satisfactory performance. In particular,20
it is observed that all the CAVs show the same speed change and almost identical control,21
implying that the CAV platoon performs a nearly coordinated motion under the proposed22
platooning control.23

(ii) Scenario 2. Figure 2 display the MPC control performance of the heterogeneous medium-24
size platoon in Scenario 2, where the leading vehicle undertakes periodic acceleration /25
deceleration. S0,1 demonstrates the largest fluctuations whose maximum magnitude of26
deviations is 0.3m when ∆ = 60m. Besides, the CAV platoon demonstrates nearly coor-27
dinated motions. For example, when p= 1, p= 5 the spacings Si−1,i for i= 2, . . . ,10 have28
small deviations from the desired spacing for the heterogeneous CAV platoon. Moreover,29
the fluctuations of S0,1 and other Si,i+1’s quickly converge to their steady states within 15s30
when the leading vehicle stops its periodical acceleration. The steady state errors in spac-31
ing are as same as those in Scenario 1. The time history of speed and control input shows32
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nearly identical behaviors for all the CAVs.1
(iii) Scenario 3. Figure3 show the control performance of the heterogeneous medium-size2

CAV platoons in Scenario 3, where the leading vehicle undergoes various traffic os-3
cillations through the time window of 45s. It is observed that S0,1 demonstrates the4
largest spacing variations with the maximum magnitude less than or equal to 0.3m when5
∆ = 60m; the other spacings Si−1,i, i = 2, . . . ,10 either are the desired constant or demon-6
strate nearly constant deviations with maximum magnitude less than 0.14m, in spite of7
the oscillation of S0,1. Further, the spacings Si−1,i, i= 2, . . . ,10 almost reach steady states8
between 5s and 25s and after k = 35. It is seen that the maximum steady state error of-9
ten appears at S1,2. Compared with the desired spacing ∆ = 60m, the largest relative10
error is less than 0.37% for the CAV platoons in Scenario 3. Finally, the CAV platoons11
demonstrates nearly coordinated motions.12

Consequently, the proposed platooning control effectively mitigates traffic oscillations of13
the spacing and vehicle speed of the CAV platoons of different types with small or almost negligible14
steady state errors. In fact, it achieves nearly consensus motions of the entire CAV platoons even15
under some perturbations.16

CONCLUSION17
This paper develops a nonconvex, fully distributed optimization based MPC scheme for CAV pla-18
tooning control of a heterogeneous CAV platoon under the nonlinear vehicle dynamics. Various19
new techniques are exploited to address challenges induced by the nonlinear vehicle dynamics, in-20
cluding distributed algorithm development for the coupled nonconvex MPC optimization problem.21
We apply locally coupled optimization and sequential convex programming for distributed algo-22
rithm development. Extensive numerical tests are conducted to illustrate the effectiveness of the23
proposed fully distributed schemes and CAV platooning control for heterogeneous CAV platoons24
in different scenarios.25
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FIGURE 1 Scenario 1 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).
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FIGURE 2 Scenario 2 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).
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FIGURE 3 Scenario 3 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).
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